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ABSTRACT 

 

Proton exchange membrane fuel cells (PEMFCs) are a promising technology in energy 

conversion. However, the high cost of the platinum catalyst limits the use of fuel cells. To 

address this problem, many improvements and optimizations have been proposed for the 

PEMFC catalyst layer. In this study, an apparatus to produce aligned Nafion fiber catalyst 

layers is designed, the alignment capabilities of the apparatus are explored, and the 

performance of the aligned catalyst layer is evaluated. 

A horizontal accelerated drum is able to produce aligned Nafion fibers up to 80% 

alignment. This alignment is present at drum speeds over 3000 rpm over a wide range of 

electrospinning solution flow rates. A catalyst layer fabricated via simultaneous 

electrospinning and electrospraying (E/E) has a peak power density of 535 mW cm-2 and 

an electrochemical surface area of 42 m2 gPt
-1. This performance is comparable to the 

performance of a randomly aligned catalyst layer fabricated with E/E. 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1. Proton Exchange Membrane Fuel Cells 

Proton exchange membrane fuel cells (PEMFCs) are a promising technology for energy 

conversion due to their high energy density, zero-emissions, and fast refuel. Proposed 

applications include small portable electronics and large moving vehicles. PEMFCs offer 

advantages over an energy storage device, such as a lithium-ion battery, by providing a 

higher overall energy density and fast refueling. The invention of fuel cells is attributed to 

Sir William Grove in 1839.1 The first notable use of a PEMFC is by NASA in the Gemini 

space shuttle.2 Since this time, many companies, specifically car manufacturers, have 

invested into fuel cell research.3 The largest drawback of a PEMFC is the need for 

significant amounts of expensive platinum catalyst to facilitate the oxygen reduction 

reaction at low operating temperatures.4 This inhibits the economic viability of PEMFCs 

as a competitor to current energy storage and conversion technologies. Current research is 

aimed at reducing or eliminating the required platinum in the fuel cell. 

Figure 1.1 shows a basic schematic of a PEMFC. The catalyst layer is provided the 

reactions via gas channels in the current collector. The anode is fed hydrogen and the 

cathode is fed oxygen in the form of either pure oxygen or air. The gas then diffuses 

through the gas diffusion layer (GDL), which serves to distribute the reactant evenly 

across the catalyst layer. In the anode, protons and electrons are generated. The protons 

pass through the proton exchange membrane (PEM), which is most commonly made of a 

DuPont product called Nafion. These protons then react with the oxygen and electrons in 
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the cathode catalyst layer to form water. The electrons from the anode cannot pass through 

the insulating membrane and are forced through an external circuit before arriving at the 

cathode current collector.  

 

 

 

 

 

Figure 1.1 Schematic of proton exchange membrane fuel cell. 
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The catalyst layer contains the catalyst, electron conductors, and proton conductors. 

Typically, the catalyst is platinum on a carbon support. The carbon support also functions 

as the electron conductor. The proton conductor is most commonly Nafion. The 

morphology of these components must facilitate the transport of the reactant gas, protons, 

and electrons to available catalyst sites and water out of the cell. Points in the structure 

which allow for all of three reactants to meet are referred to as a triple phase boundary 

(TPB). An ideal catalyst layer has a large number of TPBs and low tortuosity for each of 

the transported components. Optimization of the catalyst layer focuses on finding optimal 

morphologies which meet the above requirements.  

 

1.2. Nanoscale Electrode Fabrication 

In 2002, Middelman 5 observed the formation of nanofiber structures formed in the 

catalyst layer and proposed an ideal membrane consisting of perpendicular nanofibers 

constructed of a catalyst core and proton conductor shell with channels for gas and water 

transport in between. He was able to produce such structures in electrodes by using a 

strong electric field as a driving force.5 Our laboratory later showed that nanofibers form 

under normal operating conditions in the fuel cell.6 Further investigation showed that these 

fibers form at temperatures above 60 °C and result in increased performance of the cell 

regardless of operating temperature.6 This work demonstrates the improvements possible 

by exploring nanoscale morphologies.  

First efforts to produce nanoscale electrode structures used the electrospraying 

technique.7-9 Baturina and Wnek electrosprayed the electrode material directly on to the 
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Nafion membrane and reported good initial results, but the MEA exhibited high transport 

resistance in the gas phase, resulting in decreased performance at high current densities.7 

Improvements in the electrospraying method have focused on improving the composition 

of ionomer and catalyst in the spray solution,10-11 solvent  properties,12 and deposition of 

the particles.13   

Chaparro et al.10 explored the optimal composition of the spray solution. They 

concluded that a Nafion concentration of 15% was optimal based on a minimum in 

observed internal resistance in the cell. This ionomer concentration was also close to the 

maximum in Pt utilization. Similarly, for Pt loadings, an optimum of 0.17 mg cm-2 was 

reported.  

Martin et al. 11 pursued similar work, but explored lower loadings of Pt from 0.1 to 

0.0125 mg cm-2. They observed that the optimal Nafion concentrations for electrospraying 

increased as they lowered the Pt loading. Based on performance, they reported an optimal 

Nafion concentration of 30% at 0.1 mg cm-2, 40% at 0.05 mg cm-2, and 50% at 0.025 mg 

cm-2. 

Martin et al.13-14 also demonstrated the effects of the Pt weight percent of the catalyst 

particle. In two separate papers, they report the Pt utilization at 0.01 mg cm-2. In the first 

they used a 20% Pt/C catalyst and observed 20 kW gPt
-1. The second paper used a 10% 

Pt/C catalyst and observed 30 kW gPt
-1

.  

