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ABSTRACT 

 

 

 Gene transcription by RNA polymerase II (Pol II) is an essential process. Using 

Saccharomyces cerevisiae as a model system, our lab has previously identified and 

partially characterized Pol II activity mutants that can alter catalysis rate to faster or 

slower than wild type in vitro. In my dissertation research I use a set of these Pol II 

activity mutants to determine consequences of altered catalysis rate on polymerase 

functions, co-transcriptional pre-mRNA processing and gene expression in vivo. I show 

that alteration in Pol II catalytic rate, either increase or decrease, leads to a decreased Pol 

II occupancy and an apparent reduction in elongation rate on a commonly used reporter 

gene in vivo. Measurement of in vivo elongation rate on this reporter requires 

transcriptional shutoff followed by ChIP. I discover that some Pol II catalytic mutants 

can compromise the kinetics of transcription shutoff by glucose, which is generally 

assumed to be unaffected by transcription mutants. Further, I show that Pol II catalytic 

mutants affect model gene expression and the effects on gene expression are exacerbated 

with increased promoter strength and gene length. My results suggest that gene 

expression defects in the Pol II mutants may in part result from defective mRNA 

processing. Additionally, I show that mRNA half-lives for that model gene are increased 

in Pol II mutant strains and the magnitude of half-life changes correlate both with 

mutants’ growth and the magnitude of reporter gene expression defects. Finally, I test if 

altered Pol II elongation sensitizes cells to nucleotide depletion and find that Pol II 
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mutants and several elongation factor mutants respond to GTP starvation similarly to 

wild type and that putative elongation defects are not likely to drive the cellular response 

to limiting GTP. Altogether my findings reveal wide-ranging in vivo effects of Pol II 

catalytic mutants, which will be critical for precise use of these Pol II catalytic mutants 

in gene regulation studies.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Cellular RNA polymerases (Pol) are a group of enzymes that catalyze the 

template-directed synthesis of RNAs. Bacteria and archaea each encode a single RNA 

polymerase, whereas eukaryotes have multiple RNA polymerases dedicated to 

specialized functions. The eukaryotic multisubunit RNA polymerase (msRNAPs) family 

includes Pol I, Pol II and Pol III, which predominantly catalyze the synthesis of 

ribosomal RNAs (rRNAs), messenger RNAs (mRNAs), and transfer RNAs (tRNAs), 

respectively. Pol II synthesizes mRNAs and capped non-coding RNAs through the 

process of transcription, which is comprised of three distinct phases – initiation, 

elongation and termination (Cheung and Cramer 2012). Two additional classes of RNA 

polymerase, namely Pol IV and V, have been identified in plants and are involved in 

synthesizing non-coding RNAs functioning in gene silencing (Landick 2009, Haag and 

Pikaard 2011). Eukaryotic polymerases contain a ten-subunit core and with each 

polymerase containing additional subunits related to specialized regulation of each 

enzyme (Vannini and Cramer 2012). Our lab studies the mechanism and regulation of 

Pol II enzymatic activity and how it can impact gene expression using budding yeast 

Saccharomyces cerevisiae (addressed as yeast henceforth) as a model system. As 

msRNAPs are highly similar in their core structural scaffolds, studying the basic 

mechanisms of Pol II transcription can be relevant to the mechanistic basis of all 

msRNAPs. 
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In this section I will briefly walk through each phase of transcription followed by 

a summary of content of this introductory chapter. The first step of transcription is 

initiation, which requires up to seventy different proteins in human to form a four 

million Dalton complex (Hantsche and Cramer 2017). During initiation, Pol II 

coordinates with general transcription factors (GTFs), which include transcription factor 

II (TFII) D, TFIIB, TFIIF, TFIIE and TFIIH, to form a pre-initiation complex (PIC) at 

promoter DNA (Sainsbury, Bernecky et al. 2015). In the presence of nucleotide 

triphosphates (NTPs) double stranded DNA is unwound by a process called ‘promoter 

melting’, which requires TFIIE and TFIIH, to form the ‘transcription bubble’ with an 

open promoter complex. For many years promoter melting was attributed to ATP 

hydrolysis activity of TFIIH subunit XPB (homolog of yeast Ssl2), but a recent report 

contradicts this notion (Alekseev, Nagy et al. 2017). This study suggests that the ATPase 

activity of XPB is required to relieve a self-imposed block by XPB itself to initiate 

transcription. Following promoter opening unwound template DNA is ‘scrunched’, 

which denotes that Pol II remains bound to the promoter while downstream DNA is 

pulled to the active site of Pol II, to facilitate transcription start site (TSS) selection 

(Fazal, Meng et al. 2015). When a short chain of nascent RNA (9-10 nt) is synthesized to 

form the RNA-DNA hybrid, initiation factors are proposed to be displaced, enabling 

‘promoter escape’ (Nechaev and Adelman 2011, Luse 2013). Experimentally, it has been 

shown that an RNA-DNA hybrid of ~ 7 nt partially induces bubble collapse to start 

promoter escape and an 8 nt hybrid is necessary and sufficient for the formation of a 

stable transcribing complex (Kireeva, Komissarova et al. 2000, Pal, Ponticelli et al. 
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2005). However, structural analysis of transcription initiation complexes with different 

lengths of RNAs have shown that hybrids from 6-9 nts are essentially indistinguishable 

while a hybrid > 5 nt is suggested to sterically clash with initiation factors to displace 

them (Bushnell, Westover et al. 2004, Liu, Bushnell et al. 2011). After promoter escape 

and the formation of a stable elongation complex, Pol II associates with transcription 

elongation factors, which help in processive and productive elongation. After successful 

transcript synthesis, RNA chain elongation stops and Pol II dissociates from the template 

through transcription termination. Termination is coupled to the 3ʹ end formation of the 

transcript and there are two prevailing non-mutually exclusive hypotheses for this 

process, which I discus further.  

My dissertation research relates to the study of transcription elongation in yeast. 

Transcription elongation is a mechano-chemical process that involves: i. catalysis of 

phosphodiester bond formation through addition of NMPs, derived from NTP substrates, 

to a nascent RNA chain; ii. the release of PPi after addition of each substrate, and, iii. the 

subsequent translocation of Pol II by one nucleotide so the process may be repeated 

(Kaplan 2013, Svetlov and Nudler 2013). Additionally, Pol II is capable of pausing and 

reverse translocating, which is known as ‘back-tracking’(discussed further below). 

During the elongation phase, eukaryotic mRNAs undergo extensive processing events 

such as mRNA 5′-capping, splicing, termination and 3ʹ-end formation. It is possible that 

the Pol II has evolved to maintain an optimum rate of elongation in order to provide a 

‘window’ of opportunity for optimal execution of such co-transcriptional processes 

(Bentley 2014). In my research, I elucidate how altered Pol II catalysis affect Pol II 
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elongation and various co-transcriptional processes in vivo. In order to study the effects 

of altered catalysis in vivo, I have used perturbation of Pol II catalysis through Pol II 

active site mutations, a system established in the Kaplan lab to dissect transcription 

mechanisms (Kaplan, Larsson et al. 2008, Kaplan, Jin et al. 2012, Cabart, Jin et al. 2014, 

Jin and Kaplan 2014, Cui, Jin et al. 2016). In this introductory chapter, I first describe 

the basic mechanisms of Pol II catalysis and role of the Pol II trigger loop (TL) domain 

in catalysis and elongation. Then I discuss different facets of elongating Pol II (such as 

elongation rate, processivity, pausing and backtracking) in vivo and coupling of Pol II 

elongation with co-transcriptional processes. I also discuss about current methods that 

are used to study transcription elongation in yeast and possible concerns for interpreting 

them. Finally, I briefly summarize emerging evidence supporting possible coordination 

of mRNA synthesis and decay to maintain cellular transcript levels. 

Function of Trigger Loop (TL) in Pol II catalysis, translocation and intrinsic 

cleavage  

Yeast RNA Pol II is a ~ 500 kDa large protein complex consisting of twelve 

subunits with a conserved architecture resembling a crab claw, in which the ‘pincers’ 

interact with DNA template (Figure 1-1). The catalytic center is formed by the two 

largest subunits Rpb1 and Rpb2 (β′ and β in bacteria, respectively), which interact with 

the substrate NTP and participate in catalysis (Figure 1-1). The nucleotide addition 

cycle (“NAC)” underpins transcription elongation and consists of two main steps – 

catalysis and translocation. In the Pol II elongation complex (EC) downstream DNA is 

unwound and upstream DNA is rewound to form the so called ‘transcription bubble’, an 
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unwound region in between that accommodates the Pol II active site along with a ‘RNA-

DNA hybrid’ formed by base pairing of 8-9 nt nascent RNA hybridized with the 

template DNA. Forward movement of polymerase is accompanied by melting ahead and 

rewinding behind. The RNA-DNA hybrid is required for elongation complex stability 

and is maintained throughout the elongation phase (Kireeva, Komissarova et al. 2000, 

Brueckner, Armache et al. 2009). During each cycle of nucleotide addition, an NMP 

derived from the NTP substrate is added to the 3' end of the RNA within the RNA-DNA 

hybrid, conversely, the RNA at the 5' end of the RNA/DNA hybrid separates from the 

DNA template to be directed towards the RNA exit channel. Catalysis of phosphodiester 

bond formation occurs through a two-metal ion mechanism universal to nucleic acid 

polymerases (Steitz, Smerdon et al. 1994), which in Pol II requires two Mg+2 cations 

coordinated by an active site aspartate triad of Rpb1(D481, 483 and 485 for ion A) and 

Rpb2 D837 (Rpb1 D481, 483 and Rpb2 D837 for ion B) (Cramer, Bushnell et al. 2001, 

Westover, Bushnell et al. 2004) (Figure 1-1). These two Mg2+ ions are critical for 

deprotonation of 3ʹ-OH of the nascent RNA and nucleophilic attack on the α-phosphate 

of the incoming NTP, forming the phosphodiester bond. In addition to the Rpb1 

aspartate triad, several other Rpb1 residues comprise the active site and help to 

orchestrate the phosphodiester bond formation and subsequent enzyme translocation. A 

conserved mobile subdomain of the Pol II largest subunit Rpb1, known as the trigger 

loop (TL), functions in selection of correct NTP substrates and catalysis, while 

maintaining transcription fidelity (Wang, Bushnell et al. 2006, Kaplan, Larsson et al. 

2008, Kireeva, Nedialkov et al. 2008). Genetic and biochemical analysis from our lab 
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and others have showed that mutation of TL residues can confer reduced (loss of 

function/‘LOF’) or increased (gain of function/‘GOF’) catalytic activity (Figure 1-2) 

(Malagon, Kireeva et al. 2006, Kaplan, Larsson et al. 2008, Kaplan, Jin et al. 2012). 

Below I discuss functions of TL in catalysis, translocation and intrinsic RNA cleavage 

with knowledge gained from structural studies and genetic/biochemical analysis of TL 

mutants.  

TL function in catalysis and translocation 

Pol II active site participates in a number of activities, including substrate 

selection, catalysis, translocation and intrinsic RNA cleavage (Kaplan, Larsson et al. 

2008, Kireeva, Nedialkov et al. 2008, Larson, Zhou et al. 2012, Dangkulwanich, 

Ishibashi et al. 2013, Cabart, Jin et al. 2014). For each of these activities the Rpb1 TL 

domain accomplishes multiple functions through its flexibility and mobility. The 

flexibility of TL is apparent in crystal structures of Pol II and bacterial RNAP, which 

have shown that the TL exists in several conformations – ‘open’ (in absence of substrate 

NTP), ‘closed’ (in presence of the substrate) and other semi-open conformations (in 

presence of polymerase inhibitor and polymerase interacting proteins) (Wang, Bushnell 

et al. 2006, Vassylyev, Vassylyeva et al. 2007, Brueckner and Cramer 2008, Kaplan, 

Larsson et al. 2008, Tagami, Sekine et al. 2010, Barnes, Calero et al. 2015). During the 

nucleotide addition cycle, the TL closes toward the Pol II active site, presumably to trap 

matched NTPs in the active site and facilitate catalytic positioning. Individual TL 

residues are positioned to recognize aspects of the correct, templated NTP (Figure 1-1). 

For example, Q1078 interacts with the 2ʹ and 3ʹ-OH of the substrate ribose possibly 
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through interaction with Rpb1 non-TL residue N479 (possible direct interaction in 

crystal structure), while another non-TL residue R446 lies close proximity to the 2ʹ-OH 

of the ribose and together these residues help in discrimination of NTPs from 2ʹ-dNTPs 

(Westover, Bushnell et al. 2004, Wang, Bushnell et al. 2006, Cheung, Sainsbury et al. 

2011). L1081, makes hydrophobic contact with the NTP substrate by interaction with the 

base rings on the substrate, while residue N1082 interacts with 3ʹ-OH of the substrate 

(Wang, Bushnell et al. 2006, Cheung, Sainsbury et al. 2011). In the ‘closed’ state, TL 

residue H1085 interacts with the substrate NTP through salt bridge and hydrogen 

bonding, and has been shown to participate in substrate selection and catalysis (Wang, 

Bushnell et al. 2006, Kaplan, Larsson et al. 2008). Analysis of previous structures, a 

recent structural study from Calero lab with our collaboration, and our own novel 

‘structural-genomics’ dissection of TL domain support a step-wise closing model of TL 

domain. Wherein, 2ʹ-OH interaction of the TL residue Q1078 promotes the release of 

another TL residue M1079 from a previously trapped hydrophobic pocket formed by 

multiple TL (A1076, M1079, T1080, G1097 and L1101) and TL-adjacent residues 

(Barnes, Calero et al. 2015, Qiu, Erinne et al. 2016). This release of M1079 residue from 

the hydrophobic pocket presumably promotes TL-closing. However, current unpublished 

structural analysis of a new, higher resolution closed TL from us with Calero group 

indicates that TL closure does not require disruption of hydrophobic pocket or flipping 

of M1079, although our genetic data support that interaction of M1079 with other TL 

residues is critical. Transition from TL ‘closed’ state to ‘open’ state is proposed to 

promote release of PPi and then allow Pol II translocation (Da, Wang et al. 2012, 
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Malinen, Turtola et al. 2012). Evidence supporting TL function in translocation comes 

from single molecule studies with purified Pol II that show a GOF TL mutant rpb1 

E1103G, which increases catalysis rate compared to WT, decreases the propensity for 

translocation (Larson, Zhou et al. 2012, Dangkulwanich, Ishibashi et al. 2013). In these 

single molecule optical trapping experiments, the rpb1 E1103G enzyme shows a higher 

pause free velocity than WT, but it is more sensitive to applied force (assisting force that 

facilitates translocation) compared to WT. As this mutant is known to promote active 

site closing (Kireeva, Nedialkov et al. 2008), single molecule findings are consistent 

with closed conformation of the TL being unfavorable for translocation. Some molecular 

dynamics simulations on Pol II and other msRNAPs have been able to reproduce limited 

movement of TL and possible conformational changes in TL during translocation; 

however, a fully simulated model of TL movement and catalysis correlating all the 

structural observations has yet to be done (Feig and Burton 2010, Feig and Burton 2010, 

Kireeva, Opron et al. 2012). 

Conservation of TL sequence and function 

 Interestingly, despite the high structural conservation and similarities in the 

catalytic mechanism, TL-residues may function differently or have different rate limiting 

steps in different msRNAPs, suggesting a divergent evolution or regulation of TL sub-

domain for different outputs. For example, Pol II TL GOF catalytic mutant rpb1 E1103G 

functions as a LOF mutation when tested in Pol I TL (rpa190 E1224G) (Viktorovskaya, 

Engel et al. 2013). Suitable structural simulations combined with extensive genetic 
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analysis are required to fully understand the evolution, dynamics and functions of this 

mobile domain in folding pathways and translocation. 

TL function in intrinsic cleavage 

Beside catalysis and translocation, msRNAPs are also capable of 

cleavage/hydrolysis of the phosphodiester bond of nascent RNAs from 3ʹ to 5ʹ direction 

by a process called ‘intrinsic cleavage’. Intrinsic cleavage was first observed in bacteria, 

and bacterial RNAP has capability of hydrolyzing phosphodiester bond in faster rate 

than yeast Pol II (Surratt, Milan et al. 1991, Zenkin, Yuzenkova et al. 2006, Wang, 

Bushnell et al. 2009). TL function in intrinsic cleavage was proposed based on the 

results that the antibiotic Streptolydigin inhibit RNA cleavage in T. aquaticus, 

presumably by blocking the TL (Temiakov, Zenkin et al. 2005). Further biochemical 

analysis of T. aquaticus RNAP showed a central role of the TL in intrinsic cleavage 

(Yuzenkova and Zenkin 2010). A TL residue in T. aquaticus RNAP, β′ H1224 

(analogous to Rpb1 TL H1085), was shown to participate in phosphodiester bond 

hydrolysis by acting as a general base and/or positioning the 3′ end NMP of the nascent 

transcript for cleavage. In contrast, deletion of the TL in E. coli was reported to not 

affect intrinsic or regulator-assisted transcript cleavage (Zhang, Palangat et al. 2010). 

However, as E. coli RNAP cleavage rate is 1-2 orders of magnitude slower than T. 

aquaticus RNAP, E. coli RNAP cleavage activity may differ from T. aquaticus. Work 

from our lab has shown that although yeast Pol II has a very low efficiency for intrinsic 

cleavage, mutation of the TL residue H1085 to Y1085 leads to a gain of cleavage 
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activity of the enzyme possibly as the substituted tyrosine may participate in acid-base 

catalysis (Cabart, Jin et al. 2014).  

 
 

 
 
Figure 1-1. Architecture of Pol II and active site. (PDB:2E2H). Yeast Pol II 
comprises 12 subunits (Left – intact, right – disassembled views). Catalytic core is 
formed by subunits Rpb1 and Rpb2. (Bottom) Residue composition of Pol II active site. 
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Figure 1-2. Pol II TL mutants alter in vitro elongation rate and growth. (A) ‘Open’ 
and ‘closed’ conformation of trigger loop (TL) from PDB:2E2H. Highlighted amino acid 
residues in the TL and Pol II active site that are substituted to generate catalytic mutants. 
(B) Pol II mutants show a wide range of in vitro elongation rate and growth defects.  
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Pol II elongation in vivo  

 In vivo, Pol II elongation happens on a chromatin template and is coincident with 

chromatin modification and co-transcriptional RNA processing events. Elongating Pol II 

has several facets, which include – Pol II elongation rate, pausing, backtracking and 

processivity. Elongation rate is the measure of how quickly Pol II travels over the 

template, which is frequently interrupted by polymerase pausing and backtracking, while 

processivity describes the ability of elongating Pol II to complete synthesis of a full 

transcript. Here I discuss our current knowledge about these functions of Pol II during 

elongation and how they might impact a productive elongation.  

In vivo elongation rate 

 Pol II in vivo elongation rate represents how fast Pol II moves over the template 

and describes the approximate rate (kb/min) of RNA chain synthesis inside the cell. 

Elongation rate comprises both ‘on pathway’ events and ‘off pathway’ events. On 

pathway events include multiple nucleic acid addition cycles (NAC). As noted above, 

the NAC is composed of Pol II catalysis and translocation, together, which determine the 

pause free elongation rate. Off pathway events include Pol II pausing and backtracking, 

which together also impact overall elongation across the template. In vivo elongation 

rates have been measured for different organisms in a number of ways, mainly using 

reporter genes that are inducible or responsive to stimulus (Table 1-1). In Drosophila, 

Pol II elongation rates have been measured on developmentally regulated or on stimulus-

responsive genes by determining the time for ‘first wave’ of Pol II molecules to reach 

the 3ʹ end of the gene (Thummel, Burtis et al. 1990, Shermoen and O'Farrell 1991, 
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O'Brien and Lis 1993, Yao, Ardehali et al. 2007). Conversely, in yeast, Pol II elongation 

rates have been measured by monitoring the ‘last wave’ of Pol II molecules leaving a 

long reporter template after transcriptional shutoff (Mason and Struhl 2005). These 

studies reported an approximate average elongation rate of 1-2 kb/min for both yeast and 

Drosophila. In a recent study, by measuring the appearance of transcript 5ʹ and 3ʹ ends 

through binding of fluorescent probes to arrays of RNA binding sites in each part of a 

reporter transcript in Drosophila embryos, a much faster average elongation rate (2.4-3 

kb/min) has been reported (Fukaya, Lim et al. 2017). This revised rate supports the 

transcription of longer genes during the very short cell cycles during Drosophila embryo 

development as being physically possible in between mitoses, where transcription is 

inhibited. For mammalian cell lines, several techniques such as live cell imaging and 

fluorescent in situ hybridization have been used to determine a range of average 

elongation rates in vivo (Table 1-1). All these assays measure an overall average 

elongation rate of Pol II, but journey of Pol II over a template is not even and likely to 

vary at different positions. Indeed, several genome-wide elongation studies in 

mammals/murine cells have shown that productive elongation is slower at the 5ʹ end of 

gene and the rate increases with the length traversed. Within the initial few kb of a gene 

Pol II elongation rate can be as low as 0.5 kb/min, which subsequently increases up to 2-

5 kb/min on the later part of the gene body (Danko, Hah et al. 2013, Fuchs, Voichek et 

al. 2014, Jonkers, Kwak et al. 2014, Veloso, Kirkconnell et al. 2014). This disparity of 

rate over the gene body may arise from chromatin obstacles, differential recruitment of 

negative or positive factors, or modifications of the transcription machinery. This 
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speculation is supported by previous observations that nucleosomes are generally well 

positioned at the 5ʹ end of genes, while differential phosphorylation of the carboxy-

terminal domain of the large subunit, the CTD, increases after a few kb of transcription 

(Churchman and Weissman 2011, Heidemann, Hintermair et al. 2013, Harlen and 

Churchman 2017). Nucleosomal obstacles and regulatory factors may impact overall 

elongation rate through controlling the propensity of Pol II for pausing and backtracking, 

which I discuss next. 

Table 1-1. List of experimentally determined in vivo elongation rates 

Assay Organism/ 
Model system 

Average 
elongation rate 

(kb/min) 

References 

Chromatin 
immunoprecipitation 
(ChIP) time course after 
transcription shutoff 
using GAL1p::YLR454w 
reporter 

Yeast ~ 2  (Mason and Struhl 
2005) 

Northern blotting on 
E74 (60 kb) gene 

Drosophila 1.1 (Thummel, Burtis 
et al. 1990) 

In situ hybridization on 
Ubx (74 kb) gene 

Drosophila 1.4 (Shermoen and 
O'Farrell 1991) 

Nuclear run-on and 
FISH on Hsp70 

Drosophila 1.2-1.5 (O'Brien and Lis 
1993, Yao, 
Ardehali et al. 
2007) 

Dual color fluorescent 
microscopy 

Drosophila 
embryo 

2.4-3.0  (Fukaya, Lim et al. 
2017) 

RT-PCR on human 
native genes 

Human cells 2.4 and 3.8  (Tennyson, Klamut 
et al. 1995, Singh 
and Padgett 2009) 

Live cell imaging on 
engineered reporter 
construct in U20S cells 

Human cells ~2.0 and 4.3  (Femino, Fay et al. 
1998, Darzacq, 
Shav-Tal et al. 
2007) 
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Table 1-1 Continued 

Assay Organism/ 
Model system 

Average 
elongation rate 

(kb/min) 

References 

Genome-wide 
elongation rate 

Mammalian 
cells 

Differs on gene 
body. From 0.5 
kb/min at the 5ʹ 

end to 2-5 kb/min 
at the 3ʹ end 

(Danko, Hah et al. 
2013, Fuchs, 

Voichek et al. 2014, 
Jonkers, Kwak et 
al. 2014, Veloso, 
Kirkconnell et al. 

2014) 
 

Pausing and backtracking 

Pol II elongation is a discontinuous process, interrupted by frequent pausing of 

and occasional backtracking. We have recently started to understand the biological 

functions and consequences of Pol II pausing and backtracking during elongation. 

Evidence of polymerase pausing was first observed in vitro using bacterial polymerase, 

which was followed by in vivo observation for Pol II using nuclear run-on assay 

(Maizels 1973, Gariglio, Bellard et al. 1981). Later, using a nuclear run-on assay, the Lis 

lab remarkably showed that Pol II accumulated at the 5ʹ end of a Drosophila heat shock 

gene (hsp70) even when the gene is uninduced, a phenomenon termed as ‘promoter-

proximal pausing’ (Gilmour and Lis 1986, Rougvie and Lis 1988). Promoter-proximal 

pausing in yeast is not common, thus, here I will focus mainly on gene body pausing. 

Recent advances in genome-wide techniques to map polymerase distributions (see NET-

seq further) have enabled measurement of gene body pausing through out the genome 

(Churchman and Weissman 2011). Such studies have identified consensus sequence and 

regulatory factors for polymerase pausing in bacterial, yeast and human cells by 
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determining the positions within the genome that show increased probability of 

polymerase occupancy through mapping the 3ʹ ends of nascent RNAs (Churchman and 

Weissman 2011, Larson, Mooney et al. 2014, Vvedenskaya, Vahedian-Movahed et al. 

2014, Mayer, di Iulio et al. 2015, Nojima, Gomes et al. 2015). Factors that can induce 

polymerase pausing may include DNA sequence, nucleosomes and DNA-binding factors 

(Mayer, Landry et al. 2017). Conversely, there are trans-acting transcription elongation 

factors such as TFIIS that aid Pol II recovery from extended transcriptional pausing 

(Reinberg and Roeder 1987, Reines, Chamberlin et al. 1989). Extended pausing induced 

by a nucleotide mismatch can also lead to ‘backtracking’ or movement of Pol II 

backward on the template (Nudler, Mustaev et al. 1997). Backtracked Pol II misaligns 

the 3ʹ end of the nascent RNA from  the active center of Pol II, which can further lead to 

a transcriptional ‘arrest’ (Cheung and Cramer 2011). Arrested Pol II can be rescued with 

aid of TFIIS, which helps in cleaving the mismatched 3ʹ end of the nascent RNA to 

restore the active site alignment of the RNA (Izban and Luse 1992, Reines 1992, Cheung 

and Cramer 2011). Failure to recover from a backtracked/arrested state can either lead to 

ubiquitination and degradation of Pol II largest subunit Rpb1 or premature termination 

of transcription (Somesh, Reid et al. 2005, Park, Kang et al. 2015). Removal of Pol 

elongation complex from the template leads to a processivity defect or failure to 

complete transcript synthesis, which I discuss below.  

Pol II processivity 

A fully processive Pol II will complete uninterrupted synthesis of a transcript, 

and considering that most yeast genes are relatively shorter in size, it was previously 
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assumed that Pol II should efficiently traverse the full extent of the template. In a 

pioneering study by Mason and Struhl, using a galactose-inducible long reporter gene 

(GAL1p::YLR454w) in yeast (see further description), apparent processivity was 

determined by comparing Pol II ChIP ratio between the 5ʹ and 3ʹ ends of the reporter 

(Mason and Struhl 2005). Mutants in a number of transcription-associated factors that 

showed relative decrease in 3ʹ end ChIP signal relative to 5ʹ end and were inferred to be 

defective for Pol II processivity. Since the Pol II EC is highly stable, it can be assumed 

that dislodging of Pol II from the template can primarily relate to either premature 

termination or degradation of Rpb1 followed by EC disassembly. However, a differential 

speed on the 3ʹ end of the gene would also lead to an apparent processsivity defect, as 

ChIP is unable to differentiate between these two possibilities. Interestingly, in yeast, 

growth conditions can also affect the 5ʹ to 3ʹ Pol II occupancy ratio, suggesting a global 

effect of external perturbation on Pol II elongation. Indeed, we observed that Pol II 

catalytic mutants show differential occupancy and growth in different media that I 

present in Chapter II and discuss in Chapter III. 

In vivo assays to study Pol II elongation 

Pol II occupancy over the coding region of a gene represents the transcriptional 

status of that gene. With the availability of techniques such as transcription run-on and 

chromatin immunoprecipitation (ChIP), it was immediately possible to analyze in vivo 

association of elongating Pol II with a transcribing gene. Subsequently these assays were 

adapted to genome-wide analysis of Pol II elongation. Beside these molecular techniques 

several genetic reporter systems have been widely used to assess transcription elongation 
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defects in yeast. Here I discuss few commonly used methods to study transcription 

elongation in vivo (Table 1-2), with a major focus on the widely used transcriptional 

shut off assay, which is used to determine apparent in vivo elongation rate in yeast. 

Further, I discuss commonly used genetic reporter systems to determine transcription 

elongation defects in yeast. 

Molecular techniques to determine elongation defects 

The transcription run-on assay has been used as a direct measurement of the 

density of elongating Pol II (Hirayoshi and Lis 1999). This assay relies on 

permeabilization of nuclei by sarkosyl, which stops all cellular processes and disrupts 

most chromatin proteins, while elongation complexes remain stable. Next, 

transcriptionally engaged Pol II is allowed to run-on in presence of radiolabeled UTP to 

produce labeled RNAs that can be hybridized to specific probes. Originally developed 

for higher eukaryotic nuclei, this assay was further adapted for intact yeast cells and for 

application in a global scale using DNA microarrays (Birse, Lee et al. 1997, Garcia-

Martinez, Aranda et al. 2004). Recently, use of ribonucleotide analog [5- bromouridine 

5′-triphosphate (BrUTP)] for run-on assay has allowed to pull-down BrU-tag nascent 

RNAs during the run-on to map transcriptionally engaged RNA polymerases genome-

wide (GRO-seq) (Core, Waterfall et al. 2008).  

Chromatin immunoprecipitation (ChIP) is commonly used to determine Pol II 

association with specific genes or genome-wide. Higher Pol II occupancy over a gene is 

generally assumed to represent active transcriptional status of the gene. As noted above, 

a remarkable study from Struhl lab established a new system to determine Pol II 
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elongation defects in yeast (Mason and Struhl 2005). This assay uses chromatin 

immunoprecipitation (ChIP) to determine Pol II occupancy over a long galactose-

inducible hybrid gene, GAL1p::YLR454w. Steady state Pol II occupancy across this 

reporter can be compared between WT and mutants. As noted earlier, apparent 

processivity defects for a mutant is inferred by comparing the 5ʹ to 3ʹ Pol II occupancy 

ratio between WT and mutant. This same reporter can be used to determine apparent in 

vivo elongation rate by measuring the kinetics of the ‘last wave’ of Pol II leaving the 

template. Several Pol II catalytic mutants and elongation factors have been characterized 

for apparent in vivo elongation rate and apparent processivity defects using this assay 

(See Chapter II – Table 2-1). However, this assay assumes the transcriptional shutoff 

kinetics by the addition of glucose is same for WT and mutant. We have found that 

glucose signaling kinetics upstream of transcriptional shutoff can be different for WT 

and mutants, which may affect the interpretation of this assay (see Chapter II for the 

findings and Chapter III for further discussion).  

