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ABSTRACT

Large bore two-stroke natural gas engines are facing more stringent emission regula-

tions in the near future. In order to comply with these new regulations, engine manufactur-

ers have to modify their engines. Redesigning some relevant parts and/or modifications to

the combustion setup of these engines are in order. A deeper understanding and analysis

of all the details of the combustion process could help researchers/engineers in these mod-

ifications. While the experimental methods are still the primary way of analyzing internal

combustion engines, recent advances in numerical methods, and the computing power of

clusters (supercomputers) have opened a new path ahead of engine designers. Using nu-

merical tools could significantly reduce the costs associated with engine modifications.

Three-dimensional CFD tools are the most accurate and detailed numerical tools avail-

able for engine research. CFD simulations of engines could reveal all the details of all the

processes that happen in an engine: the air and fuel intake, mixing of the two, scavenging

process, and the power cycle are some of the processes that could be looked into, using

CFD tools.

The current study represents the numerical simulation of a large bore natural gas en-

gine, using a commercial CFD software package, along with the required experimental

study to validate the results of the simulation work. This document includes the case setup

process for the numerical simulation, which includes the simulation of the reed valve (the

air/fuel ratio control system of the engine), the simulation of the scavenging process, the

simulation of the combustion process, and the conjugate heat transfer simulation between

the solid parts of the engine and the cooling system. The study of conjugate heat transfer

-which is the main objective of this research- provides researchers with the spatial tem-

perature distribution on all the parts surrounding the combustion chamber. The results
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show relatively higher temperatures near and around the spark plug and the air-start cav-

ity. These results could be used for an improved mechanical design of relevant parts, and

redesign of parts and/or combustion/cooling setup to reduce the emission production.

The simulation results were all validated by experimental data. Stuffing box pressure,

in-cylinder pressure, and equivalence ratio of the stuffing box mixture were the validation

criteria for the numerical results. In addition, a single temperature measurement in the

solid parts was used for partial validation of the CHT simulations. This dissertation dis-

cusses the test apparatus, and the process of acquiring the required experimental data for

validation purposes as well.
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1. INTRODUCTION

AJAX E-565 is a single-cylinder, two-stroke, large bore, spark-ignited natural gas en-

gine, which has always been an important player in oil industry. This engine has provided

pumping units with smooth, stable power, while offering lower field costs, less mainte-

nance requirement, and a rugged design. The AJAX E-565 is capable of working with

variable fuel compositions -including both high and low BTU fuels, and so is an easy

choice for a reliable, continuous oilfield operation.

1.1 Background and Motivation

Large bore two-stroke engines are facing more stringent emission regulations in the

near future. To meet these new regulations, some parts of the engines, and/or the combus-

tion setup may need to be analyzed, and redesigned. There are different ways for analysis

and modifications of engines, including experimental and numerical investigations. Addi-

tionally, some parts of the engine need to be redesigned for better mechanical endurance;

for this purpose, the temperature distribution on these parts is required.

Experimental analysis and investigation of engines, not only are limited by instruments

limitations, but also are cost prohibitive. Recently with advances in calculation powers of

computers, and in CFD solvers, a new window has opened in front of researchers to an-

alyze large bore engines; this provides engineers with a better understanding of all the

details of fluid flow and combustion processes inside the chamber. In addition, other influ-

ential variables, important in engine efficiency and emission production can be analyzed.

Some of the important factors that affect the engine performance and emission produc-

tion are listed:

• In-cylinder pressure, and temperature

1



• Temperature distribution inside the combustion chamber, and on its surrounding

walls

• Port geometry, and scavenging method (2-stroke engines)

• Flame development characteristics

• Air/Fuel ratio control strategy

• Mixing characteristics inside the combustion chamber

• Location of the spark plug

• Spark timing, duration, and energy

• Fuel composition

• Burn rate, and heat loss

All of these factors influence both the engine performance, and the emission production

of the engine. The old-school method of design, prototype, and test not only is intensely

time-consuming; but also is very expensive. On the other hand, using numerical meth-

ods, in addition to reducing the required time, will broaden the understanding of many

details that were not easily available through traditional analysis methods, such as fluid

flow development, flame kernel growth, etc.

1.2 Objectives and Tasks

The ultimate objective of this project is to simulate, and analyze the conjugate heat

transfer (CHT) in this engine’s cylinder. Study of CHT in this engine will help researchers

find the spatial temperature distribution in all the parts interfacing with engine coolant

system; with this knowledge, relative parts of the engine, can be modified for improved

engine efficiency, less emissions, and better mechanical endurance.
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To reach the aforementioned objective, the following tasks should be done:

1. Simulation of the air and fuel intake to the engine’s stuffing box and mixing:

Building a model that can properly simulate this engine’s reed valve is going to be

the first task. This model should be able to predict the correct air-fuel ratio inside

the stuffing box, which significantly affects the mixture in the combustion chamber,

hence the combustion performance. The results acquired by this model should be

validated by experimental data.

2. Simulation of the gas exchange process:

The gas exchange process has significant effects on the mixing characteristics inside

the combustion chamber, scavenging efficiency, and consequently the combustion

performance.

3. Simulation of the combustion process:

This will be the next milestone. To get this task done, the two previous tasks have to

be accomplished. The results of this part of the simulation will require experimental

validation through comparison of in-cylinder pressure curves.

4. Simulation of the conjugate heat transfer between this natural gas engine’s combus-

tion chamber walls and its cooling system:

The results of the combustion simulation will then be used to start the conjugate

heat transfer simulations. Near-wall gas temperatures, and convective heat transfer

coefficients calculated in the combustion simulation will be used to simulate the

CHT between the solid parts and the cooling system. This will be the ultimate

objective of this project.
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2. LITERATURE REVIEW

Different types of engines have been thoroughly studied over the past century, and

yet it seems like there is not enough understanding of all the details of the processes that

happen inside an internal combustion engine. With limitations in the instruments, and

possible experiments, there is a consensus that the numerical simulations can help reveal

more details of these processes. The data acquired by the numerical simulation, can then

be used to broaden the knowledge of researchers, and engineers about engines, hence

helping them improve the design and performance of them. [4, 5, 6]

Many factors and variables can affect an internal combustion engine’s performance,

and efficiency. For a stuffing box-compression cross-scavenged two-stroke engine, the

major ones could be listed as: 1) stuffing box charging with fresh air and fuel, 2) mixing

characteristics of the air and the fuel inside the stuffing box, 3) scavenging, 4) combustion,

and finally 5) heat transfer process. [1, 7, 8]

In this particular engine, the charging of the stuffing box happens through a spring-

loaded reed valve. This means that a better understanding of the behavior of the reed valve

can help improve the AFR (air-fuel ratio) control system of the engine [9]. The valve also

contributes in the mixing of the air and the fuel inside the stuffing box, which ultimately

will influence the combustion performance.

The gas exchange process (scavenging) will dictate the residual fraction in the combus-

tion chamber, and is responsible for almost all the UHC emissions through short-circuiting.

[1]

The combustion process is where the power is extracted from the engine; hence is the

most important process to be looked at. The combustion is also responsible for almost all

the emissions production; this means that a closer look at the combustion process might
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help reduce the emissions production in the future.

The engines in general have to dissipate around one-third of the total energy released

by the combustion through heat transfer [7]. A proper heat transfer is critical to keep the

cylinder head/block temperatures down, within the tolerable range for the materials. For

this reason, study of the heat transfer process through the combustion chamber walls, and

the coolant flow, is of utmost importance. Knowing the wall temperatures, can help with

proper mechanical design of the relevant parts. In addition, production of emissions such

as nitrous oxides (NOx) are temperature sensitive; meaning that reducing cylinder wall

temperatures may reduce the production of these emissions [10, 11].

Rolf Reitz in his paper, "Directions in internal combustion engine research" [12] has

described the potential of CFD simulations in forging the future of the internal combustion

engines. In the following sections, the literature related to all the aforementioned important

factors -which shape the engine’s overall performance-, and the effects of CFD simulations

on each one of them will be reviewed.

2.1 Reed Valve Simulation

One of the most important factors in working characteristics of any engine is fuel

control. This factor directly affects the engine performance, fuel efficiency, and emission

production [1]. It can be seen in Figure 2.1 how changing AFR can affect the emission

production of the engine. Based on this graph, which is for a small two-stroke engine, the

following can be concluded:

• HC emissions decrease with increasing AFR.

• CO2 production increases moving from rich mixtures toward lean mixtures, and

then decreases.

• CO emissions are high when the mixture is rich, and then with the mixture moving

to the lean side (higher AFR) CO production is nearly zero.
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• NO production is low with rich mixtures; it gradually increases with increasing

AFR, and then after the mixture passes a certain lean point, it starts decreasing

again.

Based on these observations, it can be concluded that AFR can significantly affect the

combustion characteristics and emission production of an engine.

Figure 2.1: Effects of AFR on CO, CO2, HC, and NO emissions in dry exhaust gas from
a small two-stroke SI engine (regenerated from [1])

As mentioned above, in this engine, the reed valve is responsible for controlling air fuel

ratio; hence, it is very important to simulate this part properly. Numerical simulation of the
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reed valves has been thoroughly studied. In 1978, Hinds and Blair [13] developed a model

for cantilever type reed valves, which considered the petals as simple clamped beams. For

this model, the differential equations of motion for a spring-mass-damping system was

solved, to find the displacement for all the points on a petal. A year later, Blair, Hinds,

and Fleck [14] used their method to simulate two reed valves. They concluded that their

method is capable of simulating the reed valve. Looking at the results presented in these

two papers, shows that although their model is capable of predicting the behavior of the

reed valve petals, the displacement of the petals, and the downstream pressure simulation

are not matching the experimental data very closely.

A few years later, they improved their model. Fleck, Blair, and Houston [15] in their

improved model, considered the reed petal material, as well as the reed width profiles.

Much better results were acquired using this improved model, but the results were not yet

perfectly matching the experimental data.

A different approach to simulating the reed valve was suggested by Mitianiec, and

Bogusz in 1996 [16]. They solved a more complete system of partial differential equations

to simulate the forced vibration of the reed petals. They tried validating the simulation

results with experimental data, and concluded that simulating the petals as plates rather

than beams yields more accurate results.

Cunningham, Kee, and Boyall [17] reported the use of CFD for modeling a two-stroke

engine’s crankcase flows, with utilizing Hinds and Blair [13], and Fleck et al. [15] models,

for prediction of reed petal motion. The average pressure on a plane on the inlet duct, and

local pressure behind the petals were used as boundary conditions for the intake and outlet

sides, respectively. For validation of the simulation results, they used 1-D simulation of the

engine. The piston geometry and the connecting rod were not included in their simulation

model; hence, the accuracy of the results were lower than expected. Another conclusion

they made was that better boundary conditions on the outlet side are required for results
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that are more accurate.

Cunningham, Kee, and Kenny [18] in another CFD simulation study on reed valves,

tried to predict the motion of the reed petals. This time, to simplify the simulation, they

assumed that the engine has symmetry. They also lumped all the petals into just one, and

assumed pin joint, instead of a clamped joint, hence, neglecting the bending of the petals.

Through linking the CFD model with a 1-D model, they provided the boundary conditions

from CFD calculations to the 1-D model, and calculated the petal tip lift with the math-

ematical 1-D model. Average pressures from CFD simulations were used for both sides

of the petals, in the 1-D simulation. At the intake, they assumed constant atmospheric

pressure, which corresponds to wide-open-throttle situation. They then validated the CFD

simulation results with the results of a proven 1-D simulation of the engine. They con-

cluded that the inaccuracy in the results could most probably be attributed to pulsations

in the inlet manifold, which were not considered in the CFD simulations, unlike the 1-D

simulations. They suggested that predicting the intake flow fluctuations, could improve

the results; this can be done by adding the inlet tract.

Matos, Prata, and Deschamps [19] assuming incompressible flow, simulated the body

dynamics of a reed valve in a reciprocating compressor. For simplification, they also used

a simple periodic flow rate, rather than the actual flow rate in the compressor. The complex

interactions between the gas flow through the valve, and the reed dynamics were included

in both physical and mathematical models used for this simulation. Their conclusion was

that flow rate should be calculated as a function of ∆P between the upstream, and the

downstream of the valve. In addition, to improve the accuracy of the simulation work,

they suggested that the compressibility of the gases be considered.

Zeng et al. [20] extended the CFD code, KIVA, to develop a crankcase model that

dynamically predicts the crankcase pressure. They also used the model proposed by Blair,

Hinds, and Fleck [14] to simulate the flow through the reed valve. Since they included all
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the intake and exhaust tracts, they no longer needed dynamic boundary conditions. They

then compared the simulation results with experimental data for a single-cylinder engine;

the exhaust pressure profiles showed an acceptable match. In the next step, they used the

code for a twin-cylinder engine with a folded exhaust manifold. Again, the results showed

acceptable resemblance to the experimental data. They later used the simulation results to

optimize a production engine.

Battistoni et al. [21] simulated the deformation of the reed petals in a 150 cc engine,

by coupling finite element methods, and 1-D pressure simulations. They calculated the

effective area of the reed valve, and assumed that the valve works as a nozzle, with that

calculated effective area. They then validated the simulated pressure at, a point after the

reed valve, with experimental data, and showed good agreement. Through their results

they showed that simulating the downstream pressure is not nearly as sensitive as simulat-

ing the flow rate through the reed valve.

Rothbauer et al. [22] studied two different methods of simulating the reed valve: 1)

spring-damping system, and 2) bending beam model. To acquire validation data, they

used a high-speed camera, and measured the displacement of the reed petals; they then

compared the results of both methods, with the experimental data. They concluded that

the numerical results are acceptable for the purpose of predictive simulation. Through

their simulation results, it can be inferred that using pressure curves of the upstream of

the valve, could significantly improve the simulation results; these pressure curves can be

acquired experimentally, or through 1-D simulations.

Govindan, Venkatesan, and Ramasamy [23] developed a mathematical model capable

of simulating a reed valve reciprocating air compressor. This reed valve, which is being

used in braking system of heavy passenger vehicles and trucks, is a plate type. Experi-

mental cylinder pressure was used to validate the simulation results. The fluctuations of

pressure, during suction and discharge processes, and the fluttering behavior of the plate
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was observed in their simulation models.

Jajcevic et al. [24] utilized Blair’s 2-D model with CFD tools, and simulated a reed

valve. In this study, the injection and combustion processes were not simulated. Results

of previous simulations, and/or experimental data were used to initialize the simulation

domain every time. In the end, the simulation results were validated with experimental

crankcase pressure; the results showed good correlation.

Gonzalez, et al. [25], used FSI (fluid structure interaction) methods to simulate the

flow of an incompressible gas through reed valves with typical use in reciprocating com-

pressors. In this study, a LES based CFD solver was used for modeling the turbulent flow.

They have presented some of the numerical results, but unfortunately, no validation has

been done with experimental data.

In summary, it appears that the most accurate results come from the models, which

simulated the body dynamics of the reed valve. The significant effect of setting proper

boundary conditions (from 1-D Simulation results, or experimental data) on the results is

obvious throughout these studies. However, the simulation of the body dynamics, adds to

the complexity of the models, which inevitably will increase the CFD simulation run time.

2.2 Scavenging Simulation

The process of scavenging the burnt gases from the combustion chamber with fresh

charge is present in all two-stroke cycle engines, and has several consequences. The first

issue with this process is that a big portion of the fresh charge will be vented out through

the exhaust manifold during the scavenging. This phenomenon is called short-circuiting,

and for a typical two-stroke engine, can be as high as 20% of the fresh charge. In pre-

mixed two-stroke engines, where fuel and air are mixed in the stuffing box (crankcase in

some cases), and both enter the combustion chamber during the scavenging process, the

short-circuiting makes up for almost all the UHC (unburnt hydrocarbon) emissions. This
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significantly reduces the fuel economy of theses engines [1].

From as early as 1985, researchers such as Sweeney et al [26] have been trying to

look into the details of the scavenging process, through numerical simulations. They used

a 3-D computational fluid dynamics program, to simulate the scavenging process of a

loop-scavenged two-stroke engine. In this study, they only considered the flow inside

the combustion chamber. They carried out the simulation for five different engines, and

ranked the engines based on their scavenging efficiency. They then compared this ranking,

with the ranking acquired by testing all these engines in an experimental rig, and stated

that the numerical simulation shows good agreement with the experimental data. They

concluded that in order to improve the results of this numerical simulation, better boundary

conditions, and validation data is required.

Smyth, Kenny, and Blair [27] performed an experimental and numerical study, on

a loop-scavenged two-stroke engine, because they deemed a detailed knowledge of the

scavenging port flow is essential. They used a laser Doppler anemometer (LDA), to do

measurements both in the cylinder, and the ports. They then reported the results as Scav-

enging Efficiency-Scavenging Ratio characteristics, and presented measurements of the

mass flow rate as functions of pressure drop across the ports, for different port openings.

Through the experimental study, they showed that the flow does not enter the cylinder in

the design direction of the port for any port opening. They then ran simulations, with either

experimental velocity boundary conditions, or the assumption of plug flow in the design

direction of the ports. Comparison of the results showed that the assumption of the plug

flow predicts much lower short-circuiting, thus is not acceptable. This means that either

measured velocity boundary conditions, or a complete simulation of the flow entering the

cylinder through the ports is necessary to get acceptable results with CFD simulations.

Although their simulation results were not matching the experimental data that closely,

they concluded that the use of CFD simulations as a design tool for two-stroke engines is
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justifiable.

In 1990, Sher [28] published a review of all the work done for 30 years to experimen-

tally and numerically evaluate the success of the scavenging process. In this paper, he

stated that the scavenging process is the most important factor that controls the efficiency,

and the performance of two-stroke engines. In the review of the numerical models, he

first cited the one-phase models, which assume that: 1) the scavenging process happens

in a constant volume and pressure inside the cylinder; 2) fresh charges will push the burnt

gases out by a perfect displacement mechanism, while entering the combustion cham-

ber; 3) fresh charge, and the burnt gases do not exchange any heat or mass; and 4) that

the cylinder walls are adiabatic. He then concluded that while the one-phase models are

very simple to use, they are not realistic. To solve this issue, researchers then looked into

multi-zone models to simulate the scavenging process. For these models, three phases are

assumed: 1) displacement, 2) mixing, and 3) short-circuiting. The chamber is subdivided

into zones, each of which contains either fresh charge, or a mixture of the fresh charge

and the burnt gases, or just the brunt gases. For this model, the following assumptions are

made: 1) uniformity of the in-cylinder pressure; 2) dependency of the temperature to the

zone, but uniformity of it within one zone; and 3) no heat exchange between the zones. He

then extracted the conclusion that while these multi-zone models are much more accurate

than the one-phase models, they still are not very realistic, since assuming definite phases

is erroneous. He then discussed some of the very early CFD simulation models as "hydro-

dynamic models", and suggested that the complexity of the scavenging process requires

these sophisticated tools to capture all the details of this process. These models are capa-

ble of solving the complete set of the differential equations (conservation laws of mass,

energy, and momentum), which govern the scavenging process. In addition, he concluded

that these CFD models could be used for optimizing the geometry of the cylinder, and the

ports.
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Sher et al. [29] presented a numerical and experimental study on a steady uniflow-

scavenged two-stroke engine. They used a very simple engine geometry, to make the

study less complicated. For the experimental study, they used a hot-wire anemometry

technique, to measure the three orthogonal components of the average velocity, and the

turbulent intensity at 28 different points inside the chamber. For the numerical investiga-

tion, they modified a CFD code, and solved the differential equations. They concluded

that the getting extremely good agreement between numerical and experimental results is

very difficult, even for a relatively simple geometry. They suggested that a more accurate

turbulent model might help getting numerical results, which are more reliable.