Electrospinning has also been explored as a method for fabricating electrodes. Chen et 

al.15 studied Nafion in solution and demonstrated a method to electrospin the Nafion to 

produce nanofibers.  This work studied the aggregate sizes of Nafion in solution in a range 
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of solvents and showed that Nafion polymer chains do not entangle sufficiently to 

electrospin by itself. To solve this, Chen demonstrated that the addition of poly(acrylic) 

acid (PAA) decreased the hydrodynamic radius of the aggregates in solution allowing the 

solution to electrospin.15 

The Pintauro group used this method combined with a Pt/C catalyst to form electrospun 

electrodes.16-17 In their first work, a Nafion/PAA/Pt/C nanofiber electrode was reported 

and compared to a control MEA. They showed an increase in ECSA from 60 m2 gPt
-1 in 

the control MEA to 114 m2 gPt
-1 in the electrospun MEA. They also showed improved 

durability of the MEA in cyclic stability testing.17 Following up their first work, the 

Pintauro group reported the performance over a wider variety of operating conditions, 

including a peak power of 906 mW cm-2 at 80 °C, 3 atm back pressure, and fully 

humidified gas flow rates of 500 and 2000 sccm of H2 and air, respectively.16 

In our group, Wang et al. used simultaneous electrospinning and electrospraying (E/E) 

to fabricate a fuel cell catalyst layer.18 This method allows for the advantages of 

electrosprayed catalyst, while also maintaining porosity. Wang reported high 

performance, at platinum loadings as low as 0.022 mgPt,cath cm-2 with a Pt utilization of 

over 40 kW gPt
-1.18 Improving on this work, Wang also showed that a small amount of 

polytetrafluoroethylene (PTFE) added to the catalyst layer was sufficient to improve the 

performance of the MEA significantly, resulting in over 30% improvement in the platinum 

utilization.19 Wang’s work demonstrates the viability of E/E as a method for producing 

catalyst layers with highly tunable properties. Because of the flexibility this method 

provides, there exists many opportunities to further optimize the catalyst layer 
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morphology. One of these methods would be to use the spun fibers as a template to create 

patterns in the layer. This could then allow for optimization of channels for gas and liquid 

water transport, while maintaining high electron and ionic conductivity. 

 

1.3. Controlled Electrospinning Fabrication 

There have been many methods reported in the literature that exercise some degree of 

control over the deposition pattern of electrospun nanofibers. By far, the most common is 

fiber alignment and has been achieved by several means including rotating drum 20-22, 

parallel plates 23-24, and magnetic fields 25.  

All of these options have their own strengths and weaknesses. Li et al. 23 successfully 

demonstrated that parallel plates are effective in the production of aligned fibers and that 

multiple electrode pairs can be used in series to fabricate more complex structures. 

However, the alignment is dependent on the distance of the gap and the requirement of an 

insulating medium between the electrodes.23 

Liu et al. 25 used a magnetic field to fabricate aligned straight and wavy fibers without 

any addition of magnetic particles. They spun poly(D,L-lactic-co-glycolic acid) (PLGA) 

for collection times up to 2 hours and demonstrated that thick mats are possible without 

losing the alignment. This technique is dependent on the presence of a gap between the 

magnets and the size of that gap.25  

Matthews et al. 20 demonstrated the use of a rotating drum assembly to align collagen 

fibers. They showed that at a surface velocity of 1.4 m s-1, the collagen fibers were highly 
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aligned in the direction of rotation.20 The rotating drum has the advantage of high 

collection area, which can be further enhanced by moving the spinning needle.  

There have been methods reported, which can control the fiber deposition beyond 

simple alignment. These methods include dynamic electrical fields26 and near-field 

electrospinning.27-29 These techniques demonstrate that the creation of more complex fiber 

structures is possible.  

In this work, several apparatus were designed and utilized to explore the viability of 

each for fabricating aligned Nafion fibers in an E/E catalyst layer. The parameters of the 

apparatus are then explored to find the ideal process parameters for alignment. Finally, the 

fuel cell performance of an aligned fiber E/E catalyst layer is compared with a randomly 

orientated catalyst layer. 
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2. DESIGN OF EXPERIMENTAL APPARATUS 

2.1. Introduction 

In this work, both magnetic field assisted-electrospinning and accelerated rotating 

drum speeds were explored to determine the suitability for fabrication of a PEMFC 

catalyst layer. Priority is placed on both achieving high alignment in fiber mats and 

creating large area uniform catalyst layers. 

2.2. Experimental Methods 

 Materials 

Isopropanol (99.5%, Sigma Aldrich), Nafion solution (1100 EW, 5 wt% in a 3:1 v:v of 

isopropanol/water, Ion Power), poly(acrylic acid) (PAA; MV = 450,000 g mol-1, Sigma 

Aldrich), 20 wt% platinum on carbon catalyst (Pt/C; Vulcan XC-72, Premetek Co.), 60 

wt% platinum on carbon catalyst (60% Pt/C; Vulcan XC-72, Premetek Co.), were used as 

received. Ultrapure deionized (DI) with resistivity greater than 16 MΩ·cm (25 °C) was 

used as appropriate.  

 

 Fiber Characterization 

Scanning electron microscopy (SEM; FEI Quanta 600 FE-SEM; 5 kV; working 

distance = 10 cm) was used to investigate the morphology of the fibers. The samples were 

removed from the collector after spinning. Samples were sputter coated (Cressington 208 

HR) with platinum/palladium (thickness = 10 nm).  
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Image analysis was performed using ImageJ software to characterize the fiber diameter 

and orientation. DiameterJ was used to segment the image and calculate the diameter of 

the fibers. OrientationJ was utilized to obtain the orientation distribution of the fibers. This 

distribution was converted to an overall percentage via the method reported by Rahmani 

et al.30 This method uses the relative frequencies in the histogram and weighs them based 

on the distance from the target orientation. This method will assign a value of 100% 

aligned to a sample completely aligned in the target direction, 0% aligned to a sample 

completely aligned perpendicular to the target direction, and 33% aligned to a sample with 

completely random alignment. In this work, the target direction was always chosen as the 

orientation, which provided the best fit of the histogram to a normal curve. 