There are few assays that determine possible elongation defects or consequences 

of defective elongation indirectly in yeast. For example, gene length-dependent 

accumulation of mRNA (GLAM) assay measures reporter gene expression defect based 

on length of the transcript driven by an identical promoter (Morillo-Huesca, Vanti et al. 

2006). This assay works based on the assumption that if the same promoter drives 

different lengths of reporter transcripts, initiation efficiency between these reporters 

remains same. Hence, any discrepancy in the mature transcript levels comes from the 

defects in elongation, which presumably may be exacerbated with increasing length of 
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the transcript. Indeed, this assay has been successfully used to identify novel regulators 

of transcription elongation in yeast (Gaur, Hasek et al. 2013, Millan-Zambrano, 

Rodriguez-Gil et al. 2013). However, as the readout of this assay is defective mRNA 

expression, which can come from several defects apart from elongation such as mRNA 

processing or export, and it is difficult to uncouple elongation defects from other 

associated defects by this assay. Similarly, another assay, comparative dynamic 

transciptome analysis (cDTA) can measure absolute rate of mRNA synthesis, but 

alteration in synthesis rate may not be a direct representation of defective elongation 

(Sun, Schwalb et al. 2012). In cDTA, 4-thiouracil (4tU) is used for non-perturbing 

metabolic labeling of newly synthesized RNAs in yeast. After desired time course of 

labeling, total RNA is extracted and labeled RNAs are separated by biotinylation and 

purification with streptavidin-coated magnetic beads. Total, labeled and unlabeled 

fractions are analyzed with microarray and a dynamic kinetic modeling is used to 

determine mRNA synthesis and degradation rate. A defined number of metabolically 

labeled fission yeast (S. pombe labeled with 4-thiouridine) sample is used as an internal 

standard for accurate comparison and absolute quantification of mRNA synthesis or 

degradation rate. Several transcription and mRNA processing related factor mutants and 

two Pol II mutants have shown to alter mRNA synthesis rate in this assay, but, only few 

of them have shown to alter elongation in the ChIP assay described earlier (Sun, 

Schwalb et al. 2012, Sun, Schwalb et al. 2013, Schulz, Pirkl et al. 2014).  

A recently developed genome-wide technique, nascent elongating transcript 

sequencing (NET-seq), allows more direct measurement of transcription and 
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transcription associated processing events in vivo (Churchman and Weissman 2011, 

Churchman and Weissman 2012). This assay maps 3ʹ end of the transcriptionally active 

nascent RNA genome-wide in a single nucleotide resolution, thus, revealing the density 

RNA polymerase across the genome. A selective advantage of this approach over similar 

approaches such as ChIP-seq or GRO-seq (discussed above) is that NET-seq exploits the 

incredible stability of the elongation complex (DNA-RNA-RNA polymerase) to purify 

polymerase-associated nascent RNAs without cross-linking or perturbing cellular 

physiology. Originally developed in yeast, this assay has been incredibly useful to 

determine polymerase occupancy, pausing and backtracking in other systems such as 

bacteria or mammalian cells (Vvedenskaya, Vahedian-Movahed et al. 2014, Mayer, di 

Iulio et al. 2015, Nojima, Gomes et al. 2015). Further, this assay can be slightly modified 

to determine co-transcriptional processing such as 5ʹ-capping, which I discuss in the 

future direction section (Chapter III). 

In vivo phenotypes and genetic screens for Pol II catalytic mutants 

 Use of genetic reporters has been remarkably useful to identify transcriptional 

mutants as well as to increase our understanding of transcription process in vivo. These 

genetic reporters are sensitized to altered transcription by different means, which include 

– insertion of a Ty retrotransposon element into genes or promoters altering host gene 

transcription (e.g. lys2-128∂ and his4-912∂ alleles of LYS2 and HIS4 genes, 

respectively), drug-induced limitation of cellular nucleotide levels (MPA and 6-AU) and 

mRNA processing defects and transcriptional interference (gal10∆56) (Figure 1-3). 
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Table 1-2. List of assays used to study Pol II elongation in yeast 
 

Assay Description Ref 

Transcription run-on 
and genome-wide 
run-on 

Measures density of active Pol II on a 
specific template or genome-wide 

(Hirayoshi and Lis 
1999, Garcia-
Martinez, Aranda 
et al. 2004, Core, 
Waterfall et al. 
2008) 

Chromatin 
immunoprecipitation 
(ChIP) 

Determines Pol II association with a target 
gene or genome wide. In yeast, it is widely 
used to determine Pol II processivity and 
elongation on an inducible reporter 

(Mason and Struhl 
2005) 

Gene length 
dependent 
accumulation of 
mRNA (GLAM) 

Indirect readout of elongation defect by 
comparing mRNA expressions of a short 
vs. long transcript initiating from same 
promoter. 

(Morillo-Huesca, 
Vanti et al. 2006) 

Comparative dynamic 
transcriptome 
analysis (cDTA)  

Measures genome-wide mRNA synthesis 
and degradation rate by metabolic labeling 

(Sun, Schwalb et 
al. 2012) 

Native elongating 
transcript sequencing 
(NET-seq)  

Measures genome-wide polymerase 
density in single nucleotide resolution by 
mapping 3ʹ end of the polymerase 
associated nascent RNA. Can be used to 
determine Pol II occupancy, pausing, 
backtracking, fidelity and co-
transcriptional pre-mRNA processing 

(Churchman and 
Weissman 2011) 

Fluorescent detection 
of nascent RNA  

Measures transcript synthesis in vivo by 
fluorescent-tracking of 5ʹ and 3ʹ stem loops 
of a reporter  

(Larson, 
Zenklusen et al. 
2011, Hocine, 
Raymond et al. 
2013) 

 

Indeed, these genetic screens have been useful to identify or characterize several Pol II 

mutants (Kaplan 2013). Our lab has used most of these genetic reporter systems 

extensively not only to probe mechanistic aspects of transcription process but also to 

expand the understanding of the systems themselves. Here I discuss our current 
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understanding of these commonly used genetic systems with the major focus on use of a 

nucleotide-depleting drug MPA to study elongation mutants.  

 Interaction between adjacent transcription units can lead to complex 

transcriptional outputs. For example, yeast genomic loci harboring cryptic transcription 

unit in the 5ʹ UTR of a gene or within the gene body can interfere with transcription of 

the native gene. Such transcriptional perturbations in certain amino acid biosynthesis 

genes render cells to auxotrophic for the relevant amino acid. Insertion of a Ty1 ∂ 

element (the yeast Ty retrotransposon long terminal repeat is called a ∂ element) 5ʹ of 

HIS4 (his4-912∂) or in the 5ʹ UTR of LYS2 (lys2-128∂) confers auxotrophy for histidine 

or lysine, respectively (Simchen, Winston et al. 1984, Winston, Chaleff et al. 1984). The 

Ty1 ∂ element contains Ty element promoter, thus insertion of ∂ element creates a 

complex transcription unit containing two promoters, one native and one ectopic. 

Transcription mutants that can suppress transcriptional defects incurred by insertion of 

Ty element (suppression of Ty, Spt-) in his4-912∂ or lys2-128∂ reporters, allow bypass 

of the observed auxotrophy. Our lab has utilized the lys2-128∂ reporter allele to 

characterized Pol II catalytic mutants with our results indicating that catalytically fast 

Pol II alleles confer suppression of the lys2-128∂, otherwise known as the Spt- 

phenotype (Cui, Jin et al. 2016, Qiu, Erinne et al. 2016). Likewise to adjacent 

transcription units within same gene interfering, impaired transcription of one gene can 

interplay with transcription of an adjacent gene. As the yeast genome is highly 

compressed and contains short intergenic sequences, impaired transcription termination 

of an upstream transcript can cause interference with adjacent downstream transcription. 
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This phenomenon is the basis for use of the gal10Δ56 reporter allele, which contains a 

deletion in the major polyadenylation signal of the GAL10 gene (Greger and Proudfoot 

1998, Kaplan, Holland et al. 2005). As a result, GAL10 transcription does not terminate 

properly and transcriptional readthrough interferes with the adjacent downstream GAL7 

gene. This interference reduces GAL7 transcription resulting into buildup of a toxic 

intermediate in the galactose metabolic pathway normally metabolized by the GAL7 

gene product, and therefore leading to galactose sensitivity of the cells. Mutations in Pol 

II and elongation factors can alter this transcriptional interference and suppress 

gal10Δ56 galactose sensitivity (Kaplan, Holland et al. 2005, Kaplan, Jin et al. 2012). 

Generally Pol II LOF mutants, and with a few exceptions of GOF mutants, have been 

shown to suppress galactose sensitivity of gal10Δ56 (Qiu, Erinne et al. 2016). 

 Similar to genetic reporters sensitized to altered transcription in vivo, drugs that 

deplete the cellular nucleotide pool have  also been widely used to characterize 

transcription mutants in yeast. These drugs include mycophenolic acid (MPA) and 6-

azouracil (6-AU), which targets GTP synthesis and both UTP and GTP synthesis 

pathways, respectively (Sweeney 1977, Archambault, Lacroute et al. 1992, Exinger and 

Lacroute 1992, Powell and Reines 1996, Reines 2003). It has been widely assumed that 

growth sensitivity of mutant to MPA or 6-AU is a synergistic effect between elongation 

defects of the mutant itself and drug-induced elongation defects (such as pausing and 

backtracking of Pol II) due to limiting nucleotides. Extensive work from the Reines lab 

has revealed a great detail of the mechanism of how wild type cells confer resistance to 

these drugs (Shaw and Reines 2000, Shaw, Wilson et al. 2001, Hyle, Shaw et al. 2003, 
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Jenks and Reines 2005). MPA/6-AU targets inosine monophosphate dehydrogenase 

(IMPDH), an enzyme in the GTP biosynthesis pathway encoded in the yeast genome by 

three homologous IMD genes (IMD2, 3 and 4). The Reines group found that resistance 

to MPA/6-AU requires up regulation of the drug resistant form of the enzyme encoded 

by the IMD2 ortholog, while mutants that fail to induce IMD2 are generally sensitive to 

the drug. Further work from the Brow and Reines labs revealed that under GTP-replete 

conditions, upstream GTP-initiating transcription start sites (transcripts start with G) are 

used at the IMD2 promoter, generating cryptic unstable transcripts (CUT) that are 

attenuated by premature termination (Figure 1-4) (Jenks, O'Rourke et al. 2008, Kuehner 

and Brow 2008). Upon GTP starvation (induced by MPA or 6-AU treatment), a 

downstream functional ‘A’ start site (ATP-initiating) is used to produce a functional 

IMD2 transcript, allowing expression of the drug resistant form of the enzyme. An 

analogous regulation of start site utilization also controls expression of URA2 upon 

uracil starvation (Figure 1-3) (Kwapisz, Wery et al. 2008, Thiebaut, Colin et al. 2008). 

In the presence of high uracil, an upstream start site is used at URA2 and is attenuated by 

premature termination. Upon uracil starvation (such as 6-AU treatment), a distal start 

site can be used to make productive URA2 mRNA. Many Pol II mutants derange this 

drug-induced shift in start site utilization and our lab has extensively studied the 

regulation TSS utilization at IMD2 promoter using Pol II catalytic mutants, which I 

discuss further.  
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Figure 1-3. Genetic reporters and phenotypes to examine altered Pol II catalysis in 
vivo 
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Figure 1-4. Mechanism of TSSs utilization at IMD2 promoter. (A) (left) IMD2 gene 
transcription in presence and absence of MPA. In absence of MPA, IMD2 is transcribed 
from upstream ‘G’ start sites and the resulting non-functional CUTs are degraded by the 
exosome. In the presence of MPA (GTP depletion), a downstream ‘A’ start site is 
utilized to produce functional IMD2 transcripts. (right) MPA depletes cellular GTP by 
inhibiting activity of a GTP biosynthesis pathway enzyme IMPDH. In yeast, IMPDH is 
encoded by paralogous enzymes, Imd2, Imd3 and Imd4. IMD3 and 4 gene products are 
sensitive to MPA treatment, however, upon GTP depletion, a functional IMD2 product 
makes cell resistant to MPA. (B) (Left) Schematic of the imd2∆::HIS3 construct and 
possible mechanism for inability MPA sensitive mutants to shift TSS utilization. (Right) 
Expected phenotype for Pol II catalytic mutants upon MPA treatment in synthetic 
medium lacking histidine. 
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 Previous work from our lab has shown that GOF catalytic mutants are generally 

sensitive to MPA, while LOF mutants are resistant (Kaplan, Jin et al. 2012, Qiu, Erinne 

et al. 2016). Notably, GOF and LOF catalytic mutants also have propensity to shift start 

site utilization upstream and downstream, respectively, when tested on reporter genes or 

genome wide (Kaplan, Jin et al. 2012, Jin 2015). A simple explanation of MPA 

resistance for LOF mutants is that this class of mutants shifts start site utilization 

downstream at IMD2 promoter, thus, constitutively using the functional ‘A’ TSS to 

produce drug resistant form of the enzyme. Indeed, downstream functional ‘A’ TSS at 

IMD2 promoter is constitutively used in LOF mutants in vivo (Kaplan, Jin et al. 2012). 

Mechanism of sensitivity for GOF mutants to the drug is complex. We hypothesized that 

GOF mutants may fail to shift start site at IMD2 promoter, making cells sensitive to 

MPA in two possible ways (Figure 1-4). First, faster catalytic rate might make GOF 

mutants insensitive to depleted nucleotide pools and they are thus less responsive to 

acute GTP starvation after MPA treatment. Second, GOF mutants might shift the start 

site downstream, but to a non-functional novel start site upstream from the functional 

‘A’ TSS, resulting in production of a cryptic transcript attenuated by premature 

termination. Our results support the second possibility, which I present in Chapter II. 

Finally, to exploit the constitutive downstream utilization of functional start site in LOF 

mutants, we constructed a reporter system where we replaced the IMD2 ORF with HIS3 

(imd2∆::HIS3). This reporter can be utilized to screen for new transcription mutants that 

shift TSS usage downstream, leading to constitutive expression of HIS3 (Figure 1-4). 
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Co-transcriptional mRNA processing 

Eukaryotic mRNAs are complex and need proper processing and unique 

packaging to form the messenger ribonucleoproteins (mRNPs), which enables efficient 

transportation to, and translation in, the cytoplasm. Maturation of pre-mRNAs requires 

addition of a 7-methylguansine cap to the 5′ end, splicing of introns, and addition of a 

non-templated poly(A) tail to the processed 3ʹ end. Although each of these processing 

events can be sequentially reconstituted in vitro, now it is evident that these maturation 

processes are coupled to transcription elongation, thus are termed ‘co-transcriptional’. 

Several lines of evidence have established the co-transcriptionality of mRNA processing. 

Electron microscopy revealed spliced nascent pre-mRNAs in chromatin in close 

proximity to the Pol II (Beyer and Osheim 1988). Subsequently, several studies have 

shown that transcription factors and co-factors can influence 5′-capping, splicing, 3ʹ end 

formation and polyadenylation (Monsalve, Wu et al. 2000, Chiu, Ho et al. 2002, 

Rosonina, Bakowski et al. 2003, Schroeder, Zorio et al. 2004, Lenasi, Peterlin et al. 

2011, Martins, Rino et al. 2011, Nagaike, Logan et al. 2011, Huang, Li et al. 2012, Ji, 

Zhou et al. 2013). Moreover, Pol II itself is capable of recruiting pre-mRNA processing 

factors co-transcriptionally. Recruitment of processing factors can happen through the C-

terminal domain (CTD) of largest subunit of Pol II, Rpb1 (Recently reviewed in (Harlen 

and Churchman 2017)). The Pol II CTD has a heptapeptide repeat (consensus amino 

acid sequence YSPTSPS), which varies from 26 repeats in yeast to 52 repeats in 

humans. The Pol II CTD can undergo several posttranslational modifications and is 

known to influence several stages of transcription. It is proposed that specific 
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posttranslational modifications of the Pol II CTD act as landing pads for recruitment of 

chromatin remodelers and pre-mRNA processing factors to facilitate transcription 

elongation and processing of nascent RNAs, respectively.  

As the recruitment of the pre-mRNA processing factors and pre-mRNA 

processing occurs simultaneously with elongation, it is thought that Pol II has evolved to 

maintain a certain elongation rate that matches with the rate of processing events, so that 

both can happen within a coordinated time-frame; hence elongation is said to be 

‘kinetically’ coupled to co-transcriptional processing. Kinetic coupling or kinetic 

competition suggests that pre-mRNA processing factors compete for the nascent RNA 

elements while Pol II elongation rate determines when a processing event occurs relative 

to where Pol II is on the template. However, the precise mechanism or extent of this 

coupling and how altered Pol II elongation rate affects this coordination is still under 

investigation. Presumably, failing to coordinate between elongation and pre-mRNA 

processing can lead to improper processing of the nascent RNAs. Impaired processing of 

the transcripts results in degradation of the transcripts and may lead to premature 

termination of elongating Pol II. Thus, cells possess several nuclear quality control 

mechanisms or ‘surveillance’ to counter impaired 5′ and 3ʹ processing of the nascent 

RNAs (Luo, Johnson et al. 2006, Jiao, Xiang et al. 2010, Chang, Jiao et al. 2012, 

Kilchert, Wittmann et al. 2016). In this section I discuss how and up to what extent 

altered Pol II elongation rate may affect co-transcriptional processes, with the focus on 

5′ capping, splicing and 3ʹ formation/termination. Additionally, I also briefly discuss 
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relevant quality control pathways, which counter impair processing events and may lead 

a pre-mature termination. 

Co-transcriptional capping 

Immediately after the 5′ end of the nascent transcript of 20-30 nucleotides length 

emerges from the RNA exit channel, capping can be detected (Rasmussen and Lis 1993). 

mRNA capping requires step-wise action of three enzymes, which include a RNA-

triphosphatase (Cet1p in yeast), a guanylyltransferase (Ceg1p in yeast) and a guanine 

N7-methyltransferase (Abd1 in yeast) (Figure 1-5) (Ramanathan, Robb et al. 2016). 

Phosphorylation of Pol II CTD Ser5 and other elongation factors (Spt4/5 in yeast) are 

required for recruitment and activation of capping enzymes to the nascent RNAs (Cho, 

Takagi et al. 1997, McCracken, Fong et al. 1997, Wen and Shatkin 1999). The 5′ 

triphosphate of the nascent RNA is first modified by the triphosphatase, which removes 

the gamma-phosphate of 5′-ppp to generate 5′-pp. Then the guanylyltransferase transfers 

a GMP from GTP to the 5′-pp via a lysine-GMP intermediate. Finally, the guanine N7-

methyltransferase adds a methyl group to the N7-amine to form the m7G cap. Capping is 

required to protect the nascent RNAs from degradation. As the cap structure is required 

for efficient packaging, export to the cytoplasm and translation of the mRNAs, this 

surveillance mechanism ensures selection of capped mRNAs over uncapped or 

improperly capped ones. In yeast, 5′ surveillance pathways majorly consist of the 5′ to 3ʹ 

exonucleases Rat1p and Xrn1p. Rat1p is an essential 5′ to 3ʹ nuclear exonuclease 

involved in transcription termination and nuclear quality control (Kim, Krogan et al. 

2004). Rat1p functions in complex with its partner Rai1p, which makes the 5′ end of 
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partially or defectively capped transcripts competent for Rat1p degradation (Rat1p is 

specific for RNAs having a 5′-monophosphate) (Jiao, Xiang et al. 2010). Xrn1p is non-

essential and a major component of the cytoplasm decay pathway, but proposed to have 

nuclear function as well. Indirect evidence for of effects of altered Pol II elongation rate 

on 5′ capping comes from genetic interaction between Pol II mutants with surveillance 

factor mutants that I discuss further below. 

A kinetic coupling model of the capping process, where capping and synthesis 

have evolved to be of similar rates, would predict that fast Pol II mutants might alter 

where capping takes place and could in fact be defective if elongation proceeds too far 

prior to capping occurring. Conversely, slow Pol II elongation would allow more time 

for capping. In contrast, previous studies have proposed the existence of an mRNA 

‘capping checkpoint’, wherein Pol II pauses/slows down until the capping process is 

completed (Glover-Cutter, Kim et al. 2008). Hence under such a model, Pol II 

elongation rate would have little effect on efficiency of capping. In metazoans, Pol II 

generally pauses at the 5′ end of genes with capping enzymes/cap-binding complex 

recruited at this pause. This pausing could be a part of the proposed checkpoint 

mechanism, which ensures that uncapped transcripts are not extended. To date, very few 

studies have been performed to determine how altered Pol II elongation rate may affect 

the capping process. A previous study has shown a slow Pol II catalytic mutant in yeast, 

rpb1 N488D, to be defective of capping for a reporter gene (Jimeno-Gonzalez, Haaning 

et al. 2010). A capping defect of rpb1 N488D mutant was inferred from its synthetic sick 

interaction with a double mutant of a temperature sensitive allele of Rat1 (rat1-1) and 
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xrn1∆. Presumably, in the absence of nuclear quality control exonucleases (xrn1∆/rat1-

1) inappropriately capped transcripts build up in the Pol II mutant strain (rpb1 N488D) 

to make the cells sick. This notion was further supported by the observation that mutant 

Pol II showed a decreased level of capped reporter RNA when quantified after capped-

only RNA pull-down using an anti-cap antibody. However, since the rpb1 N488D 

mutant has been shown to be catalytically slower than WT (Malagon, Kireeva et al. 

2006, Jimeno-Gonzalez, Haaning et al. 2010), the observed results are difficult to square 

with a simple kinetic coupling model, which would predict slow mutants would have 

increased time to allow capping, while Pol II fast mutants would have possible reduction 

in time to cap. We examined Pol II GOF and LOF activity mutants for genetic 

interactions with xrn1∆, rat1-1 and xrn1∆/rat1-1 mutants in Chapter II. It is difficult to 

predict capping defects from these genetic interactions as Rat1p is also involved in 

termination (see Chapter II). We propose to determine the extent of co-transcriptional 

capping by measuring the distance in how far Pol II has elongated when capping occurs 

(see Chapter III). 
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Figure 1-5. pre-mRNA capping and quality control. (Left panel) Stepwise capping 
mechanism of pre-mRNA and (middle panel) associated quality control pathway to 
degrade improperly capped message. (Right panel) Experiments to determine in vivo 
capping defect in Pol II mutants (see Chapter III for further discussion)  
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Co-transcriptional splicing 

Among all the studied co-transcriptional processing events, perhaps, the greatest 

amount of evidence has been reported for the coupling of splicing to Pol II elongation. 

Due to paucity of introns splicing is less common in yeast than humans, where more 

than 90% of genes are alternatively spliced and abnormality in splicing can lead to 

diseases (Wang, Sandberg et al. 2008, Chabot and Shkreta 2016). Spliceosome 

complexes assemble on each intron in a step-wise manner to accomplish splicing. Recent 

work has implicated Pol II CTD differential phosphorylation in splicing factor 

recruitment and alternative splicing, suggesting that Pol II may directly interact with 

components of the spliceosome (de la Mata and Kornblihtt 2006, David, Boyne et al. 

2011, Gu, Eick et al. 2013). Although it is well-established that the majority of intron 

splicing happens co-transcriptionally, how splicing is coupled to, or sensitive to Pol II 

elongation rate is unclear. Some evidence supports direct coupling, wherein a splicing 

‘check-point’ exists and splicing requires completion before Pol II can elongate further. 

Other evidence suggests ‘kinetic coupling’, which predicts that splicing and transcription 

rates should match in a way such that splicing catalysis can occur within the timeframe 

of elongation, but alteration in elongation rate may perturb this. An earlier study, using a 

splicing reporter yeast, showed that Pol II accumulates at the 3ʹ splice site and defective 

splicing led to transcription defects in the introns, suggesting crosstalk between splicing 

and elongation, i.e. a ‘check-point’ might exist (Alexander, Innocente et al. 2010, 

Chathoth, Barrass et al. 2014). Two recent studies, using nascent elongating transcript 

sequencing (NET-seq) in mammalian cells, have shown that Pol II has propensity to 
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pause at 3ʹ and 5′ splice sites (Mayer, di Iulio et al. 2015, Nojima, Gomes et al. 2015). 

However, Pol II pausing at introns might support either model. For example, Pol II may 

have evolved to pause or slow down at introns to better couple two processes 

‘kinetically’ or, conversely, the splicing process can itself act as a ‘check-point’ that 

induces Pol II pausing.  

The kinetic coupling of co-transcriptional splicing is supported by previous 

studies on splicing in Pol II catalytic mutants, with the prediction that elongation rate can 

influence where the spliceosome components and splicing regulators bind on nascent 

RNAs relative to the position of Pol II. According to this prediction, faster elongation 

will lead to an enhanced competition between upstream and downstream splice sites for 

alternative splicing. Conversely, slow Pol II mutant will enhance the time duration 

between appearance upstream and downstream splice sites. Thus, slow mutants will 

decrease competition and increase the chances of recognition of upstream alternative 

splice sites. Indeed, a slow Pol II mutant in human cells inhibits exon skipping by 

favoring suboptimal upstream splice site (de la Mata, Alonso et al. 2003). Further, 

consistent with the kinetic predictions, a slow Pol II mutant globally increased intron 

removal in Drosophila cells, suggesting increased efficiency of splicing for inefficient 

introns due to longer duration of Pol II in regions with relevant signals (Khodor, 

Rodriguez et al. 2011). Studies from our lab, using LOF and GOF Pol II mutants in 

yeast, have shown that slower catalytic Pol II mutants generally favor splicing by 

decreasing intron retention, while faster elongation leads to increased intron retention 

(Braberg, Jin et al. 2013).  A recent study in yeast showed that Pol II GOF mutant rpb1 
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E1103G shifted Pol II position further downstream on the gene compared to WT at the 

time of nascent pre-mRNA splicing, suggesting that rpb1 E1103G Pol II travels further 

while splicing is happening, which fits the model of kinetic coupling of events assuming 

that rpb1 E1103G is indeed a fast elongator in vivo as in vitro (Carrillo Oesterreich, 

Herzel et al. 2016). However, using analogous mutants in human cells, the Bentley lab 

has shown that slow and fast elongation often both increase or decrease inclusion of 

particular exons or retained introns, suggesting that an optimal elongation rate might 

required for efficient splicing, or that there are confounding secondary effects (Fong, 

Kim et al. 2014). In this regard, it is notable that use of Pol II mutants to test the kinetic 

coupling model cannot rule out the possibility of delayed splicing kinetics as secondary 

effects in catalytically fast Pol II mutants. For example, some other factor (such as 

recruitment of splicing components) can be impaired in fast mutants leading to slow 

splicing kinetics. Further studies are needed to examine the exact length of splicing 

intermediates associated with elongating Pol II in an experimental step where we can 

rule out the possibility of delayed splicing kinetics and determine the true effect of Pol II 

elongation rate on splicing efficiency (see discussion and future direction in Chapter III). 

3ʹ end formation/termination 

After complete synthesis of a transcript, transcription terminates in a way that is 

functionally connected to 3ʹ end formation. Productive 3ʹ end formation is required for 

proper termination, and 3ʹ end formation/termination both are critical for transcriptional 

directionality and controlling cryptic transcription. Failing to terminate can lead to Pol II 

running over the neighboring gene, leading to detrimental consequences (Greger and 
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Proudfoot 1998). After decades of research, the mechanism of Pol II transcription 

termination is still a matter of debate. Coding RNA transcription termination can 

possibly occur through two non-mutually exclusive pathways; these are so-called 

‘torpedo’ and ‘allosteric’ modes of termination. According to the ‘torpedo’ model, once 

the Pol II counters a poly(A) signal, the nascent RNA is endonucleolytically cleaved for 

further 3ʹ end formation (polyadenylation), generating a 5′-monophoshate end on the 

nascent RNA still attached to Pol II. Subsequently, the 5′ to 3ʹ exonuclease Rat1p with 

its activating partner Rai1p attacks the unprotected (non-capped 5′ triphosphate) RNA, 

degrading the RNA and removing it from Pol II, allowing Pol II to disengage from the 

template. The ‘allosteric’ model describes that after the Pol II encounters a poly(A) 

signal, termination occurs through a physical change in the Pol II that disengage it from 

the template. As stated earlier, beside mRNAs Pol II also transcribes non-coding RNAs. 

Non-coding transcripts can overlap and interfere with coding genes, thus efficient 

termination is required. Non-coding RNA transcription is terminated by the 

Nrd1/Nab3/Sen1(NNS) pathway in yeast (Reviewed in (Porrua and Libri 2015)). The 

NNS proteins are recruited by Ser5 phosphorylation of Pol II CTD at the early stage of 

transcription. Nrd1 and Nab3 are RNA binding proteins, which bind to target nascent 

RNAs with appropriate sequence motifs and elongation complexes are dissociated from 

the template by the Sen1 helicase. NNS termination is generally followed by degradation 

of the transcript by the nuclear exosome complex.  

The co-transcriptional nature of 3ʹ end formation is supported by several 

observations. First, most coding RNA transcription termination is poly(A) signal 
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dependent, indicating elongating Pol II remains still engaged to the template while 

polyadenylation occurs (Zaret and Sherman 1982, Logan, Falck-Pedersen et al. 1987). 

Second, polyadenylation and cleavage factors associate with the 3ʹ end of the genes, 

suggesting they are recruited co-transcriptionally (Kim, Erickson et al. 2010, Mayer, 

Lidschreiber et al. 2010). Third, if co-transcriptional polyadenylation/cleavage is 

kinetically coupled to elongating Pol II, then it is expected that slow elongating Pol II 

may have increased time to allow processing at upstream poly-A sites, with termination 

closer to such sites. Indeed, proximal poly(A) sites are favored by a slow elongating Pol 

II in Drosophila compared to WT and, in yeast, slow elongating Pol II enhances 

processing of crippled poly(A) site (Kaplan, Holland et al. 2005, Pinto, Henriques et al. 