Lai, Przekwas, and Sun [30] numerically simulated the scavenging flow process of a

motored two-stroke engine. For this study, they divided the geometry into six computa-

tional domains: cylinder, engine dome, exhaust, and transfer ports. They also studied the

effects of the inclination of the boost port angle on the scavenging process. For simulat-

ing the turbulence, a two-equation turbulence model was used; the equation was corrected

to consider the compressibility of the gases. They concluded that the scavenging flow is

significantly sensitive to the geometry of the ports, and the upstream pressure. They also

concluded that the transient nature of these turbulent flows requires the simulation of the

whole geometry, including the ports, and manifolds; they ruled that isolated simulation of

the chamber would not be accurate and acceptable. They argued that the CFD simulations

are capable of being used to provide detailed flow field information.

Dekanski, Bloor, and Wilson [31] tried a numerical method, to optimize the geometry

of a two-stroke engine. In their work, the elements of the internal geometry of the engine

were represented by partial differential equation, and the flow inside the engine was sim-

ulated by CFD methods. They used a code, based on finite volume methods, and used a

k−ε model to simulate the turbulence. They have not done any validation attempts for the

simulation work. They were trying to prototype the optimized design, and run experiments
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on it to validate the simulation results later.

Raghunathan and Kenny [32] used a STAR-CD CFD code to simulate a loop-scavenged

two-stroke engine under motoring condition. This code uses a multi-block approach to

simulate the flow in different parts of the geometry. They then compared the simulation

results with experimental data (velocity field) acquired before. They mentioned in the re-

sults that the in-cylinder flow is significantly sensitive to reverse flow from the exhaust

manifold at EPO. Their simulation results shows a complex structure for the in-cylinder

flows, majorly consisting of recirculating flow features. The comparison of the numerical

simulations results and the experimental data revealed that the CFD code is capable of cap-

turing the large-scale flow structures, and the global flow properties. On the other hand,

they concluded that the numerical results do not capture the detailed flow characteristics.

They mentioned that the simulation results were not accurate enough during the open-port

phases of the cycle, and attributed the inaccuracy to low mesh density around the ports.

McElligott et al. [33] used the CFD code VECTIS to simulate a stratified scavenging

process in a two-stroke engine. The goal of their work was to reduce exhaust emissions.

They ran experiments on the same engine to acquire validation data for the numerical

study. The CFD results showed good correlation with the experimental data. The results

of the CFD simulations were interesting because they were able to provide detailed insight

into the flow behavior inside the cylinder. They then used the CFD code, to test different

cylinder geometries, to investigate possible improvements in trapping efficiency.

Payri et al. [34] coupled a 1-D model with CFD simulations, to simulate the scavenging

process of a small two-stroke engine, trying to optimize the geometry. The results of the

1-D simulation were used as boundary conditions for the CFD code. The port geometries

were built by parametric design, letting the researchers change the geometry with ease,

and test the effects of the geometry on the scavenging process.

Benajes et al. [35] analyzed the combustion process, emissions, and the efficiency of
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a newly designed two-stroke HSDI (high-speed direct injection) engine. As a part of their

study, they looked into effects of the scavenging process, and the mixing in the cylinder,

on the combustion characteristics, exhaust emission levels, and the engine efficiency. This

study, although purely experimental, showed how important the scavenging process is on

the combustion efficiency, and the emissions production of two-stroke engines. The trap-

ping efficiency of the engine was shown to have significant effects on the NOx emissions.

The mixing characteristics on the other hand, were shown to influence the soot production.

In two-stroke engines, short-circuiting is the main reason for having high levels of

UHC emissions. Garg et al. [36] used a CFD model to simulate a small two-stroke loop-

scavenged engine, in an attempt to understand the short-circuiting phenomenon. They used

STAR-CD for the CFD modeling of the engine, and simulated the expansion, scavenging,

and the compression processes. They then used a PIV measurement in motoring condi-

tions to validate the simulation results. Experimental in-cylinder pressure, and experimen-

tally measured trapping efficiency were also used as validation criteria. After validating

the numerical results, they used the CFD model to calculate the delivery ratio, trapping

efficiency, scavenging efficiency, and amount of short-circuiting of the fresh charge, at

different load and speed conditions. The numerical results showed that the engine has

20-25% short-circuiting in all speed-load conditions, and the culprits were decided to be

the port design, and the wave dynamics of the exhaust pressure. They then ran simulations

for three different port designs, and showed that for this engine, an optimized port is ca-

pable of reducing the short-circuiting by 12%. They then experimentally tested the same

optimized port design, and showed 10% reduction in UHC emissions.

Overall, it can be established from the literature that the proper simulation of the scav-

enging process in two-stroke engines is very important.
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2.3 Combustion Simulation

In 1981, Butler et al. [5] published a review of all the numerical methods available at

the time, capable of simulating multi-dimensional chemically reactive fluid flows in inter-

nal combustion engines. The importance of the combustion simulation is discussed, and

then a list of researchers and institutes who have done work on the numerical simulation

of the combustion process are presented.

Kong, Han, and Reitz [6] used a CFD code to simulate a diesel engine. For the com-

bustion phase of the simulation, they used a multi-step kinetics model, and a combustion

and ignition model, which were switched at 1000 K. The ignition model was used in loca-

tions with temperatures below 1000 K, and the combustion model for places with higher

than a 1000 K temperature. Extended Zel’dovich mechanism was used to describe the NO

formation. The numerical results showed good correlation with the experimental data.

Reitz and Rutland [37] developed and validated a CFD model for diesel engines. This

model is capable of simulating the combustion, and calculating the emission production.

They used a modified version of the KIVA code for the computations, and done some mod-

ifications to the sub-models to improve the results. For the combustion process, they used

multi-step kinetics ignition, and laminar-turbulent characteristic time combustion mod-

els, Zel’dovich NO formation, and soot formation. They reported on using a modified

RNG k − ε model for turbulence modeling, with significantly improved results. They

then ran experiments on a single-cylinder version of a heavy-duty truck, and validated

the simulation results with the experimental data. They reported that the combustion per-

formance is significantly affected by intake flow process. The comparison between the

CFD results, and the experimental data showed a generally good agreement between the

in-cylinder pressure, heat release, soot and NOx emissions prediction, and the combustion

visualization.
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In 1999, Jasak et al. [38], with concerns about the long simulation time for internal

combustion engines, tried to develop models to the end goal of rapid CFD simulations.

They briefly presented some of the combustion calculation results, and showed that using

finer grids could result into prediction of the combustion inside the cylinder that are more

accurate. This of course, requires parallelization capabilities of the CFD code, to speed up

the simulation, and reduce overall simulation run-time.

Senecal [39] in his dissertation, discusses a new methodology for optimization of in-

ternal combustion engines, using multi-dimensional modeling. Simulating the combustion

inside the cylinder is a part of his research; the combustion model used for CFD simula-

tions of a diesel engine is discussed in detail in this dissertation. A comparison between

numerical simulation results and experimental data is done; in-cylinder pressure, and emis-

sion production, show close correlations. The numerical model is then used with a genetic

algorithm optimization method, to find the best design characteristics for the simulated

engine, to achieve reduced emissions production, and improved performance.

Kong and Reitz [40] implemented a detailed chemical kinetics mechanism into KIVA-

3V CFD code, to simulate the combustion and emissions of a HCCI engine. They started

the simulations from IPC (intake port closure), and used the results of a 1-D simulation,

capable of gas-exchange process simulation, as initial conditions. The simulation results

were validated with experimental data; close agreement between in-cylinder pressure and

heat-release rates were achieved. The inclusion of effects of turbulent mixing on reaction

rates, made the prediction of combustion phasing possible. The simulation results showed

that the concentrations of UHC and CO are higher near the walls.

Drake, Fansler, and Lippert [41] used CFD methods to model a spray-guided direct-

injection spark-ignition (SG-SIDI) gasoline engine. They used high-speed spectrally re-

solved combustion luminosity imaging, and in-cylinder pressure measurements as valida-

tion data. The CFD calculations were done using GMTEC, which solves for momentum,
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energy, and species concentration equations. The boundary conditions for the CFD code

were obtained from a 1-D simulation work on the engine. The simulation was divided into

two parts: 1) the open portion, and 2) the close portion. The open portion uses a courser

grid to simulate the induction flow faster; the results are then mapped to a finer grid af-

ter the intake valves are closed, and the close portion simulation starts with the finer grid

size. The spark plug was not included in the simulation domain; instead, the ignition was

imposed on the cells, by a burn rate at the ignition timing. From both numerical and exper-

imental studies, they concluded that for a fixed injection timing, an earlier ignition timing

would increase rich burning. The simulated and measured heat-release rates showed good

agreement for different engine operating conditions. They claim that the detailed knowl-

edge acquired through this numerical simulation work, could be used as a basis for engine

design optimization.

Cheng and Wallace [42] used CFD models, to simulate the ignition and combustion

for a glow plug assisted DI natural gas engine. In the numerical study, the swirl ratio

inside the combustion chamber was set manually as an initial condition. The simulation

work included both un-shielded and shielded glow plugs. The results of the former were

compared with experimental data, and showed very good agreement. The conclusion was

that the shielded glow plug performs much better than the un-shielded version. The work

again emphasizes the ability of the numerical simulations to capture details of ignition and

combustion.

Yang, Solomon, and Kuo [43] used n Arrhenius combustion model in the CONVERGE

CFD software, to simulate ignition and combustion in a SG-SIDI engine. To simulate the

spark event, they used an energy deposition model, allowing the spherical ignition source

to move. They validated the simulation results, with experimental data acquired from a

single-cylinder SG-SIDI engine with both single and double-pulse fuel injections, at idle-

like lean-burn operating conditions. They mentioned that a very fine mesh (≈ 0.125 mm) is
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required to capture the flame front development properly. They also studied the effects of

advanced spark timing numerically and experimentally, and concluded that the simulation

is capable of providing reasonable predictions for this engine.

Wang et al. [44] used a 1-D GT-Power code to provide initial and boundary condi-

tions for a CFD simulation of a light-duty spark ignition (SI) gasoline direct injection

(GDI) engine. The CFD simulation is carried out using CONVERGE CFD. This engine

has a dual-fuel combustion system; hence, three combustion modes are being used, based

on the engine load:1) at high load conditions, a diesel micro-pilot (DMP) mode, 2) at

low loads spark-ignition combustion, and 3) in the transition zone, diesel assisted spark-

ignition (DASI) combustion are used. The main focus of the paper is the DMP mode

simulation. The optimization of the main parameters of the engine is the final goal of

this study. For the combustion simulation, a dual-fuel chemical kinetics mechanism was

used; this mechanism consists of 43 species, and 78 reactions. The numerical simulation

results were validated with experimental data (rate of heat release, and in-cylinder pres-

sure) for various operating conditions. The concluded that the CFD simulation is capable

of accurately predicting the combustion, in all tested operating conditions. In addition, the

mentioned that the combustion process is sensitive to parameters, like intake temperature,

EGR rate, injection pressure and timing, etc. The CFD was used to assess the influence of

each of these parameters on the combustion.

Raju et al. [45] implemented multi-zone model in CONVERGE CFD code, with the

goal to speed up the simulation of the combustion process. It is known, that while detailed

chemical reaction mechanisms are preferred for their added accuracy, they could reduce

the simulation speed significantly, up to the point that the combustion simulation is the

most time-consuming part of any engine simulation. The multi-zone model has the po-

tential to reduce the combustion simulation time significantly. In this method, cells with

similar temperature and equivalence ratio are grouped into zones. The calculations are
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done within the zones, and then the calculated temperature and mass fractions of the zones

are re-mapped into the CFD cells, in a way that preserves the temperature and compo-

sition non-uniformities. They then compared the multi-zone-enabled simulation results,

with detailed chemical reaction mechanism simulation results, for two different cases, and

showed good correlation; while saving ≈90% simulation time.

Etcheverry, Patterson, and Grauer [46] used CONVERGE CFD to simulate a re-designed

large bore natural gas engine with high pressure fuel injection and electronic prechamber

fuel control. The goal of the simulation was to assess the effects of the engine modification

on the emissions production of the engine, and to confirm the reduction in the emissions

prior to manufacturing the re-designed engine. They compared the simulated in-cylinder

pressure with experimental data, and confirmed the accuracy of the models. Then they

looked into exhaust emission levels, and compared the results of the re-designed engine,

with the baseline results. The simulations confirmed significant reduction in both CO and

NOx emissions; in addition, UHC emissions were reduced by approximately 70%. They

concluded that the CFD tools are invaluable tools at engineers’ disposal, which could be

used for analyzing new designs.

In another study, Etcheverry, Patterson, and Grauer [47] used multi-dimensional nu-

merical simulations, to re-design another large bore two-stroke natural gas engine, with the

goal to reduce the emission production of the engine. This naturally aspirated, crankcase-

scavenged, horizontal engine was simulated using CONVERGE CFD. Experimental in-

cylinder pressure was used as validation criterion for the simulation data. They then used

the simulation results of the combustion, in another CFD package to simulate the conju-

gate heat transfer inside the prechamber, and looked into thermal stresses on the walls of

the prechamber. These results could be used to improve the design of the prechambers for

these engines. In the conclusions, they emphasized the potential of CFD tools for virtual

design and analysis of engines.
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Givler et al. [48] used CONVERGE CFD to test a reduced chemical reaction mecha-

nism for gasoline combustion modeling. They started from the detailed Primary Reference

Fuel (PRF) mechanism with 1034 species and 4236 reactions from Lawrence Livermore

National Laboratory (LLNL), and reduced the mechanism for two different scenarios. A

high-pressure (20-50 bar) mechanism with 123 species and 502 reactions, and a low-

pressure (2-10 bar) mechanism with 110 species and 488 reactions. They then coupled

the mechanisms with multi-zone chemistry solver, and simulated gasoline combustion for

various engine conditions. Two engines were tested in this study: a Turbo-charged Di-

rect Injection (TCDI) engine, and a Port-Fuel Injected (PFI) engine with Charge Motion

Control Valve (CMCV). They then presented the results of the simulation work, compared

the simulated in-cylinder pressure with different reaction mechanisms with experimental

data, and showed acceptable correlations. This shows that the CFD simulation is capable

of predictive studies, and the details of the combustion process could be captured using

these numerical tools.

The great potential of the CFD simulations in predictive study of combustion in internal

combustion engines have been established through literature review.

2.4 Conjugate Heat Transfer Simulation

It is well known that the heat transfer information in internal combustion engines is

very important, for multiple reasons; the heat transfer influences the engine efficiency, and

significantly affects the emissions production. Experimental studies to evaluate the heat

transfer in CI and SI engines have been done thoroughly over the past decades; one of

these studies was done by Alkidas [49] on characterizing the heat transfer in a four-stroke

spark-ignition engine. In this study, he modified an eight-cylinder engine to operate on

one cylinder, and modified the cylinder head to insert four heat flux probes in different

location on the head. He then recorded the crank angle resolved surface heat flux for both
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motoring and firing conditions, for different engine speeds and spark timings. He found

out that the heat flux significantly is dependent on the location of the measurement. In

addition, the results showed that the peak heat flux increases for higher engine speeds.

Two years later, Alkidas and Myers [50] used the same test apparatus as [49] to assess

the effects of AFR and volumetric efficiency on the heat flux. They showed that the heat

flux is higher for near-stoichiometric mixtures, and is lower for both lean and rich mix-

tures. They also presented the results that showed a 30% increase in heat flux, with a 20%

increase in volumetric efficiency. They then measured the heat transfer to the walls in the

closed portion of the cycle, and showed that the results match with calculations from the

heat flux measurements.

Later, numerical modeling of the wall heat transfers started. Angelberger, poinsot, and

Delhay [51], in 1997, developed a model from direct numerical simulation results, which

could be implemented in CFD solvers. This model could estimate the mean heat loss

through combustion chamber walls; thus, improve the numerical simulation of the spark-

ignited engines, by modeling the flame quenching at the walls due to wall heat transfer.

Xin et al. [2] proposed a method to integrate the combustion simulation, with conjugate

heat transfer analysis. The goal of their work was to be able to evaluate the temperature of

different components of the engine quantitatively. It is known, and they mention that the

temperature distribution is too non-uniform on the chamber walls to be assumed uniform

for the CFD simulations; hence, the results will not be accurate with the latter assumption.

With their proposition, they offer a way to reduce the errors associated with the uniform

temperature distribution assumption. For the CFD simulation of the combustion, they used

commercial KIVA-3V code. The flowchart of their integrated analysis method is presented

in Figure 2.2.

For the simulation work, they included the cylinder head, head gasket, cylinder block,

and cylinder liners, and the coolant passage through these parts. They only considered one
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Figure 2.2: Flowchart of the integrated analysis method proposed by Xin et al.
(regenerated from [2])

bank of a V6 engine for this study. It should be noted that in their simulation of the coolant

flow, the phase change was not considered. The combustion simulation was first validated

with experimental in-cylinder pressure data; while the results were not perfect matches,

they were acceptable enough for the purpose of temperature prediction. The simulated

spatial heat flux values from this step were mapped to the walls for the conjugate heat

transfer simulation. The resulting temperature distribution was then used as boundary

condition for the CFD simulation. The iteration process continued until both simulations

converged.

Baniasad, Khalil, and Shen [52] reported on using an in-house developed 1-D two-

zone combustion model, to provide boundary conditions (such as crank angle resolved
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combustion flame propagation, burnt/unburnt gas temperatures, and heat transfer coeffi-

cients) for 3-D conjugate heat transfer simulations. This 1-D model was first validated

against experimental data. The model could be calibrated for different engine load and

speed conditions. For the conjugate heat transfer simulation with commercial software

STAR-CD, a nucleate boiling model was considered for the coolant flow, to increase the

accuracy of the simulation results. The maximum temperature through the exhaust valve

was then calculated using the 3-D simulation code, and the results were validated against

experimental data; the simulation results show good correlations with the experiments.