 

 Preparation of Solutions 

The electrospinning solution used for the creation of fiber mats was fabricated with the 

following specifications. 18.75 mg of PAA, 1500 mg of Nafion solution, and 375 mg of 

isopropanol/water (3/1 v/v) were added to obtain a 5% by weight in the polymer solution. 

The resulting solution contained a 4/1 w/w Nafion/PAA ratio. The solution was allowed 

to stir for several hours until PAA was completely dissolved. 

The electrospraying solution was fabricated by adding 40 mg of 20% Pt/C, 32 mg of 

Nafion at 5% of the carbon weight, and 3.9 g isopropanol/water (3/1 v/v ) to reach 1% 

solids in the solution. The solution was then sonicated (duration = 5 min, amplitude = 

35%; Model CL-18, Qsonica Sonicator) to disperse the Pt/C. 
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The Pt/C electrospinning solution was produced similar to previous work by the 

Pintauro group.17 This solution eliminates the need for electrospraying adding the catalyst 

to the electrospinning solution. The Pt/C solution was created by adding 40 mg of 60% 

Pt/C, 425.5 mg of Nafion solution, and 6.8 mg of PAA, resulting in a final ratio of 47:500:8 

w/w/w 60% Pt/C/Nafion solution/PAA. The solution was stirred to dissolve the PAA and 

then sonicated (duration = 15 min, amplitude = 35%) prior to disperse the Pt/C. 

 

 Magnetic Field Apparatus 

Figure 2.1 shows a schematic of the magnetic field apparatus developed. Neodymium 

ring magnets (o.d. = 4 in., i.d. = 2 in, thickness = 1 in.; Apex Magnets) were placed on a 

poly(vinyl chloride) (PVC) tube (i.d. = 1.61 in, o.d. = 1.9). The magnet was held in place 

by steel clamps (i.d. = 1.94 in.; McMaster-Carr). Acetyl resin rings were used as spacers 

to ensure accurate distance between magnets (i.d. = 2, o.d. = 3 in., thickness = 0.5 – 3 cm; 

custom). The assembly was driven by a motor (Model 4IK25GN-SW2, Oriental Motor). 

On either side of the assembly, two high-voltage power supplies (Model PS/EL50R00.8, 

Glassman High Voltage, Inc. and Model ES40P-10W/DAM, Gama High Voltage 

Research) supplied voltage to the two syringe needles (i.d. = 0.024 in.; Hamilton). The 

solution was supplied to the needle via two syringe pumps (Model NE-1000, New Era 

Pump Systems) and tubing (Pt. No. 30600-65, Cole Parmer). The entire set-up was 

contained in a box (dimensions = 16 in x 16 in x 28 in; Nalgene), which was continuously 

purged with dry air to maintain humidity at 5%. 
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 The needle tip to collector distances, applied voltages, and solution flow rates were 7.5 

and 9 cm, 7 and 12.5 kV, and 0.3 and 3 ml h-1 for the electrospinning and electrospraying 

processes, respectively. The drum was rotated at 100 rpm, and the fiber mat was collected 

in the gap between the two magnets. 

 

 

 

 Vertical Drum Apparatus 

Figure 2.2 shows a schematic of the vertical drum apparatus developed. This apparatus 

was a modified version of the magnetic field apparatus in previous section. The magnets 

and PVC pipe were exchanged for a larger PVC pipe (o.d. = 4 in; McMaster-Carr) that 

was connected to the motor by a shaft. A strip of aluminum foil was used as the grounded 

collection surface. The motor, electrospinning and electrospraying apparatus, and 

Figure 2.1 Schematic of magnetic field apparatus. 
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chamber were all used as described in previous section. The needle tip to collector 

distances, applied voltages, and solution flow rates were 7 and 9 cm, 6 and 12.5 kV, and 

0.3 and 3 ml h-1 for the electrospinning and electrospraying processes, respectively, with 

a drum rotation speed of 800 rpm. 

 

 

 

 

 Horizontal Drum Apparatus 

A schematic of the horizontal drum apparatus developed is shown in Figure 2.3. The 

apparatus used a belt pulley as a drum (o.d. = 4 in, steel; 5706K11, McMaster-Carr), which 

was covered by grounded aluminum foil, not shown in the schematic, which served as the 

collection surface. The drum was powered by a motor (BMU5200APA3, Oriental Motor) 

Figure 2.2 Schematic of vertical drum apparatus. 
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connected by a timing belt drive (gear ratio = 1.625; custom). The drum was mounted on 

a shaft (diameter = 0.5 in; 1570K42, McMaster-Carr) that was held in place by two ball 

bearings (cast iron; 7728T51, McMaster-Carr) that were mounted to a custom acetyl resin 

structure. The electrospinning and electrospraying apparatus and chamber were similar to 

previous sections. The needle tip to collector distances, applied voltages, and solution flow 

rates were 9 and 9 cm, 7 and 12.5 kV, and 1.0 and 3 ml h-1 for the electrospinning and 

electrospraying processes, respectively, with a drum rotation speed of 6000 rpm. 

 

 

 

 

 

Figure 2.3 Schematic of horizontal drum set-up. 
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2.3. Results and Discussion 

 Magnetic Field Apparatus 

Several experiments were conducted using parallel ring magnets as described in the 

magnetic field apparatus experimental section. These experiments identified the spinning 

parameters required to reliably produce aligned fibers using this apparatus. It was 

observed that the needle to collection distance was most critical in fabricating an aligned 

fiber mat. These results are consistent with the findings reported by Rahmani et al.30 

Figure 2.4 (a) shows an SEM image of a fiber mat collected over 15 minutes under 

conditions described in the magnetic field apparatus experimental section. As shown in 

Figure 2.4 (b) shows, the sample is highly aligned and analysis of the histogram results in 

an alignment of 81%.  