2011).  

Kinetic coupling of termination to elongation has been shown for both non-

coding and coding RNA transcription. Using a LOF and a GOF catalytic mutant, it has 

been shown in yeast that Sen1p helicase mediates termination of non-coding RNAs 

through competition with elongating Pol II (Hazelbaker, Marquardt et al. 2013). A GOF 

catalytic mutant, rpb1-E1103G, assumed to have faster in vivo elongation rate, indeed 

travels further on a template prior to termination, while a LOF catalytic mutant, rpb1-

N488D, terminates after a shorter distance travelled. Further, termination and growth 

defects of sen1 mutant cells are partially suppressed by a LOF catalytic mutant rpb1-

N488D and enhanced by a Pol II GOF catalytic mutant rpb1-E1103G, consistent with 

kinetic competition between termination and elongation. Similarly, for coding gene 

termination, kinetic competition is evident for ‘torpedo’ model of termination in human 
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cells, where inactivation of the 5′ exonuclease encoding XRN2 (yeast RAT1 homolog) 

leads to longer and shorter run-off for a faster (POLR2A E1126G) and a slower Pol II 

mutant (POLR2A R739H), respectively (Fong, Brannan et al. 2015). These observations 

are consistent with genetic-interaction results in yeast, that LOF/slow catalytic mutants 

partially recue lethality of rat1-1 ts- mutant (defective termination) at the non-permissive 

temperature, while GOF/fast catalytic mutants are synthetic sick with rat1-1 mutant at 

the permissive temperature. Taken together these results support a co-transcriptional 

kinetic coupling for termination, wherein slower elongation provide a longer temporal 

‘window of opportunity’ for termination in termination defective cells (rat1-1), while 

faster elongation makes termination ineffective by running off faster and/or a temporally 

reduced ‘window of opportunity’. Interestingly, a recent study on the ‘allosteric’ mode 

of termination showed that, in vitro, the elongation complex gets disassembled when 

encounters a poly(A) signal (Zhang, Rigo et al. 2015). This disassembly process does 

not require transcript cleavage, but requires specific Pol II conformation that can be 

blocked by α-amanitin. This observation led to an intriguing possibility that Rpb1 TL 

might be involved in the so-called allosteric change, as the TL is the target of α-amanitin 

(Brueckner and Cramer 2008, Kaplan, Larsson et al. 2008). Possible involvement of TL 

in the proposed allosteric change for termination complicates the use of TL mutants to 

infer kinetic completion during ‘torpedo’ mode of termination, as the termination defects 

observed in GOF mutant (rpb1 E1103G) may derive from ‘allosteric’ changes as well. 

Despite the debate over these two modes of termination it is possible that these mutually 

non-exclusive pathways may coexist in vivo. 
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Coordination of mRNA synthesis and mRNA decay 

Cellular mRNA levels are governed by variation in synthesis rate and 

degradation rate. According to this view, any perturbation in transcription or mRNA 

degradation should result in a significant change in cellular mRNA level. However, in 

contrast, several recent works suggest that cells may have an unidentified mechanism to 

buffer the mRNA levels following impaired mRNA synthesis or decay. This ‘feedback’ 

of gene expression control between mRNA synthesis and decay rates is proposed to 

maintain a certain concentration of mRNA in the cells even if synthesis/degradation is 

impaired. An early connection between mRNA synthesis and decay was established by 

the Choder group with experimental evidences that Pol II subunit Rpb4p mediates decay 

of a specific set of mRNAs and impaired mRNA synthesis had very little impact on 

these mRNA levels (Goler-Baron, Selitrennik et al. 2008). Further studies from the 

Choder and Cramer labs have suggested that mRNA buffering could be a global 

phenomenon and that the coupling of synthesis and degradation may have evolved 

coordinately in yeast (Sun, Schwalb et al. 2012, Haimovich, Choder et al. 2013, 

Haimovich, Medina et al. 2013, Sun, Schwalb et al. 2013). The exact mechanism of this 

coupling is still under investigation; although, several putative factors have been 

identified and proposed to maintain the coordination between mRNA synthesis and 

degradation. The Choder group proposed that the Pol II subunits Rpb4/7, which form a 

heterodimer, shuttle between nucleus and cytoplasm and stimulate mRNA decay process 

to buffer impaired synthesis (Goler-Baron, Selitrennik et al. 2008, Harel-Sharvit, Eldad 

et al. 2010). In contrast, studies from Cramer group, using metabolic RNA labeling and 
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comparative Dynamic Transcriptome Analysis (cDTA), have suggested that Rpb4p 

mainly functions in transcription (Schulz, Pirkl et al. 2014). Comparing global synthesis 

and degradation rates of 46 mutant factors in mRNA metabolism/degradation pathways, 

the Cramer group showed that deletion of 5′ to 3ʹ exonuclease Xrn1p abolishes the 

mRNA buffering and proposed that Xrn1p maintain the feedback between mRNA 

synthesis and degradation (Sun, Schwalb et al. 2013). However, mutants tested in this 

study or earlier studies, may affect cellular growth rates and recent studies suggest that 

growth rate can also control mRNA decay and overall mRNA abundance (Neymotin, 

Ettorre et al. 2015, Garcia-Martinez, Delgado-Ramos et al. 2016). Thus, it is difficult 

deconvolute between two possibilities whether the proposed mRNA feedback is 

controlled by certain factors or changes occur through cellular growth rate. As our Pol II 

catalytic mutants have growth defects, I test the effects of growth on mRNA decay rate 

of a reporter, which I present in Chapter II. 
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CHAPTER II 

WIDE-RANGING AND UNEXPECTED CONSEQUENCES OF POL II CATALYTIC 

ACTIVITY IN VIVO1 

 

 

Disclaimer for Chapter II 

 Chapter II is reprint of a publication, which I am the lead author on. I performed 

all of the work presented in this chapter, expect for growth assays presented in Figure 2-

12 and 2-14, which are done by Dr. Kaplan and Thomas Snavely. Chenxi Qiu helped me 

in microscopy experiments presented in Figure 2-10. Summary section of this chapter is 

the abstract of the publication, rest are as in publication. 

 

                                                

1Reprinted with permission from “Wide-ranging and unexpected consequences of altered 
Pol II catalytic activity in vivo” by Malik et al. 2017. Nucleic Acids Research, Vol. 45,  
4431–4451, Copyright ©The Author(s) 2017. Published by Oxford University Press on 
behalf of Nucleic Acids Research. 
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Summary                                                                                         

Here we employ a set of RNA Polymerase II (Pol II) activity mutants to 

determine the consequences of increased or decreased Pol II catalysis on gene 

expression in Saccharomyces cerevisiae. We find that alteration of Pol II catalytic rate, 

either fast or slow, leads to decreased Pol II occupancy and apparent reduction in 

elongation rate in vivo. However, we also find that determination of elongation rate in 

vivo by chromatin IP can be confounded by the kinetics and conditions of transcriptional 

shutoff in the assay. We identify promoter and template-specific effects on severity of 

gene expression defects for both fast and slow Pol II mutants. We show that mRNA half-

lives for a reporter gene are increased in both fast and slow Pol II mutant strains and the 

magnitude of half-life changes correlate both with mutants’ growth and reporter 

expression defects. Finally, we tested a model that altered Pol II activity sensitizes cells 

to nucleotide depletion. In contrast to model predictions, mutated Pol II retains 

sensitivity to altered nucleotide levels. Our experiments establish a framework for 

understanding the diversity of transcription defects derived from altered Pol II activity 

mutants, essential for their use as probes of transcription mechanisms. 

Introduction 

Gene transcription by RNA polymerase II (Pol II) is an essential process and 

involves three distinct phases: initiation, elongation and termination. Transcription 

elongation proceeds through an iterative cycle of substrate selection, catalysis of 

phosphodiester bond formation, and enzyme translocation [Reviewed in (Kaplan 2013, 
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Svetlov and Nudler 2013)]. Pausing, backtracking, and arrest of Pol II can occur during 

elongation. Pol II elongation factors are proposed to promote Pol II elongation by 

modulating these processes or otherwise enabling Pol II to overcome obstacles. 

Coordinated with elongating Pol II, several co-transcriptional events occur to control the 

fate of nascent RNAs and ensure proper gene expression [Reviewed in (Bentley 2014)]. 

Thus, it is likely that perturbation of Pol II elongation will have multi-faceted effects in 

vivo. To understand the complexity of Pol II activity-mediated control of gene 

expression it is necessary to understand how alteration of Pol II catalytic activity relates 

to specific gene expression defects. 

Studies from our lab and others have identified several Pol II catalytic mutants 

that can alter elongation rate in vitro (Malagon, Kireeva et al. 2006, Kaplan, Larsson et 

al. 2008, Kaplan, Jin et al. 2012). Based on these mutants’ ability to increase or decrease 

transcription elongation rate relative to wild type (WT), we term them “gain of function” 

(GOF) or “loss of function” (LOF) mutants, respectively (Kaplan, Jin et al. 2012). These 

classes of mutant confer distinct gene expression profiles, genetic interaction profiles, 

splicing, and transcription initiation defects in vivo, consistent with their having distinct 

biochemical defects in vitro (Kaplan, Jin et al. 2012, Braberg, Jin et al. 2013, Jin and 

Kaplan 2014). Most of these mutants reside in a highly conserved, mobile sub-domain of 

the largest Pol II subunit Rpb1, known as the trigger loop (TL) (Malagon, Kireeva et al. 

2006, Kaplan, Larsson et al. 2008, Kaplan, Jin et al. 2012, Qiu, Erinne et al. 2016). The 

TL is a component of the Pol II catalytic center, and can directly interact with incoming 

NTPs, undergoing conformational changes to promote rapid catalysis (Wang, Bushnell 
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et al. 2006, Kaplan, Larsson et al. 2008, Kireeva, Nedialkov et al. 2008). TL mutants 

have been shown to affect a number of Pol II biochemical properties including catalysis, 

substrate selection and transcription fidelity (Kaplan, Larsson et al. 2008, Kireeva, 

Nedialkov et al. 2008). In addition, TL mutants have been also shown to affect Pol II 

translocation, pausing and intrinsic cleavage properties (Larson, Zhou et al. 2012, 

Dangkulwanich, Ishibashi et al. 2013, Cabart, Jin et al. 2014). 

The rate of transcription elongation has likely evolved to facilitate and enhance 

the efficiency of pre-mRNA processing and maturation [Reviewed in (Bentley 2014)]. 

Maturation of pre-mRNA requires addition of a 7-methyl guanosine cap at the 5′-end of 

the transcript, splicing of introns, and addition of a poly(A) tail to the 3ʹ-end of the 

transcript. Further, the pre-mRNA is uniquely packaged with protein components into a 

mature mRNA granule, which facilitates export and efficient translation. Impaired 

processing leads to degradation of pre-mRNAs by nuclear surveillance pathways. 

Mechanistic coupling of transcription and pre-mRNA processing is achieved through 

recruitment of factors by C-terminal domain (CTD) and by kinetic competition between 

transcription and processing [Reviewed in (Bentley 2014)]. Using Pol II catalytic 

mutants, it has been shown that kinetic competition functions in the efficiency of pre-

mRNA splicing (de la Mata, Alonso et al. 2003, Braberg, Jin et al. 2013, Fong, Kim et 

al. 2014, Carrillo Oesterreich, Herzel et al. 2016). At least one Pol II catalytic mutant has 

been reported to be defective in 5′-capping, leading to the degradation of transcript by 5ʹ 

to 3ʹ nuclear exonuclease (Jimeno-Gonzalez, Haaning et al. 2010). Additionally, a 

number of findings suggest kinetic competition between transcription termination and 
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elongation in both yeast and human cells (Hazelbaker, Marquardt et al. 2013, Fong, 

Brannan et al. 2015). Recently, a competition-independent pathway has been proposed 

for termination that occurs through a conformational change to Pol II (Zhang, Rigo et al. 

2015). Furthermore, it has been proposed that overall RNA synthesis rate is connected to 

mRNA decay rate through feedback between synthesis and degradation (Haimovich, 

Choder et al. 2013, Haimovich, Medina et al. 2013, Sun, Schwalb et al. 2013, Braun, 

Vaga et al. 2014, Braun and Young 2014). Growth rate is also proposed to control 

mRNA decay and overall mRNA abundance, but linkages between RNA synthesis rate, 

growth, and mRNA decay have not been determined at the molecular level (Garcia-

Martinez, Delgado-Ramos et al. 2016, Neymotin, Ettorre et al. 2016).  

In order to study Pol II elongation in vivo, a number of methods have been 

implemented that either directly measure apparent Pol II elongation rate or determine 

indirect consequences of elongation rate (Hirayoshi and Lis 1999, Garcia-Martinez, 

Aranda et al. 2004, Mason and Struhl 2005, Morillo-Huesca, Vanti et al. 2006) (for a of 

list methods and estimated in vivo Pol II elongation rates see here (Ardehali and Lis 

2009)). Two methods are generally used to study elongation in yeast, one to study 

elongation properties and the other to genetically implicate factors in elongation control. 

The first utilizes chromatin immunoprecipitation (ChIP) to determine Pol II occupancy 

across a long galactose-inducible gene, GAL1p::YLR454w, either in steady state or after 

transcription shutoff by addition of glucose (Mason and Struhl 2005). Apparent 

processivity is inferred from comparison of steady state Pol II occupancy for wild type 

and transcription mutants, while kinetics of the ‘last wave’ of Pol II leaving the template 
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can be used to determine the apparent elongation rate. Indeed, Pol II catalytic mutants 

and several factors mutants have shown altered apparent in vivo elongation rate and 

apparent processivity defects in this assay (Table 2-1). Interpretation of apparent 

elongation rate differences based on transcriptional shutoff makes assumptions that 

signaling and kinetics of the shutoff are identical between WT and mutant strains. 

Similarly, in a second widely used approach, genetic detection of elongation defects 

through use of nucleotide-depleting drugs makes assumptions that drug effects are 

identical between WT and mutant strains, and this issue is discussed below. 

Nucleotide-depleting drugs, such as mycophenolic acid (MPA), which limits 

cellular GTP levels by inhibiting IMPDH activity, are assumed to elicit transcription 

elongation defects by enhancing pausing, arrest, or backtracking due to limitation in 

substrate levels (Sweeney 1977, Archambault, Lacroute et al. 1992, Powell and Reines 

1996, Reines 2003, Kaplan 2013). Growth sensitivity to MPA for Pol II or presumptive 

elongation factor mutants has been widely interpreted as a synergistic effect between 

MPA treatment and impaired elongation due to the mutant. The notion that limiting 

nucleotide is the major determinant of drug phenotypes was further strengthened by the 

observation that guanine supplementation suppresses sensitivity to the drug, along with 

the observation of elongation defects due to drug treatment (Desmoucelles, Pinson et al. 

2002, Mason and Struhl 2005). However, it has been shown subsequently that many 

MPA-sensitive transcription mutants are defective for upregulation of the MPA-resistant 

IMPDH activity encoded by the IMD2 gene (Shaw and Reines 2000).  

  



 

 49 

Table 2-1. List of mutants/conditions that used glucose shut-off experiment to 
determine apparent in vivo elongation rate on GAL1p::YLR454w reporter. 
 
Mutant/Condition tested Apparent In vivo elongation Reference 

rpb2-10 
 
hpr1, thp2, mft1, cdc73, rtf1, 
spt4, ctk1, ctk2 and ppr2. 

rpb2-10 apparent slower than 
WT 
no detectable effect 

(Mason and Struhl 
2005) 

asf1 no detectable effect (Schwabish and 
Struhl 2006) 

set2, pob3 and set2/pob3 no detectable effect (Biswas, Dutta-
Biswas et al. 2006) 

swi2 no detectable effect  (Schwabish and 
Struhl 2007) 

gcn5  gcn5 apparent slower than WT (Govind, Zhang et 
al. 2007) 

esa1 
gcn5 
esa1/gcn5 

esa1 apparent slower than WT 
gcn5 no detectable effect 
esa1/ gcn5 apparent slower than 
WT 

(Ginsburg, Govind 
et al. 2009) 

chd1 
spt5-242 

chd1 apparent slower than WT 
spt5-242 apparent slower than 
WT 

(Quan and Hartzog 
2010) 

rpb1 N488D rpb1 N488D apparent slower 
than WT 

(Jimeno-Gonzalez, 
Haaning et al. 
2010) 

dhh1 
ccr4  
not4 

dhh1 apparent slower than WT 
ccr4 apparent slower than WT 
not4 apparent slower than WT 

(Kruk, Dutta et al. 
2011) 

Temperature apparent elongation rate 
increases with temperature 

(Miguel, Monton et 
al. 2013) 

pfd1 
dst1 

pfd1 apparent slower than WT 
dst1 no detectable effect 

(Millan-Zambrano, 
Rodriguez-Gil et al. 
2013) 

rpb1 E1103G rpb1 E1103G apparent faster 
than WT 

(Hazelbaker, 
Marquardt et al. 
2013) 

rat1-1 rat1-1 apparent faster than WT (Jimeno-Gonzalez, 
Schmid et al. 2014) 
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Table 2-1 Continued 
 
Mutant/Condition tested Apparent In vivo elongation Reference 

rpb2 K864G/K865G/∆866-
871 

no detectable effect (Barnes, Calero et 
al. 2015) 

 
 
Table 2-2. Summary of Pol II mutants’ phenotypes 
 
Experiment/Phenotype LOF/Slow mutant 

phenotype 
GOF/Fast mutant 
phenotype 

Steady state Pol II 
occupancy (over 
GAL1p::YLR454w) 

Decreased overall Pol II 
occupancy 

Decreased overall Pol II 
occupancy 

Apparent Pol II processivity 
defect at the 3ʹ end of 
GAL1p::YLR454w 

Apparent 3ʹ end 
processivity defect in rpb1 
H1085Y 

Apparent 3ʹ end 
processivity defect in rpb1 
G1097D 

Steady state Pol II 
occupancy in glucose vs 
galactose media 

Subtle increase in overall 
Pol II occupancy in 
galactose for rpb1 H1085Y 

Decrease in overall Pol II 
occupancy in galactose for 
rpb1 G1097D 

In vivo gene expression 
(Reporters- 
GAL1p::YLR454w, 
TEF1p::YLR454w, TEF1 
and GAL1) 

Gene expression decreases; 
most robust effect for rpb1 
H1085Y 

Gene expression decreases; 
most robust effect for rpb1 
G1097D 

GAL1p induction kinetics Induction is delayed Induction is delayed 
Genetic interaction with pre-
mRNA processing factors 

Suppresion of Ts- 
phenotype of rat1-1 and 
xrn1∆/rat1-1 mutants 

Synthetic sick interactions 
with xrn1∆ and rat1-1 

mRNA decay rate of 
GAL1p::YLR454w 

Decay rate decreases Decay rate decreases 

In vivo elongation rate over 
GAL1p::YLR454w template 

Apparent elongation rate 
slower than WT on 
GAL1p::YLR454w (with 
caveats noted in main text) 

Apparent elongation rate 
slower than WT on 
GAL1p::YLR454w (with 
caveats noted in main text, 
especially for G1097D) 

snR33 termination window Shorter termination 
window than WT 

Longer termination 
window than WT 
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Table 2-2. Continued 
 
Experiment/Phenotype LOF/Slow mutant 

phenotype 
GOF/Fast mutant 
phenotype 

Ability of GTP-sensing in 
absence of endogenous 
IMD2 

Retain ability to sense 
GTP; MPA sensitivity is 
suppressed by addition of 
guanine 

Retain ability to sense 
GTP; MPA sensitivity 
poorly suppressed by 
addition of guanine 

Response to GTP depletion 
in absence of endogenous 
IMD2 

Constitutively use 
downstream functional ‘A’ 
start site at IMD2 
promoter; sense GTP 
depletion and can further 
shift TSS downstream to 
functional ‘A’ site upon 
MPA treatment 

Sense GTP depletion but 
cannot shift TSS 
downstream to functional 
‘A’ site; instead use novel 
TSSs that produce non-
functional IMD2 CUT 

 
Under GTP-replete conditions, an upstream TSS at IMD2 is used (where 

transcripts initiate using GTP), generating an unstable transcript that terminates within 

the IMD2 promoter (Jenks, O'Rourke et al. 2008, Kuehner and Brow 2008). Upon GTP 

starvation elicited by MPA treatment, a downstream TSS is utilized (where transcripts 

initiate using ATP), allowing for expression of functional IMD2. Regulation of IMD2 

expression, presumably mediated by this TSS switch, is defective in a wide range of 

transcription elongation mutants, as well as for mutants that alter Pol II catalytic activity 

(Desmoucelles, Pinson et al. 2002, Riles, Shaw et al. 2004, Kaplan, Jin et al. 2012). The 

mechanism for defects in IMD2 TSS switching has not been determined for any mutant. 

An attractive model for Pol II mutant effects at IMD2 is that Pol II catalytic defects 

mimic changes to NTP substrate levels, and suggest that the Pol II active site may 

directly communicate GTP levels to the IMD2 promoter through initiation efficiency at 

different transcription start sites. 
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Here, we present a detailed molecular analysis of how alteration to Pol II 

catalysis rate through the use of specific rpb1 alleles, conferring slower or faster 

catalysis than wild type in vitro, affects several facets of transcription and gene 

expression in vivo (a summary of observed mutant effects is in Table 2-2). Using the 

widely used GAL1p::YLR454w reporter, we show that both slow and fast Pol II catalytic 

mutants decrease Pol II occupancy and reporter gene expression in vivo. We find that the 

reporter gene expression defects in slow or fast Pol II mutants negatively correlate with 

increased reporter mRNA half-lives. Pol II catalytic mutants show genetic interaction 

with pre-mRNA processing factors, and we present evidence for an mRNA processing 

defect in fast catalytic mutants. Finally, we have critically evaluated the two major 

widely used systems for studying transcription elongation in yeast – chromatin IP of the 

‘last wave’ of Pol II upon transcription inhibition, and response to GTP starvation. For 

both assays we uncover underlying biological complexities that differentially affect WT 

and presumptive elongation mutant cells, confounding interpretation of these assays by 

simple models. Our results provide a useful framework for future utilization of Pol II 

catalytic mutants to probe biological processes and gene expression mechanisms. 

Materials and Methods 

Yeast strains, plasmid, media and growth 

 Yeast media are prepared following standard (Amberg, Burke et al. 2005) and 

previously described protocols (Kaplan, Jin et al. 2012). Yeast extract (1% w/v; BD), 

peptone (2% w/v; BD) and 2% bacto-agar (BD), supplemented with adenine (0.15mM) 

and tryptophan (0.4mM) (Sigma-Aldrich) comprised YP solid medium. YPD plates 
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contained dextrose (2% w/v, VWR), YPRaf plates contained raffinose (2% w/v, 

Amresco), YP-Raf/Gal plates contained raffinose (2% w/v) plus galactose (1% w/v, 

Amresco) and YPGal plates contained galactose (2% w/v) as carbon sources. YPRaf, 

YPGal and YPRaf/Gal plates also contained Antimycin A (1 mg/ml; Sigma-Aldrich). 

Minimal media plates were prepared with synthetic complete (SC) or ‘Hopkins mix’ 

with appropriate amino acid(s) dropped out as described in (Amberg, Burke et al. 2005), 

with slight modifications as described in (Kaplan, Jin et al. 2012). For studies with 

mycophenolic acid (MPA, Sigma-Aldrich), a stock solution (10 mg/ml, in 100% 

ethanol) of MPA was added to solid or liquid media to achieve desired concentration. 

NaOH, HCl and Guanine were added to solid media to achieve desired concentration as 

indicated. Liquid YPD, YPRaf, YPGal and YPRafGal media are prepared with yeast 

extract (1% w/v), peptone (2% w/v) and 2% (w/v) carbon source (dextrose, raffinose, 

galactose or raffinose plus galactose), with no supplementary adenine, tryptophan or 

Antimycin A. Antimycin A is a standard additive to yeast plates when growth on 

fermentable carbon sources such as galactose or raffinose is being assayed. Prevention of 

respiration enforces growth by fermentation. These assays can be performed in the 

absence of Antimycin A (which is a highly toxic substance), but they become less 

sensitive as the growth differenced between WT gal10∆56 strains on YPRafGal and 

mutants that suppress galactose toxicity on YPRafGal are lessened. 

Yeast phenotyping assays were performed by serial dilution and spotting onto 

plates as described earlier (Kaplan, Jin et al. 2012). Doubling times for the mutants in 

liquid medium (YPGal) were determined using Tecan plate-reader as described earlier 
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(Lenstra, Benschop et al. 2011), with minor modifications. Overnight grown saturated 

cultures were diluted to an OD600 of ~ 0.1 in fresh YPGal medium and grown in 

triplicate at 30˚C in a 96-well plate in a Tecan Infinite F200 plate reader under 

continuous shaking. Data obtained from each plate were considered as a single 

biological replicate and was analyzed in Graphpad Prism using an exponential-growth 

fitting function. 

Chromatin immunoprecipitation 

All the strains used for ChIP experiments contained a C-terminal epitope tag on 

the Rpb3 subunit of RNA Pol II (RPB3::3XFLAG::KANMX; see strain list). ChIP 

experiments were performed as described previously (Kaplan, Holland et al. 2005). 

Briefly, 100 ml of mid-log phase cells (~1x107 cells/ml) were cross-linked with 1% 

formaldehyde (final) for 20 min, and then quenched with 15 ml of 2.5 M glycine for 5 

min. Cross-linked cells were washed twice with cold 1X TBS buffer at 3500 rpm for 3-4 

min at 4˚C using a JS-5.3 rotor (Avanti J-26 XP centrifuge, Beckman-Coulter) and were 

disrupted by bead beating with glass beads in lysis buffer (0.1 M Tris pH 8.0, glycerol 

20%, 1 mM PMSF). Cross-linked cell lysates were subjected to a low speed spin (1500 

rpm, 1 min at 4˚C) to remove cell-debris, followed by centrifugation of chromatin 

pellets, subsequent washing of pellets (twice) with 1 ml FA buffer (50 mM HEPES-

KOH pH 7.5, 300 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 0.01% sodium 

deoxycholate, 0.1% SDS and 1 mM PMSF) at 14000 rpm for 20 min at 4˚C using F45-

30-11 rotor (Centrifuge 5417R, Eppendorf). Chromatin pellets were resuspended in 1 ml 

of FA buffer and sonicated at 4˚C using a Diagenode Bioruptor (45 cycles – 3 x 15 
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cycles; 30 sec ON/ 45 sec OFF) to generate ~300-500 bp chromatin fragments (verified 

on 1% agarose gel). Approximately 100 µl sonicated chromatin was used for each 

immunoprecipitation (IP) with anti-FLAG antibody (FLAG M2 magnetic beads, Sigma-

Aldrich). Surfactant and detergent composition in buffers were changed according to 

manufacturer’s recommendation for compatibility with M2 FLAG antibody, and all 

buffers contained 1 mM PMSF. For Pol II occupancy determination, the amount of 

chromatin used for WT or mutant IPs was normalized by starting cell number and 

chromatin concentration (estimated by spectrophotometer and agarose gel-lane profile). 

Magnetically-captured FLAG beads were washed twice with FA buffer, once with FA 

buffer with 500 mM NaCl, once with wash buffer (10 mM Tris-HCl pH 8.0, 0.25 M 

LiCl, 0.5% NP-40, 1 mM EDTA) and once with TE. Immunoprecipitated chromatin was 

eluted by two-step elution at 65˚C, with 100 ul and 150 ul elution buffers (50 mM Tris-

HCl pH 8.0, 1 mM EDTA, 1% SDS) for 15 min and 30 min, respectively. Both eluates 

were pooled and incubated at 65˚C (> 6 hrs) for cross-linking reversal. 10 ul of sonicated 

chromatin (10% of material added to IP) plus 240 ul of elution buffer were treated 

identically and served as IP input control. Input or immunoprecipitated DNA was 

purified by standard phenol-chloroform extraction and ethanol precipitated in presence 

of pellet paint (MilliporeSigma) or glycoblue (ThermoFisher). Immunoprecipitated DNA 

and 10% of corresponding input DNA (1:10 diluted in nuclease free water) were used 

for qPCR with SsoAdvanced or SsoAdvanced Universal SYBR Green supermix (Bio-

Rad) using CFX 96 (Bio-Rad). Fold enrichment for target amplicon over non-transcribed 

region was determined by the ∆∆CT method (Livak and Schmittgen 2001).  
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For in vivo elongation assays, WT or mutant cells were grown in YPGal to mid-

log phase and a pre- glucose shutoff sample was taken for the 0 minute time point. Then 

glucose (4% final) was added to inhibit transcription and aliquots were removed after 2, 

4, 6 and 8 minutes (optional longer time points were taken for some strains). 

Alternatively, after isolation of 0 min sample as above, remainder of culture was 

centrifuged and washed with SC medium lacking carbon source as described earlier 

(Hazelbaker, Marquardt et al. 2013), then inoculated in YPD (4% glucose) media or SC 

media lacking carbon source to isolate glucose shutoff samples or galactose-depletion 

samples, respectively, at indicated time points. Formaldehyde cross-linking, chromatin 

preparation and subsequent steps were performed as described above. 

RNA isolation, Northern blotting 

For gene expression analysis, RNAs were isolated from mid-log phase cells 

grown in appropriate medium as described in the main text. Post shutoff samples were 

collected by a quick centrifugation for 1 min and immediate freezing of the cell pellets 

by placing at -80C. Centrifugation time was included while calculating shutoff time. 

Total RNA was purified using hot phenol-chloroform method as described previously 

(Schmitt, Brown et al. 1990). 

Northern blotting was performed essentially as described in the manual for 

GeneScreen hybridization membranes (Perkin-Elmer) with minor modifications as 

described earlier (Kaplan, Jin et al. 2012). In brief, 20 µg of total RNA, treated with 

Glyoxal sample-load dye (Ambion), was separated on 1% agarose gel and transferred to 

membrane by capillary blotting. Pre-hybridization solution contained 50% formamide, 
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5X Denhardt’s solution, 10% Dextran sulfate, 1 M NaCl, 50 mM Tris-HCl pH 7.5, 0.1% 

sodium pyrophosphate, 0.1% SDS and 500 µg/ml denatured salmon sperm DNA. PCR 

generated DNA double-stranded probes for northern blots were radiolabeled with 32P-

dATP using the Decaprime II kit (Ambion) according to manufacturer’s instructions. 