Esfahanian, Javaheri, and Ghaffarpour [53] coupled KIVA-3V and NASTRAN com-

mercial software packages to do a thermal analysis of a piston in a spark-ignition internal

combustion engine. The 3-D simulation results of the combustion inside the cylinder were

used as boundary conditions for the calculation of heat conduction through the piston

body. As the temperature distribution on the piston crown is one of the boundary condi-

tions for the combustion simulations, an iterative method has been used to get results for

both simulations that are more accurate. To analyze the effects of combustion boundary

condition on the conjugate heat transfer study, the authors ran the CHT simulation with

3 different combustion boundary conditions: 1) surface and cycle averaged values for the

gas heat flux at the piston top surface; 2) locally cycle averaged values for the gas heat

flux at the piston top surface; and 3) fully locally transient values for the gas heat flux at

the piston top surface. They concluded that the third method is the most accurate, and the

most time-consuming; the first method is the less accurate, and the fastest; and the second

method is in between.

Urip, Liew, and Yang [54] used KIVA-3V to simulate the in-cylinder flow and com-

bustion of a 5.4-L V8 engine, and modified the code to also simulate the conjugate heat

transfer of the solid parts. At the gas-solid interface, they added pyramid, prism, or hexahe-

dron elements to transmit the data from the fluid simulation domain to the solid simulation
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domain. Unlike the previous studies covered in this chapter, this study couples the gas-

phase simulation with the solid-phase simulation throughout the whole engine simulation

cycle. It should be mentioned that the authors state that this method would require several

simulation cycles to get to periodic steady-state temperature distribution for the solid do-

main, as opposed to the fluid domain, which will reach periodic steady-state, within two

or three simulation cycles; hence, this method will be much more numerically expensive

than the previously mentioned methods.

In another study, Urip and Yang [55] used the simpler method of iterating between gas

flow and combustion simulation, and conjugate heat transfer to calculate the temperature

distribution on the walls of one cylinder of a truck engine. KIVA code was used for

the gas flow and combustion simulations, and FLUENT was used for the coolant flow

and conjugate heat transfer simulation. They ran the simulations two different ways: 1)

steady-state, and 2) periodic steady-state. The results showed that the difference between

the two solutions is minimal, thus, the additional complexity associated with the second

method is not justifiable.

Fontanesi, and McAssey [56] reported on an experimental and numerical study, fo-

cused on improving the accuracy of CHT simulations. For this purpose, they compared the

experimental data (temperatures at different points, and heat fluxes) acquired from a very

simple electrically heated horizontal aluminum channel supplied with constant volumetric

flow rate coolant, with numerical results. They then used several different turbulence and

boiling models in the numerical simulation, to analyze the effects of these models on the

accuracy of the results. They concluded that the simplified boiling models are not capable

of accurate predictions. The validation process proved that the v2-f model provides the

most accurate results, with reasonable additional computational cost. They then applied

this model to a 3L HSDI diesel engine to predict the temperature distribution within the

cylinder head, and the cylinder block.
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In another study, Fontanesi, Cicalese, and Giacopini [57] simulated the conjugate heat

transfer of a V6 turbocharged diesel engine, to analyze and optimize the engine’s water

cooling jackets. For this purpose, a full CFD and FEM analysis of the engine under actual

engine operation conditions was carried out. Boundary conditions were set from a combi-

nation of experimental measurements, and 1-D models of the engine. The CFD simulation

setup was calibrated and then validated by experimental temperature distribution within

the cylinder head at eight different points. The phase transition and vapor formations mod-

els were also included in the numerical simulation. In addition, design optimization of the

engine to improve fatigue strength was addressed. The numerically simulated temperature

distribution correlates very well with the experimental data; in addition, the locations on

the engine that were predicted by the numerical simulation to be susceptible to fatigue

failure, were very close to the experimentally marked points.

Fontanesi, Cicalese, D’Adamo, and Pivetti [58] looked into the effects of setting proper

boundary conditions, and detailed representation of the physical properties of the materials

on the conjugate heat transfer simulation results of a V8 high-performance SI engine,

separately. In addition, the effects of simplifying assumption of single-phase coolant,

versus two-phase coolant was assessed. The numerical simulation results were validated

with experimental temperature measurements in the cylinder head. The results emphasized

the importance of considering the entire cooling circuit in the simulations. In addition,

importance of proper boundary conditions for the CHT simulation was concluded. The

authors suggested that the use of two-phase models for the coolant is not necessary, and

due to the added complexity, should be avoided, unless a very critical thermo-mechanical

study is being carried out.

Li and Kong [59] fully coupled the calculations of the fluid flow and the transient heat

conduction in the solid components (cylinder head, and the piston crown), for a diesel

engine. To validate the model, a simple simulation in a slab was compared with the ana-
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lytical calculations. The model was then applied to a section of the engine’s combustion

chamber, and the solid parts. The results show that the model is capable of predicting

the temperature distribution on the combustion chamber surfaces. It is evident that the

wall temperatures change almost 100 K within one cycle of the engine, due to the tran-

sient nature of the diesel spray and combustion. This study shows that the use of CHT

models does not change the predictions of the global engine combustion and emissions

parameters, significantly.

Fontanesi and Giacopini [60] analyzed and optimized the water cooling jacket of a

V6 diesel engine, by means of multi-phase CFD-CHT numerical simulations. The goal

of the study was to assess the fatigue strength of the cylinder head. They included vapor

formation and phase change in the simulation of the coolant, and simulated one bank

of the engine. Numerical simulation results were validated by comparing the simulated

temperatures at a few different points with experimental data. A thermo-mechanical study

was then carried out to optimize the design of the engine for fatigue strength.

Punekar and Das [61] used CFD tools to simulate and assess the effects of sub-cooled

nucleate boiling in the cooling jacket of an internal combustion engine. To simulate the

multi-phase flow, momentum, continuity, and energy equations were solved for the mix-

ture; in addition, the volume fraction equations were solved for the secondary phases in

ANSYS FLUENT. The capability of the models to capture the effects of changes of the

wall temperature under different pressures, and flow velocities on wall heat flux was tested

against a very simple experimental work. The model is then applied to just the cylinder

head of a single cylinder engine. In the cylinder head, there are three fluid zones (ex-

haust and intake manifolds, and cooling jacket) and one solid zone. Time-averaged heat

flux acquired from combustion simulation was applied as boundary condition for the CHT

simulation. Heat transfer enhancement of up to six times were observed in small sur-

faces were boiling was captured. Looking at the presented results, though, reveals minor
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changes in the overall temperature distribution on the cooling jacket walls, between the

multi-phase and the single-phase simulations.

In yet another study, Fontanesi et al. [62] integrated the combustion simulation and

the conjugate heat transfer of a high performance GDI engine. An iterative approach was

taken between the two simulations, until convergence was achieved in both. Combustion

and knocking events were recorded. CHT simulation converged after just one loop of the

simulation. The combustion simulation was validated via in-cylinder pressure comparison

with experimental data. The CHT simulation results predict a higher in-cylinder mixture

temperature, compared to the uniform wall temperature simulations, hence, the combus-

tion development is faster with CHT calculated wall temperatures.

Iqbal, Arora, and Sanka [63] coupled CONVERGE CFD and StarCCM+ to map the

temperature distribution of an internal combustion engine with conjugate heat transfer

simulations. The combustion simulation was done using CONVERGE CFD, while the

CHT simulation was done with the StarCCM+. Convective heat transfer coefficient and

near-wall gas temperatures from combustion simulation are applied as boundary condi-

tions for the CHT simulation. A Pseudo steady-state boiling model was utilized in the

CHT simulation study. Simulation was done for three different operating conditions. A

few thermocouples were installed in the engine, and experimental local temperatures were

acquired. The numerical simulation results were compared to the experimental data, and

acceptable correlation was observed. In higher temperature regions, the numerical data

was reported to be within 5% of the experimental temperature.

Jahangirian et al. [64] utilized ANSYS FLUENT to study the conjugate heat transfer

of a heavy duty V6 diesel engine. The goal was to do a thermos-mechanical fatigue study

on critical parts of the cylinder head for various operating conditions. The simulation

results were validated, using 31 thermocouples in different locations of the cylinder head.

The measured local temperatures were compared with numerical data for validation of
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the CHT results; predicted temperatures, were correlating with the measured temperatures

well. They, too, used an iterative method, going back and forth between the combustion

simulation, and the CHT simulation until convergence was achieved. The temperature

distribution was then imported into a FEM analysis, to assess the fatigue strength of the

designed cylinder parts.

Cicalese, Berni, and Fontanesi [65] applied their previously developed method to a

turbocharged DISI engine, to evaluate the thermal field of the engine. A modified thermal

law was proposed to formulate CHT; a comparison between the results of this modified

law and experimental data shows a very good agreement. Regardless of the location of

the measurement and the engine speed, the calculated temperatures were usually higher

than the measured temperatures. In some conditions the temperatures were very close, and

some were between 10 to 60 K higher than the measured values.

Kundu et al. [66] performed CHT simulations on a small diesel engine in order to

calculate the heat loss, and then used it to quantify the efficiency gain achieved by using

thermal barrier coating on the piston bowl. CONVERGE CFD was used as the numerical

tool in this study. A grid-size study was done, and 0.5 mm grid size was shown to be

sufficiently fine. The average error in the results compared to experimental temperature

measurements is less than 5%. The gain in efficiency and the reduction in heat loss were

shown to have an asymptotic behavior with higher thermal resistances. The model also

provides the researchers with the temperature distribution in the solid regions; this data

could be used to improve the thermos-mechanical design of relevant engine parts.

Overall, it is well established in literature that the numerical simulation tools are capa-

ble of predicting the temperature distribution inside the solid parts of any engine, as well

as the coolant flow. The results of such simulations were shown to have been used for

thermo-mechanical design of engines, analysis of fatigue resistance of solid engine parts,

study of local hot spots in the combustion chamber and its effect on knocking, etc. The
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potential uses for such information seems to be endless.
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3. EXPERIMENTAL STUDY

As reliable as numerical simulations can get, the need for experimental data to validate

the numerical results is still inevitable. In order to acquire the needed data, a thorough ex-

perimental study was done on an AJAX E-565 at Advanced Engine Research Lab (AERL)

at Texas A&M University. In this section the instrumentation of the engine for this study,

the experimental procedure, and finally some of experimental results will be presented.

The instrumentation of the engine was done by Mr. Aaron Griffin, a former member

of the AERL as presented in his Master’s Thesis [67], and Mr. Jeffrey Brown, a current

member of the AERL. Experimental work was done with tremendous help from Aaron

Griffin, and Jeffrey Brown.

3.1 Test Apparatus

3.1.1 Engine

AJAX E-565 is a single cylinder, two-stroke, large bore, spark-ignited, natural gas

engine (Figure 3.1). The important characteristics of the engine are presented in Table 3.1.

The details of how a two-stroke cycle engine works will be presented in the NUMERICAL

SIMULATION chapter.

3.1.2 Dynamometer

To apply known loads on the engine, a 50 kW eddy current dynamometer is connected

to the engine. A potentiometer is used to send a control signal of 0-10 VDC to the dyno

to command load. The dyno can be seen to the right side of the engine in Figure 3.2. The

dynamometer can be connected/disconnected from the engine by a manual clutch.
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Table 3.1: AJAX E-565 natural gas engine specifications [3]

Property Imperial Units SI Units
Rated continuous BHP 40 hp 29.8 kW
Rated RPM 525 —
Bore × Stroke 8-1/2" × 10" 216 mm × 254 mm
Piston Displacement 567 in3 9.29 lit
BMEP 53.6 psi 369.6 kPa
Effective Compression Ratio 6:1 —
Torque 400 ft-lb 542 N·m
Weight (Including flywheel) 4716 lb 2139 kg

3.1.3 Data Acquisition System (DAQ)

The DAQ system was built using NI provided hardware. In order to acquire the ex-

perimental data needed for the numerical simulations, the engine was instrumented with

a data acquisition system as presented in Figure 3.3. As can be seen in this figure, the

DAQ system is capable of providing the in-cylinder pressure, the stuffing box pressure,

the intake air, intake fuel, and exhaust pressures, and also the load and temperature of the

dyno. The temperatures of the coolant and the wall temperature for the CHT study are

acquired separately.

3.1.4 Sensors

Different sensors are used to get the required data from various parts of the engine. In

this section, each will be discussed briefly.

In-Cylinder Pressure

A piezoelectric pressure transducer (Figure 3.4 (A)) was used to measure the in-cylinder

pressure. Pressure changes on the surface of this transducer’s crystal will output a charge,

which is proportional to the pressure change. This charge will then pass through a charge

amplifier, which transforms the charge into an output voltage signal. This voltage is what
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Figure 3.1: AJAX E-565 engine (Image courtesy of Jacob Hedrick)

the DAQ system reads, and translates into pressure data for given gain and offset values,

which are set, based on the sensor’s calibration. Needless to mention that the transducer is

calibrated regularly, based on manufacturer’s suggestions.

Stuffing Box Pressure, Exhaust Pressure, and Intake Pressures

A water-cooled piezoresistive absolute pressure sensor (Figure 3.4 (B)) was used for

measuring the mentioned pressures. This sensor utilizes a Wheatstone bridge, implanted

in a silicon measuring element, which generates an electrical signal proportional to the

applied pressure [68]. This sensor has its own in-line amplifier to transduce the charge to

a signal, readable by the DAQ system. The measuring range for this transducer is 0 to 5

bars, which is more than the required range for the mentioned pressure readings.
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Figure 3.2: AJAX E-565 engine and the eddy current dynamometer (Image courtesy of
Jacob Hedrick)

Encoder

Piston position is measured using an optical encoder with 1440 ppr, which can trigger

measurements every 0.25 CAD. In order to set the TDC location right on the encoder,

motoring curves of the engine were used. Because of the large size of the engine, it is

unlikely to be able to motor the engine as done on smaller engines, where it is done with

electrical motors. Instead, after getting the engine up to speed, the fuel was quickly cut

off, and the spark plug was disabled. The huge inertia of the flywheel will keep the engine

running for a long time, decelerating very slowly. This provides enough time to record the

in-cylinder pressure data for a few cycles. Without the ignition and combustion events,

it can be assumed that the peak pressure will happen at TDC. This way the difference

34



Figure 3.3: Data acquisition system design

between the peak pressure location and TDC can be set as offset of the encoder.

Coolant Flowmeter and Thermocouples

The study on the cooling system of the engine was done by Jeffrey Brown, Tim

Kroeger, Srivatsa Chakravarthy, and Yujie Sun, all Masters students at Texas A&M Uni-

versity as a course project [69]. The primary instruments they used for this study were a

venturi flowmeter, and multiple thermocouples in different locations of the system. Since

the cooling system of the engine does not have a water pump and works solely based on

the density gradient throughout the system caused by temperature gradients, the flowme-

ter should be such that has the lowest possible pressure drop. Additionally, since the

flowrate is lower than the lowest range of most types of meters (e.g., turbine meters, etc.),

a venturi-type flowmeter was chosen. The flowrate then can be calculated from the pres-

sure differential between the flowmeter pressure taps. The venturi flowmeter can be seen

in Figure 3.5.

Another important variable of interest is the temperature. To find the required tem-
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Figure 3.4: (A) piezoelectric pressure transducer, (B) piezoresistive absolute pressure
sensor

peratures, type-T thermocouples were mounted on both hot and cold sides of the cooling

system (e.g., inlet and outlet of the cylinder coolant passage, and before and after the

radiator).

3.2 Experimental Procedure

After making sure that all the sensors are calibrated, and the DAQ system is working

properly, the engine is checked for any loose parts. If everything checks safe, the engine is

started. The engine then should idle for about 15 minutes to warm up, after which time the

dyno with zero load is engaged to the crankshaft manually via the clutch lever. Then by

adjusting the potentiometer on the dyno, the load is applied to the engine gradually, until

it reaches the desired load for the current test-point. The next step would be adjusting the

fuel governor to increase or decrease the speed of the engine to get to the desired value.

The engine is then left running at this load-speed condition, until the coolant temperature

stays constant, indicating that the engine has reached its steady-state point. At this point,

the data can be recorded from the engine.
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Figure 3.5: Venturi flowmeter (Image courtesy of Jeffrey Brown)

As mentioned before, the recorded data will include in-cylinder pressures, fuel intake

pressure, air intake pressure, stuffing box pressure, exhaust manifold pressure, coolant

flowrate, and coolant temperatures at different locations. As the pressure curves show a

lot of variation (cyclic variation), an average of 300 consecutive cycles will be recorded.

Additionally, 10 non-sequential individual cycles, and 10 consecutive individual cycles

will be recorded. After all the data is acquired for this speed/load condition, the load and

speed will change to the next test point, and this process starts over.

3.3 Test Matrix

For the purpose of the numerical simulation, the only speed-load condition desired

is the full load at rated speed (HS-HL), which the engine has been designed to work at
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continuously in the field. However, to help understand some of the observations, three

more conditions will be tested as well. The test matrix is shown in Table 3.2.

Table 3.2: Test matrix of the experimental study

Speed (RPM)
350 525

Load (% Full Load) 50 LS-LL HS-LL
100 LS-HL HS-HL
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4. NUMERICAL SIMULATION

In this chapter, the details of the numerical simulation are discussed.

4.1 Approach / Methodology

Convergent Science’s CONVERGE CFD is the software of choice for this project. As

mentioned in the LITERATURE REVIEW chapter, this software has been utilized before

for many simulation studies for 2-stroke and 4-stroke gasoline, diesel, and natural gas

engines. This software has some unique features, which make it appropriate for this study:

• Automatic mesh generation:

The software utilizes an innovative run-time mesh generation technique, which helps

the user avoid the time-consuming and complicated mesh generation process. CON-

VERGE CFD always uses perfectly orthogonal cells in mesh generation; which en-

sures improved accuracy, and simplified numerics. The software is also equipped

with fixed embedding, and AMR (Adaptive Mesh Refinement). The latter, refines

the grid size, based on user inputs, in locations where gradient of an assigned vari-

able reaches a certain predefined critical value. This technique ensures accurate

results, along with reduced total run-time. Working flowchart of the software can be

seen in Figure 4.1.

Figure 4.1: Working flowchart of CONVERGE CFD from convergecfd.com/products
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• Automatic handling of moving boundaries:

Ordinarily, moving boundaries are a challenge in CFD simulations. This software

automatically handles all moving boundaries, making the simulation work much

simpler.