 

Figure 2.4 (a) SEM image of fiber mat fabricated with magnetic field apparatus. (b) 

Orientation histogram. (c) SEM image of catalyst layer fabricated with magnetic field 

apparatus. 
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After successful fabrication of aligned fiber mats, attempts were made to produce 

similar alignments of the fiber mat while also spraying particles to create a complete 

catalyst layer. The introduction of electrospraying presented several challenges in the 

fabrication of catalyst layers. As Figure 2.4 (c) shows, the alignment results were not 

replicable once electrospraying was introduced. It was speculated that either physical or 

electrical interactions of the conducting particles were overcoming the aligning forces of 

the magnets. Additionally, Figure 2.5 shows a macroscopic picture of the resulting fiber 

mat. It is apparent that some of the electrospraying particles punctured through the 

relatively weak fiber mat. This was observed more frequently in the early stages of 

spinning before the mat reached a thickness such that the force of larger particles could be 

absorbed without puncturing. This resulted in mats having an inconsistent thickness and 

loading across the fiber mat.   

 

Figure 2.5 Photo of catalyst layer fabricated with magnetic field set-up. 
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In an attempt to create a catalyst layer without the interference of electrospraying, an 

electrospinning solution was made in a similar manner to the method reported by Zhang 

et al.17 This electrospinning solution eliminated puncturing of the fiber mat, but did not 

result in an aligned mat. Figure 2.6 shows a SEM of the fiber mat made with the Pt/C 

electrospinning solution on the magnetic field apparatus. It is apparent that there is no to 

little alignment in this fiber mat. The addition of the Pt/C particles in the electrospinning 

solution makes the fibers very conductive. It seems the conductivity of either the spinning 

fiber or the collected mat affects the ability of the magnetic field to align the fibers. 

 

 

 

 

Figure 2.6 SEM image of Pt/C spinning solution fiber mat fabricated with magnetic field 

apparatus. 
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 Accelerated Drum Apparatus 

Figure 2.7 (a) shows the fiber mat collected on the vertical drum apparatus. While it is 

clear there is a tendency for alignment, the overall alignment percentage is 71%, which is 

lower than the alignment achieved by the magnetic field apparatus. Figure 2.7 (c) shows 

that the introduction of the spraying technique does not affect the alignment of the fibers 

in the catalyst layer.  

Figure 2.8 (a) shows a fiber mat, which was produced on the horizontal drum apparatus. 

It is apparent that the alignment increases significantly with the increased face velocity of 

the drum over the vertical drum configuration. This observation is confirmed by image 

analysis, which gives the alignment percentage of the fibers at 80%, similar to that 

obtained in magnetic field electrospinning. The horizontal drum is a more stable apparatus 

than the vertical drum with an improved motor, which allows for a faster drum speeds. 

This higher speed enables the spinning fiber to be subject to higher aligning forces when 

making contact with the collection surface, resulting in a fiber mat with a higher 

alignment. 

(a) SEM image of fiber mat fabricated with vertical drum apparatus. (b) Orientation 

histogram. (c) SEM image of catalyst layer fabricated with vertical drum apparatus. (a) 

SEM image of fiber mat fabricated with horizontal drum apparatus. (b) Orientation 

histogram. (c) SEM image of catalyst layer fabricated with horizontal drum apparatus. 
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Figure 2.8 (a) SEM image of fiber mat fabricated with horizontal drum apparatus. (b) 

Orientation histogram. (c) SEM image of catalyst layer fabricated with horizontal drum 

apparatus. 

Figure 2.7 (a) SEM image of fiber mat fabricated with vertical drum apparatus. (b) 

Orientation histogram. (c) SEM image of catalyst layer fabricated with vertical drum 

apparatus. 
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2.4. Conclusion 

In this section, the horizontal drum apparatus demonstrates the ability to fabricate a 

highly aligned fiber mat and catalyst layer. The magnetic field apparatus, while able to 

produce an aligned fiber mat, was unable to fabricate an aligned catalyst layer. Future 

studies will further explore orientation using the horizontal drum and the fuel cell 

performance of the aligned catalyst layers. The vertical drum apparatus produces an 

aligned fiber mat and catalyst layer, but the alignment was not as high as observed with 

the magnetic field apparatus or horizontal drum apparatus. 
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3. ALIGNED NAFION FIBER MATS ON ACCELERATED DRUM 

3.1. Introduction 

The goal of this study is to explore the range of alignments possible on the accelerated 

drum apparatus developed in the previous section. There are many parameters, which can 

be tailored in electrospinning, such as needle to collector distance, strength of the electric 

field, temperature, humidity, solution flow rate, and drum speed. In this section, drum 

speed and solution flow rate were varied and the effects on the spinning process and 

orientation are reported.  

 

3.2. Experimental Methods 

 Materials 

Isopropanol (99.5%, Sigma Aldrich), Nafion solution (1100 EW, 5 wt% in a 3/1 v/v of 

isopropanol/water, Ion Power), and poly(acrylic acid) (PAA; MV = 450,000 g mol-1, Sigma 

Aldrich) were used as received. Ultrapure deionized (DI) with resistivity greater than 16 

MΩ·cm (25 °C) was used as appropriate.  

 

 Fiber Characterization 

Scanning electron microscopy (SEM; FEI Quanta 600 FE-SEM; 5 kV; working 

distance = 10 cm) was used to investigate the morphology of the fibers. The samples were 
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removed from the collector after spinning. Samples were sputter coated (Cressington 208 

HR) with platinum/palladium (thickness = 10 nm).  