After overnight hybridization of the blot at 42˚C, washes were done twice each in 2X 

SSC for 15 minutes at 42˚C, in 5X SSC with 0.5% SDS for 30 minutes at 65˚C, and in 

0.2X SSC for 30 minutes at room temperature. Blots were visualized by 

phosphorimaging (Bio-Rad or GE Healthcare) and quantified using Quantity One (Bio-

Rad). 

Northern blotting for mapping the termination window of the pre-processed 

snR33 transcript was performed essentially as described in (Marquardt, Hazelbaker et al. 

2011, Hazelbaker, Marquardt et al. 2013) with minor modifications. Briefly, 5-8 µg of 

RNA were separated on 6% polyacrylamide-7M urea gel. RNAs were transferred from 

polyacrylamide gel to a membrane (GeneScreen Plus, PerkinElmer) with a Bio-Rad 

Trans-Blot apparatus at a setting of 45W for 1.5 hrs. RNAs were cross-linked to the 

membrane by UV light. Pre-hybridization of the membrane, probe synthesis and 

membranes-hybridization were performed as described in (Marquardt, Hazelbaker et al. 

2011). Membranes were washed twice with low stringency wash buffer (0.1x SSC, 0.1% 

SDS) and visualized by phosphorimaging (Bio-Rad or GE Healthcare). Lane traces were 

determined for each sample using ImageQuant (GE Healthcare). 
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Primer extension 

For primer extension (PE) analysis, RNA was isolated from mid-log phase cells 

grown in appropriate media, optionally treated with desired concentration of MPA for 

indicated time periods. Primer extension analysis was done essentially as described 

earlier (Ranish and Hahn 1991) with modification described in (Kaplan, Jin et al. 2012). 

Briefly, 30 µg of total RNA was annealed with 32P end-labeled oligo. M-MLV Reverse 

Transcriptase (Fermentas) was used for reverse transcription, in the presence of RNase 

Inhibitor (Fermentas). Primer extension products were ethanol precipitated overnight 

and separated on 8% polyacrylamide gels (19:1 acrylamide:bisacrylamide, Bio-Rad) 

containing 1X TBE and 7M urea. PE gels were visualized by phosphorimaging (Bio-Rad 

or GE Healthcare) and quantified using Image Lab software (Bio-Rad). For IMD2 TSS 

annotation we have considered ‘A’ of the start codon (ATG) as +1, so that bases 

upstream start at -1, as in our previous publication (Kaplan, Jin et al. 2012). 

Microscopy and image analysis 

Mig1p-GFP tagged strain was made by integrating GFP C-terminal tag at the 

genomic locus (see strain description). Microscopy was performed as described 

previously (Miermont, Waharte et al. 2013), with modifications. Briefly, cells grown 

overnight in SC medium (2% galactose) at 30˚C, diluted in fresh SC media and grown 

till mid-log at 30˚C before microscopy. Perfusion chamber gasket (ThermoFisher, 4 

chamber: 19 mm X 6 mm) was used for changing medium. Chamber was treated with 

Con A (2 mg/ml, MP Biomedicals) for 10-15 min, and then cells were injected into the 

chamber and allowed 10-15 min to adhere. Medium exchange from SC (2% galactose) 
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to SC (2% galactose) + glucose (4% final) was done by pipetting quickly, while the 

chamber is fixed on the microscope stage. Pre-glucose sample was considered as time 0 

and glucose repression time points were taken immediately after exchange of the 

medium.  

For Mig1p-GFP nuclear localization kinetics, microscopy was performed with an 

inverted epifluorescence microscope (Ti-E, Nikon, Tokyo, Japan) using a 100x objective 

(Plan Fluo, NA 1.40, oil immersion) and standard filter sets. Images were acquired using 

a cooled EMCCD camera (iXon3 897, Andor, Belfast, United Kingdom). For delayed 

Mig1p response (longer time points), microscopy was performed with a Nikon Ti-E 

microscope equipped with a CFI Plan Apo lambda DM 100x objective and a Prior 

Scientific Lumen 200 Illumination system. All images were acquired using NIS Element 

software and data analysis was done using Quantity One (Bio-Rad). Ratio of 

nuclear/cytoplasmic GFP intensity was calculated as [(nuclear GFP intensity – 

background) / (cytoplasmic GFP intensity – background)]. Obtained values for glucose 

repression time points were normalized to pre-glucose (time 0, t0) value. Non-

responding cells were quantified similarly, except for the fact that there was no visible 

nuclear foci, thus a random, central area was selected and measured for fluorescence 

intensity. Position and area of the measurement was kept identical for all the time points 

for the same cell. We reasoned that a non-responding cell would not have a distinct 

change over time in nuclear/cytoplasmic GFP intensity, hence quantifying a random area 

as nucleus should not have an overall affect on the interpretation of the data.  
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Results 

Pol II catalytic mutants decrease steady state Pol II occupancy and apparent processivity 

To explore in vivo consequences of altered Pol II activity, we examined a subset 

of Pol II active site mutants in the largest subunit Rpb1. These mutants were previously 

characterized biochemically, molecularly, and genetically as falling into two classes 

(Kaplan, Larsson et al. 2008, Kaplan, Jin et al. 2012, Jin and Kaplan 2014, Qiu, Erinne 

et al. 2016). These two classes of Pol II mutants appear to derive from either increase 

(“GOF”) or decrease (“LOF”) in Pol II catalytic activity, as determined using in vitro 

transcription. First, we examined Pol II occupancy by chromatin IP over an inducible 

long reporter gene, GAL1p::YLR454w (Figure 2-1A and (Mason and Struhl 2005)). We 

observed decreased overall polymerase occupancy for both GOF and LOF mutants 

compared to WT (Figure 2-1B). Among the mutants tested, H1085Y (strong LOF) and 

G1097D (strong GOF) showed the most severe defects in Pol II occupancy, consistent 

with their severe growth defects in vivo (Kaplan, Jin et al. 2012). When we normalized 

the Pol II fold-enrichment over the 5ʹ end of the gene body (“1kb” amplicon) followed 

by normalization of mutant values to WT, catalytic mutants show selective decrease in 

occupancy over the 3ʹ end of the reporter (most obvious for G1097D) (Figure 2-1C). 

Decreased steady state Pol II occupancy at the 3' end is consistent with a processivity 

defect, wherein Pol II that begins synthesis is unable to complete the transcript, leading 

to polar effects on occupancy from 5ʹ to 3ʹ. Generally, greater Pol II occupancy over 5ʹ 

ends of transcription units relative to 3ʹ ends are interpreted as processivity defects when 

observed (Mason and Struhl 2005); however, a faster elongation rate over a gene’s 3' end 
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would lead to a similar phenotype. Because differential elongation rates over different 

parts of genes has been observed in mammalian cells (Danko, Hah et al. 2013, Jonkers, 

Kwak et al. 2014, Veloso, Kirkconnell et al. 2014), we are careful to assert that what we 

observe is differential apparent processivity for Pol II mutants as ChIP is unable to 

distinguish between the two possibilities. 

Additional factors may determine Pol II occupancy levels over genes. For 

example, Pol II occupancy over a template may be gene class-dependent or regulon-

specific, given that external perturbations such as changes in temperature or carbon 

source have been shown to affect transcription (Pelechano, Jimeno-Gonzalez et al. 2009, 

Miguel, Monton et al. 2013). Therefore, we examined Pol II occupancy over the same 

reporter driven by a constitutive promoter (TEF1p::YLR454w) with strains grown in 

glucose or galactose for the most severely defective Pol II LOF and GOF mutants 

(Figure 2-1D and E). We observed an increased Pol II occupancy for H1085Y in 

galactose relative to glucose, with the converse for G1097D, compared to WT (Figure 

2-1E), although a 3′ occupancy defect was still apparent for both mutants. WT Pol II 

showed more subtle changes in occupancy in glucose relative to galactose. Furthermore, 

the G1097D 3′ end was enhanced in glucose relative to galactose, suggesting growth 

conditional effects on transcription elongation.  
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Figure 2-1. Pol II catalytic mutants decrease Pol II occupancy and show apparent 
processivity defects. (A) Schematic of the galactose inducible reporter 
GAL1p::YLR454w annotated with positions of PCR amplicons used for ChIP 
experiments. Promoter amplicon derived from primers specific to the kanmx::GAL1p 
integrated promoter. (B) Pol II occupancy over GAL1p::YLR454w reporter is decreased 
for both GOF and LOF mutants compared to WT. Line graph shows steady-state Pol II 
occupancy for WT (black line), GOF (green lines) and LOF (blue dashed lines) mutants 
under galactose induction. Green and blue color-coding is used to annotate GOF and 
LOF mutants, respectively. This color-coding is used throughout. (C) Pol II catalytic 
mutants show apparent 3΄ processivity defects. Apparent Pol II processivity defects 
determined for each mutant by normalizing mutant ChIP signal to signal at 1 kb 
followed by normalization to WT. (D) Schematic of constitutively expressed reporter 
gene TEF1p::YLR454w annotated with positions of PCR amplicons used for ChIP 
experiments. Promoter amplicon derived from primers specific to the kanmx::TEF1p 
integrated promoter. (E) Carbon source may differentially affect Pol II mutants’ 
occupancy. Comparison of steady-state Pol II occupancy at TEF1p::YLR454w for WT 
and Pol II catalytic mutants grown in galactose- or glucose-containing medium. 
Individual data points from at least three biological repeats are shown with bars showing 
average +/− the standard deviation of the mean. 
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Figure 2-2. Pol II catalytic mutants generally decrease in vivo gene expression. (A) 
Pol II mutant effects on gene expression are exacerbated with increasing promoter 
strength. Steady-state RNA levels of reporter genes used for Pol II occupancy 
experiments (GAL1p::YLR454w and TEF1p::YLR454w) and endogenous TEF1 levels 
from cells grown in galactose- or glucose-containing medium as indicated. Values were 
normalized to WT TEF1p::YLR454w expression level in YPD. The most severe 
expression defects are evident at GAL1p::YLR454w for both GOF and LOF mutants 
compared to WT. Individual data points from at least three biological repeats are shown 
with error bars indicating average +/− standard deviation of the mean. (B) 
Endogenous GAL1 mRNA expression level is decreased in Pol II catalytic mutant strains 
compared to WT, yet GAL1 expression defects in mutants are less severe 
than GAL1p::YLR454w expression defects as showed in A. Values were normalized to 
WT GAL1mRNA level. Error bars as in A. (C) Pol II catalytic mutants delay induction 
of the GAL1promoter. Time courses showing induction of GAL1p::YLR454w and 
endogenous GAL1mRNA in WT and Pol II catalytic mutants. Overnight grown cells 
were inoculated into fresh YPRaf medium and grown until mid-log phase at 30°C, 
subsequently galactose was added (4% final concentration) to induce GAL gene 
expression. RNAs isolated prior (time 0) and after galactose addition were used for 
northern blotting to determine accumulation of mature GAL1p::YLR454w and 
endogenous GAL1. Data normalized to WT 120 min value and plotted using non-linear 
regression using GraphPad Prism. Individual data points from at least three biological 
repeats are shown. 
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Pol II catalytic mutants show decreases in reporter gene expression that are exacerbated 

by promoter strength and template length  

Defective initiation or elongation might lead to decreased Pol II occupancy 

(Barnes, Calero et al. 2015). Pol II activity mutants do perturb initiation as most or all 

show defects in TSS selection (Braberg, Jin et al. 2013, Jin and Kaplan 2014). Mutants 

affecting Pol II elongation have also been shown to affect reporter gene expression 

depending on length of the transcription unit driven by identical promoters, using the so-

called “GLAM” assay (Morillo-Huesca, Vanti et al. 2006, Millan-Zambrano, Rodriguez-

Gil et al. 2013). Therefore, we determined if Pol II catalytic mutants show gene 

expression defects based on gene length and/or promoter strength. We measured Pol II 

catalytic mutants’ effects on expression of YLR454w reporters in two different promoter 

contexts, driven by the strong, inducible GAL1 promoter and the constitutive TEF1 

promoter by Northern blotting (Figure 2-2A). Additionally, we also measured 

expressions of the endogenous GAL1 and TEF1 genes for comparison with YLR454w 

driven by the same promoters. Pol II mutants confer the strongest effects on 

GAL1p::YLR454w expression compared to WT, with  H1085Y and G1097D having the 

most severe effects (Figure 2-2A). Furthermore, we observed greater gene expression 

defects when examining the highly expressed GAL1p::YLR454w relative to the more 

lowly expressed TEF1p::YLR454w. We also found that expression defects for the 

YLR454w reporters were greater than defects observed for the native genes (shorter in 

length) under control of their respective promoters (Figure 2-2A and 2-2B). These 

results are consistent with previous observations showing Pol II occupancy- and gene-
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length-dependent effects on reporter expression for several elongation mutants (Morillo-

Huesca, Vanti et al. 2006, Millan-Zambrano, Rodriguez-Gil et al. 2013, Barnes, Calero 

et al. 2015). Given reduced Pol II occupancy and gene expression, it is likely that 

initiation defects might also be in play. When we examined the kinetics of activation for 

GAL1p::YLR454w or GAL1, we found that activation of expression was greatly delayed 

in Pol II mutant strains, consistent with defects in activation or initiation (Figure 2-2C).  

Pol II catalytic mutants show allele-specific genetic interactions with pre-mRNA 

processing factors 

We observed greater expression defects for the Pol II mutants compared to 

occupancy defects over the same reporter GAL1p::YLR454w (compare Figure 2-1B with 

Figure 2-2A). These results suggested that there could be additional defects beside Pol 

II initiation or elongation defects contributing to decreased abundance of the reporter 

mRNA in the mutants. As the abundance of cellular mRNAs is determined by synthesis 

and degradation rates, we reasoned that overall expression defects observed for Pol II 

mutants might stem from changes to mRNA stability and/or RNA processing. To start, 

we determined if Pol II catalytic mutants show GAL1p::YLR454w processing defects. 

We took a two-pronged approach to address processing defects. First, we examined 

genetic interactions between Pol II mutants and pre-mRNA processing/degradation 

factors; second, we asked if blocking pre-mRNA degradation pathways could rescue 

gene expression defects of Pol II mutants.  
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Figure 2-3. Allele-specific genetic interactions between Pol II catalytic mutants and 
pre-mRNA and mRNA processing factors.                                                                 
(A) Pol II catalytic mutants show allele-specific genetic interactions with 5΄ exonuclease 
mutants. 10-fold serial dilutions of saturated cultures of Pol II catalytic mutants alone or 
in combination with pre-mRNA and mRNA processing factor mutants plated on YPD 
for comparison of growth at 30°C and 37°C. Suppression of rat1-1 lethality at restrictive 
temperature is highlighted in red box. (B) Inactivation of both Xrn1 and Rat1 rescue 
GAL1p::YLR454w expression in the Pol II GOF mutant E1103G. (Left) Representative 
gel showing GAL1p::YLR454w reporter expression in Pol II catalytic mutants in WT 
and xrn1Δ/rat1-1 mutant background. Overnight grown cells were inoculated in fresh 
YPRafGal media to amplify until mid-log at permissive temperature (27°C) then shifted 
to restrictive temperature (37°C) to inactivate Rat1-1p. RNAs isolated from the half of 
the culture before shifting temperature used as 27°C sample. The other half was washed 
and resuspended in pre-warmed YPRafGal media to grow for another 2 h at 37°C to 
isolate 37°C sample for northern blotting. Asterisk indicates an internal 
cryptic GAL1p::YLR454wtranscript in xrn1Δ/rat1-1 mutant background, as reported 
earlier for an spt16 mutant (Mason and Struhl 2003). (Right) Quantification 
of xrn1Δ/rat1-1 effects. Values were normalized to WT GAL1p::YLR454w mRNA level 
(XRN1/RAT1) at 27°C. Data shown are average of three biological repeats with error 
bars representing standard deviation of the mean. 
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  We reasoned that an mRNA capping defect or premature termination could lead 

to degradation of pre-mRNA by nuclear 5′ or 3′-exonucleases, respectively, resulting in 

decreased abundance of GAL1p::YLR454w. Thus, we tested if Pol II mutants showed 

genetic interactions with known nuclear exonucleases that function in surveillance. 

Deletion of Rrp6, a component of the 3′-exonuclease exosome complex, showed a slight 

negative genetic interaction with Pol II GOF mutants (Figure 2-3A). Inactivation of Rat1 

and Xrn1, two 5′-exonucleases, showed strong genetic interactions with GOF mutants 

(Figure 2-3A). Rat1 is essential and functions in termination of Pol II at protein-coding 

genes (Kim, Krogan et al. 2004, Luo, Johnson et al. 2006). Pol II LOF mutants partially 

suppressed the Ts- phenotype of rat1-1, a conditionally viable allele of RAT1. In 

contrast, Pol II GOF alleles showed synthetic sick interactions with rat1-1, consistent 

with prior findings and model proposed for kinetic competition between termination and 

elongation (Hazelbaker, Marquardt et al. 2013, Jimeno-Gonzalez, Schmid et al. 2014, 

Fong, Brannan et al. 2015). Rat1 works with an activating partner Rai1, which processes 

partially capped mRNA allowing Rat1 access (Jiao, Xiang et al. 2010). Growth defects 

of rai1∆ were slightly suppressed by both LOF and GOF mutants at 37˚C, while dxo1∆, 

a recently described nuclear 5′-exonuclase (Chang, Jiao et al. 2012), showed no strong 

genetic interactions with Pol II alleles (Figure 2-3A).  

We then asked if the mRNA processing mutants that showed genetic interactions 

with Pol II mutants were able to modulate Pol II alleles’ gene expression defects. As 

predicted from the lack of strong genetic interactions, deletion of Rrp6 did not rescue 

full-length GAL1p::YLR454w expression level significantly; furthermore the nuclear 
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exosome would be expected to mainly degrade prematurely-terminated transcripts and 

not-full length ones (Figure 2-4A). Deletion of XRN1 slightly rescued GAL1p::YLR454w 

expression level in Pol II GOF mutant E1103G (Figure 2-4A). Inactivation of Rat1 (at 

the restrictive temperature, 37˚C) severely decreased GAL1p::YLR454w expression 

levels in both WT and catalytic mutants possibly due the rat1-1 growth defect, although 

relative levels of GAL1p::YLR454w in WT and Pol II mutants didn’t differ greatly 

between permissive (27˚C) and restrictive temperature (37˚C) (Figure 2-4B).  
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Figure 2-4. Modulation of reporter gene expression defect in pre-mRNA processing 
factor mutants. (A) GAL1p::YLR454w reporter expression level in Pol II catalytic 
mutants in WT, xrn1∆, or rrp6∆ backgrounds determined by Northern blotting. WT Pol 
II sample (XRN1/RRP6) was run in parallel with xrn1∆ or rrp6∆ mutant samples on each 
blot for normalization purposes (Figure 2A) (B) GAL1p::YLR454w reporter expression 
level in Pol II catalytic mutants in WT and in rat1-1 background at permissive (27˚C) or 
restrictive (37˚C) temperatures. Overnight grown cells were inoculated in fresh YPGal 
media to amplify to mid-log growth at 27˚C, then shifted to 37˚C to inactivate Rat1p. 
RNAs were isolated from half of each culture prior to temperature shift (27˚C samples). 
Remaining cultures were washed and resuspended in pre-warmed YPGal media to grow 
for another 2 hrs at 37˚C prior to RNA isolation. Relative GAL1p::YLR454w expression 
levels were normalized to WT (RAT1) 27˚C value. Data shown are average of three 
biological repeats with error bars representing the standard deviation (SD) of the mean. 
Note: values were normalized to WT (RAT1) at 27˚C, and are presented on logarithmic 
scale. (C) 10-fold serial dilutions of saturated cultures of Pol II catalytic mutants alone or 
in combination with xrn1∆/rat1-1 mutant were plated for growth at 27˚C or 37˚C on 
different media as indicated. Blue and green bars indicate LOF and GOF mutants, 
respectively.
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Figure 2-5. Pol II catalytic mutants alter GAL1p::YLR454w mRNA decay and 
growth in YPGal media. (A) Schematic of the mRNA decay curve fitting showing ‘lag’ 
and ‘exponential decay’ periods after transcriptional shut-off. (B-H) Individual decay 
curve for GAL1p::YLR454w decay in Pol II catalytic mutants plotted using non-linear 
regression using GraphPad prism. (I) GAL1p::YLR454w expression level in H1085Q and 
L1101S determined by Northern blotting. Values normalized to WT GAL1p::YLR454w 
expression level.  Data shown are average of three biological repeats with error bars 
representing the standard deviation (SD) of the mean. (J) Doubling time of Pol II 
mutants in YPGal media determined using Tecan plate reader. Error bars represent 
average +/- SD of four replicate cultures. 
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We found that xrn1∆/rat1-1 double mutant strains were extremely sick on YPGal 

even at permissive temperature (Figure 2-4C). Hence, for determination of 

GAL1p::YLR454w expression level we used YPRaf/Gal liquid medium, which allows 

growth of Pol II mutants in the xrn1∆/rat1-1 background. Intriguingly, inactivation of 

both Xrn1 and Rat1 together completely rescued the GAL1p::YLR454w expression level 

in E1103G (xrn1∆/rat1-1) compared to WT (xrn1∆/rat1-1) at 37˚C (Figure 2-3B), 

suggesting possible 5′ end processing-defective or 5′-cap defective transcripts in the 

GOF mutant E1103G are stabilized by inactivation of Xrn1 and Rat1. Taken together 

these genetic interaction results suggest Pol II GOF mutants may have 5ʹ end processing 

or capping defects, rendering transcripts sensitive to Rat1/Xrn1. 

Both slow and fast Pol II catalytic mutants confer increased mRNA stability to a reporter 

gene  

We reasoned that in addition to myriad Pol II transcription defects and pre-

mRNA processing defects discussed above, compromised mRNA stability of the 

GAL1p::YLR454w transcript may also contribute to its lower abundance in Pol II 

catalytic mutants. In order to determine if Pol II mutants alter mRNA stability, we 

performed transcriptional shutoff followed by measurement of GAL1p::YLR454w 

mRNA over a time course by Northern blotting. mRNA half-lives were determined by 

fitting decay curves with a lag followed by exponential decay (Figure 2-5A). We found 

that all GOF and LOF mutants conferred an increase in both the YLR454w half-life and 

lag periods prior to exponential decay relative to WT (Figure 2-6A, Figure 2-5B-H). 

Further, the increases in mRNA half-lives positively correlated with the overall decrease 
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in expression level of the reporter in the mutants (Figure 2-6B, Figure 2-5I). These 

results suggest a number of conclusions. First, they indicate defects in mRNA synthesis 

rates for all tested Pol II mutants, as steady state expression levels were reduced relative 

to wild type even though we found that the GAL1-YLR454w mRNA showed increased 

stability. Second, longer lag periods prior to exponential decay may indicate Pol II 

mutants confer a delayed response for transcriptional shutoff, slower elongation rate on 

this template, or delayed mRNA export (addressed below). Such lags have been 

observed in genome-wide experiments for mRNA stability where transcription inhibitor 

blocks initiation but elongation is allowed to proceed (Chen, Shiroguchi et al. 2015). The 

lag can result from the time it takes polymerases that have initiated prior to the block to 

finish synthesis of their messages. Given that mRNA decay is strongly coupled to 

translation, and translational demand is coupled to growth rate, it may be difficult to 

deconvolute Pol II mutant effects on mRNA decay through changes to growth rates 

versus direct effects on mRNA decay. Indeed, we observed that mRNA half-lives 

positively correlated with strain doubling times (Figure 2-6C, Figure 2-5J).  

Slow and fast Pol II catalytic mutants exhibit slower apparent in vivo elongation in a 

commonly used ChIP assay 

Our observation of longer lag times than WT for all Pol II mutants tested, both 

slow and fast, was unexpected under the presumption that Pol II mutants that are fast 

elongaters in vitro are also fast in vivo. In our mRNA decay experiments, longer lag 

times prior to exponential decay for LOF mutants were consistent with delayed 

clearance of the template and predicted slow elongation kinetics. Conversely, GOF 
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mutants would be predicted to run off the template more quickly. In contrast to this 

prediction, GOF mutants also showed longer lag times prior to exponential decay 

(Figure 2-6A). One GOF mutant tested here, E1103G, was previously suggested to be 

faster than WT in vivo based on chromatin IP analysis of the same GAL1p::YLR454w 

reporter used here (Hazelbaker, Marquardt et al. 2013). Therefore, we examined 

elongation of E1103G and additional Pol II alleles in vivo using this commonly used 

ChIP assay. In this assay, transcription of GAL1p::YLR454w is shutoff by addition of 

glucose to the medium, and the kinetics of the last wave of Pol II transcription clearing 

the gene is measured using ChIP (Figure 2-7A and B) (Mason and Struhl 2005). As 

predicted, LOF mutants N479S and H1085Y showed extensive delay in Pol II run-off 

kinetics following the transcriptional shut-off (Figure 2-7C and D). The apparent in vivo 

elongation rate of H1085Y was slower than N479S, which is consistent with its stronger 

growth defects and in vivo phenotypes relative to N479S. Surprisingly, both test GOF 

mutants, E1103G and G1097D, also showed reduced kinetics of Pol II runoff subsequent 

to glucose addition (Figure 2-7C). This result was unexpected, especially as E1103G 

was reported to have a faster apparent elongation rate than WT in a version of this assay 

(Hazelbaker, Marquardt et al. 2013). Furthermore, analogous substitution in human 

POLR2A E1126G confers a slightly faster than WT elongation rate in vivo (Fong, Kim 

et al. 2014).  
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Figure 2-6. Pol II catalytic mutants increase half-life of an mRNA reporter. (A) 
Both GOF and LOF mutants show reduced degradation rate of the YLR454w transcript 
compared to WT. Representative blots showing GAL1p::YLR454w mRNA decay, 
determined by glucose shutoff. Overnight grown cells were inoculated in fresh YPGal 
medium and grown until mid-log at 30°C. RNAs isolated from pre-glucose addition 
(time 0) and post-glucose addition time points were used for northern blotting. mRNA 
half-lives and lags were determined using plateau followed by one-phase decay curve 
fitting in GraphPad Prism (see Figure 2-5). Values indicate average of a minimum of 
five biological repeats +/− standard deviation of the mean. (B and C) Correlation 
of GAL1p::YLR454w half-life in different mutants with the expression level (Figure 2-
1A and Figure 2-5I) and with the mutants’ growth defects (Figure 2-5J) determined by 
linear regression using GraphPad Prism. 
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Figure 2-7. Pol II catalytic mutants show slower in vivo elongation rate in a glucose 
shutoff ChIP assay. (A) Schematic of the GAL1p::YLR454w with positions of PCR 
amplicons used for ChIP experiments. (B) Schematic of the regular glucose shutoff 
experiment used in (C) and (D). In vivo apparent elongation rate for WT (C), LOF (D; 
N479S and H1085Y) and GOF (E; E1103G and G1097D) catalytic mutants determined 
by ChIP upon glucose shutoff of transcription by direct addition of glucose (to 4% final 
concentration) to the mid-log grown culture in YPGal at 30°C. Values were normalized 
to pre-glucose addition (0 min) and error bars represent standard deviation of the mean 
for at least three independent experiments. For H1085Y, longer time point (10 and 15 
min) values obtained from two repeats, with error bars indicating the range of the two 
experiments. (F) Glucose shutoff assay to compare apparent in vivo elongation rate 
between WT and fast catalytic mutant (E1103G) following the Hazelbaker et al. protocol 
(Hazelbaker, Marquardt et al. 2013). Pre-glucose addition sample (0 min) was isolated as 
described in Figure 5A; subsequently cells were washed in synthetic complete medium 
lacking carbon source and inoculated in YPD (4% glucose) to shutoff the transcription. 
One wash 0 (W0 min) sample was isolated after the washing and before shutoff to 
determine the effect of washing. Values were normalized to pre-glucose addition (0 min) 
and error bars represent standard deviation of the mean of at least three independent 
repeats. (G) Galactose depletion to determine apparent elongation rate in WT and fast 
catalytic mutant (E1103G). Pre-glucose (0 min) and wash 0 (W0 min) samples were 
taken as described in Figure 5F, followed by inoculation of cells into synthetic medium 
lacking any sugar to incur transcriptional shutoff due to galactose depletion. Values were 
normalized to pre-glucose addition (0 min) and error bars represent standard deviation of 
the mean for at least three independent repeats.  
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Figure 2-8. Validation of GOF mutant phenotypes and formaldehyde crosslinking 
kinetics. (A) Primer extension analysis of start site usage at ADH1 in WT and GOF 
catalytic mutants shows expected upstream shift (arrow) for GOF mutants. (B) 
Evaluating formaldehyde cross-linking efficiency during shut-off of GAL1p::YLR454w 
transcription by addition of 4% glucose. WT culture was grown to mid-log phase at 30˚C 
and half of the culture was isolated and fixed with 1% formaldehyde as time 0 in YPGal 
(GAL 0’). Then, the rest half was quickly centrifuged and resuspended in YPD (4% 
dextrose) containing 1% formaldehyde to obtain time 0 in YPD + formaldehyde (Glu 
0’). ChIP was performed to determine Pol II occupancy over GAL1p::YLR454w (see Fig. 
5A) in GAL 0’ versus Glu 0’. This comparative analysis allows us to determine if there 
is any apparent repression during cross-linking in the presence of glucose to inhibit 
GAL1p::YLR454w transcription. Bar graphs show average of three biological repeats +/- 
SD.  
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Given the discrepancy between our results and those of Hazelbaker et al 

(Hazelbaker, Marquardt et al. 2013), we felt it was essential to closely examine Pol II 

mutant behavior in the elongation assay and identify if there is any hidden or 

confounding variable. We first extensively validated our GOF mutant strains in three 

ways – i. confirmation of introduced mutations by sequencing, ii. confirmation of 

transcriptional growth phenotypes as described in (Kaplan, Jin et al. 2012), and iii. 

confirmation of mutants’ ability to shift transcriptional start sites (TSSs) at the ADH1 

promoter as described in (Kaplan, Jin et al. 2012, Braberg, Jin et al. 2013, Jin and 

Kaplan 2014) (Figure 2-8A). In all cases, results were consistent with strains showing 

expected phenotypes, leading us to speculate that there might be confounding variable(s) 

in the ChIP elongation assay itself. While we employed the most commonly used 

method to shutoff GAL transcription by direct addition of glucose to the media (Mason 

and Struhl 2005), in Hazelbaker et al (Hazelbaker, Marquardt et al. 2013), cells were 

washed in the absence of any carbon source prior to addition of glucose. We repeated the 

method of (Hazelbaker, Marquardt et al. 2013) with the addition of a critical control, 

taking a time point just post wash (W0) to determine how the wash step affected Pol II 

occupancy. In our hands, GOF E1103G was still slower exiting the template than WT 

(Figure 2-7F), consistent with both our direct glucose shutoff without washing, and our 

measurement of increased lag in mRNA decay experiments (Figure 2-7E and 2-6A). 