• Maintaining the true geometry:

The software uses STL files to handle geometries, which enables the true geometry

to be preserved regardless of mesh size.

• Fluid Structure Interaction (FSI) model:

Proper simulation of the reed valve requires the solver to solve both fluid flow, and

body dynamic equations. CONVERGE CFD has a powerful FSI UDF, which can

be tailored for the specific needs of the simulation work.

• Combustion models:

The software has a variety of different combustion models, including, a general-

ized chemical equilibrium solver, diesel ignition and combustion models, spark igni-

tion models, premixed combustion models, and lastly the SAGE detailed chemistry

solver. The latter, solves for all the chemical reactions in the combustion process,

with no mechanism size limit. It is also equipped with multi-zone model, DMR

(Dynamic Mechanism Reduction), and adaptive preconditioning (which improves

the efficiency of linking CFD and detailed chemistry).

• Conjugate Heat Transfer (CHT) simulation:

The idea of simulating CHT is to model flow and heat transfer in both solid and

fluid regions. CONVERGE CFD is capable of simulating CHT, using a unique

computational tool known as Two-Phase Super-Cycling. More details about this

model are presented in Super-Cycling Method section.
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With all these points in mind, it can be seen that CONVERGE CFD is the right tool

for this project. In the following sections, more details of the models that are used in this

project are discussed.

4.2 Case Setup

In this section, all of the steps to the simulation work are presented. Some of the

experimental data acquired from the previous section will be used, and shown.

4.2.1 Geometry Preparation

The CAD file of the engine has been provided by the sponsoring company -GE Oil &

Gas. A cut-view of the engine can be seen in Figure 4.2. Different parts and regions of the

engine are clearly visible in this figure. The reed valve is colored gray on top of the stuffing

box. It can be seen that the air and fuel enter the reed valve separately; the air enters from

the top, while the fuel enters from the backside of the valve. More details about the reed

valve and its working principle will be discussed in following sections. The volume behind

the piston (the larger yellow body) and below the reed valve is named stuffing box; which

is the place where the intake air and intake fuel are mixed. The intake manifold is the path

between the stuffing box and the main chamber, which is the only connection between

the two. The combustion chamber is the volume in front of the piston; this is where the

combustion happens. The spark plug is colored red, and as can be seen is on the bottom

of the combustion chamber. The exhaust manifold is on the bottom of the chamber, and is

where the combustion products exhaust out of the chamber. The cylinder head is in blue,

and the cylinder block is orange. The coolant paths are also visible in both the cylinder

head, and the cylinder block.

The first step was to extract the surfaces of the engine that were needed for simulat-

ing the combustion; which included boundaries of stuffing box, reed valve (air and gas

intakes and manifolds, strips, and strip holders), intake and exhaust manifolds, exhaust
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Figure 4.2: Cut view of the AJAX E-565

outlet, combustion chamber, spark plug, piston, and piston rod. This task was done using

ANSYS SpaceClaim. The CAD file was cleaned up and fixed in this software, and then

was exported as STL (the surface file format readable by CONVERGE CFD). The geom-

etry was then imported into CONVERGE CFD, where it undergone another clean up and

fixing, to have a proper geometry for the simulation. This time-consuming task was done,

and the resulting geometry can be seen in Figures 4.3 and 4.4.

Figure 4.3 shows the whole simulation geometry. In this figure, cylinder head (in dark

blue), spark plug (in red), liner (in orange), exhaust manifold (in green), intake manifold

(in purple), stuffing box (in cream), reed valve strips and strip holders (in blue), fuel intake

manifold (in brown), and air intake manifold (in light gray) are visible.

In Figure 4.4 the piston rod (in light gray), the piston (in yellow), the intake manifold

(in purple), and the exhaust manifold (in green) are visible. This picture helps better

understand the alignment of the piston crown and intake and exhaust ports. It should also

be noted that the shape of the piston crown is designed to guide the intake flow towards
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Figure 4.3: Prepared geometry for the numerical simulation (the air and gas intakes and
the reed valve are shown in cut-view to help with the visualization of the whole

simulation domain)

the cylinder head, and away from the exhaust manifold, to reduce the short-circuiting and

improve the scavenging process. This engine has been designed based on cross-scavenging

principles.

Confirming the Accuracy of the Geometry

For the numerical simulation to be accurate and reliable, the CAD file should be

checked to make sure it is identical to the actual engine geometry; otherwise, the results

will not be comparable with the experimental data. For this purpose, the engine was dis-

assembled, and physical measurements were done on different parts. Figure 4.5 shows a

picture from the tear-down of the engine. In this picture, the piston crown is visible inside
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Figure 4.4: View of the piston and the piston rod vs. intake and exhaust ports

the cylinder. The piston in this picture is at BDC, so it also can be seen how the piston

aligns with the intake and exhaust ports.

Figure 4.6 shows the inside of the cylinder head. In this picture, the spark plug is

visible. The whole in the center is filled with a plug; this is the place where a direct

injector could be mounted, if desired. The other hole on the right side goes to the air-start

cavity. Currently this hole is used to mount the in-cylinder pressure transducer. Coolant

paths and the gasket are also visible in this figure.

A very important factor that can significantly affect the simulation results is having the

same compression ratio as the engine which is used to acquire the validation data. The

compression ratio is the ratio of the volume at the BDC and the volume at TDC (clearance

volume), as stated in Equation 4.1.

CR =
Vc + Vd
Vc

= 1 +
Vd
Vc

(4.1)
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Figure 4.5: Tear-down of the engine; view of the piston crown inside the cylinder block,
and against the intake and exhaust ports (image courtesy of Jacob Hedrick)

Where Vd is the displacement volume, and Vc is the clearance volume. In vertical

4-stroke engines, the clearance volume is usually measured by filling the chamber (with

piston at TDC) with a thick oil, and measuring the volume of the oil. For the engine of

study, since the engine is horizontal, it is not possible to measure the clearance volume this

way. To make this measurement, and innovative approach was taken. Silicone molding

was used to make a replica of the clearance volume. The resulting replica can be seen in

Figures 4.7 and 4.8.

Figure 4.7 shows the inside of the cylinder head. The air-start cavity, which was men-

tioned earlier, can be seen to the right side of this picture. Additionally, the bulging in the

bottom of the picture is where the spark plug sits. Figure 4.8 shows the negative of the

piston crown. The top side goes against the intake ports, and is designed in such a way to
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Figure 4.6: Tear-down of the engine; view of the cylinder head (image courtesy of Jacob
Hedrick)

guide the intake flow towards the cylinder head and away from the exhaust ports during the

scavenging process. The bottom side, on the other hand, goes against the exhaust ports.

This mold was used to measure the clearance volume, using a water displacement

method. A large bucket was filled up to a certain level by water, and the amount of water

was measured. The water was emptied from the bucket, and the mold was placed inside.

Water was then poured in the bucket until it reached the same marking on the wall. The

amount of water used, was measured again. The difference between the two volumes of

water was calculated to be 1.585×10−3 m3 and is the clearance volume (Vc). The piston

location at TDC was then set to match this volume for the numerical simulation.
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Figure 4.7: Silicone mold of the clearance volume: view of the inside of the cylinder head

4.2.2 2-Stroke Engine Cycle

At this point, a short discussion on how a 2-stroke engine cycle works is beneficial

to show how the numerical simulation should be approached. Figure 4.9 shows all the

important steps in a two-stroke engine cycle.

The spark plug ignites and starts the combustion event in the chamber at -11.2 ATDC

crank angle degrees (CAD), while the mixture of air and fuel in the chamber is still being

compressed. The chamber compression cycle continues until top dead center (TDC); from

this point forward the expansion cycle of the chamber, and the compression cycle of the

fresh air and fuel in the stuffing box start. The expansion of the chamber and at the same

time compression of the stuffing box continue until exhaust ports open (EPO) at 120.4

ATDC; the high pressure, high temperature combustion products start exhausting through

exhaust ports to the exhaust manifold. A few crank angles later (at 138.1 ATDC), intake

ports open (IPO), letting the high-pressure mixture of the stuffing box enter the combustion
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Figure 4.8: Silicone mold of the clearance volume: view of the piston crown

chamber. At this time, both intake and exhaust ports are open. The combustion products

will continue to leave the chamber, and the intake charge will help the process. Because of

the fact that both ports are open during this time, some of the fresh charges from the stuff-

ing box will leave the chamber through the exhaust ports; this will be the short-circuiting

of the engine. The piston continues moving back, until it reaches the bottom dead center

(BDC). From this point forward the expansion of the stuffing box starts. This expansion

will make a vacuum inside the stuffing box, which will force the reed valve strips to open,

letting fresh air and fuel enter the stuffing box. The cycle continues until the intake ports

are closed (IPC) at -138.1 ATDC, and a few crank angles later (at -120.4 ATDC) the ex-

haust ports will get closed (EPC). This is the start of compression cycle in the chamber,

moving towards TDC, and this cycle repeats.

48



Figure 4.9: Important steps in a two-stroke engine cycle

The timing map of the engine is presented in Figure 4.10. It can be seen that the port

timings are symmetrical, and that the EPO happens 17.7 CAD before the IPO.

4.2.3 Reed Valve

As mentioned in the explanation of the 2-Stroke Engine Cycle, in this engine, a reed

valve is controlling the air and fuel that enter the stuffing box during its expansion cycle.

As shown in Figure 4.3, air and fuel enter the stuffing box through the reed valve, sepa-

rately. It also can be seen in Figure 4.11 (A) & (B), where the separate paths for the air

and the fuel intakes are visible.

The reed valve consists of six spring-loaded steel strips, which are visible in Figure

4.11 (C). These strips can move individually, and their maximum displacement is 5.5 mm.

The bottom side of all the strips is exposed to the stuffing box pressure, while the white

regions on the top sides of the strips are exposed to intake air pressure, and the red regions

on the tops of the two middle strips are exposed to intake fuel pressure. The strips move

based on the forces applied to each individual one. When the balance of forces on a
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Figure 4.10: Timing map of the AJAX E-565

strip is in -z direction (which happens during the expansion of the stuffing box), that strip

starts opening, letting the intakes to flow into the stuffing box. Later when the piston

starts moving towards BDC (during the compression of the stuffing box) the direction of

the balance of forces changes, causing the strips to move upward until they seal against

the reed valve body, which will eventually stop the flow into the stuffing box. The total

area covered by air (summation of white areas) is 15.96 in2 (102.96 cm2), while the area

covered by fuel (summation of red areas) is 1.72 in2 (11.1 cm2); the ratio of fuel area to

air area is equal to 0.108.

A mechanically governed throttle sits before the reed valve on the fuel line. The throttle

and the reed valve are the only parts that control the AFR (air/fuel ratio) of this engine.

4.2.4 Fluid Structure Interaction (FSI) UDF

At start, a pressure difference-based (PDB) UDF was used to simulate the reed valve,

which was starting/stopping the flow from the upstream intakes to the stuffing box, based

on user-defined ∆Popen and ∆Pclose values. In this method, ∆P stands for the difference
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Figure 4.11: Reed valve parts; (A) vertical-cut view, (B) horizontal-cut view, (C)
spring-loaded strips, with one half-cut view strip

between the average pressure of the air intake manifold, and the average pressure of the

stuffing box. Satisfying results were not achievable using this method (for more details

please refer to "Prediction of Air-Fuel Ratio Control of a Large Bore Natural Gas Engine

Using CFD Modeling of Reed Valve Dynamics" [9]). After the failure of the simulations

with PDB UDF, a high-speed camera was used to observe the behavior of the reed valve

strips while motoring the engine. Closer analysis of the video, showed that the strips
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Figure 4.12: Still-frame images from the motion of the strips

present a fluttering behavior, as presented in still-frame images in Figure 4.12.

In Figure 4.12, it can be seen that the strips are closed at BDC (a); they then slightly

open in (c), and are closed again in (d); for a second time, they open in (f), and close in

(g). The strips open once more in (l), and remain open through (p), and they will not open

for the rest of the cycle. It is very important to note that the strips move individually, and

differently. In addition, it has to be noted that there are several open/close events for the

reed valve strips, in just one cycle of the engine.

Knowing the complexity of the behavior of the reed valve, fluid structure interactions

deemed capable of doing the simulations. As shown in LITERATURE REVIEW, FSI

methods have been used for simulating different types of reed valves by a number of
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researchers, and acceptable results have been achieved.

With FSI, in addition to the fluid flow, the solver solves the momentum equation for

each strip, and considers all the pressure forces, and the flow field around the strips in

the calculations. This makes the simulation of the reed valve much more dependable, and

accurate. More details on the formulation of the FSI solver can be found in the Fluid

Structure Interaction (FSI) section of the FORMULATIONS.

For the FSI model, the density of the strips, the spring constants, the free length of

the springs, and the pre-load on the springs were needed. To this end, the reed valve was

disassembled; an apparatus was made to measure the displacement of the springs using

known weights. The spring constant was calculated to be 3 lbf/in (525 N/m). The free

length of the springs is 0.515 in (1.3 cm), and the installed length is 0.383 in (0.97 cm).

Based on this, the pre-load on each strip is set to 0.79 lbf (3.52 N).

4.2.5 Configuration of Seals

Boundary intersection is not allowed in CONVERGE CFD. To avoid having intersec-

tions, the diameter of the piston skirt should be slightly smaller than the liner diameter.

This tiny gap between these two parts causes impractical flow between the separate re-

gions in the simulation. The sealing feature solves this problem.

For sealing feature to work properly, perfect boundaries are required. To achieve these

perfect boundaries, the liner and the piston skirt were repaired in the software after im-

porting, and then the ports were projected on the liner surface. Two sets of seals had to be

used to stop the leakage between the regions completely:

1. A seal to close the gap between the piston skirt and the liner, as visible in Figure

4.13 (A). This set of seals will prevent the leak from the combustion chamber to the

stuffing box, through the gap between the liner and the piston skirt.

2. A seal to stop the flow from the intake and exhaust ports into the gap between the
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liner and the piston skirt. This set of seals can be seen in Figure 4.13 (B). As can be

seen, the seals are perpendicular to the piston skirt and liner; this is only achievable

if perfect boundaries are properly made before defining the seals.

Figure 4.13: Seal configuration from: (A) the piston skirt to the liner; (B) the intake and
exhaust ports to the piston skirt

4.2.6 Boundary Conditions

To set up the simulation, boundary conditions for all of the inlets (fuel and air intake),

outlets (exhaust), and walls should be defined. As mentioned in the Test Matrix section,

the numerical simulation will only focus on the full load (400 ft-lb), rated speed (525

RPM) case.

Pressures

A few initial simulations were done, using constant pressures for all the inlet and outlet

boundaries, and the results did not match the experimental data as closely as desired (for

more details please refer to "Prediction of Air-Fuel Ratio Control of a Large Bore Natural
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Gas Engine Using CFD Modeling of Reed Valve Dynamics" [9]); this prompted the use

of experimentally measured, crank angle resolved pressures for all of these boundaries.

As mentioned before, a piezoresistive pressure transducer was used to capture the

crank angle resolved pressures at different locations on the engine. Total pressure is re-

quired for the simulation work. Total pressure pitot tubes were made from bendable alu-

minum (Figure 4.14) to make these measurements. The pitot tubes were mounted in such

a way to face the flow, and sit at the center-line of the pipes.

Figure 4.14: Total pressure pitot tubes used for pressure measurements at (A) air intake
manifold, (B) fuel intake manifold, (C) exhaust manifold, (D) stuffing box.

To make sure that the boundary condition is set at the same location that it is captured

experimentally, the geometry of the air intake pipe, and fuel intake pipe up to the points

of measurement were added to the simulation geometry, as presented in Figure 4.15. The

green part is the fuel intake, and the blue is the air intake.

To make sure that the boundary variations are not significant from one cycle to another,

ten randomly selected individual cycles are overlaid on the average of 300 cycles. The

results are presented in Figure 4.16 (A), (B), and (C). It can be seen that the variations are
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Figure 4.15: Air and fuel intake pipe geometries; (A) external surfaces, (B) extracted
internal surfaces for the simulation.

small compared to the range of data, and so the pressures are stable at all the points. The

average of 300 cycles were used as boundary conditions.

Temperatures

For the initial simulation of the engine (without considering the CHT), constant wall

temperatures are defined as boundary conditions. Different values are set for each bound-

ary, based on best guesses; ambient temperature (313 K) for the fuel intake, air intake,

and valve walls, slightly higher temperatures (350∼400 K) for the stuffing box walls, and

much higher temperatures (750∼800 K) for the walls that surround the combustion cham-

ber (liner, cylinder head, spark plug, and piston crown).

The inlet boundaries also need a temperature for the fluid, which has been set as am-

bient temperature for both air and fuel intakes. The exhaust back-flow temperature is also

set at a very high temperature (750 K), which has been found experimentally from the

exhaust pipe.

Piston Motion

All the boundaries are set as stationary walls, except for the piston crown, piston skirt,

and the inner surface of the piston, which move based on a predefined piston motion profile
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Figure 4.16: Experimental boundary conditions used for the simulation; (A) air intake
manifold pressure, (B) fuel intake manifold pressure, (C) exhaust manifold pressure.

(Figure 4.17).

Inlet and Outlet Species

The species mass fractions listed in Table 4.1 were used for the inlet and outlet bound-

ary conditions. The exhaust species are the products of an ideal reaction of a mixture with

φ = 0.81. The species of the fuel were set based on the gas analysis provided by local

municipality on 03/03/2015 [70].
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Figure 4.17: Piston motion profile

Walls

For all the walls law-of-wall is set as the velocity boundary condition, which is the

well-established practice for the turbulent flows.

Passives

Setting passives for all the inlet and outlet boundaries helps with tracking the flows,

and calculating the back-flow from the exhaust manifold to the chamber. For this purpose,

five passives were defined:

• AIR_IN: The air that enters through the air intake manifold.

• GAS_IN: The fuel that enters through the fuel intake manifold.

• INTAKE_MIXED: The mixture that is inside the stuffing box.
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Table 4.1: The mass fraction of species at the inlet and outlet boundaries

Boundary Species Mass Fraction

Air Intake O2 0.23
N2 0.77

Fuel Intake

CH4 0.8613
C2H6 0.7850
C3H8 0.0061
CO2 0.0281
N2 0.0259

Exhaust Outlet

CO2 0.1265
H2O 0.0998
N2 0.7315
O2 0.0422

• CHAMBER: The mixture inside the chamber.

• EXHAUST: The combustion products that are in the exhaust manifold.