Image analysis was performed using ImageJ software to characterize the fiber diameter 

and orientation. DiameterJ was used to segment the image and calculate the diameter of 

the fibers. OrientationJ was utilized to obtain the orientation distribution of the fibers. This 

distribution was converted to an overall percentage via the method reported by Rahmani 

et al.30 This method uses the relative frequencies in the histogram and weighs them based 

on the distance from the target orientation. This method will assign a value of 100% 

aligned to a sample completely aligned in the target direction, 0% aligned to a sample 

completely aligned perpendicular to the target direction, and 33% aligned to a sample with 

completely random alignment. In this work, the target direction was always chosen as the 

orientation, which provided the best fit of the histogram to a normal curve. 

 

 Preparation of Electrospinning Solution 

The electrospinning solution used for the creation of fiber mats was fabricated with the 

following specifications. 18.75 mg of PAA, 1500 mg of Nafion solution, and 375 mg of 

isopropanol/water (3/1 v/v) were added to obtain a 5% by weight in the polymer solution. 

The resulting solution contained a 4/1 w/w Nafion/PAA ratio. The solution was allowed 

to stir for several hours until PAA was completely dissolved. 
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 Electrospinning Apparatus 

A schematic of the horizontal drum apparatus developed is shown in Figure 3.1. The 

apparatus used a belt pulley as a drum (o.d. = 4 in, steel; 5706K11, McMaster-Carr), which 

was covered by grounded aluminum foil, not shown in the schematic, which served as the 

collection surface. The drum was powered by a motor (BMU5200APA3, Oriental Motor) 

connected by a timing belt drive (gear ratio = 1.625; custom). The drum was mounted on 

a shaft (diameter = 0.5 in; 1570K42, McMaster-Carr) that was held in place by two ball 

bearings (cast iron; 7728T51, McMaster-Carr) that were mounted to a custom acetyl resin 

structure. The assembly was driven by a motor (Model 4IK25GN-SW2, Oriental Motor). 

On either side of the assembly, a high-voltage power supply (Model PS/EL50R00.8, 

Glassman High Voltage, Inc.) supplied voltage to the syringe needle (i.d. = 0.024 in.; 

Hamilton). The solution was supplied to the needle via a syringe pump (Model NE-1000, 

New Era Pump Systems) and tubing (Pt. No. 30600-65, Cole Parmer). The entire 

apparatus was contained in a box (dimensions = 16 in x 16 in x 28 in; Nalgene), which 

was continuously purged with dry air to maintain humidity at 5%. The needle tip to 

collector distance and applied voltage is 9 cm and 7 kV, respectively. The flow rate was 

varied between 0.1 and 1.0 ml h-1 and the drum rotation speed was varied from 1000 to 

6000 rpm during the experiments. Collection times were varied to maintain a similar fiber 

mat thickness between experiments. The times used were 10, 13, 20, 30, and 30 minutes 

for the 1.0, 0.75, 0.5, 0.3, and 0.1 ml h-1 flow rates, respectively. 
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3.3. Results and Discussion 

Figure 3.2 shows the results of operating the electrospinning apparatus at 0.1 ml h-1 at 

drum speeds ranging from 1000 to 5000 rpm. The low flow rate introduced several 

challenges. The primary difficulty was maintaining a stable spinning jet since the low flow 

rate would often result in oscillation of the Taylor cone formation and solution buildup at 

the tip. Also, occasional solution drying at the tip was observed. The SEM images show 

that very few fibers were collected, especially relative to the higher flow rates at the higher 

rpms. This is partially due to the lower collection time relative to the flow rate, but the 

number of fibers collected also decreases with increasing drum speed. This could be a 

Figure 3.1 Schematic of electrospinning apparatus. 
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result of the air movement surrounding the drum increasing as a function of drum speed. 

Combined with the unstable jet, the high air velocities may have deterred the fibers from 

collecting on the collection surface. Another explanation is the fiber breaking at higher 

drum speeds. If the physical force that the rotating drum exerts on the fiber is too high, the 

fiber can stretch and break. Figure 3.2 (d) shows a clear example of a broken fiber near 

the top of the image. Having fewer fibers to analyze affects the orientation results since 

error is expected to increase with the lowered sample size.  

The graph of alignment shows that overall the orientation trends up with drum speed. 

There is a potential outlier at 2000 rpm. It is suspected that this is a result of both lower 

fiber count and an unusually highly orientated site where the SEM was taken since other 

results do not contain such an outlier; however, more investigation is needed to confirm 

this. Excluding this outlier from the analysis shows a clear correlation between fiber 

diameter and drum speed. The alignment of the samples ranges from 70% to 77%. 
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Figures 3.3 and 3.4 show the results for 0.3 and 0.5 ml h-1, respectively. These flow 

rates were far easier to spin than the 0.1 ml h-1, but the instability did increase at higher 

drum speeds. This did not seem to affect the collection or alignment of fibers significantly 

since instability was observed at 4000 rpm, which is also the peak alignment. The 

Figure 3.2 SEM images of fiber mats with flow rate of 0.1 ml h-1 and drum speed of (a) 

1000, (b) 2000, (c) 3000, (d) 4000, and (e) 5000 rpm. (f) Graph of alignment percentage 

for shown SEMs. 
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alignment trend does increase as expected from ~70% to ~80%, but sees a decline at 5000 

rpm to 77%. The SEM images reveal several broken fibers in both the 0.3 and 0.5 ml h-1 

5000 rpm fiber mats. This breakage causes a visual decrease in the number of fibers 

collected and a slight reduction of the overall alignment of the fiber mat.  