Additionally, we observed two more phenomena during the wash. First, the W0 time 

point showed evidence of transcriptional shutoff for both WT and E1103G, presumably 

due to galactose depletion (see below for further discussion). We confirmed that Pol II 
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run off was not due to delayed formaldehyde cross-linking, as we did not detect any 

difference in Pol II occupancy when crosslinking was simultaneous with the addition of 

glucose (Figure 2-8B). Second, GOF E1103G showed a faster loss of Pol II over the 3ʹ 

end of GAL1p::YLR454w early in the time course (W0) that was not observed in the 

direct glucose shutoff assay (compare Figure 2-7E with 2-7F). Together, these results 

indicate that the mode of transcription inhibition could alter Pol II transcriptional 

properties in unexpected ways, additionally confounding ability to estimate apparent Pol 

II elongation rate.  

The absence of galactose itself is a distinct mechanism of transcription shutoff 

for GAL genes. Depletion of galactose will lead to reestablishment of Gal80-mediated 

repression of Gal4, the critical activator of GAL transcription. To examine this mode of 

transcription shutoff further, without the mixing of two distinct modes of repression, we 

performed a galactose starvation/depletion time course where no sugar was added. We 

found similar 3ʹ specific runoff in E1103G early in the time course (W0) when a wash 

was employed (Figure 2-7G). As Pol II runs into the gene 3ʹ end at later time points 

(presumably), the effect diminishes. Additionally, in this iteration of the experiment 

there appears to be faster loss of E1103G than WT from the 5ʹ end of the reporter early, 

though E1103G is maintained much longer over the 3ʹ end later in the time course 

(Figure 2-7G). Taken together, we find that Pol II GOF mutants, where tested, appear to 

be retained longer on the template, when examined in the GAL1p::YLR454w system.  
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Figure 2-9. Mapping of termination window for preprocessed snR33 in WT and Pol 
II catalytic mutants. (A) Schematic of the snR33 termination window. (B) GOF and 
LOF mutants increase and decrease average length of pre-processed snR33, respectively. 
Northern blotting for snR33 from WT, slow (N479S and H1085Y) and fast (E1103G and 
G1097D) catalytic mutant strains containing deletion of the nuclear exosome subunit 
gene RRP6. Pol III transcript ScR1 was used as loading control. Average densitometric 
values of indicated lanes from three independent repeats are presented in the graph. A 
lighter exposure of the mature snR33 full-length transcript shows alternative longer 
(green asterisk) and shorter (blue asterisk) products for GOF and LOF mutants, 
respectively, that are proposed to be generated by shifts in TSS usage. 
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Figure 2-10. Mig1 nuclear translocation is aberrant in Pol II catalytic mutants. (A) 
Representative images of nuclear localization of Mig1p-GFP in WT and catalytic 
mutants (E1103G and G1097D) upon glucose addition (4% final concentration). 
Overnight grown cells were inoculated into fresh synthetic complete medium containing 
galactose (SC-2% Gal) and grown until mid-log phase at 30°C. Pre-glucose repression 
samples were used as time 0 (t0), followed by replacing the medium with SC-2% Gal + 
4% glucose to induce repression. (B) Mig1p nuclear localization kinetics is delayed in 
GOF mutant G1097D. Normalized (to pre-glucose treatment; t0) data from glucose-
responding cells (n > 35) plotted using non-linear regression in GraphPad Prism. (C) 
Histograms of Mig1p nuclear localization show the distribution of nuclear Mig1p 
fluorescence (normalized to t0) intensity over indicated time points. Cells that do not 
show any traces of fluorescence accumulation are designated as non-responding cells 
(see ‘Materials and Methods’ for quantification details). Highlighted areas indicate 
population of cells that are either non-responding or responding cells with decreased 
Mig1p nuclear localization. 
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Figure 2-11. Impaired Mig1p nuclear import in G1097D. Representative images of 
nuclear localization of Mig1p-GFP in WT and catalytic mutants upon glucose (4% final) 
addition (left) and average Mig1p nuclear localization +/- SD (right). Data from multiple 
cells (WT, n=104 cells from 6 individual experiments; E1103G, n= 147 cells from 8 
individual experiments; G1097D, n= 152 from 5 individual experiments; N479S, n=129 
from 9 individual experiments) used to make the histogram in Figure 7. Arrowhead 
showing example of non-responding cell that does not show Mig1p-GFP foci 
accumulation upon glucose addition and arrow showing cell that decays Mig1p-GFP 
signal over time. 
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We observe this under three distinct transcription shutoff conditions and in all cases our 

results contradict previously published results for Pol II GOF E1103G. However, our 

studies suggest that E1103G effects on the 3ʹ end of GAL1p::YLR454w upon galactose 

starvation (during wash) and unintended variability in wash time between strains could 

account for the observed differences in our experiments and previous observations.  

Finally, we examined alternative in vivo evidence for putative fast and slow 

elongation of Pol II GOF and LOF mutants. We analyzed how Pol II mutants altered 

termination at SNR33. It has been proposed previously that kinetic competition between 

elongating Pol II and Sen1 helicase determines the termination of the snR33 transcript 

(Hazelbaker, Marquardt et al. 2013). Examination of snR33 intermediate transcripts 

prior to complete processing allows detection of the snR33 termination window (Figure 

2-9A). Both GOF mutants E1103G and G1097D increase the average length of pre-

processed snR33, which is in agreement with previous observations for E1103G (Figure 

2-9B and (Hazelbaker, Marquardt et al. 2013)). Conversely, LOF mutants N479S and 

H1085Y decreased the average length of pre-processed snR33 (Figure 2-9B). We also 

observed alternative mature snR33 transcripts longer or shorter in length for GOF and 

LOF mutants, respectively, consistent with increased upstream or downstream utilization 

of transcription start site (TSS) in these mutants as predicted for alterations in elongation 

rate.  
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Glucose signal transduction defects in Pol II alleles may partly explain apparent slow 

elongation by ChIP 

One possibility for apparent slower elongation of GOF mutants on the 

GAL1p::YLR454w template could be delayed transcriptional shutoff. We reasoned that if 

glucose repression (or galactose starvation) were delayed in GOF mutants, it would 

contribute to apparent slow kinetics of Pol II exiting the gene. To this end, we 

investigated the kinetics of nuclear localization of Mig1p, which upon addition of 

glucose to medium is imported into the nucleus due to regulation by dephosphorylation, 

binds to target promoters of glucose-repressed genes and recruits co-repressors (Nehlin, 

Carlberg et al. 1991, Gancedo 1998). As a proxy for early events in this cascade, we 

determined the kinetics of Mig1p nuclear localization by monitoring import of Mig1p-

GFP upon glucose addition in WT or GOF catalytic mutants We observed signal for 

presumptive Mig1p-GFP localization to the nucleus saturate within ~2 min for WT cells, 

as previously reported (De Vit, Waddle et al. 1997). However, for at least one GOF 

mutant, the signal did not appear to reach maximum nuclear fluorescence within 2 min 

of glucose addition, thus we measured extended time points and analyzed the data from 

individual cells using non-linear regression (Figure 2-10A and B). GOF G1097D 

showed both a delay in average time of Mig1p-GFP nuclear import and reduced average 

maximum nuclear fluorescence compared to WT, suggesting in vivo shutoff kinetics 

may be delayed due to deranged Mig1p signaling in this mutant at least (Figure 2-10B). 

Next, we measured extended time points of Mig1p translocation upon glucose repression 

over populations of individual cells for the GOF mutants analyzed in Figure 2-10A/B, 
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while also including one LOF mutant, N479S. A noticeable subset of delayed 

responding cells was observed for GOF mutant G1097D, while higher fractions of non-

responding cells were observed for both GOF mutants and the LOF mutant N479S 

compared to WT (Figure 2-10C and Figure 2-11). Both GOF mutant G1097D and LOF 

mutant N479S showed lower average maximum nuclear Mig1p-GFP accumulation 

compared to WT, with the LOF mutant N479S showing an increase, then decrease, in 

Mig1p-GFP signal over time (Figure 2-11). Altogether, these results indicate that Mig1p 

nuclear translocation in Pol II catalytic mutants can be aberrant, potentially affecting 

interpretation of transcription kinetics upon glucose shutoff.  

Pol II catalytic mutants do not confer sensitization of cells to GTP starvation through 

hypothesized global elongation defects 

To understand the relationship between altered Pol II activity and growth defects 

derived from putative global elongation defects, we turned to pharmacological reduction 

of a Pol II substrate, GTP. Nucleotide depleting drugs such as MPA or 6-AU have been 

interpreted as specifically exacerbating global elongation defects of Pol II or 

transcription factor mutants, and therefore have been widely used as pharmacological 

probes for transcription elongation in vivo. Such interpretations of MPA sensitivity 

assume that WT and mutant strains have similar GTP starvation upon MPA treatment. 

We and others have noted that WT and MPA-sensitive mutants can experience different 

levels of GTP starvation due to different expression levels of the IMD2 gene product, 

which is required for resistance to MPA (Shaw, Wilson et al. 2001, Hyle, Shaw et al. 

2003, Jenks and Reines 2005). These differences in IMD2 expression explain why 
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increased catalytic activity Pol II GOF mutants are MPA sensitive – they do not express 

IMD2. In contrast, Pol II LOF mutants constitutively express IMD2, and do not show 

MPA sensitivity. We chose to evaluate how Pol II responds to GTP starvation and 

determine if Pol II transcription is a critical determinant for cellular sensitivity to GTP 

starvation. To do so, we rendered GTP starvation independent of IMD2 expression by 

deleting IMD2. Deleting IMD2 is predicted to normalize GTP starvation between WT 

and Pol II mutants, allowing us to examine the assertion that GTP depletion exacerbates 

putative Pol II elongation defects in vivo (Figure 2-12). Furthermore, to enable an in 

vivo readout for IMD2 expression, we replaced the IMD2 ORF with HIS3 (Figure 2-

12A). 

In the absence of IMD2, otherwise wild type yeast strains become sensitive to 

MPA treatment as expected (Figure 2-12B) (Shaw, Wilson et al. 2001, Hyle, Shaw et al. 

2003). If Pol II transcription were a major determinant of GTP starvation, it would be 

predicted that elongation-defective LOF Pol II alleles would become hypersensitive to 

MPA, while GOF increased catalytic activity mutants would show relative resistance. In 

contrast to these predictions, deletion of IMD2 strongly blunted the Pol II allele-specific 

effects of MPA treatment on yeast cells (Figure 2-12B). We did observe mild MPA 

sensitivity for Pol II GOF alleles E1103G and G1097D. These results suggest that the 

major determinant for Pol II allele sensitivity to MPA is differential IMD2 expression, 

and not necessarily Pol II elongation defects. As stated earlier, MPA effects are 

presumed to function through GTP starvation. This presumption can be tested by 

addition of guanine to the growth medium can, which can suppress MPA-sensitivity by 
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supporting an alternate route for GTP synthesis. In testing this presumption, we found 

that use of 10 mM NaOH to solubilize guanine in the medium on its own reduced effects 

of MPA on most of the Pol II mutants (Figure 2-13). Notably, some of these Pol II 

mutants have shown allele-specific phenotypes upon change to pH of media (Cabart, Jin 

et al. 2014). We determined that addition of equivalent HCl to neutralize NaOH effects 

allowed examination of guanine suppression of MPA sensitivity (Figure 2-12B).  

We observed that addition of guanine suppresses MPA sensitivity for most Pol II 

mutants except the GOF mutants E1103G and G1097D, which show mild or no 

suppression of MPA sensitivity by guanine, respectively. These results suggest that 

either the IMD2-independent MPA effects on GOF mutants are independent of GTP 

starvation, or these mutants have alterations in their GTP salvage synthesis pathways. 

We next determined if the ability to induce the IMD2 promoter was maintained in Pol II 

mutants when GTP starvation conditions were normalized, using growth on medium 

lacking histidine to detect expression of imd2∆::HIS3 (Figure 2-12C). WT cells and 

GOF mutants were almost completely His- in the absence of induction of the IMD2 

promoter (controlling HIS3), while LOF mutants were His+, indicative of constitutive 

expression of imd2∆::HIS3. All strains showed induction of His+ phenotype in the 

presence of MPA (inducer of IMD2 promoter), suggesting that productive transcription 

from the IMD2 promoter was possible for all tested Pol II mutants (discussed further 

below). 
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Figure 2-12. Pol II catalytic mutants defective for IMD2 transcription do not 
abolish GTP sensing. (A) (Top left) Schematic of IMD2 gene transcription in presence 
and absence of MPA. In GTP-replete cells, IMD2 is transcribed from upstream ‘G’ start 
sites producing non-functional CUTs, which are degraded by the RNA exosome. In the 
presence of MPA (GTP depletion), a downstream ‘A’ start site is utilized to produce 
functional IMD2 transcripts. (top right) MPA depletes GTP by inhibition of IMPDH 
activity, present in yeast in two paralogous enzymes, Imd3 and Imd4. Upon GTP 
depletion, expression of an MPA-resistant IMPDH enzyme, Imd2 is induced. (bottom) 
Schematic of the imd2Δ::HIS3 construct and expected phenotype upon MPA treatment 
in synthetic medium lacking leucine or histidine. All strains lack 
endogenous IMD2 ORF, which is replaced with HIS3 (imd2Δ::HIS3), hence rendering 
them highly sensitive to MPA treatment. (B) In absence of endogenous IMD2, Pol II 
catalytic mutants respond to GTP depletion similarly to WT. 10-fold serial dilutions of 
saturated cultures of Pol II catalytic mutants plated on synthetic medium lacking leucine 
for comparison of growth in various concentration of MPA treatment at 30°C. (Upper 
panel) For the Pol II catalytic mutants’ response to MPA treatment, the most obvious 
comparison with WT can be made at 1 µg/ml MPA treatment (highlighted with red box). 
(Lower panel) Addition of guanine suppresses MPA sensitivity of Pol II mutants 
(highlighted with red boxes). (C) 10-fold serial dilutions of saturated cultures of Pol II 
catalytic mutants plated on synthetic medium lacking histidine for comparison of growth 
at various concentrations of MPA treatment at 30°C. 3-aminotriazole (3-AT) is a 
competitive inhibitor of His3p and can be used to assess level of HIS3 expression. Slow 
catalytic mutants constitutively use the downstream, productive ‘A’ site at 
the IMD2 promoter, which produces a functional transcript (see text for details). Hence, 
His+ colonies are observed even in the absence of MPA (red highlighted box). All Pol II 
catalytic mutants show inducible His+ phenotype upon low level of MPA treatment 
(highlighted black box), indicating retention of GTP sensing ability. 
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Figure 2-13. Addition of NaOH in the media abrogates MPA effects. 10-fold serial 
dilutions of saturated cultures of Pol II catalytic mutants were plated for growth at 30˚C 
on synthetic media containing NaOH. All strains contain endogenous IMD2 deletion 
(imd2∆::HIS3), rendering them highly sensitive to MPA. Only G1097D (strongest GOF) 
shows sensitivity to MPA in presence of NaOH in the medium. 
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Figure 2-14. Transcription related factor mutants respond similarly to WT upon 
MPA treatment in absence of endogenous IMD2. (A) 10-fold serial dilutions of 
saturated cultures of indicated factor mutants plated on synthetic medium lacking uracil 
for comparison of growth at various concentrations of MPA treatment at 30°C. Upper 
and lower panels contain factor mutant strains with and without endogenous IMD2 ORF 
(imd2Δ::HIS3), respectively. For convenience of comparison, spots of WT strain 
with imd2Δ::HIS3 (second on the upper panel) is repeatedly presented next to factor 
mutants with imd2Δ::HIS3 (top of the lower panel). In the absence of endogenous IMD2, 
most tested factor mutants show sensitivity to MPA at 1 µg/ml MPA treatment, which is 
comparable to WT sensitivity (upper panel highlighted red box). Addition of guanine 
suppresses MPA sensitivity for most of the factor mutants (highlighted red box, lower 
panel). (B) 10-fold serial dilutions of saturated cultures of indicated factor mutants 
plated on synthetic medium lacking histidine for comparison of growth at various 
concentrations of MPA treatment at 30°C. 3-AT treatment as in Figure 8 to assess level 
of HIS3 expression. spt4Δ confers constitutive His+ phenotype (upper panel highlighted 
red box), while spt3Δ cannot show a His+ phenotype at the highest concentration of 
MPA used (upper panel highlighted black box). Addition of guanine suppresses MPA 
sensitivity of all factor mutants except spt3Δ (lower panel highlighted red box).  
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A number of transcription factor mutants have been described as either MPA or 

6-AU sensitive with these sensitivities interpreted as indicative of Pol II elongation 

defects. Such mutants include deletions in known elongation factor genes dst1∆ 

(encodes TFIIS, (Exinger and Lacroute 1992, Riles, Shaw et al. 2004)), spt4∆ (subunit 

of Spt4/Spt5 DSIF, (Hartzog, Wada et al. 1998, Gaillard, Tous et al. 2009, Gaur, Hasek 

et al. 2013)), paf1∆ (Paf1C complex member, (Desmoucelles, Pinson et al. 2002, 

Squazzo, Costa et al. 2002)), bur2∆ (P-TEFb subunit homolog, (Gaillard, Tous et al. 

2009)), pop2∆ (encodes Ccr4/NOT complex member, (Denis, Chiang et al. 2001, Riles, 

Shaw et al. 2004)) or deletions in genes encoding subunits of transcriptional coactivator 

complexes spt3∆, sgf73∆ (SAGA, (Desmoucelles, Pinson et al. 2002, Riles, Shaw et al. 

2004)) or gal11∆ (Mediator, (Riles, Shaw et al. 2004)). It has previously been 

demonstrated for some of these mutants, including dst1∆, spt3∆ and paf1∆, that IMD2 

induction is defective (Desmoucelles, Pinson et al. 2002, Riles, Shaw et al. 2004), 

indicating differential GTP starvation upon drug treatment for these strains relative to 

WT, just as for the Pol II mutants described above. We characterized these strains’ 

sensitivity to MPA treatment in presence or in the absence of endogenous IMD2 (Figure 

2-14). We observed that some of the mutants including sgf73∆ and pop2∆ were only 

slightly sensitive to MPA in presence of IMD2 (Figure 2-14A, top panels). However, in 

the absence of IMD2, only spt3∆ showed MPA hypersensitivity relative to WT, with 

dst1∆ showing only slight sensitivity relative to WT. We next examined suppression of 

observed MPA sensitivities by guanine supplementation (Figure 2-14A, bottom panels). 

We observed that spt3∆ was entirely suppressed by guanine, dst1∆ mostly suppressed, 
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and spt4∆, paf1∆, and gal11∆ much less so. We hypothesize that spt3∆ hypersensitivity 

relates to defects in TPO1 expression, which is known to modulate MPA sensitivity 

(Desmoucelles, Pinson et al. 2002). Taken together, these results are inconsistent with 

putative global Pol II transcription defects being a critical determinant for cell growth 

under GTP limitation. We further examined if IMD2 promoter function in response to 

MPA were intact in the cohort of transcription factor mutants tested (Figure 2-14B). We 

observed a His+ phenotype consistent with constitutive expression of imd2∆::HIS3 in 

spt4∆. This phenotype suggests possible altered initiation in spt4 mutants as observed in 

LOF Pol II mutants (Figure 2-12C). Furthermore, we observed that the His+ phenotype 

was inducible in the presence of MPA for all factor mutants except spt3∆. These results 

indicate that presumptive GTP sensing is maintained in most mutants, but that spt3∆ 

cells have a distinct defect not observed for other factor mutants or Pol II mutants. This 

defect indicates an almost complete inability to induce the IMD2 promoter::HIS3 

reporter, although spt3∆ is known to express IMD2 upon MPA treatment at a very low 

level in presence of endogenous IMD2 (Riles, Shaw et al. 2004). 

Pol II catalytic mutants do not abolish the response to GTP depletion but derange TSS 

usage at IMD2 promoter 

By removing the possibility of differential IMD2 expression complicating the 

MPA response (using imd2∆), we showed above that many factor mutants or Pol II 

catalytic mutants have similar responses to MPA treatment. These results indicated Pol 

II transcription is not especially sensitive to presumptive GTP starvation in vivo relative 

to other pathways that rely on GTP (Figure 2-12 and 2-14). To better understand the 
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mechanism of IMD2 expression defects in the absence of differential GTP starvation, we 

further analyzed transcriptional responses at the IMD2 promoter upon MPA treatment. 

Using the same imd2∆::HIS3 reporter construct used above, we analyzed the kinetics of 

TSS utilization upon addition of a concentration of MPA that induces a TSS shift at the 

IMD2 promoter (Figure 2-15A). Pol II has been proposed to directly sense GTP levels 

through its active site, and through this sensing Pol II catalytic activity controls IMD2 

TSS usage (Kuehner and Brow 2008). Under this model, it would be predicted that LOF 

Pol II mutants might show precocious downstream TSS usage; indeed, this behavior has 

previously been observed (Kaplan, Jin et al. 2012). Conversely, under this model, 

catalytically GOF Pol II mutants would show delayed TSS shifting kinetics due to their 

relative insensitivity to reduced GTP levels.  

We observed that both LOF (H1085Y) and GOF (E1103G) mutants gradually 

lose upstream ‘G’ sites upon MPA treatment (Figure 2-15B), indicating retention of 

ability to respond to GTP-depletion. As expected, WT cells rapidly lose upstream ‘G’ 

TSSs and subsequently gain the downstream functional ‘A’ TSS (Figure 2-15C). 

H1085Y constitutively uses the downstream functional ‘A' TSS and shows increased 

usage of this site upon MPA treatment, while showing decreased kinetics of loss of 

upstream TSSs. This result is unexpected from the “defective GTP sensing” model 

where kinetics of upstream TSS loss are predicted to be faster than WT, not slower for 

Pol II LOF mutants (Fig 2-15B and C). E1103G shows reduced kinetics of loss of 

upstream site, consistent with defective GTP sensing, but shifts TSS usage to novel TSSs 

predicted to be nonfunctional due to their position upstream of the IMD2 Nab3/Nrd1-



 

 97 

dependent terminator (Figure 2-15B and C). These novel TSSs are upstream of the 

normal -106 A IMD2 TSS, and their appearance in GOF E1103G are consistent with 

E1103G shifting TSSs upstream at other genes (Kaplan, Jin et al. 2012). If terminated by 

the Nab/Nrd pathway, putative non-functional novel TSSs should produce cryptic 

unstable transcripts (CUTs) that are degraded by the nuclear exosome (Davis and Ares 

2006, Steinmetz, Warren et al. 2006). Such IMD2 CUTs have previously been observed 

in sen1, nab3 and rpb11 mutants (Kuehner and Brow 2008). Indeed, deletion of the 

exosome subunit Rrp6 also stabilized CUTs derived from the novel TSSs we observe, 

with significant utilization of these TSSs in E1103G compared to WT (Figure 2-15D 

and Figure 2-16A-B). Stabilization of these CUTs in rrp6∆ strains did not provide MPA 

resistance for MPA sensitive Pol II GOF mutants, as these transcripts do not likely 

produce functional IMD2 transcript required for resistance even if stabilized (Figure 2-

16C). We note that although E1103G generally appears unable to utilize downstream 

functional ‘A’ TSS upon MPA treatment, enough functional transcript was made to 

produce a His+ phenotype in the presence of imd2∆::HIS3 at low concentrations of MPA 

treatment (Figure 2-14B). Our results here provide an initiation-based mechanism for 

the MPA sensitivity of Pol II GOF mutants. 

Discussion 

Examination of Pol II catalytic mutants by our lab and others has shown Pol II 

activity-sensitive aspects of transcription initiation, elongation, co-transcriptional 

processes, and termination (Kaplan, Jin et al. 2012, Braberg, Jin et al. 2013, Hazelbaker, 

Marquardt et al. 2013, Fong, Kim et al. 2014, Jin and Kaplan 2014, Fong, Brannan et al. 
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2015). Our current study utilizes a set of yeast Pol II catalytic mutants to probe broad 

aspects of gene expression in vivo. We show that Pol II catalytic defects lead to a 

decrease in overall Pol II occupancy with reduction in 3ʹ end occupancy on a galactose 

inducible reporter gene, GAL1p::YLR454w (Figure 2-1). Further, using a constitutively 

expressed TEF1p::YLR454w reporter we find that growth on different carbon sources 

may alter Pol II occupancy profiles (Figure 2-1).  

Previously, several observations suggested alterations of Pol II activity and gene 

expression due to external perturbations such as carbon source or temperature 

(Pelechano, Jimeno-Gonzalez et al. 2009, Miguel, Monton et al. 2013). Likewise, 

environmental stress has also been shown to affect Pol II activity and gene expression 

(Canadell, Garcia-Martinez et al. 2015). Notably, it has also been shown that RAS/PKA 

signaling pathway, which controls aspects of glucose signaling, can target proteins 

associated with general transcription machinery, can putatively regulate elongating Pol II 

by targeting Spt5/4 (Howard, Chang et al. 2001, Howard, Hester et al. 2003), and shows 

interactions with Nab3/Nrd1 termination factors (Darby, Serebreni et al. 2012). In 

addition to differential effects of carbon source on steady state Pol II occupancy, we also 

observe impaired galactose induction and glucose repression kinetics in both LOF and 

GOF mutants (Figure 2-2 and 2-10). Interestingly, both classes of catalytic mutants 

show impaired growth at 37˚C on galactose likely arising from the sum of a number of 

distinct individual defects in initiation, elongation, and termination (Figure 2-4B). 

Taken together, these results support growth condition-dependent modulation Pol II 

elongation in vivo. 



 

 99 

Figure 2-15. Pol II catalytic mutants do not abolish response to GTP depletion. (A) 
Schematic of the imd2Δ::HIS3 construct used to determine WT and Pol II catalytic 
mutants’ response to nucleotide depletion in absence of endogenous IMD2. Architecture 
of the IMD2 promoter indicating the upstream ‘G’ start sites that are used under normal 
GTP levels to produce non-functional IMD2 cryptic unstable transcripts (CUTs). 
Downstream −106 ‘A’ is used upon presumptive GTP-depletion in the presence of MPA, 
producing a functional transcript that confers MPA resistance if the IMD2 ORF is 
present. Slow catalytic mutants constitutively show use of both upstream and 
downstream start sites. Gray ‘US’ (Upstream) and ‘DS’ (Downstream) indicate positions 
of primers used for primer extension (PE) experiments. Two models for MPA-sensitivity 
of Pol II mutants are shown: TSS shift to inappropriate novel TSS, or acute delay in shift 
to appropriate TSS. (B) Both GOF and LOF mutants lose upstream ‘G’ TSSs upon MPA 
treatment. Time courses showing the usage of upstream ‘G’ sites upon MPA treatment 
(US primer used for PE). Cells grown to mid-log phase in synthetic complete medium at 
30°C were treated with MPA (5 µg/ml final concentration) and RNA was isolated at 
indicated time points. Pre-treatment sample was used for time 0. Graph shows the 
relative usage of −222G site for WT and mutants upon MPA treatment normalized to 0 
min (no-treatment). (C) E1103G is unable to shift TSS usage to the downstream 
functional ‘A’ site upon GTP depletion. Same RNAs from Figure 10B used for PE 
experiment with DS primer. Graph shows the relative gain of the −106A TSS for WT 
and mutants upon MPA treatment normalized to H1085Y 0 min (no-treatment), which is 
used constitutively. (D) Fast catalytic mutants gradually lose upstream ‘G’ sites and shift 
TSS usage to novel ‘A’ sites (putatively −194A and −190A) in response to nucleotide 
depletion. Usage of these sites is likely to produce non-functional CUTs, shown to be 
stabilized here by the deletion of exosome subunit gene RRP6. Heat map represents the 
average loss/gain of indicated TSS upon MPA treatment obtained from three 
independent repeats (see Figure 2-16). 
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Figure 2-16. Stabilization of IMD2 CUTs allows IMD2 TSSs at intermediate 
downstream positions to be observed. Kinetics of upstream ‘G’ start site loss and 
subsequently gain of presumptive novel ‘A’ sites upon MPA (20 µg/ml) treatment in 
WT (A) and E1103G (B) cells containing rrp6∆. Error bars represent average of three 
biological repeats +/- SD. Note difference in scale between (A) and (B). (C) Deletion of 
RRP6 does not confer MPA resistance to MPA-sensitive mutants.10-fold serial dilution 
of saturated cultures of Pol II mutants strains alone and in combination with rrp6∆ 
mutant plated on synthetic complete medium lacking leucine (SC-Leu) and SC-Leu 
medium containing 20 µg/ml MPA (final) to determine MPA sensitivity.  
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 Pol II mutant rpb1 E1103G, which was reported previously to be fast for 

elongation in vivo relative to WT (Hazelbaker, Marquardt et al. 2013), appears slower 

than WT in our study. In vitro biochemical studies, including direct observations of 

individual polymerases at the single molecule level, have repeatedly shown faster 

elongation rate for E1103G compared to WT (Malagon, Kireeva et al. 2006, Kaplan, Jin 

et al. 2012, Larson, Zhou et al. 2012, Dangkulwanich, Ishibashi et al. 2013). Several 

lines of evidence suggest E1103G in vitro GOF activity manifests itself in vivo through 

transcriptional effects distinct from LOF mutants. First, primer extension analysis shows 

that E1103G shifts TSS usage upstream at a number of promoters, consistent with a 

model that increase in catalytic activity increases initiation probability during Pol II 

promoter scanning, resulting in observed upstream TSS shifts (Kaplan, Jin et al. 2012, 

Braberg, Jin et al. 2013). Second, E1103G and other Pol II GOF mutants show allele-

specific genetic interactions with a number of factors, suggesting their defects are 

distinct from LOF mutants (Braberg, Jin et al. 2013). For example, the synthetic sick 

genetic interaction of E1103G with the RNA processing factor alleles rat1-1 and 

xrn1∆/rat1-1 is consistent with exacerbation of termination defects through faster 

elongation (Jimeno-Gonzalez, Haaning et al. 2010, Hazelbaker, Marquardt et al. 2013, 

Jimeno-Gonzalez, Schmid et al. 2014, Fong, Brannan et al. 2015), and in contrast to the 

suppression of rat1-1 and rat1-1/xrn1∆ by LOF Pol II alleles. Indeed, delayed 

termination for GOF E1103G was evident through observation of increased length of 

pre-processed snR33 (Figure 2-9). We further show that an even stronger GOF mutant, 

G1097D, shows a corresponding increase in pre-processed snR33 length relative to 
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E1103G or WT. While increased length of pre-processed snR33 is consistent with 

increased elongation rate in GOF mutants, defective termination due to altered 

probability of a Pol II conformational change should not be ruled out as possible 

mechanism (Zhang, Rigo et al. 2015). Finally, a recent study demonstrated that an 

E1103G strain displays a shift in co-transcriptional splicing towards downstream 

positions, consistent Pol II traveling further downstream prior to splicing, though 

delayed splicing kinetics cannot be ruled out (Carrillo Oesterreich, Herzel et al. 2016). 