4.2.7 Initial Conditions

Experimental data are used to set the initial values for variables in different regions

(volumes in the solution domain). The following variables need to be set for each region

as initial condition:

Temperature

Initial temperature for the fuel intake manifold and the air intake manifold are set equal

to ambient temperature on the test day. Initial temperature of the exhaust manifold is set

from the experimental data. Initial temperature of the stuffing box and the combustion

chamber are set based on best guesses.

Pressure

Initial pressures in all the regions were set using experimental data.
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Species

The initial mixture of the air intake manifold and the fuel intake manifold are set based

on the known mass fractions of the species. The stuffing box is assumed to have equiva-

lence ratio of 0.81 based on the experimental data, and so the species in the stuffing box

are set accordingly. The simulation will be started at EPO; hence, it was assumed that

the initial mixture of the chamber is composed of products of complete combustion of a

mixture with φ = 0.81. The exhaust manifold initial mixture was assumed the same as the

combustion chamber.

4.2.8 Gas Simulation

For gas simulation, Redlich-Kwong model will be used. This model is in general the

preferred equation of state for non-ideal gas behavior, which can be of significance in high-

pressure, high-temperature situations [71]. This model is formulated as a cubic equation

in the following form (Equation 4.2):

P =
RT

v − b
− a

v2 + ubv + wb2
(4.2)

Where the coefficients are defined as presented in Table 4.2.

Table 4.2: Coefficients for Redlich-Kwong equation of state

u w b a

1 0 βrkvc αrk
Pcv2c√
Tc

Where vc = RTc
Pc

, αrk = 0.42748, and βrk = 0.08664. In this equation, vc is the critical

volume; Tc is the critical temperature; Pc represents the critical pressure; α stands for the

attractive forces between molecules; and finally β is the volume of the molecules [72].

60



4.2.9 Reaction Mechanism

A reaction mechanism is a set of elementary chemical reactions that describe an overall

chemical reaction. For example, the reaction of methane (CH4) and oxygen (O2), can be

closely described in a set of 325 reactions, with 53 species [73], as explained in Reaction

Mechanism section. GRI-Mech 3.0 will be the reaction mechanism used for the simula-

tions. This mechanism is optimized for modeling natural gas combustion, and includes

NO formation, as well as re-burns chemistry.

4.2.10 Gas Flow Solver

Gas flow solver is set to compressible. It is obvious that in high pressures and temper-

atures that are present in internal combustion engines, gases should be considered com-

pressible, as the gas density changes with changes in temperature and pressure.

4.2.11 Combustion Modeling

SAGE detailed chemical kinetics solver, which solves for all the chemical reactions

in the combustion process, with no limit in mechanism size, will be used to simulate the

combustion. For more details on the formulation of multi-step chemical mechanisms,

please refer to Formulation of Chemical Kinetics with Multi-Step Mechanisms in the

FORMULATIONS. The SAGE solver starts 0.1 CAD before the spark timing, and stops

at EPO.

Multi-Zone Model

All the cells at each discrete time, t, are at some thermodynamic state; solving detailed

chemistry solver (SAGE) in zones (groups of cells with similar thermodynamic states)

can accelerate the solution of detailed chemical kinetics [72, 45, 74]. Zoning is based on

temperature and equivalence ratio in a 2D zoning strategy. SAGE chemistry solver runs

only once for each zone. The average of temperature and composition of all the cells in a
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zone will be considered as thermodynamic state of that zone.

Reaction is allowed in each zone from time t to t+ dt. At time t+ dt the new compo-

sition of the zone is obtained, and mapped back to all the individual cells in that zone. The

quality of the multi-zone model is strongly dependent on the remapping strategy. Further

details can be found in CONVERGE Theory Manual [72].

Source Modeling

To simulate the spark ignition, a source volume is added to the combustion chamber,

where the edges of the spark plug electrodes are. The total energy that the source releases

during the spark ignition is set to 150 mJ. This energy will be released in a sphere with

radius of 0.5 mm, in 236 µsec (which is the spark duration), starting at -11.2 ATDC CAD.

The source is allowed to move with the flow for 1 mm at most, and then it will be reset at

its initial location. During the spark event, the temperature inside the spark sphere reaches

very high values (up to 50,000 K) as presented in Figure 4.18, which will initiate the

combustion, by starting the flame kernel.

4.2.12 Turbulence Modeling

Proper simulation of turbulence is critical for an accurate simulation, since the rate

of mixing of momentum, energy, and species increase with turbulence. Simulating all

the turbulent eddies at all the length scales for large applications is not feasible with the

current computational power; this makes using a turbulent model necessary to make up for

the additional mixing that is not captured through the simulation.

For this purpose, Reynolds Averaged Navier-Stokes (RANS) equations, withRNG k−

ε turbulence models were used. Further details of these models can be found in Reynolds

Averaged Navier-Stokes (RANS) section in the FORMULATIONS.
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Figure 4.18: Maximum temperature inside the spark sphere

y+

Although it may be necessary for the accuracy of the results, for some cases, it may

not be possible to refine the grid up to the point that resolves the viscous sub-layer. To

make up for this problem, a law-of-the-wall boundary condition is specified, which is a

logarithmic curve fit for a turbulent boundary layer. With k − ε turbulence model, the

standard law-of-the-wall is used, as presented in Equation 4.3. The law-of-the-wall helps

determine the tangential components of the stress tensor at the wall.

u∗ =


1
κ

ln(Ey+) y+ > 11.2

y+ y+ ≤ 11.2

(4.3)

In this equation, E = 9.8, and y+ is defined by Equation 4.4:
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y+ =
yρuτ
µ

(4.4)

The stress tensor, σij , can be written as:

σij =
Ui,tanρuτnj

u∗
(4.5)

In Equation 4.5, u∗ can be replaced from Equation 4.3, to get:

σij =
Ui,tanκρuτnj

ln(Ey+)
(4.6)

In this equation, uτ = c
1/4
µ k1/2, where k is the turbulent kinetic energy, and cµ is the

model constant for the k − ε turbulence model.

The expression in Equation 4.6 will be used to make up for not being able to resolve

the viscous sub-layer. When law-of-the-wall is used for boundaries, the desired value of

y+ is between 30 and 100 (30 < y+ < 100).

4.2.13 Super-Cycling Method

Ideally, the flow and heat transfer equations should be solved simultaneously in both

the solid and fluid regions to get the best results. However, because the heat transfer

process for solid regions has orders of magnitude larger time-scales than the fluid regions,

it is not practical to run one coupled transient simulation to capture the conjugate heat

transfer. Instead, a unique approach, called Super-Cycling [75] will be used. The results

of the first simulated combustion cycle will be used to set boundary and initial conditions

of the CHT simulation.

The following are the steps of a simulation with Super-Cycling:

1. Without storing the solid heat transfer data, both the fluid and solid equations are

solved, with the goal to develop the fluid flow field.
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2. At a predefined supercycle_start_time, values of HTC (heat transfer coefficient) and

near-wall temperature at the solid/fluid interface will be stored for each cell.

3. For a predefined time (supercycle_stage_interval), the solver continues solving both

fluid and solid equations, and stores HTC and near-wall temperatures.

4. When the time reaches supercycle_start_time+ supercycle_stage_interval, the fluid

solver will be paused. At this point, time-averaged HTC and near-wall temperatures

at the interface of solid/fluid will be calculated for each cell, based on values stored

in step 3. Using these time-averaged values, the solver calculates the solid heat trans-

fer with steady-state assumption, until the predefined tolerance of supercycle_sie_tol

is achieved. This calculated steady-state solid temperature, will represent the tem-

perature of the solid in the next step.

5. For a second time, both solid and fluid equations are solved, for a duration of super-

cycle_stage_interval. The fluid temperatures will change significantly at this step,

due to the newly calculated solid temperatures of the previous step. The calculations

continue, until the fluid temperatures level off; this is due to not enough tempera-

ture difference between the solid and fluid regions at the given flowrate. At the

same time, the solver stores the HTC and near-wall temperatures for this step, at the

interface of the solid-fluid phases for each cell.

6. The fluid solver will be paused again, when time reaches supercycle_start_time+

(2×supercycle_stage_interval); this triggers the recalculation of the time-averaged

HTC and near-wall temperatures that were stored in just the previous step. The

solver also calculates the solid heat transfer equations as described in step 4.

7. This iterative process repeats, until the predefined end time is reached.

This method will be used to simulate the conjugate heat transfer (CHT) in the solid
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parts, and through the cooling system. After the results are achieved, the newly calculated

wall temperatures from the CHT simulation will be mapped to the combustion chamber

walls for the next cycle of the combustion simulation. Then the newly calculated con-

vective heat transfer coefficients and near-wall gas temperatures will be used for the next

cycle of CHT simulations. This iteration should be done a couple of times, until the wall

temperatures converge to their final values.

4.2.14 Grid Generation

As mentioned in the Approach / Methodology section, CONVERGE CFD generates

the mesh in every time step automatically; this means that the time-consuming and critical

task of grid generation is done after each time step by the software. CONVERGE uses

perfectly orthogonal cells, which result in improved accuracy, and simplified numerics.

Different base grid sizes were tested; at the end, considering the computational re-

source limitations, base grid size of 7.5 mm was selected. Using finer grid would have

increased the simulation time so much, that it would not be feasible to run the simulation

any more. CONVERGE has features such as adaptive mesh refinement (AMR), and fixed

embedding, which can make up for the rather large base grid size in important regions

such as combustion chamber, around the spark plug, close to the intake and exhaust ports,

and around the reed valve strips.

Adaptive Mesh Refinement (AMR)

In regions with high gradients of the following six variables, AMR can be activated:

velocity, number of parcels per cell, temperature, species, passives, or boundary (y+). In

the combustion chamber, because of high gradients of velocity, temperature, and species,

level 3 of AMR was used; this reduces the grid size to 0.94 mm. In the stuffing box, and

the reed valve, high velocity gradients are present, because of which, AMR level 1 was

used in these regions; this refines the grid size to 3.75 mm.
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To avoid increasing the total number of cells to a point where the simulation was in-

feasible, the maximum number of cells in the whole domain was set to 3×106. This limits

the AMR feature, to add too many cells to the domain. When level n of AMR is called in

a group of cells with high gradients, those cells will be divided into 2n finer cells, during

the time that the high gradients are available. This is why the AMR was only activated

in the reed valve region, during the suction cycle of the stuffing box, and during the gas

exchange process; it also was activated in the chamber for only the velocity during the gas

exchange, and then for velocity, temperature, and species, during the combustion process.

It has been shown in literature, that utilizing AMR will improve the accuracy of the

simulation, without increasing the overall grid size too much. [76, 77, 78] Utilizing AMR

could eliminate the need to run a grid independence test.

Fixed Embedding

In addition to AMR, fixed embedding was used in places where finer grid size was

critical to the accuracy of the solution. For example, the close vicinity of the spark plug

needs a much finer grid, to capture the details of the flame kernel growth. With fixed

embedding, same as AMR, the grid size will be refined based on Equation 4.7:

dxembed =
dxbase

2embedding scale (4.7)

To capture the wall effects on the flow better, fixed embedding level 1 (3.75mm grid

size) was set for all the walls. Additionally, the whole combustion chamber was embedded

with level 3 (0.94 mm grid size), starting 1 CAD before start of spark ignition, and the

embedding lasted for 20 CAD after ignition. Grid was also strongly refined around the

spark plug, with embedding level 5 (0.23 mm grid size), in a cylinder shape around the

electrode of the spark plug. This was done to make sure the initial growth of the flame

kernel is properly captured. It has to be noted that CONVERGE will automatically add
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intermediate grid sizes to smoothly transition from the very fine grid (level 5 embedding)

to the chamber grid (level 3 embedding). The spark plug embedding was also started 3

CAD before the spark timing to let the flow field around the spark plug properly solved

before ignition, and was kept for 20 CAD after the start of ignition. The combustion

chamber and the spark plug area grids can be seen in Figure 4.19.

Figure 4.19: Grid of the combustion chamber and around the spark plug, right at the
ignition timing, on a cut plane in the center of the chamber
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5. RESULTS AND DISCUSSION

After selecting all the models, and setting the boundary and initial conditions, the

simulations were started on the Texas A&M University’s supercomputers. The simulations

were parallelized on 40 cores, with 10 GB of memory assigned per core. As mentioned

earlier, the maximum number of cells is limited to 3 × 106 , which means that at max

number of cells, each core has to deal with 75,000 cells. The optimum number of cells

per core is somewhere around 20,000 to 50,000. The simulations continued for nine full

rotations of the engine (cycle). The simulation of each cycle takes almost eight wall-clock

days. The results of the 1st cycle are neglected, as the initial conditions are not yet washed

away; this means that only eight cycles will be discussed from this point forward. To make

it easier to go through the results, these cycles are numbered from #1 to #8.

5.1 Grid Independence and Accuracy

The crank angle resolved total cell count is presented in Figure 5.1. The effects of

fixed embedding and AMR are clearly visible in this figure, where there is a spike in the

cell count right before the spark timing at -12 CAD, and also in the random changes in the

number of cells in the rest of the simulation. What is interesting, is that despite having the

max number of cells limited to 3×106, the limit has not reached at any point. This implies

the independence from the grid size in the solution, as the gradients were not high enough

to more refine the grid.

As mentioned earlier, y+ should be looked at to make sure the grid is fine enough

to properly capture the wall effects in turbulent flows. In the simulations, the following

ranges of y+ were observed on different walls:

• Intake manifold: 70-120
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Figure 5.1: Total cell count

• Exhaust manifold: 80-350

• Liner: 30-100

• Spark plug: 25-40

• Cylinder head: 30-280

It can be seen that almost all the y+ values are above the minimum acceptable range,

which means that the simulation is properly capturing the wall effects on the flow field.

To check the possibility of refining the grid near the boundaries to get better y+ values,

the results of flow field calculations were mapped to only the geometry of the combustion

chamber right after EPC. The number of layers and the level of embedding near the walls

were increased by one; additionally, the embedding level near the spark plug was increased

by one. With these modifications, because of the huge size of the engine, the number of
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cells only in the combustion chamber skyrocketed to almost 16×106, making it impossible

to run the simulation in a reasonable time.

5.2 Reed Valve Simulation Results

The next step was the simulation of the reed valve, and validation of its results. The

validation criteria are the proper simulation of the reed valve behavior, matching of the

stuffing box pressure, and finally proper control of the air fuel ratio in the stuffing box.

As shown for the measured boundary conditions, it is important to show that the mea-

sured pressures of the stuffing box do not vary too much from one cycle to another. For

this reason, five randomly selected individual cycles and an average of 300 cycles were

plotted; the results are presented in Figure 5.2. It is clearly visible that the variations are

minimal.

Figure 5.2: Variations of the stuffing box pressure
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As mentioned in section 4.2.6, crank angle resolved pressure curves were used as

boundary conditions for the simulation. In order to show the importance of using experi-

mentally acquired boundary conditions, two cases are compared: 1) a case with constant

pressure for air and fuel boundary conditions, and 2) a case where previously shown ex-

perimental pressure curve where used as boundary conditions. The results are presented

in Figure 5.3. It can be seen how important is the use of experimentally acquired bound-

ary conditions, for the simulation using the FSI. In addition, the close matching of the

simulated and experimental stuffing box pressure validates the FSI results.

Figure 5.3: Simulated stuffing box pressure using FSI, vs. experimental data

Another criterion that has to be met to validate FSI results is capturing the behavior of

the reed valve strips as was shown in Figure 4.12. Interestingly, the numerical simulation
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captures the same fluttering behavior. The results are presented in Figure 5.4. It can be seen

that all the strips start to open at -160 ◦ATDC, and show different motion profiles. It also

is clear that there are more than one open/close event within one cycle, as was observed

experimentally. It should be noted that strips #1, and strip #5 have only air pressurizing

their top surfaces, while strip #3 has both air and fuel pressures on its top surface.

Figure 5.4: Displacement of the strips #1, #3, and #5 vs. crank angle for one cycle

The next validation criterion is the ability of the model to keep the stuffing box air

fuel ratio close to the experimentally acquired values. Thorough experiments it has been

shown that the equivalence ratio (φ) of the stuffing box should be approximately 0.81. As

presented in Figure 5.5. It can be seen that despite minor changes in the stuffing box’s

equivalence ratio, the model is capable of keeping it reasonably stable.
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Figure 5.5: The simulated equivalence ratio of the stuffing box

5.3 Combustion Simulation Results

The next and most important criterion to validate the simulation results, is matching the

pressure in the combustion chamber. This task usually starts with matching the motoring

curve of the engine, with a simulated motoring curve; this helps confirm that the clearance

volumes are the same. Unfortunately, because of the big size of the engine, a huge electric

motor is required to turn the engine to capture the motoring curve experimentally; this

electric motor is not yet available for testing. To overcome this problem, as was shown in

Figures 4.7 and 4.8, a silicone mold was made to measure the clearance volume; using this

experimentally measured volume, the piston location was set in numerical simulations in

such a way that the simulations would capture the same Vc.

Relying on this confirmation, the simulations started and the simulated pressure of the
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chamber was compared with the experimental data. Before presenting the comparison, it is

important to mention that the engine is prone to cyclic variation. Cyclic variation simply

means variation in the performance of the engine, from one cycle to the next. Cyclic

variation can be qualitatively observed through combustion chamber pressure curves, as

presented in Figure 5.6. It can be seen that increasing speed generally increases the cyclic

variation, while increasing load, significantly reduces cyclic variation. [67]

Figure 5.6: Measured individual cycles and 300-cycle-averaged in-cylinder pressures for
(A) 350 RPM and (B) 500 RPM at 50% load and (C) 350 RPM and (D) 500 RPM at

100% load.
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This same phenomenon can be quantified by coefficient of variability of IMEP (COVIMEP ),

which is defined in Equation 5.1:

COVIMEP =
σIMEP

IMEPaverage
(5.1)

Where σIMEP is the standard deviation of the IMEP over a sample of 300 cycles. In

this equation, IMEP will be calculated from Equation 5.2:

IMEP =

N∑
i=1

Pi∆Vi

Vd
(5.2)

In which, ∆Vi is the volume difference between two encoder readings, and Vd is the

displacement volume. Using Equation 5.1, the COVIMEP for different load and speed

conditions were calculated, and the results are listed in Table 5.1.

Table 5.1: COVIMEP for different load and speed conditions

Speed (RPM)
350 525

Load (% Full Load) 50 69.3% 83.9%
100 1.6% 1.8%

Considering the huge COVIMEP present in this engine, comparing the chamber’s sim-

ulated pressure with the experimental data is not easy; it just has to be confirmed that the

compression part of the cycles perfectly match, and that the simulated pressure curve is

within the range of cyclic variation of the engine through the rest of the cycle. These re-

sults are presented in Figure 5.7. It can be seen that the simulated pressure of the chamber

(in purple) matches very closely with the experimental data during the compression part

of the cycle, and is within the range of the cyclic variation of the engine (red lines). This
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plot validates the results of the simulation of the combustion chamber.