 

Figure 3.3 SEM images of fiber mats with flow rate of 0.3 ml h-1 and drum speed of (a) 

1000, (b) 2000, (c) 3000, (d) 4000, and (e) 5000 rpm. (f) Graph of alignment percentage 

for shown SEMs. 
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The results of 0.75 and 1.0 ml h-1 flow rates are given in Figures 3.5 and 3.6, 

respectively. Both of these flow rates show an increase in alignment with increasing rpm 

that begins to plateau at 4000 rpm around 80% alignment. While spinning, both of these 

flow rates were extremely stable even at the higher drum speeds. Broken fibers, reduction 

Figure 3.4 SEM images of fiber mats with flow rate of 0.5 ml h-1 and drum speed of (a) 

1000, (b) 2000, (c) 3000, (d) 4000, and (e) 5000 rpm. (f) Graph of alignment percentage 

for shown SEMs. 
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of alignment percentage, and decrease in fiber collection were not observed in any of the 

SEM images at all drum speeds.  

 

 

 

 

Figure 3.5 SEM images of fiber mats with flow rate of 0.75 ml h-1 and drum speed of (a) 

1000, (b) 2000, (c) 3000, (d) 4000, and (e) 5000 rpm. (f) Graph of alignment percentage 

for shown SEMs. 
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Figure 3.7 compares all of the flow rates on one graph. The graph shows that there is a 

definite trend of alignment with rpm, but it does not show a clear trend of alignment with 

flow rate. This allows for selection of flow rate to be made based on other considerations, 

such as ease of spinning and likelihood of broken fibers. In all cases, but 0.1 ml h-1, the 

Figure 3.6 SEM images of fiber mats with flow rate of 1.0 ml h-1 and drum speed of (a) 

1000, (b) 2000, (c) 3000, (d) 4000, (e) 5000 rpm, and (f) 6000 rpm. (f) Graph of alignment 

percentage for shown SEMs. 
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maximum alignment was approximately 80%. Also, worth considering is the fiber 

breakage observed in the lower flowrates that causes a reduction in the fibers collected 

and overall alignment past approximately 4000 rpm. Fiber diameter has a role in the 

conductivity of Nafion.31 Therefore, it is critical to determine whether the spinning 

conditions have an effect on the average fiber diameter. Figure 3.8 shows that the average 

fiber diameter is consistently in the 300-400 nm range. The only exception is higher drum 

speeds at 0.1 ml h-1 flow rate. This is most likely due to the previously mentioned fiber 

stretching and breaking at the higher speeds.  
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Figure 3.8 Average fiber diameters of 0.1 (red), 0.3 (purple), 0.5 (green), 0.75 (black), 

and 1.0 (pink) ml h-1 flow rates at varying drum speeds. Error bars show standard 

deviation. 

Figure 3.7 Fiber alignment percentage of 0.1 (red), 0.3 (purple), 0.5 (green), 0.75 (black), 

and 1.0 (pink) ml h-1 flow rates at varying drum speeds. 
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3.4. Conclusions 

In this study, a range of flow rates from 0.1 - 1.0 ml h-1 and drum speeds from 1000 – 

6000 rpm were explored to determine the effect these parameters had on the fabrication 

of an aligned fiber mat. Alignment was demonstrated to be a function of drum rotation 

speed with the upper limit approaching 80% alignment in this setup. Solution flow rate 

was not a strong indicator of alignment, but did affect the spinning characteristics. Higher 

flow rates reduced or eliminated fiber breakage that was observed in lower flow rates. 

Fiber diameter was also found to be insignificantly affected by the parameters.  
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4. FUEL CELL PERFORMANCE OF ALIGNED CATALYST LAYER 

4.1. Introduction 

In this study, the alignment achieved in previous chapters is applied to the fabrication 

of a fuel cell catalyst layer. The effects of the fiber alignment on the morphology of the 

catalyst layer and performance of the membrane electrode assembly (MEA) in a fuel cell 

is compared to a control with random fibers.  The performance is compared on the basis 

of peak power and electrochemical surface area (ECSA), which corresponds to the overall 

performance capabilities of the cell and the number of TPBs, respectively. 

4.2. Experimental Methods 

 Materials 

Isopropanol (99.5%, Sigma Aldrich), Nafion solution (1100 EW, 5 wt% in a 3:1 v:v of 

isopropanol/water, Ion Power), poly(acrylic acid) (PAA; MV = 450,000 g mol-1, Sigma 

Aldrich), 20 wt% platinum on carbon catalyst (Pt/C; Vulcan XC-72, Premetek Co.), gas 

diffusion layer (GDL; SGL-25BC; Fuel Cells Etc.), and Nafion NR-212 membrane (1100 

EW, dry thickness  = 50 mm; Ion Power) were used as received. Ultrapure deionized (DI) 

with resistivity greater than 16 MΩ cm (25 °C) was used as appropriate. Ultra high purity 

grade N2 was purchased from Brazos Valley Welding Supply. Ultra high purity grade O2 

was purchased from Airgas. Ultra high purity grade H2 was purchased from Praxair. 
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 Electrode Characterization 

SEM 

Scanning electron microscopy (SEM; FEI Quanta 600 FE-SEM; 5 kV; working 

distance = 10 cm) was used to investigate the morphology of the fibers. The samples were 

removed from the collector after spinning. Samples were sputter coated (Cressington 208 

HR) with platinum/palladium (thickness = 10 nm).  

Surface Porosity 

Image analysis was performed using ImageJ software to characterize the 2D projection 

of porosity in the SEM images. DiameterJ was used to segment the image and measure 

the area of the individual pores and get an overall porous area of the image. 