Altogether, these data are consistent with increased elongation kinetics in GOF catalytic 

mutants in vivo under a parsimonious view, though they do not explain the delayed Pol 

II runoff from YLR454w observed here.  

 Our results suggest that the commonly used glucose shutoff assay for 

determining in vivo elongation rate may be confounded by previously unappreciated 

limitations and biological complexity. We also identify a possible artifact of prior 

experimental design that may have contributed to discrepant results reported for GOF 

mutant E1103G. First, we have shown that galactose starvation induces as fast a 

transcriptional shutoff at GAL1p::YLR454w as glucose addition (Figure 2-7F). Second, 

this galactose-depleted transcriptional shutoff affects Pol II E1103G differently than 

WT. During the wash, E1103G Pol II runs off both the 5ʹ and 3ʹ ends of the reporter 

faster than WT (Figure 2-7F-G). 5ʹ runoff is consistent with E1103G elongating faster 

than WT early in the time course, or E1103G being more sensitive to galactose 

starvation. The increased runoff kinetics from the 3ʹ end of the reporter in E1103G is 

perplexing. Furthermore, after these early effects observed for E1103G relative to WT 
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under galactose starvation, E1103G Pol II shows a delay in running off the template at 

longer time points regardless of mechanism of shutoff, just as purported LOF Pol II 

alleles do under glucose inhibition. From these results we can only conclude that Pol II 

could be differentially affected while on the 3ʹ end of the gene relative to the middle 

under different growth conditions. Further, we identified slow Mig1p nuclear 

translocation upon glucose exposure as a possible confounding variable for use of 

GAL1p::YLR454w to determine in vivo elongation rate. There may be additional untested 

steps in inhibition specific to the GAL system that are defective, or defects specific to the 

long YLR454w template for Pol II GOF strains. Regardless, careful consideration of 

possible variables in assay behavior is urged given the results we present. 

 In order to exploit the existing transcription reporter systems to probe 

transcription mechanisms carefully, we need a detailed understanding of each 

phenotypic system, such as our analyses to dissect the Spt- phenotype of Pol II GOF 

alleles (Cui, Jin et al. 2016). Here we investigated Pol II catalytic mutants and several 

transcription factors mutants’ response to the nucleotide-depleting drug MPA under 

conditions where differential IMD2 expression was obviated. Most tested Pol II mutants 

and many transcription factor mutants behave similarly to WT upon MPA treatment of 

imd2∆ strains (Figure 2-12 and 2-14). Our results also suggest IMD2-independent 

mechanisms of MPA sensitivity, which have been observed in previous large-scale 

deletion screens for MPA or 6-AU sensitivity, and have identified Pol II mutants and 

transcription factor mutants that do not affect IMD2 transcription (Desmoucelles, Pinson 

et al. 2002, Riles, Shaw et al. 2004). Our previous analyses identified a correlation 
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between MPA sensitivity of Pol II GOF alleles and upstream shifts in TSS usage at 

ADH1 (Kaplan, Jin et al. 2012, Braberg, Jin et al. 2013). As IMD2 regulation proceeds 

by initiation shifting from upstream non-productive TSSs to a downstream productive 

one, it is conceivable that initiation defects underlie Pol II mutant MPA sensitivity. 

However, in the presence of endogenous IMD2 it is difficult to determine mechanisms of 

MPA sensitivity of GOF mutants, as they would be differentially starved for GTP due to 

differential expression of functional IMD2 upon MPA treatment. One model for MPA 

sensitivity based on differential sensitivity to reduced GTP is that increased catalysis rate 

of GOF alleles might buffer reduction in substrate (GTP) levels. This could lead to delay 

in sensing low GTP and switching IMD2 upstream GTP-initiated TSSs to downstream 

ATP-initiated TSSs, causing acute GTP starvation possibly beyond a critical threshold 

for growth/viability. Our results disfavor this model. Here we present evidence that 

MPA sensitivity of the Pol II GOF allele E1103G correlates with usage of novel TSSs 

that are intermediately positioned between the known productive -106 A TSS at IMD2 

and upstream non-functional starts. We conclude that IMD2 defects in Pol II GOF 

E1103G are likely to derive from initiation defects (Figure 2-15).  

 Our Pol II catalytic mutants and pre-mRNA processing factor show allele-

specific genetic interactions (Figure 2-3). Synthetic sick interactions of GOF with xrn1∆ 

and stabilization of the GAL1p::YLR454w transcript in the xrn1∆/rat1-1 double mutant 

background is suggestive of a 5ʹ-end processing defect in GOF mutants, possibly a 

capping defect. A defect in capping would be predicted to expose mRNA to the action of 

5ʹ exonucleases Xrn1 and Rat1. Capping of nascent transcripts occurs co-
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transcriptionally with Pol II elongation proposed to be coupled to successful capping, 

though a direct “capping checkpoint” has yet to be shown (Rasmussen and Lis 1993, 

Glover-Cutter, Kim et al. 2008). Potential sensitivity of capping to Pol II GOF mutants is 

suggestive of either a defective checkpoint in Pol II mutant strains or the absence of one. 

We also observe correlations of reporter transcript half-life with expression levels in Pol 

II mutants, and with Pol II mutants’ growth defects (Figure 2-6). Observed correlations 

between mRNA decay rate with both expression and growth rate is consistent with 

recent findings (Garcia-Martinez, Delgado-Ramos et al. 2016). ‘Feedback’ of gene 

expression control between the abundance of mRNA and mRNA decay rates is proposed 

to occur in response to defects in transcription synthesis (Haimovich, Medina et al. 2013, 

Sun, Schwalb et al. 2013). Alternatively, as growth efficiency is connected to overall 

translational demand, mRNA decay ‘feedback’ may occur upon alteration of overall 

translation rate, as most mRNA decay happens co-translationally (Hu, Sweet et al. 2009, 

Hu, Petzold et al. 2010, Pelechano, Wei et al. 2015). Given that Pol II mutants show 

reduced apparent initiation based on overall Pol II occupancy and reduced growth rates, 

it is difficult to deconvolute primary and secondary global effects. Although we looked 

at both phenomena using a single reporter transcript, mutants described here could be 

used further to probe these proposed mechanisms in large scale.  

 Here we extensively characterize a set of Pol II catalysis mutants for in vivo 

consequences. We show that altered Pol II catalysis affects Pol II occupancy, putative 

elongation, and reporter gene expression and decay rate in vivo. Notably, we interrogate 

two widely used elongation reporter systems, raising caveats about their use and 
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interpretation. For use of nucleotide depleting drugs MPA or 6-AU, we constructed and 

tested a useful novel reporter system (imd2∆::HIS3), which can be further utilized to 

characterize or screen for new mutants that shift TSS usage downstream, leading to 

constitutively expression of imd2∆::HIS3. Development of approaches allowing more 

direct determination of in vivo elongation rate will bypass issues identified here. Recent 

advances in high-resolution microscopy have enabled real-time observation of all 

transcription phases on endogenous genes using fluorescently labeled proteins that bind 

to nascent transcript (Larson, Zenklusen et al. 2011, Hocine, Raymond et al. 2013). This 

approach could be to address how any number of variables might modulate elongation 

such as template sequence, RNA secondary structure etc, and likely represents the next 

steps toward understanding transcription elongation and co-transcriptional processes in 

vivo. 
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CHAPTER III                                                                                                  

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Recently, RNA polymerase II (Pol II) catalytic mutants have been used 

extensively to probe transcription mechanisms and co-transcriptional processes. In order 

to exploits these mutants in an unbiased way, we need a detailed understanding about 

how these mutants behave in vivo and how the experimental systems used to study these 

mutants work. In this dissertation, I presented molecular analyses of how alterations to 

Pol II catalysis rate affect several facets of transcription and gene expression in budding 

yeast (Saccharomyces cerevisiae). I explored the influence of Pol II catalytic activity in 

vivo through genetic and molecular approaches utilizing specific alleles of the Pol II 

largest subunit, Rpb1, that confer slower or faster catalytic rate than WT in vitro. 

Finally, based on my observations, we proposed to exploit a new tool (single cell/gene 

system) for studying transcription elongation in yeast.  

Conclusions 

 My studies have shown that alterations to Pol II catalytic activity lead to a wide 

range of consequences in vivo. Using the widely-used galactose inducible 

GAL1p::YLR454w reporter system (Mason and Struhl 2005), I have shown that 

alteration in Pol II catalytic activity, both slower and faster than WT, leads to a decrease 

in overall YLR454w Pol II occupancy with relatively greater reduction at the 3' end of 

YLR454w, suggesting an apparent processivity defect (Chapter II). Further, I determined 

that Pol II occupancy could be differentially affected in Pol II mutants when grown on 
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different carbon sources, suggesting external perturbations such as carbon source might 

have global effects on transcription. I found that expression of GAL1p::YLR454w 

reporter is decreased to different extent in different Pol II catalytic mutants, although the 

reporter mRNA is relatively more stable in all tested Pol II catalytic mutants. I found 

that fast catalytic mutants generally show synthetic sick genetic interactions with pre-

mRNA processing/surveillance factors. Further, in fast mutants, depletion of nuclear 5' 

exonucleases/surveillance factors led to possible stabilization of impaired or improperly 

processed pre-mRNAs, which may be otherwise degraded in the presence of these 

surveillance factors. Together, these observations led to the conclusion that fast mutants 

may have impaired pre-mRNA processing defects, hypothetically a capping defect. 

Finally, I comprehensively examined the two widely used systems for studying 

transcription elongation in yeast – a ChIP assay to determine ‘last wave’ of Pol II after 

transcriptional shutoff, and elongation mutant sensitivity to a nucleotide depleting drug. 

For both assays, I found previously unaccounted variables that differentially affect WT 

and presumptive elongation mutants.  

 Although two classes of mutants (fast and slow) tested in this study have distinct 

genetic and biochemical properties, both classes of mutant showing similar phenotypes 

for Pol II occupancy and processivity indicates that different defects can lead to similar 

in vivo outcome.  Such defects may include – i. Pol II pausing, stalling and degradation 

of the elongation complex, ii. premature termination and degradation of the elongation 

complex, and iii. differential elongation rate on different part of the template. First, fast 

Pol II catalytic mutants are known to increase misincorporation rate, which denotes 
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selecting and incorporating mismatched substrate, both in vitro and in vivo. Although 

cells have the ability to counter misincorporations by backtracking the polymerase from 

the active site and cleaving the nascent RNA to restore a properly aligned elongation 

complex (discussed in Chapter I), increased misincorporation can lead to extended 

pausing or stalling of the elongation complex on the template. Indeed, in the absence of 

TFIIS, a factor involved in rescuing Pol II from the backtracked state, the frequency of 

genome wide Pol II pausing increases in yeast as shown by increased probability of Pol 

II occupancy in NET-seq experiment (James, Gamba et al. 2017). As noted earlier 

(Chapter I), stalled elongation complexes (EC) can be disassembled by ubiquitination 

and degradation of the largest subunit of Pol II, Rpb1. Hence, it can be hypothesize as 

possible that the decrease in Pol II occupancy at 3' end of the reporter in fast mutants is 

due to increased misinorcoration induced Pol II stalling and degradation of EC. Slow 

mutants can also possibly lead to an increase in Pol II pausing or stalling, but by a 

different mean. For example, a recent study has shown that, in human cells, slow Pol II 

elongation repositions CTD Ser2 phosphorylation from 3ʹ end towards 5ʹ end of the 

genes (Fong, Saldi et al. 2017). This differential phosphorylation may presumably lead 

to uncoupling of elongation associated factors from slow elongating Pol II, leading to 

Pol II pausing or stalling. Secondly, a recent in vitro study suggests that 

misincorporation-induced Pol II pausing can lead to termination of Pol II by 

Rat1p/Rai1p, and the efficiency of such termination increases with the increasing length 

of RNA (Park, Kang et al. 2015). Thus, it is possible that increased misincorporation in 

Pol II catalytic mutants leads to pausing and termination of Pol II at the 3' end of the 
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reporter, resulting in decreased 3' occupancy. Further, this mode of termination can 

possibly also occur due to synthesis of an improperly capped pre-mRNA, wherein 

Rat1p/Rai1p degrades improperly capped nascent RNA and dissociates Pol II from the 

template. Both of these possibilities (misincorporation and improper-capping driven 

termination) indicate a novel quality control mechanism by Rat1p and can be impaired in 

the Pol II mutants. Finally, ChIP occupancy changes can be interpreted in multiple ways 

due to the fact that ChIP cannot differentiate between actively transcribing Pol II from 

paused/stalled Pol II. For example, a faster elongation rate at the 3' end of a gene will 

lead to a lower steady state Pol II occupancy at the 3' end compared to the 5', resulting in 

an apparent (but not real) processivity defect. Similarly, overall occupancy also relates to 

the average time Pol II spends on the template (in vivo elongation rate). Thus, if the fast 

catalytic mutants transcribe much faster than WT across the template, the steady state 

Pol II occupancy on the template is expected to be lower for the fast mutants. However, 

it is not possible to distinguish between decreased occupancy and faster elongation rate, 

as the system to measure in vivo elongation rate in yeast has confounding variables, 

which I discuss further below.  

 As noted earlier (Chapter I), a widely used assay to determine in vivo elongation 

rate of Pol II in yeast uses glucose repression of a galactose inducible reporter, 

GAL1p::YLR454w (Figure 3-1). In my study, I observed an apparent slower elongation 

rate for all tested fast mutants compared to WT in this glucose shutoff assay. Glucose 

repression of GAL genes functions through nuclear localization and binding of 

transcription factor Mig1p to the promoters of glucose-repressed genes (Figure 3-1). 
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Snf1 kinase is a key player in this pathway. In the absence of glucose, active Snf1p 

kinase phosphorylates Mig1p, leading to the cytoplasmic localization of Mig1p. Upon 

addition of glucose to the medium, Glc7p/Reg1p dephosphorylates and inactivates the 

Snf1 kinase, leading to dephosphorylation of cytoplasmic Mig1p, which is then imported 

to the nucleus. In the nucleus, Mig1p binds to the target promoters of glucose-repressed 

genes and recruits co-repressors to repress GAL gene transcription. I found that, in at 

least some Pol II catalytic mutants, glucose-induced nuclear localization of Mig1p is 

impaired, possibly leading to a delayed shutoff of the GAL1p::YLR454w reporter. This 

observation revealed a limitation of the shutoff assay, but only partially explained 

apparent slower in vivo elongation rate of the fast mutants in this system. The impaired 

glucose signaling is expected to delay the shutoff, leading to a delayed Pol II runoff from 

the 5′ end of the reporter. However, I was unable to measure the kinetics of Pol II runoff 

at the 5′ end of GAL1p::YLR454w reporter, because the time required for Pol II leaving 

the 5′ (for example, 1 kb amplicon in ChIP assay) is very short and there were not 

enough data points to model the kinetics. Although, impaired Mig1p signaling can delay 

the shutoff at 5′ end, why fast Pol II mutant occupancy remained high at the 3' end of the 

reporter in later time points (when shutoff presumably completed) could not be 

explained by delayed Mig1p signaling. I observed further distinct phenomenon at the 3′ 

end of the reporter for a fast mutant when I tested shutoff by galactose depletion, which 

functions to shut off transcription in a way distinct from glucose addition (Figure 3-1). 

The activator Gal4p transcriptionally regulates galactose structural genes, such as GAL1 

and GAL10. Gal4p remains bound to the upstream activation sites of these GAL genes 
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and recruits transcriptional machinery to activate them. In the absence of galactose, the 

transcriptional repressor Gal80p forms a dimer with Gal4p, preventing it from recruiting 

factors to activate GAL genes. However, in the presence of galactose, Gal3p sequesters 

Gal80p in the cytoplasm, leading to release of Gal4p inhibition and activation of GAL 

genes. To induce galactose starvaion, I washed cells and resuspended them in medium 

lacking sugar. I observed that fast catalytic mutant E1103G appeared to exist from both 

the 5ʹ and 3ʹ ends early in the time course during the wash, appearing faster than WT as 

predicted from in vitro biochemistry. However, in the later time points E1103G Pol II 

accumulated at the 3ʹ end of GAL1p::YLR454w reporter, exiting at much slower rate 

than WT. Following the shutoff, polymerase would be expected to exit the template in a 

polar fashion from 5' end to 3' end irrespective of carbon source, however my 

observation that  E1103G exits from both end of the reporter during the galactose wash 

indicates that Pol II might be differentially affected at the 3' end of this reporter than 5ʹ 

in presence of galactose. The Nrd1/Nab3/Sen1(NNS) termination pathway (discussed in 

Chapter I) can be hypothesized to be involved in such differential regulation. NNS 

pathway associates with elongating Pol II and controls spurious transcriptions in yeast 

genome by terminating pervasive transcriptions. Termination of Pol II by NNS can 

presumably affect Pol II processivity. Interestingly, some previous studies have shown 

that different carbon sources differentially affect the binding of Nrd1/Nab3 to the target 

short RNAs, indicating differential affect on NNS function and therefore possibly on 

strength of NNS surveillance on Pol II transcription. Interestingly, in my experiments, I 

observed Pol II catalytic mutants show a differential Pol II occupancy in different 



 

 114 

growth conditions and both LOF and GOF mutants show impaired growth on galactose 

medium at 37˚C. These results along with the 3' end specific effects I observed in the 

glucose shutoff assay indicate carbon sources may have a number of distinct individual 

defects on Pol II mutants. 

 Genetic interactions between Pol II mutants and RNA exonucleases indicate fast 

catalytic mutants may have 5ʹ RNA processing and/or termination defects. Pol II fast 

catalytic mutants show synthetic sick genetic interaction with rat1-1, xrn1∆ and rat1-1/ 

xrn1∆ double mutants. A synthetic sick interaction of fast mutants with rat1-1 is 

consistent with a termination defect. Additionally, synthetic sick interaction can be due 

to pre-mRNA 5ʹ processing defect, as Rat1p is involved in both termination and 5ʹ 

surveillance processes. However, as Xrn1p is only involved in 5ʹ surveillance, synthetic 

sick interactions of fast catalytic mutants with xrn1∆ suggest that fast mutants may have 

5ʹ processing defect, possibly a capping defect. However, the relationship of Pol II with 

RNA exonucleases could be more complex. For example, a cap-defective transcript is 

expected to have a decreased mRNA stability, as it is less stable than a capped transcript. 

In contrast, I observed an increased mRNA stability of a reporter in all tested fast 

catalytic mutants. However, defective capping can be linked to other processes such as 

translation. Thus, we can think of possibilities that the mRNA degradation rate of this 

reporter is decreased due to cellular mRNA ‘buffering’ phenomenon through slower 

translation or growth rate (See Chapter I for description). Since genetic interaction with 

pre-mRNA processing factors is an indirect evidence for capping defect, a more direct 
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assessment is needed to determine a possible capping defect in fast catalytic mutants, 

which I present in the future direction section. 

 

 

 

 

Figure 3-1. Schematic of the shutoff assays and signaling pathways that drive the 
shutoff of galactose inducible reporters. 
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Future Directions 

 In the present study, I examined consequences of altered Pol II catalytic rates 

using molecular/genetic reporter systems and my results shape the basis for future 

studies that we can perform on a genome-wide scale or the single gene/cell level. 

Currently we have multiple future studies envisioned, including – I. Determination of the 

relationship of capping to Pol II catalytic rate and measuring capping defects in Pol II 

catalytic mutants on genome-wide scale, and II. Developing single gene/cell technique to 

study transcription elongation in vivo. 

Determination of the relationship of capping to Pol II catalytic rate and measuring 

capping defects in Pol II catalytic mutants 

We can take a two-pronged approach to address possible capping defects in Pol 

II catalytic mutants. First, we plan to test genetic interactions of Pol II catalytic mutants 

with capping mutants. The addition of a 5' m7G cap to the nascent RNAs requires 

recruitment and action three essential enzymes (see Chapter I) - Cet1p (triphosphatase), 

Ceg1p (guanylultransferase) and Abd1p (guanine N7-methyltransferase). We can make 

conditional ts- mutant alleles of these enzymes and test how they genetically interact 

with Pol II catalytic mutants. Second, we will perform a modified version of the Native 

Elongating Transcript sequencing (NET-seq) assay to determine the extent of capping 

defects in Pol II mutants (Figure 3-2). We would like to purify Pol II associated total 

nascent RNAs, then separate capped mRNAs present in Pol II IPs (15-200 nt in length) 

and specifically map 5′ and 3′ ends of the transcript. We will combine sequencing of 5′ 

RNA ends with regular NET-seq that maps the 3′ ends  (Figure 3-2). From the 5′ 
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sequencing data of capped RNAs we will determine Pol II position in the gene when 

capped 5′ ends appear. 

 

 

 

Figure 3-2. Schematic of the modified NET-seq experiment. Schematic (A) and 
expected position of Pol II on the gene for WT, slow and fast catalytic mutants if the Pol 
II elongation rate determines where capping occur (B, no capping checkpoint) or if there 
is capping checkpoint (C).  
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This measured distance will reveal whether alteration in Pol II activity changes the 

window within genes where capping occurs. We would like to test if there is any 

evidence for a capping checkpoint (where mRNA capping will occur in the same 

window for WT/slow/fast mutants), or Pol II elongation rate determines where capping 

occurs (where the length of the window for mRNA capping will be shorter or longer for 

slow and fast mutants, respectively, compared to WT). We can also measure the 

efficiency of capping by determining the ratio between capped and uncapped mRNAs 

for the mutants. 

Employing single gene/cell technique to study transcription elongation in vivo. 

 Since I found confounding variables that can affect the interpretation of the 

widely used glucose shutoff assay to study in vivo elongation in yeast, we will adopt a 

more direct method to study elongation in live yeast cells (Figure 3-3). Using a system 

where nascent RNAs can be marked by binding of fluorescent proteins, we will employ 

a reporter that can bind different fluorescent proteins to 5ʹ and 3ʹ binding sites. For this 

purpose, we will utilize a reporter system with viral RNA stem loops PP7 and MS2 

engineered into the 5′ and 3′ UTRs of the reporter, respectively. In this system synthesis 

of nascent RNAs at the site of transcription can be detected by binding of fluorescently 

labeled viral coat proteins to the stem loops. We are collaborating with the Larson lab at 

NIH, who has been extensively working on the PP7/MS2 system in yeast (Larson, 

Zenklusen et al. 2011, Lenstra, Coulon et al. 2015). Using Dr. Larson’s construct we 

have demonstrated the ability to detect position of dual labeling of a single nuclear spot 

upon activation of GAL genes with galactose, indicating that we will be able to obtain 
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data using this system at Texas A&M (Figure 3-3). We are currently constructing a 

version of this reporter that contains YLR454w gene under GAL10 promoter. Using the 

GAL10p-PP7-YLR454w-MS2 reporter we aim to determine: the transcription 

initiation/activation frequency (appearance of 5' fluorescent signal over time), Pol II 

elongation rate (length of the transcript/time between appearance of 5' and 3' fluorescent 

signals), and Pol II processivity (frequency of 5' fluorescent signal vs 3' signal) in WT 

and catalytic mutants.  
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Figure 3-3. Schematic of the dual fluorescent reporter for the single gene/cell 
transcription assay. Schematic of the reporter (A) and proof of principle experiment 
that detects 5' and 3' transcript synthesis (B). Schematic of the proposed reporter to study 
in vivo elongation in Pol II catalytic mutants. 
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APPENDIX A 

 

Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete 

Transcription Bubble2 

 

Disclaimer for Appendix A 

Appendix A is reprint of a publication, which I am the second author on. This 

study was performed in collaboration with the Calero lab at University of Pittsburgh. 

Christopher O. Barnes and Monica Calero performed major experiments in the Calero 

lab. I performed experiments presented in Figure A-5 and A-6. Summary section of this 

chapter is the abstract of the publication, rest are as in publication. 

  

                                                

2Reprinted with permission from “Crystal Structure of a Transcribing RNA Polymerase 
II Complex Reveals a Complete Transcription Bubble” by Barnes et al. 2015 Mol Cell, 
Vol. 59, 258-69. Copyright © 2013 Elsevier Inc. 
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Summary 

Notwithstanding numerous published structures of RNA Polymerase II (Pol II), 

structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. 

Here, we report the structures of TFIIF-stabilized transcribing Pol II complexes, 

revealing the upstream duplex and full transcription bubble. The upstream duplex lies 

over a wedgeshaped loop from Rpb2 that engages its minor groove, providing part of the 

structural framework for DNA tracking during elongation. At the upstream transcription 

bubble fork, rudder and fork loop 1 residues spatially coordinate strand annealing and 

the nascent RNA transcript. At the downstream fork, a network of Pol II interactions 

with the nontemplate strand forms a rigid domain with the trigger loop (TL), allowing 

visualization of its open state. Overall, our observations suggest that ‘‘open/ closed’’ 

conformational transitions of the TL may be linked to interactions with the non-template 

strand, possibly in a synchronized ratcheting manner conducive to polymerase 

translocation. 

Introduction 

The pre-initiation stage of transcription requires concerted interactions between 

RNA Polymerase II (Pol II) and the general transcription factors TFIIB, TFIID, TFIIF, 

TFIIE, and TFIIH. During initial promoter melting, TFIIH generates an unwound region 

of 7–9 base pairs. Subsequently, this transcription bubble is unwound to approximately 

18–25 bases, and a short DNA-RNA hybrid is synthesized. Transcripts of ten or more 

nucleotides result in promoter escape and stabilization of a mature bubble (Liu, Bushnell 

et al. 2011, Nechaev and Adelman 2011, Luse 2013). The number of nucleotides 
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unwound in a mature bubble is still a matter of debate, since sizes ranging from 8 to 22 

nucleotides have been reported for bacterial, archaeal, and eukaryotic polymerases 

(Naryshkin, Revyakin et al. 2000, Fiedler and Timmers 2001, Pal, Ponticelli et al. 2005). 

In addition, the size of the bubble might not be fixed but depend on Pol II’s 

transcriptional stage; evidence of a scrunched state—where template and non-template 

strand bases are compacted in space relative to relaxed conformations—has been 

proposed for the early stages of transcription initiation in bacteria (Kapanidis, Margeat et 

al. 2006, Revyakin, Liu et al. 2006). Similarly, other transcriptional events such as 

backtracking or interactions with elongation or termination factors might alter the 

number of bases (and location) in the mature bubble (Fiedler and Timmers 2001). 

Notwithstanding numerous Pol II structures published to date, structural details of a 

complete transcribing complex, including upstream and downstream DNA duplexes and 

a full transcription bubble, have yet to be revealed. Here we report the crystal structures 

of Pol II in complex with a complete nucleic acid scaffold that illustrates the architecture 

of a Pol II transcribing complex. 

Results 

Design, Assembly, and Crystallization of Pol II Transcribing Complexes 

Assembly of a Saccharomyces cerevisiae Pol II transcribing complex was 

achieved by mixing Pol II with pre-assembled nucleic acid scaffolds (see Experimental 

procedures). The main scaffold used for our experiments (scaffold 1) consisted of two 

synthetic DNA oligonucleotides (53 nucleotides long), featuring upstream and 

downstream duplexes, a non-complementary stretch of 15 nucleotides to generate a 
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synthetic transcription bubble, and a 9-mer RNA complementary to the template 

strand to form a DNA-RNA hybrid (Figure A-1A). The number of non-complementary 

bases used in the design of the bubble was based on crystal structures of partial Pol II 

transcribing complexes, including PDB: 1Y1W, 2NVZ (Kettenberger, Armache et al. 

2004, Wang, Bushnell et al. 2006). These structures show, at the downstream end, base 

complementarity at positions i+3 and i+5, respectively (where i+1 indicates the 

nucleotide addition site and i−1 the first base of the nascent RNA transcript), and at the 

upstream end, a partial template strand reaches position i−9 below arch residues 

(comprising rudder [Rpb1312-319] and fork loop 1 [FL1, Rpb2470-480]) (Figure A-1B). 

However, steric clashes with arch residues at this position suggested that at least two 

additional nucleotides are required to allow template and non-template strand annealing. 

Collectively, these observations suggested an artificial bubble size with a minimum of 

14 nucleotides for in vitro structural studies of a transcribing Pol II. 