A study of cyclic variation was carried out as a side-project; the results are presented

in more detail in APPENDIX B, CYCLIC VARIATION.

Figure 5.7: Validation of the simulated chamber pressure with experimental data

5.4 Gas Exchange Process Results

The validated simulation results were then used to look at different important variables

in the engine. Gas exchange process, is one of the most important processes in a two-stroke

engine. [1] To quantify this process, trapping efficiency, short-circuiting percentage, and

scavenging efficiency are calculated.

Trapping efficiency is the ratio of the fresh charge trapped in the chamber, to the total

mass of the fresh charge delivered during the scavenging process, and can be calculated
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using Equation 5.3:

ηtr =
mass of trapped fresh charge

mass of delivered fresh charge
(5.3)

Short-circuiting percentage is simply 1 − ηtr, and represents the ratio of the fresh

charge that leaves the chamber during the scavenging process through the exhaust ports to

the total fresh charge delivered.

Based on simulations (as presented in Figure 5.8) the combustion efficiency is almost

100%, because the mass of CH4 goes all the way down to zero during the combustion

event, and before EPO. This means that all the trapped fuel inside the chamber burns

during the combustion event. This is a valid assumption, since the engine runs lean of

stoichiometric mixture. Having this in mind, it can be concluded that all the CH4 that is

being transferred from the chamber to the exhaust manifold, is due to short-circuiting, and

the ratio of this amount to the total mass of CH4 that has entered the chamber from the

stuffing box will be the short-circuiting percentage.

Figure 5.9 shows the total mass of CH4 transferred from the stuffing box to the chamber

(delivered fuel), and from the chamber to the exhaust manifold (short-circuited fuel); the

differences between the total value of each cycle and the previous cycle are the transferred

masses of that cycle, and the short-circuiting percentage can be calculated from these

values. The calculated ηtr and short-circuiting percentage values are listed in Table 5.2.

Scavenging efficiency is the ratio of the fresh charge trapped in the chamber, to the

total trapped mass of the chamber, and can be written as Equation 5.4:

ηsc =
mass of trapped fresh charge
trapped mass of the chamber

(5.4)

Using the values listed in Table 5.2, and the total mass transferred from the stuffing

box to the chamber for each cycle as presented in Figure 5.10, the mass of trapped fresh
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Figure 5.8: Trapped CH4 in the chamber for different cycles

charge can be calculated. In addition, Figure 5.11 shows the total trapped mass inside the

chamber. Using these two values, and Equation 5.4, ηsc values were calculated, and are

listed in Table 5.3.
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Figure 5.9: CH4 transferred from stuffing box to chamber, and from chamber to exhaust
manifold

Table 5.2: Short-circuiting percentage and trapping efficiency (ηtr)

Short-circuiting (%) ηtr (%)
Cycle #1 39.03 60.97
Cycle #2 39.02 60.98
Cycle #3 38.16 61.84
Cycle #4 38.92 61.08
Cycle #5 39.96 60.04
Cycle #6 38.02 61.98
Cycle #7 38.81 61.19
Cycle #8 39.23 60.71
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Figure 5.10: Total mass transferred from the stuffing box to the chamber

Figure 5.11: Total trapped mass of the chamber
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Table 5.3: Scavenging efficiency (ηsc)

Delivered Fresh
Charge (g) ηtr (%) Retained Fresh

Charge (g) Trapped Mass (g) ηsc (%)

Cycle #1 11.410 60.97 6.957 7.680 90.58
Cycle #2 11.360 60.98 6.927 7.584 91.34
Cycle #3 11.260 61.84 6.963 7.600 91.62
Cycle #4 11.330 61.08 6.920 7.570 91.42
Cycle #5 11.270 60.04 6.767 7.478 90.49
Cycle #6 11.250 61.98 6.973 7.642 91.24
Cycle #7 11.190 61.19 6.847 7.534 90.88
Cycle #8 11.270 60.71 6.842 7.510 91.11
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5.5 Conjugate Heat Transfer Simulation

For this purpose, the geometry of the cylinder block, and the cylinder head were re-

quired. These geometries were obtained, and prepared for the simulation work, as pre-

sented in Figure 5.12. It can be seen that coolant enters the cylinder block, absorbs the

heat from the combustion chamber, and then exits from the top side of the cylinder head

because of the density gradients that drive the coolant.

Figure 5.12: Geometry of the cylinder block (orange), and the cylinder head (blue)

Figure 5.13 helps visualize the coolant path inside the cylinder block, and the cylinder

head. It can be seen in this figure, how the coolant enters the cylinder block, covers the

sides of the liner, then moves inside the cylinder head, and exits from the top of the head.

In addition to Figure 5.13, looking at Figure 5.14 might help justify the results. In

this figure, it can be seen how the coolant completely covers the area around the exhaust
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Figure 5.13: Geometry of the coolant path inside the cylinder block (orange), and the
cylinder head (blue)

manifold, and then moves towards the cylinder head. It also has to be noted that the coolant

path does not properly cover the area around the air-start cavity, and the spark plug, which

probably are the hottest zones of the cylinder head, as will be shown.

5.5.1 The Simulation Process

An iteration between the combustion simulation and the CHT simulations was started.

Super-Cycling method was used for the simulation of the conjugate heat transfer between

the engine’s solid parts (cylinder block and cylinder head), and its cooling system. These

steps were taken to carry out this part of the simulation work:

1. The combustion simulation with the assumption of constant wall temperatures was

ran, until all variables converged.

2. Spatially resolved convective heat transfer coefficients and gas temperatures on the

vicinity of the combustion chamber walls were temporally averaged. These values
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Figure 5.14: Upside down geometry of the coolant path inside the cylinder block
(orange), and the cylinder head (blue)

were mapped to the CHT simulation, and used as boundary conditions.

3. The CHT simulation with newly acquired boundary conditions was carried out, until

all temperatures converged. Temperatures of the walls interfacing with the combus-

tion chamber were extracted to then be used as boundary conditions for the combus-

tion simulation of the next step.

4. A new combustion simulation was started with the new boundary conditions.

5. This process was iterated a few times, until all temperatures were converged.

Boundary and Initial Conditions

As mentioned before, the convective heat transfer coefficients and gas temperatures

close to the combustion chamber walls were used as boundary conditions around the com-

bustion chamber for the CHT simulations. These two sets of boundary conditions for the
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first iteration are presented in Figure 5.15 (A) and (B). A look at the convective heat trans-

fer coefficients, reveals that the values are higher close to the intake ports, and at the neck

of the air-start cavity. Near-wall gas temperatures, on the other hand, are obviously higher

in the cylinder head area, where the combustion starts; the values are much higher around

the spark plug, and also around the neck of the air-start cavity.

Figure 5.15: Temporally averaged, spatially resolved (A) convective heat transfer
coefficients, (B) near-wall gas temperatures

The convective heat transfer coefficient is calculated using the law-of-the-wall correla-

tion given by Amsden in 1997 [72, 79]. The estimated heat flux as presented in Equation

5.5 is used to calculate the convective heat transfer coefficient:

q′′ = h(Tf − Tw) =
µmcpF (Tf − Tw)

Prmy
ni ⇒ h =

µmcpF

Prmy
ni (5.5)

In which,

F =


1.0 y+ < 11.05

( y+Prm
Prt

)

1
κ

ln(y+)+B+11.05( Prm
Prt
−1) y+ > 11.05

(5.6)
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Where y+ = ρuτy
µm

, κ is equal to 0.4187 (the Von Karman constant), B equals to

u+|y+=1, Prm and Prt are the molecular and turbulent Prandtl numbers respectively, wall

and fluid temperatures are shown by Tw and Tf respectively, and finally, uτ , which stands

for the shear speed is put in from the momentum law-of-the-wall.

The initial temperature for the coolant and also the coolant inlet temperature were set

from the experimental data, to 318 K. The coolant flowrate has been measured to be 2.5

gpm (≈0.16 kg/s) and has been set in the numerical simulations accordingly. [69]

To assess the effects of using various coolants, the simulations were done for two

different cases:

• Pure water as coolant (will be called ’W’ from this point forward).

• A mixture of water and ethylene glycol with a 50/50 volumetric ratio as coolant

(will be called ’W/EG’ from this point forward). This mixture has lower specific

heat and heat conductivity than pure water. This means that it is expected to have

higher temperatures in the solid parts of the engine when this mixture is used as

coolant compared to the temperatures of the parts with pure water as coolant.

It should be noted that temperature-dependent properties were used for both coolants

to increase the accuracy of the simulations.

5.5.2 CHT Results

The results of the CHT simulations are presented in this section.

Grid Independence

The first criterion to make sure that the numerical simulation results are accurate and

reliable, is to make sure that the results do not depend on the grid size. For this purpose,

three sets of simulations were ran with various grid sizes: 5 mm, 3 mm, and 2 mm. The

average temperatures of the solid (cylinder block and cylinder head) and fluid (coolant)
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regions were then compared to check for grid independence. The results are presented in

Figure 5.16. It should be noted that the grid independence study was carried out only with

pure water as coolant.

In this figure it can be seen that the average temperatures converge after almost 200

seconds. In addition, it can be seen that for the solid parts, ∆T5mm→3mm = 14 K, and

∆T3mm→2mm = 3 K. On the other hand, for the coolant, ∆T5mm→3mm = 1.6 K, and

∆T3mm→2mm = 0.9 K. The small variations between the mean temperatures of the 3 mm

and 2 mm cases, confirm that the CHT simulations are independent of the grid size at this

point.

The simulations were parallelized and ran on 320 cores. The 2 mm grid size case

took almost 7 wall-clock days to converge; whereas, the 3 mm case took only 3 days.

Since the results did not change much between the two cases, and the simulation time was

significantly shorter for the 3 mm case, all the rest of the simulations were ran utilizing a

grid size of 3 mm.

After establishing the grid independence of the results, the iterative process between

the CHT simulation and the combustion simulation started. The results of these simula-

tions are presented in the following sections.

Average Temperatures

Average temperatures of the solid and fluid regions were compared from one iteration

to the next, to check the convergence of the aforementioned iterative process. The results

for the case with pure water as coolant are presented in Figure 5.17. It can be seen that

the differences between the iteration 3 and 4 temperatures are very small; for the coolant,

∆Titer_3→iter_4 = 0.8 K, while for the solid parts, ∆Titer_3→iter_4 = 1.9 K. These very

small changes in the average temperatures prove that the iteration process has converged

to its final values.
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Figure 5.16: Grid independence study for the CHT simulations

The same simulations were carried out with W/EG as coolant; the results are presented

in Figure 5.18. It is again very clear how minimal the changes are between the mean

temperatures for iterations 3 and 4; for the coolant, ∆Titer_3→iter_4 = 0.01 K, while for the

solid parts, ∆Titer_3→iter_4 = 0.4 K. These very small changes once again prove that the

simulations have converged to their final values.

An interesting observation from the results is that the mean temperatures of the two

coolants are not that different (≈ 2 K), while the mean temperature of the solid regions are

higher (≈ 22 K) for the simulation with W/EG. This totally makes sense, since the heat

conductivity and capacity of this mixture are lower than those of pure water.
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Figure 5.17: Mean temperature of the solid and fluid regions for different iterations with
pure water as coolant

Temperatures at Monitor Points, and Experimental Validation

Another validation criterion to check the convergence of the iteration process is to look

at individual monitor points around the engine. For this purpose, a few points were selected

around the liner and were monitored for changes. These points are shown in Figure 5.19

(A). As visible in this figure, points #1 and #2 are between the coolant path and the liner

on the intake side of the chamber; points #3 and #4 are between the coolant path and the

liner on the exhaust side of the chamber; point#5 is on top of the cylinder head; and finally

point#6 is behind the spark plug.

The results are presented in Figure 5.20. It can be seen that for all the points, the

temperatures with pure water are lower than those of W/EG mixture. It also can be seen

that changes in local temperatures for almost all the points are minimal; these changes are
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Figure 5.18: Mean temperature of the solid and fluid regions for different iterations with
W/EG as coolant

Table 5.4: ∆Titer_3→iter_4 (K) for local monitor points

Point#1 Point#2 Point#3 Point#4 Point#5 Point#6
Water 4.5 6 10 8 0.5 10
W/EG 2.3 4.2 1.8 1.5 2.1 3.6

listed in Table 5.4. This again confirms the convergence of the iteration process. On the

other hand, these minor changes can be explained by changes in in-cylinder pressure as

shown in the following section.

In addition to all these, there is a through-hole which can be used for additional lubri-

cation on the side of the engine; it can be seen in Figures 4.5 and 5.14. This point can

be used to make an experimental temperature measurement. A plug was made to fill the

hole flush with the liner, and a fast-response type-K thermocouple was fitted tightly in this
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Figure 5.19: Location of monitor points: (A) used for convergence check, (B) used for
experimental validation

plug at a certain distance from the liner surface (Figure 5.21). The transient heat penetra-

tion depth was calculated to make sure the point of measurement is not seeing the transient

heat transfer behaviors The engine was ran at full-load, rated-speed for 30 minutes to reach

steady-state, and then the temperature was measured to be ≈ 120 ◦C (393 K). It has to be

noted that the experiment was done only with W/EG as coolant.

A monitor point was put at this same location in the simulations (Figure 5.19 (B)), and

temperatures were compared. The results are presented in Figure 5.22, where the black

line represents the steady state temperature measurement at the mentioned point. It can

be seen that the simulated temperature with pure water as coolant is below the measured

temperature, while with W/EG as coolant it is very close to the experimentally measured

temperature. Although many other points should be used for experimental validation, there

are not many places on the engine that are accessible for temperature measurements. This

single validation point, adds to the reliability of the simulation data.
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Pressure Curves

In this section, the effects of combustion chamber wall temperatures on in-cylinder

pressures are studied. As shown in Figure 5.23, changes in wall temperatures affect the

Figure 5.20: Local temperature at shown monitor points
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Figure 5.21: The plug and thermocouple used for the validation of CHT simulations

Figure 5.22: Comparison of experimental and numerical temperatures at the validation
monitor point

in-cylinder pressures. This phenomena can be due to various reasons:

• Slightly different in-cylinder pressure at EPC timing. These small differences will

be magnified when combustion starts.

• Different wall temperatures, could potentially change the combustion characteristics

of the cycle. The changes in the combustion behavior could lead to different flame

propagation characteristics. The rate of heat release (ROHR) curves can be used to
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show this difference.

Figure 5.23: In-cylinder pressures with different wall temperatures

As mentioned, ROHR curves can be used to look at different combustion characteris-

tics. It can be seen in Figure 5.24, that the net heat release for all the simulated cycles is

almost constant, meaning that the trapped fuel, and the total released energies are iden-

tical. On the other hand, Figure 5.25 shows how different the ROHR curves look like

for different wall temperatures. This means that the combustion characteristics are not

the same between the cycles; these differences can be due to minor variations in the wall

temperatures. In this figure, the difference in the slopes of the ROHR curves and the peak

values is evident.
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Figure 5.24: Net heat release for cycles with different wall temperatures

Figure 5.25: Rate of heat release (ROHR) for cycles with different wall temperatures
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Temperature Distribution on the Combustion Chamber Walls

The last piece of results that can be looked at is the temperature distribution on the parts

interfacing with the combustion chamber; achieving this, is the objective of the study. The

overall temperature distribution on the combustion chamber walls is shown in Figure 5.26.

Figure 5.26: Overall temperature distribution on the combustion chamber walls

A few interesting observations can be made from this figure. The first point is that the

temperature around the exhaust manifold is significantly lower than those of the cylinder

head, the spark plug, and the air-start cavity. This has two main reasons:

• The gas temperatures inside the chamber are much lower at EPO, than they are at

the peak temperature and pressure of the combustion chamber. This means that the

fluids are much cooler, when exhaust port opens to let the combustion products out.
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• As was shown in Figures 5.13 and 5.14, the inlet of the coolant (where it is the

coolest in its cycle) is around the exhaust manifold. It also can be seen in those

figures that the exhaust manifold is completely surrounded by the coolant path, while

the paths around the air-start cavity, and the spark plug are narrow and limited.

Additionally, the coolant is much warmer when it reached the cylinder head area.

Another interesting observation is that the wall temperatures are lower very close to

the intake ports. The low temperature of the mixtures inside the stuffing box (close to

environment temperature) is why the areas closer to the intake ports are cooler. At IPO,

the low-temperature scavenging flows enter the combustion chamber through the intake

ports, cooling down the walls on the intake side.

It would be very helpful to look at the flame propagation characteristics at this point.

Figure 5.27 shows the steps of flame propagation within a single combustion cycle. The

flame front is assumed to be the isosurface of methane concentration of 1e-09, which

represents the surface at which the fuel is almost all burnt. Following the sequence of

figures, the flame kernel starts forming at about -6.5◦ATDC. It then evolves and expands

almost spherically up to TDC. It can be seen that the flame expands towards the cylinder

head, and does not reach the piston crown until 2◦ATDC. Since in-cylinder temperatures

are rising until almost 30◦ATDC when combustion ends, the parts which are closer to the

flame front (spark plug and parts of the cylinder head) during this period, are expected to

be hotter.
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Figure 5.27: Flame front propagation within one combustion cycle
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The temperature distribution on the cylinder head is presented in Figure 5.28. This

temperature distribution can be easily explained by the flame front expansion behavior.

As seen in Figure 5.27, and was explained before, the hot parts that are seen in Figure

5.28, are the areas which interact with the flame and/or combustion products the longest

during one cycle.

Figure 5.28: Temperature distribution on the cylinder head

Another interesting observation from Figure 5.28 is the hot surfaces around the neck

of the air-start cavity. The reason for this phenomenon is the late arrival of the flame

inside the cavity. It can be seen in Figure 5.27, that the flame front enters the cavity at

about 9◦ATDC. Because of the shape of the cavity, it acts as sort of a separate combustion

chamber; the flame starts burning the mixture inside the cavity, rising its pressure and
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temperature, which leads to burst of a high-temperature jet of fluids out of the cavity into

the combustion chamber a few crank angles later. This phenomenon is shown in Figure

5.29. This hot jet is the reason, for having the hot surfaces around the neck of the air-

start cavity. Additionally, as shown in Figure 5.13, the coolant paths do not surround the

air-start cavity and especially its neck that well; hence; the edges get hotter than the rest.