Thermal Gravimetry Analysis (TGA) 

Platinum loading was measured by pyrolyizing the electrode with thermal gravimeteric 

analysis (TGA; Q50; TA Instrument) on a 5 mg sample of the electrode. The procedure 

used ramped the temperature from 25 °C to 900 °C at a rate of 10 °C/min in the presence 

of an air flowing at 20 mL/min. At 900 °C, the only component of the electrode remaining 

is platinum; therefore, the final weight of the experiment was used to calculate platinum 

loading. 

 Preparation of Solutions 

The electrospinning solution used for the creation of fiber mats was fabricated with the 

following specifications. 18.75 mg of PAA, 1500 mg of Nafion solution, and 375 mg of 

isopropanol/water (3/1 v/v) were added to obtain a 5% by weight in the polymer solution. 
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The resulting solution contained a 4/1 w/w Nafion/PAA ratio. The solution was allowed 

to stir for several hours until PAA was completely dissolved. 

The electrospraying solution was fabricated by adding 40 mg of 20% Pt/C, 32 mg of 

Nafion at 5% of the carbon weight, and 3.9 g isopropanol/water (3/1 v/v) to reach 1% 

solids in the solution. The solution was then sonicated (duration = 5 min, amplitude = 

35%; Model CL-18, Qsonica Sonicator) to disperse the Pt/C. 

 Electrospinning Apparatus 

A schematic of the horizontal drum apparatus developed is shown in Figure 4.1. The 

apparatus used a belt pulley as a drum (o.d. = 4 in, steel; 5706K11, McMaster-Carr), which 

was covered by grounded aluminum foil, not shown in the schematic, which served as the 

collection surface. The drum was powered by a motor (BMU5200APA3, Oriental Motor) 

connected by a timing belt drive (gear ratio = 1.625; custom). The drum was mounted on 

a shaft (diameter = 0.5 in; 1570K42, McMaster-Carr) that was held in place by two ball 

bearings (cast iron; 7728T51, McMaster-Carr) that were mounted to a custom acetyl resin 

structure. The assembly was driven by a motor (Model 4IK25GN-SW2, Oriental Motor). 

On either side of the assembly, high-voltage power supplies (Model PS/EL50R00.8, 

Glassman High Voltage, Inc.) supplied voltage to the syringe needles (i.d. = 0.024 in.; 

Hamilton). The solution was supplied to the needles via a syringe pump (Model NE-1000, 

New Era Pump Systems) and tubing (Pt. No. 30600-65, Cole Parmer). The entire 

apparatus was contained in a box (dimensions = 16 in x 16 in x 28 in; Nalgene) that was 

continuously purged with dry air to maintain humidity at 5%.  
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The needle tip to collector distance, applied voltage, and flow rate were 9 cm, 7 kV, 

0.75 ml h-1, respectively for electrospinning. For electrospraying, the needle tip to 

collector distance, applied voltage, and flow rate were 9 cm, 12 kV, 5 ml h-1, respectively. 

The drum rotation speed was 100 RPM for the control experiment and 4000 rpm for the 

aligned experiment. The collection was stopped once the spraying solution was consumed. 

 

 

The catalyst layers were prepared by applying the GDL, cut into 2 cm x 3 cm rectangles, 

to the aluminum foil on the steel drum. The apparatus was then used to coat the GDL in a 

fiber and catalyst particle mat to form an electrode. This large electrode was cut to 1.1 cm 

x 1.1 cm squares to form both the anode and cathode electrodes. The Nafion NR-212 

Figure 4.1 Schematic of electrospinning and electrospraying apparatus. 
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membrane was sandwiched by the anode and cathode electrodes and hot pressed (heat 

press, Carver) at a temperature of 275 °F and pressure of 1300 psi for 5 minutes.  

 

 Characterization of MEAs 

Fuel Cell 

The MEAs were tested in a fuel cell test station (850C; Scribner Associates, Inc). The 

fuel cell assembly consists of MEA (area = 1.21cm2) centered between two Teflon gaskets 

(0.006” thick; Scribner Associates, Inc), graphite plates with a 1 cm2 serpentine flow 

channel, copper plates, and aluminum end plates. The end plates were bolted together with 

each bolt torqued to 100 lb in of torque. The fuel cell conditions were held at ambient 

pressure and 80 °C for the duration of activation and performance testing. The fuel flow 

rate was 0.42 L min-1 of H2 and 1 L min-1 of O2 at 80 °C and 100% relative humidity.  

The activation procedure held the fuel cell at 0.7 V for 1 hour followed by holding at 

0.6 V and 0.4 V for 30 minutes each. The 0.6 V and 0.4 V holds were repeated twice for 

a total activation period of 4 hours. The performance test began at the open circuit voltage 

and terminated at 0.2 V. The current was recorded every 0.05 V after allowing the current 

to stabilize for 1 minute.  

Cyclic Voltammetry (CV) and Electrochemical Surface Area (ECSA) 

A potentiostat (Solartron SI 1287, Corrware Software) was used to perform CV tests 

on the MEA. The tests were performed at ambient pressure and 30 °C with a fuel flow rate 

of 0.04 L min-1 H2 in the anode and 0.02 L min-1 N2 in the cathode. The MEA was cycled 

from 0.05 V to 1 V at 20 mV/s for 5 cycles. The Pt catalyst was assumed to have an 
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average site density of 210 mC cm-1. The electrochemical surface area (ECSA) was 

determined from the hydrogen adsorption area from 0.1 to 0.4 V of the CV data. 