Initially, crystals of Pol II bound to our scaffolds showed weak electron density 

for the upstream duplex but none for the non-template strand (Figure A-1C). In search 

for factors that could contribute to a stabilized transcription bubble, we assembled Pol II 

or ten-subunit Pol II (lacking Rpb4 and Rpb7 subunits, Δ4/7) transcribing complexes 

with TFIIF or its 45 kDa β subunit, Tfg2 (Figure A-1D and E). Two sets of crystals 

were obtained using PEG 4000 and low salt (Table A-1). The first transcribing complex 

comprises Δ4/7-TFIIF (hereafter referred to as Δ4/7-TC for simplicity) and the second 

comprises Pol II-Tfg2 (hereafter referred to as Pol II-TC).  
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Figure A-1. Design and reconstitution of Pol II transcribing complex. (A) Schematic 
representation of scaffolds used in our structural studies, where the open circles 
represent the non-complementary region to generate artificial transcription bubbles 
(template strand: cyan, non-template strand: green, RNA: red). Structural analysis 
presented in this paper utilized scaffold 1 in complex with Pol II and either TFIIF or its 
β-subunit, Tfg2. The use of a non-complementary non-template strand to generate a 
transcription bubble is analogous to use of chain-terminators or non-hydrolysable 
substrates to examine Pol II-substrate interactions or interpretation of Pol II inhibitor-
bound complexes as translocation intermediates. Our current structure interpreted in 
similar light still allows for a number of valuable insights. (B) A conservative model of 
the size of the bubble could be estimated using PDB:ID 1Y1W (Kettenberger, Armache 
et al. 2004), where complementarity was observed at i+3. Upstream clashes with the 
“arch” would require 2 additional bases before annealing could occur. (C) Final refined 
2Fobs-Fcalc electron density map contoured at 0.8σ of a crystal comprising Pol II + 
scaffold 3 in the absence of Tfg2 or TFIIF. Partial electron density is observed for the 
upstream duplex and for the downstream fork and duplex, however no density is 
observed for the non-template strand within the transcription bubble (template: cyan, 
non-template: green RNA: red). (D) SDS-PAGE of Pol II-TC complex.  
(E) SDS-PAGE of Δ4/7-TC after coomassie staining (left panel), also depicting scaffold 
1 after ethidium bromide staining (red arrow, NAS, right panel). (F) Crystals of Δ4/7-TC 
were transferred to mother liquor to remove excess protein from crystals. After four 
transfers, 8X loading buffer was added to the drop containing crystals and subjected to 
SDS-PAGE. The four largest proteins are easily discernible from the gel confirming the 
presence of TFIIF in the crystals. Faint bands corresponding to smaller Pol II subunits 
are also present in the gel. (G) Example of B-factor sharpening on Pol II residues at the 
Rpb2 wedge, contoured at 1.0σ. Application of negative B-factors results in increased 
clarity for high resolution features, especially for large side chains (ie Arg, Lys, Phe, 
Trp, Tyr) at a relatively low resolution (DeLaBarre and Brunger 2006). 
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Table A-1. Crystallographic Data and Refinement Statistics 
 
 Pol II-

Scaffold 1 
(i+5)a (APS-
GM/CA) 

Δ4/7-TC 
(i+5) 
(APS-
GM/CA) 

Pol II-TC 
(i+5) 
(SSRL-
11.2) 

Pol II-Tfg2-
Scaffold 2 
(i+2) 
(SSRL-
11.2) 

Pol II-
Scaffold 3 
(i+3) 
(APS-
GM/CA) 

Data Collectionb 
PDB ID 5C44 5C4J 5C4X 5C4A 5C3E 
Nucleic acid Scaffold 1 Scaffold 1 Scaffold 1 Scaffold 2 Scaffold 3 
Space group C2221 C21 C2221 C2221 C2221 
Unit cell (Å) 220.2, 

391.8, 282.3 
280.7, 
223.3, 
156.4 

220.7, 
393.3, 
281.6 

219.8, 
396.7, 
273.6 

219, 
390.9, 278 

α, β, γ (°) 90, 90, 90 90, 98.1, 
90 

90, 90, 90 90, 90, 90 90, 90, 90 

Wavelength (Å) 1.03 0.979 0.979 0.978 1.03 
Resolution (Å)c 120–3.9 174–4 50–4 200–4.2 178–3.7 
Unique reflections 106,511 80,485 103,153 80,062 126,815 
Completeness (%) 96 (93.8) 97 (96.1) 97.3 

(96.4) 
99 (98.3) 94.88 (78) 

Redundancy 4.3 (3.2) 5.1 (4.3) 3.8 (3.4) 4.5 (3.7) 3.6 (2.8) 
<I/σI > 8.2 (1.2) 10.3 (3.7) 12.5 

(1.95) 
14.2 (2.1) 8.5 (1.1) 

Mosaicity (°) 0.6 0.6 0.35 0.55 0.35 
Rmerge (%) 13.8 (49) 14.7 (61) 9.1 (42) 8.5 (47) 12.5 (56) 
Refinement 
No. atoms 33,086 30,259 33,673 32,281 33,086 
Rcryst/Rfree (%) 22.3/25.4 21/26 21.5/23.2 23.53/27.47 23.2/27.62 
Refinement program Buster/CNS Refmac/ 

CNS 
Buster/ 
CNS 

Refmac/ 
CNS 

Refmac/ 
CNS 

aIndicates the position of complementary base pairing in the downstream bubble.  
bNumbers in parentheses correspond to the highest-resolution shell.  
cResolution limits were extended to include weak intensity data (Karplus and Diederichs, 
2012). Using the traditional criterion of I/sI > 2.0, resolution limits are 4.15 A˚ and 3.9 
A˚ for Pol II-Scaffold 1 and Pol II-Scaffold 3 complexes, respectively. 
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Figure A-2. Architecture of the Complete Nucleic Acid Scaffold. 
(A) Difference Fobs− Fcalc electron density map contoured at 2 σ. The following color 
scheme will be used throughout: cyan, template strand; green, non-template strand; red, 
RNA transcript. (B) Front and side views of the 2Fobs− Fcalc map for the final refined 
map contoured at 1.0 σ. (C) Cartoon representation of the 38-nucleotide refined nucleic 
acid scaffold; downstream and upstream duplexes form an angle of approximately 130°. 
(D) Surface representation of the overlay between Δ4/7-TC (blue) and Pol II-TC (gray). 
The two structures overlay remarkably well; minor structural differences occur at the 
downstream fork (see also Figure A-1) 
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Structures were solved by molecular replacement in Phaser (McCoy, Grosse-Kunstleve 

et al. 2007) using Δ4/7 or Pol II as search models (see Experimental procedures). An 

initial unbiased Fobs− Fcalc map revealed the presence of extra density corresponding 

to upstream dsDNA, the non-template strand (Figure A-2A), and three previously 

disordered regions of Rpb2 (Figure A-3A and B). Unfortunately, any additional density 

for Tfg2 or TFIIF was non-interpretable due to either high mobility or partial occupancy 

in the crystals. Nevertheless, the presence of TFIIF within the crystals (Figure A-1F) 

was essential to reveal the full structure of the transcription bubble in our complexes. 

Interestingly, low-resolution cryo-EM data of the pre-initiation complex suggests a role 

of TFIIF, or the Tfg2 winged-helix domain specifically, in stabilizing the upstream 

duplex, which could not be visualized prior to TFIIF addition within these structures 

(He, Fang et al. 2013, Muhlbacher, Sainsbury et al. 2014). While strikingly similar, 

without clear extra density, we can only speculate that TFIIF or Tfg2 is acting in an 

analogous fashion within our structures. 

The molecular replacement models were refined using the programs Buster 

(Blanc, Roversi et al. 2004), Refmac (Murshudov, Vagin et al. 1997), and manual 

building with B factor sharpening in Coot, which clarified side chain positioning, thus 

allowing model refinement (Figure A-1G and Table A-1) (Emsley, Lohkamp et al. 

2010). The nucleic acid scaffold was built into the electron density using the 

characteristic features of the DNA-RNA hybrid as register (Figure A-2A). The final 

refined 2Fobs− Fcalc map for Δ4/7-TC is illustrated in Figure A-2B. The full 

observable DNA scaffold (38 nucleotides long) spans the length of Pol II and comprises: 
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the downstream duplex, the DNA-RNA hybrid and two previously uncharacterized 

regions, an upstream duplex, and the full transcription bubble including the non-template 

strand (Figure A-2B and 4-1C). Overlay between the DNA scaffolds from Δ4/7-TC and 

Pol II-TC show minor differences, mainly located at the downstream fork (Figure A-

2D). Pol II regions involved in DNA binding include: (1) the previously described Rpb5 

“jaw” and Rpb1 “clamp” residues that interact with the downstream duplex (Gnatt, 

Cramer et al. 2001), (2) Rpb2 “wedge” residues (Rpb2862-874) that interact with the 

upstream duplex, and (3) “arch” residues that interact with the upstream fork (Figure A-

3A and B). For clarity, the presentation of our structural findings is based on the ten-

subunit Pol II (Δ4/7) transcribing complex comprising TFIIF and scaffold 1, which has 

been labeled as Δ4/7-TC unless otherwise noted. 
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Figure A-3. Pol II contacts with upstream and downstream duplexes. (A) 2Fobs-
Fcalc electron density map contoured at 1.0 s _to illustrate the presence of traceable 
electron density for previously disordered Rpb2 regions. (B) Cartoon representation of 
the overlay of our structure with PDB:ID 1Y1W (illustrated in sand and blue, 
respectively); template and non-template strands are illustrated in cyan and green 
respectively. Presence of TFIIF or Tfg2 allowed tracing of two previously unfolded 
regions of Rpb2, the first one folds into a 3-strand beta sheet that resembles a catcher’s 
glove (Rpb2 glove) and includes residues 71-90 and 131-164. The second one includes 
loop 436-443 from Rpb2 protrusion domain. Overlay between our structure and PDB:ID 
1Y1W illustrate conformational changes in helix 443-465 (red arrows) possibly elicited 
by the close proximity of the upstream duplex. (C) Cartoon representation of Pol II 
stabilizing the downstream duplex illustrates that Rpb1 (silver) and Rpb5 (magenta) 
helices “thread” the major and minor grooves of the DNA respectively.  
(D) Cartoon and ball & stick representation of Pol II interactions with the downstream 
duplex, where positively charged residues of Rpb1 clamp domain (silver) contact the i+7 
to i+9 phosphates of the non-template strand. (E) Contacts resembling head-clamp 
interactions in T. thermophilus polymerase (PDB:ID 2PPB) are located on a helix-loop-
helix domain in the b´ subunit. These include: 1) Val107 which is inserted in the minor 
groove of the double helix, 2) the backbone nitrogen of Ser110 interacting with i+8 
phosphate of the non-template strand and 3) Lys106 interacting with phosphate template 
strand i+4. 
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Figure A-4. Overall Structure of Δ4/7-TC 
(A) Surface representation (side view, Rpb2 removed) illustrating the position of the 
scaffold inside Pol II. Wedge, jaw, and arch interactions with the scaffold lie on almost a 
perfect plane, possibly to minimize strain during elongation. (B and C) The scaffold 
binds asymmetrically inside Pol II’s cleft, more prominently at the downstream end 
where observed clamp-DNA distances of ≈6 Å versus lobe DNA distances of ≈14 Å are 
due to interactions with clamp and jaw residues (see also Figure S2). (D) Surface 
electrostatic representation calculated using the APBS (Baker, Sept et al. 2001) suite in 
PyMOL to illustrate how the non-template strand follows a path of positively charged 
residues inside Pol II’s cleft (lobe and protrusion). The final refined 2Fobs− Fcalc map 
(gray) contoured at 1.0 σ is also illustrated to show the continuous density for the DNA 
scaffold. 
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Pol II Interacts with the Minor Groove of Upstream and Downstream DNA Duplexes 

Using Two Domains Located 90 Å Apart 

Our refined models show that Pol II interacts with the upstream duplex, which 

appears as if propped by a hairpin loop or “wedge” (Rpb2862-874)—a vertical extension of 

wall residues (Rpb2855-861)—that engages the minor groove of the double helix (Figure 

A-4A). At the tip of the wedge, Met868 lies between template and non-template strands, 

while the amide backbone of Gly867 appears to form hydrogen bonds (H-bonds) with two 

contiguous phosphates on the non-template strand (Figure A-5A). No crystal contacts 

that could potentially stabilize the conformation of wedge residues or the upstream 

duplex were present in the two different crystal forms (Figure A-6A and B). The 

framework of the wedge—a hairpin loop within a long concave five-strand β sheet—is 

conserved in all multi-subunit DNA-directed RNA polymerases (Figure A-5B).  

Moreover, overlay of the human mitochondrial polymerase elongation complex 

(mtRNAP) (Schwinghammer, Cheung et al. 2013) and our structure shows that the 

upstream duplex and fork adopt similar conformations (Figure A-5C). This is 

particularly interesting given the scarcity of conserved structural elements between the 

two structures (Figure A-6C). Furthermore, overlay of the archaeal RNAP clamp 

domain in complex with the heterodimer interface of the Spt4/5 complex (PDB: 3QQC) 

(Martinez-Rucobo, Sainsbury et al. 2011) with the Rpb1 clamp domain of Δ4/7-TC 

shows that the upstream duplex is situated between the wedge domain and position of 

the Spt5 NusG domain (Figure A-6E). While speculative, the observed location of the 

duplex in our structure is consistent with previous biochemical data and Pol II-Spt4/5 



 

 161 

elongation models (Sevostyanova and Artsimovitch 2010, Klein, Bose et al. 2011, 

Martinez-Rucobo, Sainsbury et al. 2011).	

To assess a role of Rpb2 wedge residues during in vivo transcription, we 

constructed a number of alleles and characterized them for growth phenotypes consistent 

with transcription defects (Figure A-6D, left panel). We observed sensitivity to 

mycophenolic acid (MPA), which can be indicative of IMD2 transcriptional phenotypes 

(Kaplan 2013). Indeed we found that Rpb2 wedge alleles were generally defective for 

induction of IMD2 gene expression in the presence of MPA (Figure A-6D, right panel). 

In order to more directly assess the role of the Rpb2 wedge, we examined the 

K864G/K865G/Δ866-871 rpb2 wedge allele for in vitro or in vivo elongation 

phenotypes (Figure A-5D and E). We found that this particular rpb2 wedge allele did 

not confer robust elongation defects in vitro or in vivo, though it did confer very strong 

defects in steady-state Pol II reporter gene occupancy and expression (Figure A-5F and 

G). The defects observed are consistent with strong defects in initiation, and we 

observed altered transcription start site selection consistent with altered initiation in vivo 

(Figure A-5H). 

Pol II contacts with the downstream duplex encompass Rpb5 (jaw) and Rpb1 

(clamp-head) domains (Figure A-4B and C). Specifically, Rpb5 jaw residue 

Pro118 (from helix 118–124) is positioned inside the minor groove of the DNA double 

helix, and Thr117 (from loop 112–117) and Ser119 locate within H-bond distance to non-

template strand positions i+15 and i+16 (Figure A-3C, also observed in PDB: 1R9T, 

2NVQ, 2NVZ). Rpb1 clamp-head residues Lys100, Lys101, Lys143, and Arg175 locate 
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within H-bond distance of the phosphate chain of non-template strand positions i+8 to 

i+10 (Figure A-3D). As a result of these interactions, the downstream duplex is 

asymmetrically positioned inside the cleft (Figure A-4B and C). Interestingly, contacts 

resembling clamp-head interactions in T. thermophilus polymerase are located on a 

helix-loop-helix domain in its β′ subunit (Figure A-3E) forming H-bonds with non-

template strand i+8 to i+9. However, interactions with jaw residues are observed only in 

archaeal and eukaryotic polymerases, since bacterial polymerases lack Rpb5 homologs. 

Strand Annealing and Three-Way Coordination of the Template Strand, Non-template 

Strand, and RNA at the Upstream Fork 

The transcription bubble in our complexes lies within upstream and downstream 

duplexes and was enforced by non-complementarity between the template and non-

template strands at positions i+5 through i−10 (Figure A-1A, scaffold 1). At the 

upstream “closing” end of the bubble, rudder and FL1 residues come in close proximity 

to form an “arch” located 25–30 Å above the bridge helix (Figure A-4A). The arch is 

situated in between the template and non-template strands and physically marks the 

upstream boundary of the bubble (Figure A-7). Arch residues adopt unique 

conformations that allow simultaneous coordination of the nucleic acid scaffold (Figure 

A-7A).   
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Figure A-5. Rpb2 Wedge Residues: Structure, Conservation, and Function. 
(A) Interaction of wedge residues with the minor groove of the upstream duplex. 
Sequence conservation of tip residues across species is nearly universal for Gly867, 
whose amide bond interacts with the phosphate chain of the non-template strand; 
Met868 is conserved in yeast (S. cerevisiae and S. pombe) and is substituted by a bulky 
hydrophobic residue in other species. A refined 2Fobs− Fcalc map contoured at 1.0 σ is 
also illustrated. (B) Conservation of wedge structure: yellow, T. thermophilus 
(Vassylyev et al., 2007); hot pink, archaea (S. sulfactarius) ( Hirata et al., 2008); 
sand, S. cerevisiae; blue, S. pombe (Spåhr et al., 2009); and purple, 14-subunit Pol I 
(S. cerevisiae) (Engel et al., 2013). (C) Overlay of mtRNAP-upstream duplex 
(PDB: 4BOC) with our structure about template strand i+1 and i+2 (see also Figure S3). 
(D) In vitro elongation rate of WT Pol II and an rpb2 wedge deletion mutant 
(K864G/K865G/Δ866-871). Elongation rate determined on nucleic acid scaffolds at a 
number of NTP concentrations followed by non-linear regression of the rates for 
determination of maximum elongation rates (bar graph, error bars indicate range of 95% 
confidence interval). (E) In vivo apparent elongation rates for WT Pol II and 
the rpb2 wedge deletion mutant at a galactose-inducible reporter gene determined by 
ChIP upon glucose shutoff of transcription (schematic of reporter in F). Values are 
normalized to 0 min of glucose and error bars represent SD of the mean for three 
independent experiments. (F) Steady-state occupancy for WT Pol II and the rpb2 wedge 
deletion mutant at a galactose-inducible reporter gene under galactose induction 
determined by ChIP (schematic of reporter with positions of PCR amplicons shown 
below) (n = 3 independent experiments). (G) Steady-state RNA levels of reporter used in 
(F) for WT Pol II and the rpb2 wedge deletion mutant. Values were normalized to SCR1 
levels (a Pol III transcript) and averaged (n = 3) with error bars representing SD.(H) 
Primer extension analysis of ADH1 transcripts for various rpb2 wedge alleles showing 
average change in fraction of ADH1 starts in various positions relative to wild-type, with 
error bars representing SD of the mean (n = 3). 
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Figure A-6. Pol II transcribing complex crystal contacts and the role of Rpb2 
wedge residues in upstream duplex stabilization.  
(A) Crystal symmetry of Δ4/7-TC crystallized in C21 space group with novel unit cell 
dimensions 280x223x156 and angles 90°, 98°, 90°, never observed in previous PolΔ4/7 
structures. Symmetry molecules were visualized in PyMol with upstream DNA positions 
highlighted (black arrow). The upstream duplex is solvent exposed. No contacts between 
molecules at the upstream end of the DNA indicate that the DNA architecture was not an 
artifact of crystal packing. (B) Crystal symmetry of Pol II-TC in space group C2221 with 
unit cell dimensions 220x393x282 and angles 90°, 90°, 90°. Symmetry molecules were 
visualized in PyMol with upstream DNA positions highlighted (black arrow). The 
upstream duplex is solvent exposed. No contacts between molecules at the upstream end 
of the DNA indicate that the DNA architecture was not an artifact of crystal packing.  
(C) Ribbon and cartoon representation of the overlay between the elongating human 
mitochondrial RNAP (red) PDB:ID 4BOC (Schwinghammer et al., 2013) and our 
structure (grey) about positions i+1 and i+2 on the template strand. (D) Left panel – 
Serial dilutions of yeast strains containing Rpb2 wedge alleles (mutations as designated 
on figure) on various media. Right panel – Quantitative analysis of Northern blotting for 
IMD gene expression (normalized to SED1 as loading control) in presence or absence of 
20µg/ml mycophenolic acid (MPA). Error bars are standard deviation of the mean (n=3). 
MPA sensitive alleles of Pol II can be of a number of classes, with disparate effects on 
IMD2 expression, with a major class being defective for IMD2 induction and also 
exhibiting upstream shifts in start site selection (Braberg et al., 2013; Kaplan et al., 
2012). Also, we show that Rpb2 wedge alleles confer a downstream shift in start site 
utilization at ADH1 (see main Fig. 3H), consistent with defective initiation and a shared 
phenotype with mutants in Pol II subunits and TFIIB (Kaplan, 2013). (E) Overlay of 
Δ4/7-TC with the archaea P. furiosus clamp-Spt4/5 complex, PDB:ID 3QQC (Martinez-
Rucobo et al., 2011) about the clamp coiled coil domains of Pol II Rpb1 (grey) and 
RNAP A′ (orange), suggests that the upstream duplex is positioned between the NusG 
domain of Spt5 (olive) (arrow 1) and Rpb2 wedge domain (arrow 2). While speculative, 
our model suggests that Spt4/5 locks the upstream duplex in place and may play a role in 
maintaining bubble integrity during elongation. This is in agreement with previously 
published models (Klein et al., 2011; Martinez-Rucobo et al., 2011). (F) Structure 
overlay with initially transcribing Pol II-TFIIB structure, PDB ID: 4BBS (Sainsbury et 
al., 2012) illustrate possible interactions between wedge residues (copper) and Cyclin-
like domain residues (blue). Comparisons between a model of the closed promoter 
complex (Kettenberger et al., 2003; Wang et al., 2009) and the structure of the 
transcribing complex suggest that transition from closed to open promoter entails a 
clockwise rotation (approximately 90º degrees) of the upstream end of the DNA. Wedge 
residues Met868 and Ser869 interact with TFIIB residues 148-153 and 178-183 from the 
cyclin-like domain, and such interactions could participate in Pol II duplex loading. It is 
possible that this rotational motion induces steric clashes that ultimately result in 
ejection of TFIIB and TBP allowing the wedge to engage the minor groove. The close 
proximity of these two regions could allow loading of the duplex on the wedge during 
the initiation to elongation transition. 
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As the template strand separates from the RNA transcript (i−8) and emerges from 

Pol II’s active site, non-specific packing interactions with FL1 residues and potential salt 

bridges between the phosphate chain and arch residues guide the template strand in a 

straight conformation toward its junction with the non-template strand (Figure A-7A, B, 

and Figure A-8A). Once above the arch, template strand nucleotides anneal with the 

non-template strand at i−12 (Figure A-7B and C). Stabilization of the nucleic acid 

scaffold by arch residues include interactions between template strand i−8, i−9, and i−11 

with FL1 residues and between non-template strand i−11 and i−12 with rudder residue 

Lys317 (Figure A-7 and Figure A-8B) (Treutlein, Muschielok et al. 2012). In addition to 

contacts that arch residues make with the template and non-template strands, rudder 

residue Arg320 reaches within H-bond distance of the 2′ hydroxyl of the 8th RNA base of 

the nascent transcript (Figure A-7A and Figure A-8B, observed also in PDB: IYIW). 

This interaction is conserved in bacterial polymerases, where rudder Arg598 forms a H-

bond with the 2′ hydroxyl group of the 7th base on the nascent transcript (Figure A-8C) 

(Vassylyev, Vassylyeva et al. 2007) and has been corroborated by crosslinking 

experiments (Korzheva, Mustaev et al. 2000). 
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Figure A-7. Architecture of the Upstream Fork Junction. 
(A) Stereo-view of the tripartite coordination of the three nucleic acid chains. Arch 
residues at the back, top, and bottom adopt unique conformations—with respect to apo- 
and elongation structures—that interact with template, non-template, and RNA strands, 
respectively. Rpb1 residue Arg320 forms a H-bond with the 2′-OH of the nascent 
transcript at position i−8. (B and C) Front view (B) and side view (C) of the upstream 
(closing) end of the bubble. Rudder (silver) and FL1 (sand) residues reach within 4 Å 
across the midline to form an arch that provides a scaffold for template and non-template 
strand annealing at i−12. Contacts include packing interactions between template strand 
i−8 and Tyr459 and potential H-bonds between Rpb2 residues Thr463 with template strand 
i−8, Glu469 with template strand i−10, and Lys471 with non-template strand i−9. 
Lys317 participates in contacts with non-template strand i−11 and i−12 (see also Figure 
A-8).  
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Figure A-8. Comparison of bacterial and eukaryotic RNA Polymerases. 
A,B Architecture of the transcription bubble at the upstream (closing) end (see text). (A) 
template strand (blue) and arch residues, non-template strand (green), RNA (red) and 
arch residues. A refined 2Fobs-Fcalc electron density map (contoured at 1 σ) was 
calculated around both regions. (B) Interactions between rudder residues Arg320 (S. 
cerevisiae, silver) or Arg598 (T. thermophilus, yellow) with the 2´ hydroxyl of the 
nascent transcript (S. cerevisiae, red, T. thermophilus, yellow) are structurally conserved 
(observed also in transcribing complex PDB:ID 1Y1W). FL1 residues are not present in 
bacterial polymerases, instead a flexible β´ rudder (residues 583-603, yellow) 
(Vassylyev et al., 2007) reaches towards the mid-line forming a dome-like structure that 
spatially organize the junction of the two strands. (C) Structure overlay between sA 
factor region 2 (yellow) and open promoter complex (purple) from PDB:ID 4G7O and 
TFIIB bound to Pol II (PDB:ID 3K7A) (blue). Residues from sA region-2 and B-linker 
differ significantly. While sA can recognize specific bases at i-11 and i-7 (DNA scaffold 
in purple), the B-linker reaches within 6Å to interact with template and non-template 
strands at the opening end of the transcription bubble and could play a role in scaffold 
loading. 
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Strand Separation at the Downstream Transcriptional Fork 

Strand separation in our structure appears to take place at i+5, where base-pair 

distance begins to increase progressively. However, it was not possible to define its 

exact location since our artificial bubble enforced non-complementarity precisely at i+5 

(see below). However, our structure gives possible insight into the mechanism by which 

Pol II residues promote and sustain DNA strand separation. The template strand interacts 

with switch 1 and switch 2 residues, driving it toward the active site as originally 

described (Gnatt, Cramer et al. 2001), while the non-template strand interacts with two 

groups of Pol II residues. The first involves a positively charged cleft formed by Rpb1 

residues Arg1386-His1387-Arg1391 (switch 1) and Lys1102-Lys1109-Asn1110 (located in a 

structurally conserved U-loop) in the vicinity of non-template strand i+5 and i+6 (Figure 

A-9A and Figure A-10A) (Kettenberger, Armache et al. 2004, Cheung, Sainsbury et al. 

2011). The second involves interactions with Rpb2 fork loop 2 (FL2) residues 501–510 

(Figure A-9A) providing packing contacts with the non-template strand i+3 to i+1 and 

Arg508 reaching within H-bond distance of the non-template phosphate chain (Figure A-

9B and Figure A-10B). Structural overlay of FL2 residues from published crystal 

structures suggests they could be grouped in two major states (Figure A-9C). The first 

one is an “open” state (represented by PDB: 3PO2, 1Y1W, 3HOW), where FL2 residues 

interact with positions i+2 or i+3 on the non-template strand, respectively, allowing 

access to a non-specific nucleotide-binding pocket (Cheung and Cramer 2011). The 

second is a closed state, where FL2 residues appear to rotate about Pro501 and Pro510 (our 

structures, PDB: 3FKI, 3K7A), blocking access to the pocket. Positioning of FL2 
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residues in the latter conformation appears to guide the non-template strand under a four-

strand β sheet dome (Figure A-9A) toward its junction above the arch. Other 

interactions include contacts with Rpb2 β strand 245–255 residues (Figure A-10B) and a 

patch of positive charges from the Rpb2 protrusion helix (Figure A-4C). 

Fluorescence and Structural Experiments Suggest that the Downstream Fork Is Dynamic 

Given that the precise location of strand separation was not able to be determined 

from the structure—and in light of previous structural studies showing a closed bubble at 

i+2 and i+3, respectively (Kettenberger, Armache et al. 2004, Cheung, Sainsbury et al. 