Figure 5.29: Velocity vectors on a plane on the center-line of the air-start cavity, along
with the flame front
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As expected, and as shown in Figure 5.30 (which shows inside of the cylinder head),

the spark plug is the hottest piece in the combustion chamber. The coolant paths do not

cover the areas around the spark plug that well, as shown in Figure 5.14. Additionally,

the spark plug is inside the combustion chamber, and is emerged in flame and combustion

products during the combustion cycle. The only cooling it gets, come from conduction

through its body, and convection from the scavenging flows.

Figure 5.30: Temperature distribution on the inner surface of the cylinder head and
around the spark plug
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6. SUMMARY AND CONCLUSION

To improve the engine’s performance, reduce its emission production, and re-design

relevant parts for better mechanical endurance, the spatial temperature distribution in all

the parts interfacing with the combustion chamber is required. For this purpose, the ob-

jective of the study was set to making a high-fidelity model capable of calculating the

temperature distribution on these parts.

6.1 Summary

A thorough literature review was done. It was concluded that such a model requires a

detailed and accurate simulation of all the processes that happen inside the engine; hence,

the following tasks were defined and carried out:

• Simulation of the intake flows to the stuffing box through the reed valve:

– FSI (fluid-structure interaction) methods were used to capture the body dy-

namics of the reed valve strips. Experimentally measured pressure profiles

were used as boundary conditions for the air and fuel intake manifolds.

– The simulation results were validated by matching the pressure of the stuffing

box, as well as, the ability of the model in keeping the stuffing box’s equiva-

lence ratio within an acceptable range of the experimentally measured φ.

• Simulation of the gas exchange processes:

– Geometries of the manifolds and ports were included to increase the accuracy

of the numerical simulation.

– Short-circuiting, trapping efficiency, and scavenging efficiency were calculated

to be used for future improvements of the engine.
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• Simulation of the combustion process:

– The clearance volume (Vc) was experimentally measured. The geometry was

then fine tuned to match the clearance volume of the engine.

– SAGE detailed chemical kinetics solver was utilized with GRI-Mech 3.0 to

accurately simulate the combustion process. The results were then validated

by the experimentally data acquired from the engine.

– It was understood that the simulations are capable of capturing the cyclic vari-

ation of the engine. The simulation results can later be used to find the culprit

for the cyclic variation, and improve the engine’s performance.

• Simulation of the conjugate heat transfer (CHT) process:

– As it was not feasible to run the combustion and CHT simulations simultane-

ously, an iterative procedure was defined to couple the combustion simulation

with the CHT simulation between the engine’s cooling system and the solid

parts interfacing with the combustion chamber.

– The coolant flow rate and its temperature at the inlet were experimentally mea-

sured, and were used as boundary conditions for the simulation work.

– To assess the effects of the coolant properties on the heat transfer charac-

teristics of the engine, the simulations were done considering two different

coolants: 1) water, 2) a 50-50 mixture of water and ethylene glycol.

– The mean temperatures of both solid and coolant regions were used to check

the convergence of the iterative process. It was concluded and shown that after

four iterations, the temperatures converged.

– A single experimental temperature measurement was done to validate the sim-

ulated temperature distribution. Additionally, a few monitor points were put at
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different locations of the solid parts, and the convergence of the temperatures

at these points were confirmed.

– It was shown that the changes in wall temperatures, affect the simulated com-

bustion characteristics of the engine. This was observed in in-cylinder pres-

sures, and ROHR curves.

With these tasks completed, the objective of the study was reached; a high-fidelity

model, capable of simulating the conjugate heat transfer of a spark-ignited engine’s cylin-

der, and providing the spatial temperature distribution in the solid parts interfacing with

the combustion chamber.

6.2 Conclusions

The conclusions are divided into to subsections: 1) Reed Valve, Scavenging, and Com-

bustion Simulation, and 2) CHT simulation.

6.2.1 Reed Valve, Scavenging, and Combustion Simulation

In the reed valve simulation section, it was proven that the use of FSI models along

with experimentally measured boundary conditions is necessary for achieving accurate

numerical results.

It was shown through short-circuiting calculations that the engine looses close to 40%

of the fresh charge, leading to very high UHC emissions. A direct injection kit could be

used to eliminate the UHC emissions through short-circuiting.

It was proven once again that the CFD tools are capable of simulating the combustion

process accurately. These models are also able to capture the cyclic variation behavior of

the engine. It was shown that the differences in flow field characteristics are the reasons

for having so much CV.
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6.2.2 CHT Simulation

Spatial temperature distribution on the combustion chamber walls was acquired through

numerical simulations. The temperature distribution revealed that the wall temperatures

are relatively higher near and around the spark plug and the air-start cavity. This obser-

vation suggests that the engine modification should center on either ensuring substantial

durability to tolerate such high temperatures or improving heat transfer design to reduce

the magnitude of temperatures at these locations.

An interesting observation was made that the combustion chamber wall temperatures

influence the combustion characteristics; this was made obvious by looking at the in-

cylinder pressure curves.

6.3 Future Work

The results of this study could later be used for these purposes, or be improved by the

following suggestions:

1. The behavior of the reed valve could be analyzed, to improve the AFR control strat-

egy of the engine.

2. The mixing of the air and fuel inside the stuffing box could be studied in detail, to

come up with ways of improving the mixing characteristics.

3. It was shown in this study that the engine has high short-circuiting values; this is the

main reason for the high UHC emissions of the engine. The shapes of the manifolds,

and the piston crown could be modified in order to decrease the amount of fuel that

is being lost due to short-circuiting.

4. As shown in the Combustion Simulation Results through experimental data, the

engine has very high COVIMEP values. It is shown in APPENDIX B, that the dif-

ferences in flow development in the combustion chamber are the reasons for having
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such high cyclic variation. The results of this study could be used to research the

flow characteristics in much more detail, aiming to find solutions to reducing the

COVIMEP .

5. The results of the CHT simulations could be used for various improvements to the

engine:

• Redesign of relevant parts of the engine to increase their thermo-mechanical

endurance.

• An analysis could be done to assess the performance of the cooling system.

• Local hot-spots could be eliminated by improving the cooling system. This

would impact the combustion behavior and NOx emission production of the

engine.

6. The accuracy of the CHT simulation results could be improved by applying the

following proposals:

• Addition of the piston geometry to the conjugate heat transfer simulations.

• Utilizing a nucleate boiling model, to capture the effects of the phase change

phenomenon in the coolant fluid.

7. Most importantly, the use of this model can be expanded to other engines. All

the above-mentioned studies then can be done for respective engines, for the same

improvements.

107



REFERENCES

[1] J. B. Heywood and E. Sher, “The two-stroke cycle engine,” Warrendale, PA: Society

of Automotive Engineers, 1999. 472, 1999.

[2] J. Xin, S. Shih, E. Itano, and Y. Maeda, “Integration of 3D combustion simulations

and conjugate heat transfer analysis to quantitatively evaluate component tempera-

tures,” 2003.

[3] “AJAX E-565 gas engine,” 2014.

[4] C. Arcoumanis and J. H. Whitelaw, “Fluid mechanics of internal combustion engines

-a review,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal

of Mechanical Engineering Science, vol. 201, no. 1, pp. 57–74, 1987.

[5] T. D. Butler, L. D. Cloutman, J. K. Dukowicz, and J. D. Ramshaw, “Multidimensional

numerical simulation of reactive flow in internal combustion engines,” Progress in

Energy and Combustion Science, vol. 7, no. 4, pp. 293–315, 1981.

[6] S.-C. Kong, Z. Han, and R. D. Reitz, “The development and application of a diesel

ignition and combustion model for multidimensional engine simulation,” Tech. Rep.

0148-7191, SAE Technical Paper, 1995.

[7] W. W. Pulkrabek, Engineering fundamentals of the internal combustion engine. Up-

per Saddle River, N.J.: Pearson Prentice Hall, 2004.

[8] R. Stone, Introduction to internal combustion engines. SAE International, 4th ed.,

2012.

[9] A. Mashayekh, T. Jacobs, M. Patterson, and J. Etcheverry, “Prediction of air-fuel

ratio control of a large bore natural gas engine using cfd modeling of reed valve

dynamics,” International Journal of Engine Research, 2017.

108



[10] J. B. Heywood, Internal combustion engine fundamentals. McGraw-Hill series in

mechanical engineering, New York: McGraw-Hill, 1988.

[11] G. A. Lavoie, J. B. Heywood, and J. C. Keck, “Experimental and theoretical study

of nitric oxide formation in internal combustion engines,” Combustion Science and

Technology, vol. 1, no. 4, pp. 313–326, 1970.

[12] R. D. Reitz, “Directions in internal combustion engine research,” Combustion and

Flame, vol. 160, no. 1, pp. 1–8, 2013.

[13] E. T. Hinds and G. P. Blair, “Unsteady gas flow through reed valve induction sys-

tems,” 1978.

[14] G. P. Blair, E. T. Hinds, and R. Fleck, “Predicting the performance characteristics of

two-cycle engines fitted with reed induction valves,” 1979.

[15] R. Fleck, G. P. Blair, and R. A. R. Houston, “An improved model for predicting reed

valve behaviour in two-stroke cycle engines,” 1987.

[16] W. Mitianiec and A. Bogusz, “Theoretical and experimental study of gas flow

through reed valve in a two-stroke engine,” 1996.

[17] G. Cunningham, R. J. Kee, and J. Boyall, “CFD prediction of crankcase flow regimes

in a crankcase scavenged two-stroke engine,” 1997.

[18] G. Cunningham, R. J. Kee, and R. G. Kenny, “Reed valve modelling in a compu-

tational fluid dynamics simulation of the two-stroke engine,” Proceedings of the

Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,

vol. 213, no. 1, pp. 37–45, 1999.

[19] F. F. S. Matos, A. T. Prata, and C. J. Deschamps, “Numerical simulation of the dy-

namics of reed type valves,” 2002.

109



[20] Y. Zeng, S. Strauss, P. Lucier, and T. Craft, “Predicting and optimizing two-stroke

engine performance using multidimensional CFD,” 2004.

[21] M. Battistoni, C. N. Grimaldi, R. Baudille, M. Fiaccavento, and M. Marcacci, “De-

velopment of a model for the simulation of a reed valve based secondary air injection

system for si engines,” 2005.

[22] R. J. Rothbauer, G. Grasberger, Z. Abidin, and R. A. Almbauer, “Reed valve,

crankcase and exhaust models coupled to 3d fluid domains for the predictive CFD

simulation,” tech. rep., SAE Technical Paper, 2007.

[23] N. Govindan, V. Jayaraman, R. S. Venkatasamy, and M. Ramasamy, “Mathemati-

cal modeling and simulation of a reed valve reciprocating air compressor,” Thermal

Science, vol. 13, no. 3, pp. 47–58, 2009.

[24] D. Jajcevic, R. Almbauer, S. Schmidt, K. Glinsner, and M. Fitl, “Reed valve CFD

simulation of a 2-stroke engine using a 2D model including the complete engine

geometry,” SAE Int. J. Engines, vol. 3, no. 2, pp. 448–461, 2010.

[25] I. Gonzalez, O. Lehmkuhl, A. Naseri, J. Rigola, and A. Oliva, “Fluid-structure inter-

action of a reed type valve,” 2016.

[26] M. E. G. Sweeney, G. G. Swann, R. G. Kenny, and G. P. Blair, “Computational fluid

dynamics applied to two-stroke engine scavenging,” Tech. Rep. 0148-7191, SAE

Technical Paper, 1985.

[27] J. G. Smyth, R. G. Kenny, and G. P. Blair, “Steady flow analysis of the scavenging

process in a loop scavenged two-stroke cycle engine -a theoretical and experimental

study,” Tech. Rep. 0148-7191, SAE Technical Paper, 1988.

[28] E. Sher, “Scavenging the two-stroke engine,” Progress in Energy and Combustion

Science, vol. 16, no. 2, pp. 95–124, 1990.

110



[29] E. Sher, I. Hossain, Q. Zhang, and D. E. Winterbone, “Calculations and measure-

ments in the cylinder of a two-stroke uniflow-scavenged engine under steady flow

conditions,” Experimental thermal and fluid science, vol. 4, no. 4, pp. 418–431, 1991.

[30] Y. G. Lai, A. J. Przekwas, and R. L. T. Sun, “Three-dimensional computation of the

scavenging flow process in a motored two-stroke engine,” Tech. Rep. 0148-7191,

SAE Technical Paper, 1993.

[31] C. W. Dekanski, M. I. G. Bloor, and M. J. Wilson, “A parametric model of a 2-

stroke engine for design and analysis,” Computer methods in applied mechanics and

engineering, vol. 137, no. 3, pp. 411–425, 1996.

[32] B. D. Raghunathan and R. G. Kenny, “CFD simulation and validation of the flow

within a motored two-stroke engine,” Tech. Rep. 0148-7191, SAE Technical Paper,

1997.

[33] S. Mc Elligott, R. Douglas, R. G. Kenny, and S. Glover, “An assessment of a stratified

scavenging process applied to a loop scavenged two-stroke engine,” Tech. Rep. 0148-

7191, SAE Technical Paper, 1999.

[34] F. Payri, J. Galindo, H. Climent, J. M. Pastor, and C. Gaia, “Optimisation of the

scavenging and injection processes of an air-assisted direct fuel injection 50 cc. 2-

stroke SI engine by means of modelling,” Tech. Rep. 0148-7191, SAE Technical

Paper, 2001.

[35] J. Benajes, R. Novella, D. De Lima, P. Tribotte, N. Quechon, P. Obernesser, and

V. Dugue, “Analysis of the combustion process, pollutant emissions and efficiency of

an innovative 2-stroke HSDI engine designed for automotive applications,” Applied

Thermal Engineering, vol. 58, no. 1, pp. 181–193, 2013.

111



[36] M. Garg, D. Kumar, M. Syed, and S. Nageswara, “CFD modelling of a two stroke

engine to predict and reduce short circuit losses,” SAE International Journal of En-

gines, vol. 9, no. 2015-32-0702, pp. 355–364, 2015.

[37] R. D. Reitz and C. J. Rutland, “Development and testing of diesel engine CFD mod-

els,” Progress in Energy and Combustion Science, vol. 21, no. 2, pp. 173–196, 1995.

[38] H. Jasak, J. Y. Luo, B. Kaludercic, A. D. Gosman, H. Echtle, Z. Liang, F. Wirbeleit,

M. Wierse, S. Rips, A. Werner, G. Fernstrom, and A. Karlsson, “Rapid CFD simula-

tion of internal combustion engines,” 1999.

[39] P. K. Senecal, Development of a methodology for internal combustion engine design

using multi-dimensional modeling with validation through experiments. Ph.D., The

University of Wisconsin - Madison, 2000.

[40] S.-C. Kong and R. D. Reitz, “Application of detailed chemistry and CFD for pre-

dicting direct injection HCCI engine combustion and emissions,” Proceedings of the

Combustion Institute, vol. 29, no. 1, pp. 663–669, 2002.

[41] M. C. Drake, T. D. Fansler, and A. M. Lippert, “Stratified-charge combustion: mod-

eling and imaging of a spray-guided direct-injection spark-ignition engine,” Proceed-

ings of the Combustion Institute, vol. 30, no. 2, pp. 2683–2691, 2005.

[42] S. X. Cheng and J. S. Wallace, “Modeling of ignition and combustion for glow

plug assisted direct injection natural gas engines,” Proceedings of the ASME Internal

Combustion Engine Division Fall Technical Conference - 2012, pp. 767–779, 2012.

[43] X. Yang, A. Solomon, and T.-W. Kuo, “Ignition and combustion simulations of

spray-guided SIDI engine using arrhenius combustion with spark-energy deposition

model,” 2012.

112



[44] Z. Wang, R. Scarcelli, S. Som, S. McConnell, N. Salman, Y. Zhu, K. Hardman,

K. Freeman, R. Reese, P. K. Senecal, M. Raju, and S. Givler, “Multi-dimensional

modeling and validation of combustion in a high-efficiency dual-fuel light-duty en-

gine,” 2013.

[45] M. Raju, M. Wang, M. Dai, W. Piggott, and D. Flowers, “Acceleration of detailed

chemical kinetics using multi-zone modeling for CFD in internal combustion engine

simulations,” 2012.

[46] J. Etcheverry, M. Patterson, and D. Grauer, “Modern design methods applied to the

redesign of a legacy large bore, two-stroke cycle, spark ignited gas engine,” in ASME

2013 Internal Combustion Engine Division Fall Technical Conference, American

Society of Mechanical Engineers, 2013.

[47] J. Etcheverry, M. Patterson, and D. Grauer, “Virtual design of an industrial, large-

bore, spark-ignited, natural gas, internal combustion engine for reduction of regu-

lated pollutant emissions,” in ASME 2013 Internal Combustion Engine Division Fall

Technical Conference, American Society of Mechanical Engineers, 2013.

[48] S. D. Givler, M. Raju, E. Pomraning, P. K. Senecal, N. Salman, and R. Reese, “Gaso-

line combustion modeling of direct and port-fuel injected engines using a reduced

chemical mechanism,” 2013.

[49] A. C. Alkidas, “Heat transfer characteristics of a spark-ignition engine,” Journal of

Heat Transfer, vol. 102, no. 2, pp. 189–193, 1980.

[50] A. C. Alkidas and J. P. Myers, “Transient heat-flux measurements in the combus-

tion chamber of a spark-ignition engine,” Journal of Heat Transfer, vol. 104, no. 1,

pp. 62–67, 1982.

113



[51] C. Angelberger, T. Poinsot, and B. Delhay, “Improving near-wall combustion and

wall heat transfer modeling in SI engine computations,” Tech. Rep. 0148-7191, SAE

Technical Paper, 1997.

[52] M. S. Baniasad, E. Khalil, and F. Shen, “Exhaust valve thermal management and

robust design using combustion and 3D conjugate heat transfer simulation with 6-

sigma methodology,” 2006.

[53] V. Esfahanian, A. Javaheri, and M. Ghaffarpour, “Thermal analysis of an SI engine

piston using different combustion boundary condition treatments,” Applied Thermal

Engineering, vol. 26, no. 2, pp. 277–287, 2006.

[54] E. Urip, K. H. Liew, and S. L. Yang, “Modeling IC engine conjugate heat transfer

using the KIVA code,” Numerical Heat Transfer, Part A: Applications, vol. 52, no. 1,

pp. 1–23, 2007.

[55] E. Urip and S.-L. Yang, “An efficient IC engine conjugate heat transfer calculation

for cooling system design,” 2007.

[56] S. Fontanesi and E. V. McAssey, “Experimental and numerical investigation of con-

jugate heat transfer in a HSDI diesel engine water cooling jacket,” 2009.

[57] S. Fontanesi, G. Cicalese, and M. Giacopini, “Multiphase CFD-CHT analysis and

optimization of the cooling jacket in a v6 diesel engine,” Tech. Rep. 0148-7191,

SAE Technical Paper, 2010.