4.3. Results and Discussion 

The catalyst layers were made via the methods given above. Figure 4.2 shows SEM 

images of both the aligned and control catalyst layers. These images show that the aligned 

catalyst layer has few fibers that vary more than a few degrees from the primary direction 

of alignment. Due to the presence of the catalyst particles, the alignment could not be 

quantified in a similar manner to previous chapters; however, these spinning conditions 

resulted in an alignment of ~80% previously. Visually, the surface porosity appears similar 

between the aligned and control catalyst layer. This is confirmed by the similar percentage 

porosity given in the DiameterJ analysis of Figure 4.2 (b) and (e) with the aligned layer 

56% porous and the control image 53% porous. This suggests that the gas transport, which 

is dependent on the porosity, should be similar between the aligned and control layers. 

The aligned catalyst layer shows large areas of agglomeration on the order of 100 – 300 

µm compared to the agglomerations ranging from ~50 – 150 µm. Because these 

agglomerations have minimal porosity, gas transport resistance is increased, causing a 

reduction in performance at higher currents.  
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The resulting platinum loading was 0.060 mgPt cm-2 in the aligned cathode and 0.074 

mgPt cm-2 in the control cathode. In Figure 4.3 (a), it is shown that the aligned MEA has a 

peak power density of 530 mW cm-2 at a voltage of 346 mV, which is steady over 4 

separate runs. Figure 4.3 (b) shows that the control is also at steady state with a peak power 

density of 535 mW cm-2 at 342 mV. In Figure 4.4, the performance of the aligned catalyst 

layer is shown to be similar to the control with a nearly identical peak power density. 

Interestingly, the aligned MEA begins to show mass transport losses at ~1800 mA cm-2, 

sooner than control which begins to drop at ~2400 mA cm-2. This is likely due to the larger 

agglomerates previously seen in the SEM images. Also shown are the CV results, which 

were used to analyze the ESCA, which was found to be 42 m2 gPt
-1 for the control MEA 

and 43 m2 gPt
-1 for the aligned MEA.  

Figure 4.2 SEM images of the aligned catalyst layer at (a) 500, (b) 1500, and (c) 5000 

times magnification and control catalyst layer at (d) 500, (e) 1500, and (f) 5000 times 

magnification. 
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Figure 4.4 (a) Performance comparison of the aligned MEA and control MEA. CV of the 

(b) aligned MEA and (c) control MEA. 

 

Figure 4.3 Fuel cell performance curves of the (a) aligned fiber catalyst layer and (b) 

random fiber control catalyst layer. 
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It is apparent that in this case the fiber alignment in the catalyst layer had no effect on 

the performance of the MEA. The performance of the MEA is largely dependent on the 

number of TPBs and the resistance encountered by each species. Based on the ECSA, 

there was no evidence of increase in the number of TPBs. This is consistent with the SEM 

images, which showed no significant differences in fiber morphology. Additionally, the 

alignment did not contribute measurably to species transport resistance as the increase in 

mass transport resistance is more readily explained by the larger electrospraying 

agglomerates. 

 

4.4. Conclusions 

This study showed that MEAs with catalyst layers fabricated via simultaneous 

electrospinning and electospraying with aligned fibers does not affect the fuel cell 

performance compared to catalyst layers made with random fibers fabricated via 

simultaneous electrospinning and electospraying. The aligned catalyst layer showed 

identical peak power density and ECSA. The primary reason for this is that no significant 

change in the fiber morphology occurs. Specifically, the fiber orientation alone does not 

change the overall porosity of the cell or the number of TPBs.  



 

42 

 

5. SUMMARY AND FUTURE OUTLOOK 

5.1. Summary 

This work demonstrates the fabrication and characterization of aligned fiber proton 

exchange membrane fuel cell (PEMFC) catalyst layers using simultaneous electrospinning 

and electrospraying (E/E). Several apparatuses were investigated for their viability in 

fabricating the catalyst layers. The chosen apparatus was then used to explore the effects 

of process parameters on the alignment of Nafion nanofibers. Finally, the fuel cell 

performance of the aligned catalyst layer was investigated.  

The accelerated drum apparatus was shown to be the most reliable method to produce 

the aligned Nafion nanofibers in the catalyst layer of sufficient area for use in the fuel cell. 

In another study, the dependence of the alignment on the drum speed and solution flow 

rate was shown. The accelerated drum was found to produce highly aligned fiber mats 

under a wide range of drum speeds and solution flow rates. In the last study, the fuel cell 

performance of the aligned catalyst layer was compared to a randomly oriented control. 

The aligned catalyst layer was shown to have comparable performance to the randomly 

aligned control. The results of this thesis show that it is possible to fabricate a PEMFC 

catalyst layer using an accelerated drum; however, the alignment does not significantly 

alter the fuel cell performance of the catalyst layer. 
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5.2. Future Outlook 

Many possibilities exist for expansion on this work. In this study, focus was placed 

on the fabrication of an aligned catalyst layer and the resulting fuel cell performance. 

Many questions regarding the morphology of the aligned layer remain unanswered. 

There are also several opportunities for the optimization of the morphology of the 

catalyst layer. 

The porous space of the catalyst layer was not sufficiently explored in this study. 

A technique such as nitrogen adsorption could be utilized to explore the changes in the 

porous space between a randomly aligned catalyst layer and the aligned layer. This is 

important to the overall performance of the catalyst layer since pore space provides 

minimal resistance to gas transport in the catalyst layer, but can also increase electrical 

and ion resistance. 

The Nafion content of a catalyst layer is very important to the fuel cell 

performance. Optimal Nafion content in traditional cast catalyst layers has been 

explored.32 The E/E process introduces an additional complexity as both the Nafion 

content in fiber form and in the electrospray solution can be explored. It is likely that 

changing the morphology of the fibers will change the optimum Nafion content. 

The ability to control fiber deposition beyond an aligned morphology has been 

explored.26, 29 This represents an opportunity to further tailor catalyst layers into 

morphologies which minimize transport resistances while maximizing the triple phase 

boundaries.  
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