2011), as well as fluorescence studies where the use of a 35-nucleotide scaffold with a 

partial (17 nucleotides) non-template strand showed complementarity at i+2 (Kashkina, 

Anikin et al. 2007)—we wished to ascertain whether it was possible to detect an open 

bubble in the presence of a 45-nucleotide scaffold bearing a fully complementary non-

template strand (Figure A-10C). 2-aminopurine (2AP) is a fluorescent nucleotide analog 

that is significantly quenched upon base pairing to either T or C, as well as by stacking 

interactions with adjacent nucleotides (Stivers 1998, Liu and Martin 2001). Therefore, 

we placed 2AP in the template strand at positions i+2, i+3, i+5 (at the boundary of strand 

separation), and downstream at i+8, where the two DNA strands were likely to be paired 

(Figure A-10C). 
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Figure A-9. Architecture of the Downstream Fork Junction. 
(A) Stereo-view of the architecture of the downstream fork. Relevant interactions 
include U-loop (UL) and switch 1 residues with non-template strand i+5 and i+6, FL2 
residues with non-template strand i+2 to i+3, and Rpb2 residues 221–282 (forming a 5 
strand β sheet, Dome) with non-template strand i+1 to i−2. (B) Unbiased Fobs− 
Fcalc electron density map contoured at 3 σ (FL2 residues 498–512 were not included in 
map calculation). (C) Structural overlay of published FL2 conformations during different 
stages of transcription. Δ4/7-TC (sand), PDB: 1Y1W (blue, elongation complex), 
PDB: 3HOW (cyan, backtracked complex), and PDB: 3PO2 (red, backtracked complex). 
(D) Representative spectra of 2AP probes at i+2 or i+3, bound to complementary non-
template strand in the absence (open red circles and squares, respectively) and presence 
(blue circles and squares, respectively) of Pol II. The excitation wavelength was 315 nm 
and the fluorescence emission (shown in counts per second × 106) was collected from 
340 to 400 nm. (E) Normalized fluorescence values for polymerase bound to ssDNA 
(primer-template) where 2AP is at the i+2, i+3, i+5, or i+8 position (red) and polymerase 
bound to dsDNA (primer-template annealed to fully complementary non-template 
strand) (blue). Error bars are SD of the mean (n = 3, see also Figure A-10). 
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Figure A-10. Investigating the dynamics of the downstream fork. (A) Solvent 
accessible surface electrostatic representation calculated using APBS (Baker et al., 2001) 
in PyMOL to illustrate how non-template strand elements (green) trail a crevice of 
positive charges (blue) at the opening end of the transcription bubble. Interactions 
between Pol II elements (U-loop and Switch 1) and the non-template strand phosphate 
backbone suggest that the region from i+3 to i+6 has the potential to be non-duplexed.  
(B) FL2 interactions with the non-template strand phosphate backbone lift the strand 
towards a short tunnel-like structure whose “dome” is a four-strand β-sheet from Rpb2. 
Electron density for non-template strand position i-2 is shown in blue. (C) Cartoon 
schematics of DNA represents the final annealed product used for each 2AP experiment, 
where yellow stars highlight the position of the 2AP probe, the template strand is in 
cyan, non-template strand in green, and RNA in red. (D,E) Electron density maps 
countered at 1s _of Pol II transcribing complexes composed of scaffold 2 + Tfg2 (D) and 
scaffold 3 alone (E) bearing non-complementary nucleotides at position i+2 or i+3 
respectively. FL2 is disordered in i+2 but ordered in i+3 and is primed to engage with 
the non-template strand at the opening end of the transcription bubble. FL2 residue 
Arg504 reaches in close proximity to the nucleotide at i+3 position.  
(F) Normalized fluorescence values for polymerase bound to ssDNA (template/RNA 
hybrid) where 2AP is at the i+2, i+3, i+5 or i+8 position before addition of the non-
template (green) and after addition of non-template strand (blue). Error bars are standard 
deviation of the mean (n=3). (G) Comparison of 2AP fluorescence against non-
complementary (bubble) DNA shows that when non-complementarity is extended to the 
i+3 or i+5 position, fluorescence measurements increase significantly compared to their 
complementary counterparts (panel F). Error bars are standard deviation of the mean 
(n=3). (H) Refined 2Fobs-Fcalc electron density map (green, contoured at 0.8s) 
calculated around the opening end of the non-template strand in the Pol II-TC. Evidence 
of a scrunched state –where template and non-template strand bases are compacted in 
space relative to relaxed conformations – has been proposed during the early stages of 
transcription initiation (Kapanidis et al., 2006; Revyakin et al., 2006). Similarly, other 
transcriptional events such as backtracking or interactions with elongation or termination 
factors might alter the number of bases (and location) in the mature transcription bubble.  
(I) Cartoon and surface representation of a front view (left) and front view rotated 60° 
counterclockwise (right) of the overlay between PDB:ID 3K7A (Liu et al., 2010) and 
Δ4/7-TC. The B-linker region of the general transcription factor TFIIB reaches within 6 
Å at the downstream fork junction and could interact with the non-template strand and 
assist transcription bubble loading during initiation. The electrostatic surface 
representation calculated using APBS (Baker et al., 2001) in PyMOL illustrates that one 
face of the B-linker is positively charged and could possibly allow interactions with non-
template strand phosphate chain. FL2 residues could potentially assist during bubble 
loading via interactions with the non-template strand. 
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As expected when the primer-template is annealed to a complementary non-

template strand, full quenching is observed, consistent with stable base pairing of 2AP 

(Figure A-9D and E). When polymerase was added to the scaffold with a fully 

complementary non-template strand, we see a 4.5-fold increase in fluorescence for the 

i+2 substrate and a 2.8-fold increase in fluorescence for the i+3 (Figure A-9D and E). 

This increase in fluorescence indicates a disruption in stable 2AP base pairing at both 

locations and could suggest that Pol II can unwind the non-template strand at i+3. There 

is 1.2-fold fluorescence enhancement for i+5 and none for i+8, suggesting 2AP is more 

stably base paired at those positions (Figure A-9E). Moreover, crystal structures of Pol 

II bound to scaffolds 2 and 3 bearing non-complementary transcription bubbles with 

strand separation at i+2 and i+3, respectively; both showed base-pairing at i+5, 

recapitulating the results of 2AP experiments (Figure A-10D and E). 

To observe a full non-template strand, it was necessary to utilize a bubble with 

non-complementary DNA to i+5, since Pol II transcribing complexes bearing non-

complementary bubbles at positions i+2 and i+3 showed minimal non-template strand 

density (scaffolds 2 and 3; Figure A-3A, Figure A-10D and E). Thus, we analyzed 

whether forced non-complementarity at i+5 in the transcribing complex contributed to 

increased mobility of the non-template strand and its subsequent capture in our 

scaffold 1 complex. Consistent with this possibility, 2AP experiments where 

complementary base pairing begins at positions i+3 and i+5 showed an increased 

fluorescence signal when compared to bases where complementarity begins at the i+1 

position (Figure A-10F and G). This might indicate increased motion of the non-
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template strand at the leading edge of the artificial transcription bubble bearing non-

complementary bases. Thus, it is possible that the use of a scaffold with non-

complementary base pairing at i+5 resulted in a kinked conformation of the non-

template strand in Pol II-TC structure (Figure A-10H). It is also possible, while highly 

speculative, that the presence of Tfg2 (without Tfg1) in the cleft induced such 

conformation. 

Interactions with the Non-template Strand Are Associated with the Off State of the 

Trigger Loop 

A highly conserved loop comprising Rpb1 residues 1078–1097, the trigger loop 

(TL), has been shown to play a fundamental role in nucleotide selection and catalysis, 

while it is also proposed to govern translocation (Bar-Nahum, Epshtein et al. 2005, 

Wang, Bushnell et al. 2006, Feig and Burton 2010, Kaplan, Jin et al. 2012, Kireeva, 

Opron et al. 2012, Larson, Zhou et al. 2012, Kaplan 2013). Evidence from single-

molecule studies on Pol II indicates that mutation of TL residues alters Pol II 

translocation properties, consistent with these models (Larson, Zhou et al. 2012). 

Structurally, the TL locates between Rpb1 helices 1064–1078 (TLα1) and 1097–1106 

(TLα2), which in turn are part of a universally conserved five-helix bundle (hereafter 

known as TL bundle, TLB) that includes Rpb1 helices 826–846 (bridge helix), 1340–

1357 (TLα4), and 1365–1379 (TLα5) supported by packing of hydrophobic residues at 

the bundle core (Figure A-11A). 
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Figure A-11. Conformational changes involved in DNA translocation.  
(A) Cartoon and surface representation of the Rpb1 5-helical bundle comprising the 
trigger loop-bundle (TLB). a1, residues 1063-1077; a2, residues 1098-1106; Bridge 
helix, residues 810-845; a4, residue 1341-1357; and a5, residue 1365-1377. TL helices 
a1-a2 (hinges), and the U-loop of Pol II-TC are illustrated in yellow (Inset, also shows 
non-template strand i+5 and i+6). The core of the bundle is held together by 
hydrophobic interactions. (B) Conformational changes observed between “off” and “on” 
(structural overlay with PDB:ID 2NVZ, blue) states of the TL and Rpb1 funnel helices. 
All “on” state residues are indicated in blue, “off” state residues are indicated in grey for 
Pol II-TC. A 2Fobs-Fcalc map rendered at 1.0 s is contoured around TL and funnel 
residues. (C) Conformational changes observed between various “off” states of the TL: 
Δ4/7-TC, silver; Pol II-TC, yellow; PDB:ID 1Y1V, red; PDB:ID 3CQZ, magenta; 
PDB:ID 2NVX, green. Differences in secondary structure for TL residues 1093-1098 in 
Pol II transcribing structures, suggests that we were able to capture “off” state 
intermediates. (D) Cartoon representation of Rpb5 residues during “off” (illustrated in 
magenta) and “on” conformations, (illustrated in blue). During “on” state three loops of 
the jaw domain become disordered, suggesting that this region “moves” during this stage 
facilitating translocation of the nucleic acid scaffold. Additional conformational changes 
are observed in Rpb5 wedge residues. These changes could be related to motion in TLB 
residues. (E) Illustration of residues that potentially contribute to hydrogen bond 
stabilization of the nucleic acid scaffold. Rpb1, Rpb2 and Rpb5 residues are illustrated in 
silver, copper and magenta respectively. Over 40 potential H-bonds are disrupted during 
each translocation cycle (H-bond distances of 3.5 Å or less). (F) Surface representation 
of a transcribing Pol II complex. Cyan regions highlight interactions between Pol II and 
the nucleic acid scaffold, which may comprise the structural framework for high fidelity 
DNA tracking. 
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Figure A-12. Trigger Loop and Nucleic Acid Scaffold Interactions during 
Translocation. (A–D) On- and off-state residues will be indicated in blue and gray, 
respectively. A modeled UTP (PDB: 2NVZ) is indicated in light gray/orange. 
(A) Conformational changes observed between off and on (structural overlay with 
PDB: 2NVZ) states of the TL and Rpb1 funnel helices. A 2Fobs− Fcalc map rendered at 
1.0 σ is contoured around TL and funnel residues. (B) Conformational changes observed 
between TL off and on states. Red arrows indicate motion. During off-/on-state 
conformational changes, most TL stabilizing interactions are disrupted, including: (1) 
release of Met1079 from its hydrophobic pocket, (2) disruption of α2-bridge helix H-
bonds, resulting in bridge helix displacement, (3) disruption of Thr1095-Thr1113 H-bonds 
allowing counterclockwise TL motion, (4) disruption of non-template strand/U-loop 
bonds, possibly leading to non-template strand release and translocation. 
(C) Mutations of residues that disrupt Met1079 hydrophobic pocket result in gain-of-
function phenotypes (Kaplan et al., 2012). TLB residues are represented as a solid silver 
surface. Motion of Met1079 might occur through a defined pathway on the protein surface 
(orange trace). Mutations of Ala1076 and Gly1097 (red surface) for bulkier residues can 
potentially disrupt the vestibule of the hydrophobic pocket (Kireeva et al., 2012). 
(D) Possible coupling of the global translocation of the scaffold to local motion of the 
TL. Pol II regions in contact with upstream and downstream duplexes, Rpb2 (sand) and 
Rpb5 (magenta), respectively, are coupled through TLB residues (dark gray). TL off and 
on conformations are illustrated in yellow and blue, respectively (see also Figure A-11). 
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The Pol II TL is intrinsically mobile and has only been detected in X-ray 

structures when bound to small molecules (such as a matched NTP or α-amanitin) or 

protein-ligands (TFIIS) that each stabilize a particular conformation (Kettenberger, 

Armache et al. 2003, Wang, Bushnell et al. 2006, Brueckner and Cramer 2008, Kaplan, 

Larsson et al. 2008). Observed conformations define a closed “on” state where TL 

residues interact with a matched nucleotide in the addition or “A” site (effectively 

isolating a reaction chamber and blocking access to additional substrates) (Feig and 

Burton 2010, Kireeva, Opron et al. 2012) or an open “off” state where TL residues move 

away from the A site. During advanced stages of refinement, electron density for the full 

TL backbone was clearly discernible (Figure A-12A and Figure A-11B), and partial 

residue placement was feasible with help of map sharpening in Coot. TL backbones 

were found in “off” states that differ from previously reported conformations 

(Kettenberger, Armache et al. 2003, Wang, Bushnell et al. 2006, Wang, Bushnell et al. 

2009) such as the Pol II-TFIIS complex, where direct contacts with TFIIS displaced and 

stabilized TL residues (Figure A-11C). Interestingly, our structures show two distinct 

off-state conformations. The first one present in the Δ4/7-TC closely resembles the TL 

loop in the “on” conformation (PDB: 2E2H, 2NVZ) (Wang, Bushnell et al. 2006) but 

rotated counter-clockwise approximately 60° away from the addition site (Figure A-

12A). The second one, observed in Pol II-TC, resembles a hairpin loop, and its shape is 

similar to previously reported off-state structures (Figure A-11A–C) (Kettenberger, 

Armache et al. 2004, Wang, Bushnell et al. 2006). Both conformations induce 

considerable changes in funnel and neighboring residues (Figure A-12A and Figure A-
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11B). Despite these differences in the positions of the TL’s off state, a common set of 

interactions can be observed among these structures and all structures crystallized with a 

DNA scaffold (exclusive of the on-state structures). These include: (1) interactions 

between TL hinge regions (TLα1 and TLα2 helices) with neighboring Rpb1 residues and 

(2) the burying of Met1079 inside a small hydrophobic pocket at the core of the TLB 

(Figure A-12B). 

 Structural overlay between off and on states suggests substantial rearrangements 

in TLB helices and TL residues during the nucleotide addition cycle (Figure A-12B). 

Transition to the on state involves TL residues swinging toward the addition site, where 

hinge contacts are disrupted and Met1079 moves out of its pocket at the core of the TLB 

(Figure 3-12C). Genetic interactions and gene expression profiling of substitutions of 

Rpb1 Ala1076, Gly1097, and Leu1101 with residues that disrupt the Rpb1 

Met1079 hydrophobic pocket (Braberg, Jin et al. 2013) support a model where the 

integrity of the pocket is critical for stabilization of the off state in eukaryotic (Kaplan, 

Larsson et al. 2008, Kaplan, Jin et al. 2012) and archaeal (Fouqueau, Zeller et al. 2013) 

polymerases. Such substitutions are highly related to those that hamper off-state 

conformations by destabilization of the C-terminal TL hinge region; therefore, these 

substitutions are similarly predicted to alter translocation rate and catalysis (Malagon, 

Kireeva et al. 2006, Wang, Bushnell et al. 2006, Kaplan, Larsson et al. 2008, Kaplan, Jin 

et al. 2012, Kireeva, Opron et al. 2012), suggesting that the TL “off” state is specifically 

required for proper transcription. 
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Structurally Linked DNA-Interacting Domains from Rpb2, Rpb5, and TLB Residues 

Could Possibly Coordinate Translocation 

Three regions of Pol II furnish residues that can potentially form H-bond contacts 

with the nucleic acid scaffold (Figure A-11E). These include (from upstream to 

downstream): (1) wedge, wall, and FL1 (Rpb2) with the upstream duplex, template 

strand, and the non-template strand (respectively); (2) TLB, rudder, switch (1 and 2), and 

clamp residues (Rpb1) with DNA-RNA hybrid, template strand, downstream fork, and 

downstream duplex (respectively); and (3) jaw residues (Rpb5) with the downstream 

duplex (Figure A-12D, Figure A-11E-F). Remarkably, these regions have substantial 

interactions among them: TLB helices (TLα4 and TLα5) and Rpb1 residues from a 

seven-helix bundle (Rpb1846-1064) form a large pocket that buries a two-strand hairpin 

from Rpb5193-214, which is in the immediate neighborhood of the jaw motif. Similarly, 

TLB contacts (via the bridge helix) with Rpb2 are extensive and involve “wall” residues 

(with the phosphate chain of the template strand) in the immediate neighborhood of 

Rpb2’s wedge (Figure A-5B and Figure A-12D). Since these regions are coupled 

extensively, it is possible that they could play an important role during translocation. 

Discussion 

Molecular Basis for DNA-Tracking 

Real-time microscopy experiments demonstrated the ability of RNA polymerases 

to rotate DNA by tracking with high fidelity its right-hand helix (Harada, Ohara et al. 

2001). Our structures suggest that it is possible that engagement by wedge (upstream 
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duplex), arch (closing end of the bubble), and jaw and clamp (downstream duplex) 

residues (Figure A-4, Figure A-3 and Figure A-11F) could comprise the structural 

framework that explains such tracking mechanisms. The interactions that Rpb1 (head 

clamp) and Rpb5 (jaw) residues make with the downstream duplex were described in 

several published crystal structures (Westover, Bushnell et al. 2004, Wang, Bushnell et 

al. 2006). However, since contacts with the upstream duplex and arch were not 

previously observed, the correlation between DNA tracking, and its structural 

underpinnings could not be established. Moreover, given that the crystal structures of 

Pol II transcribing complex and mtRNAP show interactions with upstream and 

downstream duplexes, it is possible that tracking mechanisms are conserved in 

transcription (Figure A-5C and Figure A-6). 

We assessed multiple rpb2 wedge alleles to ascertain the role of these elements 

in vivo. The strongest growth effects observed in vivo required removal of the loop 

(Figure A-6D), which may be considered an extensive perturbation to the Pol II 

structure. However, our interpretation of the direct or indirect functions of this loop is 

based on what is known about other Pol II mutants. We found that wedge alleles were 

MPA sensitive and shifted start sites downstream (Figure A-5H and Figure A-6D). This 

profile is relatively rare for Pol II alleles or known general transcription factor alleles 

(reviewed in (Kaplan 2013)), especially for mutants unrelated to the active center (Rpb1 

N488D within the Pol II active site has this phenotypic profile; (Malagon, Kireeva et al. 

2006)). Recent crystal structures of Pol II-TFIIB structures show that the wedge domain 

interacts with the TFIIB core N-terminal cyclin fold (Sainsbury, Niesser et al. 2013). 
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Since TFIIB is necessary for start site selection, it seems plausible that changes in Pol II-

TFIIB interactions could affect this process. Deletion of the wedge loop confers a strong 

defect in occupancy of Pol II at a reporter gene, consistent with an initiation defect. 

However, the wedge mutants do not phenocopy TFIIB (sua7) alleles in relation to MPA 

sensitivity or IMD2 expression (Figure A-6D), suggesting that some functions may be 

independent of TFIIB or relate to an initiation defect not observed in 

particular sua7 alleles. The wedge domain may possibly have a role during transition 

from initiation to early elongation by providing interactions with the upstream duplex 

that could assist TFIIB ejection (Figure A-6F). 

Downstream Fork Flexibility 

The downstream fork is a dynamic region, and different conformations of the 

non-template strand could be allowed during different stages of transcription. Structural 

overlay of the non-template strand from our structures and published structures 

crystallized in the presence of a nucleic acid scaffold show small positional differences 

from i+5 to i+7, which are anchored by U-loop and switch 2 residues (Figure 3-10A). 

However, positions i+2 to i+4 differ in all crystal structures and can be found paired or 

un-paired to the template strand. These observations suggest that there may be a range 

within which the leading edge of the downstream fork can move; hence, fluidity within 

this region could be required to promote bubble opening and maintenance. Moreover, 

non-template strand flexibility correlates with FL2 flexibility (Figure A-9C), which 

adopts multiple conformations (Wang, Bushnell et al. 2006, Meyer, Ye et al. 2009, Liu, 

Bushnell et al. 2010, Cheung and Cramer 2011) to allow interactions with the non-
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template strand during the various transcriptional stages. The size of the bubble itself, 

which appears to be dynamic, might not be so critical due to the fact that Pol II can 

accommodate different lengths and possibly different locations of the transcription 

bubble inside the cleft (Pal, Ponticelli et al. 2005). 

The crystal structure of the ternary complex between T. thermophilus polymerase 

(RNAP), σA, and an open promoter complex (Zhang, Feng et al. 2012) shows that FL2 

residues fold to form part of a 2′-deoxy-GTP “selectivity pocket” for non-template 

strand i+2 during initiation. Also, the crystal structure of the RNAP ternary complex 

revealed that promoter recognition, melting, and bubble loading are carried out by 

σA region-2 residues (Figure A-8C). Thus, architecture of the downstream fork in RNAP 

during initiation is determined by σA as well as FL2 residues. 

The recent crystal structure of E. coli RNAP holoenzyme in complex with a 15-

nucleotide bubble at 6 Å resolution revealed the architecture of the RNAP transcription 

bubble stabilized by σ elements (Zuo and Steitz 2015). However, overlay of RNAP 

bubble structure with our structures shows different trajectories of the non-template 

strand and also different position of the upstream duplex. Such differences could be 

explained structurally, since on the one hand FL1 residues (not conserved in RNAP) 

would clash with the non-template strand of RNAP, and on the other, the presence of σ, 

which itself interacts with the non-template strand, in the RNAP cleft shifts dramatically 

the position of the upstream duplex. 

Interestingly, overlay of the co-crystal structures of Pol II in complex with TFIIB 

(Bushnell, Westover et al. 2004, Kostrewa, Zeller et al. 2009, Liu, Bushnell et al. 2010) 
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with our structure shows that TFIIB linker domain reaches within 6.5 Å of the fork 

junction and could assist bubble loading (Liu, Bushnell et al. 2010, Sainsbury, Niesser et 

al. 2013) and prevent re-annealing of downstream fork during initiation (Figure A-10I). 

Thus, σA and TFIIB could sustain an open fork (during initiation) using different 

mechanisms. 

TL Allosteric Effects and DNA Translocation 

It has been proposed by a number of groups that TL movement contributes to or 

controls translocation (Bar-Nahum, Epshtein et al. 2005, Brueckner and Cramer 2008, 

Feig and Burton 2010, Kaplan, Jin et al. 2012, Larson, Zhou et al. 2012). Our structures 

show Pol II in a post-translocated state, with a TL in the off state due to interactions with 

neighboring Rpb1 residues (Figure A-12A-B, and Figure A-11B). It is possible that a 

matched NTP at the i+1 position might disrupt these interactions, leading to an on-state 

confirmation. The on-state structure (Wang, Bushnell et al. 2006) shows Gln1078 as one 

of the key residues stabilizing a matched nucleotide through formation of H-bonds with 

the ribose. Structural overlay of TL residues between off and on conformations shows 

that Gln1078 moves approximately 3 Å to form H-bonds with the matched nucleotide 

(Figure A-12B; see also (Cheung, Sainsbury et al. 2011). The position of this residue 

might be critical, since on the one hand it could constitute part of the nucleotide 

selection mechanism (Yuzenkova and Zenkin 2010, Fouqueau, Zeller et al. 2013); on the 

other hand, displacement of Gln1078 could trigger extraction of the neighboring 

Met1079 from its hydrophobic pocket, initiating a cascade of events that would lead into 

the full on state. Along with our observations, genetic evidence has shown that mutations 
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of Gln1078 have a comparable effect on Pol II elongation activity as mutations on the 

catalytic His1085 (Kaplan, Jin et al. 2012). Importantly, Gln1078 and His1085 are genetically 

distinguishable, suggesting a multistep process in TL function, consistent with initial 

substrate-Gln1078 interactions and subsequent TL movement or folding. Moreover, Pol II 

activity is also exquisitely sensitive to substitutions around the Met1079 hydrophobic 

pocket (Figure A-12C) (Kaplan, Jin et al. 2012, Kireeva, Opron et al. 2012). These 

substitutions invariably lead to genetic phenotypes, genetic interaction, and gene 

expression profiling phenotypes consistent with increased Pol II activity, most likely due 

to destabilization of the TL off state (Braberg, Jin et al. 2013). 

Critical questions for the Pol II mechanism are: how does translocation occur, 

and what are the molecular determinants of its linkage to the nucleotide addition cycle? 

Our structure reveals that a second pivotal role played by TLB residues could possibly 

include stabilization of the non-template strand. Crystal structures of Pol II bound to 

partial or full nucleic acid scaffolds (Kettenberger, Armache et al. 2004, Westover, 

Bushnell et al. 2004, Wang, Bushnell et al. 2006, Cheung, Sainsbury et al. 2011) show 

that TLα2 and UL residues Lys1102, Asn1106, Lys1109 (amide backbone), and 

Asn1110 locate within H-bond distance to the phosphate chain of non-template strand i+5 

and i+6 (Figure A-10A). Overlay of the two states shows that the hinged motion of the 

TL during matched nucleotide binding results in conformational changes leading to 

increased U-loop/non-template strand distance and hence disruption of potential H-bond 

contacts (Figure A-12B and C). Although speculative, this could suggest that TL 

“off/on” transitions are allosterically coupled to “latch and release” (respectively) events 
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of the non-template strand phosphate chain by U-loop residues. Furthermore, 

comparisons between on- and off-state conformations show that on-state Rpb5 jaw 

residues (interacting with the downstream duplex) become disordered, hence decreasing 

the number of effective contacts with the duplex (Figure A-11D). Since TLB, Rpb5 

(jaw), and Rpb2 (wall, wedge) regions are coupled through extensive interactions, it is 

possible that TL conformational changes are transferred allosterically to downstream and 

upstream duplexes to assist global translocation (Figure A-12D, Figure A-11E-F). 

Our refined structure sheds light into four fundamental mechanistic aspects of 

transcription: (1) In addition to hybrid interactions (Gnatt, Cramer et al. 2001), Pol II has 

four major contact points with a nucleic acid scaffold: wedge, arch, clamp, and jaw 

domains (Figure A-4A and B). Engagement of the minor groove by Rpb2 wedge 

(upstream), arch (closing end of the bubble), and jaw and clamp (downstream) residues 

could comprise the structural framework that explains the mechanism for high-fidelity 

DNA “tracking” observed using real-time optical microscopy (Harada, Ohara et al. 

2001). (2) Pol II residues define the architecture of the transcriptional fork. Arch 

residues coordinate annealing of template and non-template strands at the upstream fork; 

the downstream fork is a highly dynamic area where FL2 residues accommodate 

different conformations of the non-template strand. (3) The structure also suggests that 

Gln1078 is positioned to couple extraction of Met1079 out of the hydrophobic pocket to 

interactions with an incoming matched NTP, initiating a cascade of events leading to a 

full on state of the TL, followed by nucleotide incorporation and subsequent DNA/RNA 

translocation. (4) Finally, our structure shows that Pol II regions in contact with the 
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nucleic acid scaffold are connected as rigid bodies (from Rpb1, Rpb2, and Rpb5) and 

that TL on-/off-state conformational changes could possibly be tied to global 

translocation. 

Experimental Procedures 

Pol II Transcribing Complex Purification and Assembly 

Saccharomyces cerevisiae Pol II and Tfg2 were purified as previously described 

(Chung, Craighead et al. 2003, Wang, Bushnell et al. 2006). To assemble a Pol II 

transcribing complex, equimolar concentrations of oligonucleotides containing a single 

stretch of non-complementary bases and a 9-mer RNA were annealed. The resulting 

nucleic acid scaffolds were mixed with Pol II (3:1 molar ratio), and excess scaffold was 

removed using size-exclusion chromatography (Superdex200, GE LifeSciences) against 

Buffer A (25 mM HEPES [pH 7.5], 100 mM KCl, 5 mM DTT, 0.5 mM EDTA, 10 µM 

ZnCl2). Purification and assembly of Pol II-TC and Δ4/7-TC was achieved as previously 

described (Pullara, Guerrero-Santoro et al. 2013). An SDS-PAGE of the final complex is 

illustrated in Figure A-1E. Ethidium bromide staining confirmed the presence of the 

nucleic acid scaffold (Figure A-1E). Catalytic activities in the presence of TFIIF or Tfg2 

were not determined. 

In Vitro Elongation Assay 

Pol II enzymes for in vitro assays were purified from yeast strains expressing 

wild-type or the mutant rpb2 gene from a low copy plasmid, as described above. In vitro 

elongation assays were performed as described in (Kaplan, Larsson et al. 2008, Kaplan, 
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Jin et al. 2012) with minor modifications in the amount of nucleic acids and Pol II used 

for elongation complexes.  

Chromatin Immunoprecipitation Assays 

Epitope-tagged (RPB3::3XFLAG::kanMX) wild-type or mutant strain containing 

a galactose-inducible YLR454w reporter (kanMX::GAL1p::YLR454w) gene were used 

for ChIP assays. Chromatin immunoprecipitation experiments for in vivo elongation rate 

determination were performed as described previously (Hazelbaker, Marquardt et al. 

2013), with slight modifications.  

Northern Blotting and Primer Extension Analysis 

Northern blotting was performed as previously described (Kaplan, Jin et al. 

2012), essentially following the instructions of GeneScreen hybridization 

membranes (PerkinElmer) with minor modifications. 

2AP Fluorescence Spectroscopy 

Steady-state fluorescence measurements for Pol II-TCs were performed as 

previously described (Liu and Martin 2001, Kashkina, Anikin et al. 2007) with minor 

modifications using a Fluoromax-3 (HORIBA Scientific). Excitation wavelengths 

included both 280 and 315 nm, and fluorescence emission was collected from 340 to 

400 nm. In addition to Pol II-TCs, spectra were collected for buffer, DNA, and Pol II 

alone to correct for background fluorescence. All measurements were performed at 25°C 

in triplicate (n = 3). 
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Crystallization and Refinement 

Pol II transcribing complexes were concentrated to 8–10 mg/ml, and 

crystallization trials produced crystals in several conditions and were verified by SDS-

PAGE analysis of crystals (Figure 3-1F). The structures were solved by molecular 

replacement using 12-subunit Pol II (PDB: 3FKI) (Meyer, Ye et al. 2009) for Pol II 

scaffolds in the presence or absence of Tfg2 and 10-subunit Pol II (PDB: 1SFO) 

(Westover, Bushnell et al. 2004) for Δ4/7-TC in Phaser (McCoy, Grosse-Kunstleve et al. 

2007). Molecular replacement models were refined using the program Buster (Blanc, 

Roversi et al. 2004), Refmac (Murshudov, Vagin et al. 1997), and CNS (Brunger, 

Adams et al. 1998) followed by several cycles of manual building with B factor 

sharpening in Coot (Emsley, Lohkamp et al. 2010). Inclusion of weak-intensity, high-

resolution data improved refinement behavior and stereochemistry (Karplus and 

Diederichs 2012). All figures were rendered using PyMOL (Version 1.5.0.4 

Schrödinger, LLC). 

Author Contributions 

C.O.B. and M.C. contributed to this work equally. C.O.B. and G.C. were 

responsible for crystallization, data collection, structure refinement, and analysis. M.C. 

was responsible for mutagenesis studies, structure refinement, and analysis. H.S. and 

G.C. performed preliminary protein purification and crystallization. A.C., G.L., I.S.B., 

Q.Z., and F.P. performed crystallization trials and X-ray data collection. I.M. and C.D.K. 

performed genetic experiments and analysis of Rpb2 wedge mutants in yeast. C.D.K. 

contributed to analysis of the structures. B.W.G. and M.A.T. performed fluorescence 



 

 195 

experiments and analyzed results. C.O.B., M.C., C.D.K., and G.C. wrote the manuscript. 

All authors commented and approved the manuscript. 

Accession Numbers 

Coordinates and structure factors have been deposited in the Protein Data Bank 

with accession codes PDB: 5C4X, 5C4J for Pol II-TC and Δ4/7-TC, respectively. 

Additional codes are also deposited for supporting structures (PDB: 5C3E, 5C44, 

5C4A). 

 