[58] S. Fontanesi, G. Cicalese, A. D’Adamo, and G. Pivetti, “Validation of a CFD method-

ology for the analysis of conjugate heat transfer in a high performance SI engine,”

2011.

[59] Y. Li and S.-C. Kong, “Coupling conjugate heat transfer with in-cylinder combustion

modeling for engine simulation,” International Journal of Heat and Mass Transfer,

114



vol. 54, no. 11, pp. 2467–2478, 2011.

[60] S. Fontanesi and M. Giacopini, “Multiphase CFD-CHT optimization of the cooling

jacket and FEM analysis of the engine head of a v6 diesel engine,” Applied Thermal

Engineering, vol. 52, no. 2, pp. 293–303, 2013.

[61] H. Punekar and S. Das, “Numerical simulation of subcooled nucleate boiling in cool-

ing jacket of IC engine,” 2013.

[62] S. Fontanesi, G. Cicalese, G. Cantore, and A. D’Adamo, “Integrated in-cylinder/CHT

analysis for the prediction of abnormal combustion occurrence in gasoline engines,”

Tech. Rep. 0148-7191, SAE Technical Paper, 2014.

[63] O. Iqbal, K. Arora, and M. Sanka, “Thermal map of an IC engine via conjugate heat

transfer: Validation and test data correlation,” 2014.

[64] S. Jahangirian, A. Srivastava, S. A. Hosseini, S. Ballard, N. Wu, and J. Kiedaisch,

“A multi-physics 3D modeling methodology for multi-cylinder diesel engine thermal

management and fatigue life prediction,” 2015.

[65] G. Cicalese, F. Berni, and S. Fontanesi, “Integrated in-cylinder / CHT methodology

for the simulation of the engine thermal field: An application to high performance

turbocharged DISI engines,” 2016.

[66] P. Kundu, R. Scarcelli, S. Som, A. Ickes, Y. Wang, J. Kiedaisch, and M. Rajkumar,

“Modeling heat loss through pistons and effect of thermal boundary coatings in diesel

engine simulations using a conjugate heat transfer model,” 2016.

[67] A. Griffin, Combustion Characteristics of a Two-Stroke Large Bore Natural Gas

Spark-Ignited Engine. M.Sc. thesis, Texas A&M University, 2015.

[68] “Water cooled absolute pressure sensor, type 4049a,” 2010.

115



[69] J. Brown, S. Chakravarthy, T. Kroeger, and Y. Sun, “Instrumenting a thermosiphon

cooling system on a large-bore two-stroke spark-ignited natural gas engine,” tech.

rep., 2016.

[70] “Gas analysis report,” Tech. Rep. 04016300, Hicks Dry Plant, 03/03/2015 2015.

[71] O. Redlich and J. N. S. Kwong, “On the thermodynamics of solutions. v. an equation

of state. fugacities of gaseous solutions,” Chemical Reviews, vol. 44, no. 1, pp. 233–

244, 1949.

[72] CONVERGE Manual (CONVERGE CFD 2.2). CONVERGE CFD (TM), 2015.

[73] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Golden-

berg, C. T. Bowman, R. K. Hanson, S. Song, J. William C. Gardiner, V. V. Lissianski,

and Z. Qin, “GRI MECH 3.0,” 1999.

[74] A. Babajimopoulos, D. N. Assanis, D. L. Flowers, S. M. Aceves, and R. P. Hessel,

“A fully coupled computational fluid dynamics and multi-zone model with detailed

chemical kinetics for the simulation of premixed charge compression ignition en-

gines,” International journal of engine research, vol. 6, no. 5, pp. 497–512, 2005.

[75] CONVERGE Manual (CONVERGE CFD 2.3). CONVERGE CFD (TM), 2016.

[76] A. M. Lippert, S. Chang, S. Are, and D. P. Schmidt, “Mesh independence and adap-

tive mesh refinement for advanced engine spray simulations,” 2005.

[77] E. Pomraning, K. Richards, and P. K. Senecal, “Modeling turbulent combustion using

a RANS model, detailed chemistry, and adaptive mesh refinement,” 2014.

[78] Q. Xue and S.-C. Kong, “Development of adaptive mesh refinement scheme for en-

gine spray simulations,” Computers & Fluids, vol. 38, no. 4, pp. 939–949, 2009.

116



[79] A. A. Amsden, “KIVA-3V: A block-structured KIVA program for engines with ver-

tical or canted valves,” tech. rep., Los Alamos National Lab., NM (United States),

1997.

[80] S. R. Turns, “An introduction to combustion: concepts and applications,” McGraw-

Hill series in mechanical engineering., 2000.

[81] P. K. Senecal, E. Pomraning, K. J. Richards, T. E. Briggs, C. Y. Choi, R. M. McDavid,

and M. A. Patterson, “Multi-dimensional modeling of direct-injection diesel spray

liquid length and flame lift-off length using CFD and parallel detailed chemistry,”

2003.

[82] Z. Han and R. D. Reitz, “Turbulence modeling of internal combustion engines using

RNG k−εmodels,” Combustion science and technology, vol. 106, no. 4-6, pp. 267–

295, 1995.

[83] M. Biruduganti, S. Gupta, B. Bihari, S. McConnell, and R. Sekar, “Air separation

membranes: An alternative to EGR in large bore natural gas engines,” Journal of

Engineering for Gas Turbines and Power, vol. 132, no. 8, p. 082804, 2010.

[84] H. Gao, M. J. Hall, O. A. Ezekoye, and R. D. Matthews, “Railplug design optimiza-

tion to improve large-bore natural gas engine performance,” pp. 15–23, American

Society of Mechanical Engineers, 2005.

[85] K. D. Beaty and C. C. D. Wood, “Integral gas compressor engines: Cylinder balanc-

ing, NOx, and efficiency,” vol. 1, p. 9, American Society of Mechanical Engineers,

1997.

[86] M. Abraham and S. Prakash, “A theory of cyclic variations in small two-stroke cy-

cle spark ignited engines - an analytical validation of experimentally observed be-

haviour,” 1992.

117



[87] J. W. Daily, “Cycle-to-cycle variations: a chaotic process?,” Tech. Rep. 0148-7191,

SAE Technical Paper, 1987.

[88] M. B. Young, “Cyclic dispersion-some quantitative cause-and-effect relationships,”

Tech. Rep. 0148-7191, SAE Technical Paper, 1980.

[89] G. Karim, “An examination of the nature of the random cyclic pressure variations

in a spark-ignition engine,” Journal of the Institute of Petroleum, vol. 53, no. 519,

pp. 112–120, 1967.

[90] R. E. Winsor and D. J. Patterson, “Mixture turbulence-a key to cyclic combustion

variation,” Tech. Rep. 0148-7191, SAE Technical Paper, 1973.

[91] B. D. Peters and G. L. Borman, “Cyclic variations and average burning rates in a si

engine,” Tech. Rep. 0148-7191, SAE Technical Paper, 1970.

[92] F. A. Matekunas, “Modes and measures of cyclic combustion variability,” Tech. Rep.

0148-7191, SAE Technical Paper, 1983.

[93] P. G. Hill, “Cyclic variations and turbulence structure in spark-ignition engines,”

Combustion and flame, vol. 72, no. 1, pp. 73–89, 1988.

[94] J. G. Hansel, “Lean automotive engine operation-hydrocarbon exhaust emissions and

combustion characteristics,” Tech. Rep. 0148-7191, SAE Technical Paper, 1971.

[95] M. B. Young, “Cyclic dispersion in the homogeneous-charge spark-ignition engine-a

literature survey,” Tech. Rep. 0148-7191, SAE Technical Paper, 1981.

[96] R. S. Jupudi, C. E. A. Finney, R. Primus, S. Wijeyakulasuriya, A. E. Klingbeil,

B. Tamma, and M. K. Stoyanov, “Application of high performance computing for

simulating cycle-to-cycle variation in dual-fuel combustion engines,” Tech. Rep.

0148-7191, SAE Technical Paper, 2016.

118



[97] R. Scarcelli, N. S. Matthias, and T. Wallner, “Numerical and experimental analysis of

ignition and combustion stability in EGR dilute GDI operation,” pp. V001T03A015–

V001T03A015, American Society of Mechanical Engineers, 2014.

[98] R. Scarcelli, J. Sevik, T. Wallner, K. Richards, E. Pomraning, and P. K. Senecal,

“Capturing cyclic variability in EGR dilute SI combustion using multi-cycle RANS,”

pp. V002T06A010–V002T06A010, American Society of Mechanical Engineers,

2015.

[99] K. Richards, D. Probst, E. Pomraning, P. K. Senecal, and R. Scarcelli, “The obser-

vation of cyclic variation in engine simulations when using RANS turbulence mod-

eling,” pp. V002T06A010–V002T06A010, American Society of Mechanical Engi-

neers, 2014.

119



APPENDIX A

FORMULATIONS

A.1 Fluid Structure Interaction (FSI)

For this model, the stress tensor will be integrated over the surfaces if the FSI object;

the results of this integral will be the fluid force:

Ffluid−i =

∫
S

(−Pδij + σij)njdS (A.1)

In this equation, nj is the normal vector, P is the pressure, and σij represents the

viscous stress tensor. In the next step, the total moment (Mfluid−i) could be calculated

using Equation A.2:

Mfluid−i =

∫
S

εijkrj(−Pδkl + σkl)njdS (A.2)

In which, εijk is the Levi-Civita symbol, and rj is the center of mass distance from the

surface boundary.

Then, the governing equation for the translational motion of the center of mass will be

solved, using Equation A.3:

ΣFexternal−i + Ffluid−i = mẍi (A.3)

In which, m is the mass, and the displacement of the center of mass of the FSI object

in the direction, is represented by ẍi. [75]
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A.2 Formulation of Chemical Kinetics with Multi-Step Mechanisms

A chemical reaction mechanism with multiple steps can be written as the following

[80]:

N∑
n=1

v′n,rXn ⇔
N∑
n=1

v′′n,rXn, for r = 1, 2, · · · , R (total number of reactions) (A.4)

In this reaction, v′n,r and v′′n,r are respectively the stoichiometric coefficients of the

reactants and products sides of the reaction, for species n and reaction r. Then the net

production rate of the species n can be calculated using Equation A.5:

ω̇n =
R∑
r=1

vn,rqr, for n = 1, 2, · · · , N (total number of species) (A.5)

Where vn,r = v′′n,r − v′n,r. In Equation A.5, qr stands for the rate-of-progress variable,

for the rth elementary reaction; it can be formulated as:

qr = kfr

N∏
n=1

[Xn]v
′
n,r − krr

N∏
n=1

[Xn]v
′′
n,r (A.6)

In this equation, [Xn] represents the molar concentration of species n, and kfr, and

krr are respectively the forward and reverse rate coefficients for reaction r. SAGE uses

Equation A.7 for reaction forward rate coefficient, which is expressed in Arrhenius form

[72, 81].

kfr = ArT
br exp(−Er/RuT ) (A.7)

In which, Ar is the pre-exponential factor, br is the temperature exponent, Er stands

for the reaction activation energy, and finally Ru is the universal gas constant.
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In addition, the backward rate coefficient (krr), can either be specified as another equa-

tion, like Equation A.7, or can be calculated from equilibrium coefficient, kcr:

krr =
kfr
kcr

(A.8)

The kcr, which stands for the equilibrium constant depends on the thermodynamic

properties, and is calculated by:

kcr = exp

(
∆S0

r

R
− ∆H0

r

RT

)
·

(
Patm
RT

) N∑
n=1

vn,r

(A.9)

And the terms in Equation A.9 are described as the following:

• Patm: the atmospheric pressure

• R: the gas constant

• T : temperature

• ∆S0
r

R
=

N∑
n=1

vn,r
S0
n

R
, S: entropy

• ∆H0
r

R
=

N∑
n=1

vn,r
H0
n

R
, H: enthalpy

Using all the above presented equations, the mass and energy conservation equations

can be written as Equation A.10 and Equation A.11 respectively.

d[Xn]

dt
= ω̇n (A.10)

dT

dt
=

V
dP

dt
−

N∑
n=1

(
h̄nω̇n

)
N∑
n=1

(
[Xn]c̄p,n

) (A.11)

In Equation A.11, the terms are described as:
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• V : volume

• T : temperature

• P : pressure

• h̄n: molar specific enthalpy of species n

• c̄p,n: molar constant-pressure specific heat of species n

All of these equations are solved in each time-step; based on the results, species are

updated appropriately in each cell.

A.3 Reynolds Averaged Navier-Stokes (RANS)

As explained in [72, 82], the flow variables such as velocity will be decomposed into

two terms as presented in Equation A.12:

ui︸︷︷︸
instantaneous velocity

= ūi︸︷︷︸
ensemble mean

+ u′i︸︷︷︸
fluctuating

(A.12)

This decomposition is then substituted in the Navier-Stokes equation resulting in Equa-

tion A.13 for the mass transport, and Equation A.14 for the momentum transport:

∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0 (A.13)

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= −∂P̄
∂xi

+
∂

∂xj

[
µ

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
µ
∂ũk
∂xk

δij

]
+

∂

∂xj

(
− ρ̄ũ′iu′j

)
(A.14)

Where ũi ≡
ρui
ρ̄

. The last terms of Equation A.14 (−ρ̄ũ′iu′j) are called Reynolds

stresses, which represent the effects of turbulence. These stress terms should be modeled
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for solving Equation A.14. Equation A.15 is used to model the Reynolds stress terms for

the standard k − ε and RNG models.

τij = −ρ̄ũ′iu′j = 2µtSij −
2

3
δij

(
ρk + µt

∂ũi
∂xi

)
(A.15)

Where µt (turbulent viscosity) is given by µt = cµρ
k2

ε
. In the definition of the turbulent

viscosity, the term k (turbulent kinetic energy) is defined by k =
1

2
ũ′iu
′
i. Also cµ is a tuning

model constant, which can be changed for any particular flow, and ε is the dissipation of

the turbulent kinetic energy. The term Sij in Equation A.15, represents the mean strain

rate tensor, and is given by:

Sij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(A.16)

Turbulent diffusion and turbulent conductivity terms are used to account for the tur-

bulence in mass transport and energy transport equations. These terms are defined by

Equation A.17 and Equation A.18 respectively.

Dt =

(
1

Sct

)
, Sct : turbulent Schmidt number (A.17)

Kt =

(
1

Prt

)
µtc
′
p, Prt : turbulent Prandtl number (A.18)

Obtaining the turbulent viscosity µt, for the RNG k − ε model requires additional

transport equations; one for the turbulent kinetic energy, k:

∂ρk

∂t
+
∂ρuik

∂xi
= τij

∂ui
∂xj

+
∂

∂xj

µ

Prk

∂k

∂xj
− ρε+

cs
1.5

Ss (A.19)

And one for the dissipation of the turbulent kinetic energy, ε:
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∂ρε

∂t
+
∂(ρuiε)

∂xi
=

∂

∂xj

(
µ

Prε

∂ε

∂xj

)
+ cε3ρε

∂ui
∂xi

+

(
cε1

∂ui
∂xj

τij − cε2ρε+ csSs

)
ε

k
+ SρR

(A.20)

In the above equation, S represents the user-supplied source term. For the RNG k− ε

method, which is used for the simulations, Equation A.21 defines R:

R =
Cµη

3(1− η/η0)
(1 + βη3)

ε2

k
(A.21)

And η =
k

ε
|Sij| =

k

ε

√
2SijSij .
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APPENDIX B

CYCLIC VARIATION

It is known that the lean-burn 2-stroke engines in general are prone to cyclic variation.

There are many reports available of the research works done to find out the culprit for

having so much cyclic variation in 2-stroke engines, trying to improve their performance.

B.1 Literature Review

Many factors influence the cyclic variations in engines; it has been shown that the CV

decreases as the equivalence ratio (φ) increases from lean towards stoichiometric [83, 84].

In addition, CV has been shown to affect the peak pressures; an increase in peak pressures

was observed with reduction of CV [85].

Many researchers have tried to find the root cause of the cyclic variation; it appears that

the general consensus is that the delay in the transition of the flame kernel into a developed

flame front is what contributes the most to the CV [86, 87, 88, 89]. This transition happens

in a small portion of the combustion chamber (very close to the spark plug); this suggests

that probably the factors local to the spark plug are more dominant than averaged values

in the whole combustion chamber [86, 90, 91]. These local factors include, but are not

limited to poor scavenging near the spark plug [86, 89, 92], flow field characteristics (e.g.

velocity and turbulence) near the spark plug at spark timing [90, 92, 93], and equivalence

ratio (φ) in the vicinity of the spark plug [89, 94].

There is only one global factor that has been mentioned to affect the CV. It is known

that the flame speed increases at air-fuel ratios closer to stoichiometric, and that an increase

in flame speed generally results in lower CV; hence, the global φ is shown to impact the

cyclic variation. [95]
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It has been shown that the cyclic variation is influenced by load and speed of the

engine. In high speed engines, an increase in speed would increase turbulence, which

might blow-out the flame kernel and discourage its growth. This might not be the case for

this engine, since this engine’s rated speed is 525 RPM. On the other hand, increasing load

generally decreases the cyclic variation. At higher loads, the engine runs at a richer global

equivalence ratio, which as mentioned earlier reduces the CV. [67]

CFD numerical simulations could be used to look into the cyclic variation phenomenon

in more details. It has been shown that LES models are capable of simulating the CV in

engines, but these simulations are very time-consuming and expensive. Recently, it has

been proven that the RANS models (which are far less expensive) are also capable of

capturing the CV behavior of engines. To achieve this, small time steps, higher-order

numerical schemes, and finer grids should be utilized for the simulation work. [96, 97, 98,

99]

In the current study numerical simulation was used to study all the contributing factors

to CV, trying to isolate the most influential factor. The results of this study could later be

used to improve the engine’s performance by reducing the cyclic variation.

B.2 Results and Discussion

As mentioned in the previous section, it was shown that by using finer grids, and

proper high-order numerical schemes, cyclic variation can be observed even by using a

RANS solver. This can be seen in Figure B.1, where the numerically simulated chamber

pressures are presented, and are compared with experimental data. It can be seen how the

numerical simulation has captured the good (cycles #1, #4, #6, and #8) and the bad (cycles

#2,#3, #5, and #7) cycles. It has to be noted that the order of good/bad cycles are not the

same in experimental and numerical results, because there is no good/bad pattern to the

cycles, and they happen randomly.
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Figure B.1: (A) experimental and (B) simulated sequential in-cylinder pressures for
100% load and 525 RPM conditions

The numerical simulation results were then used to look into the details of the com-

bustion process, trying to find out the culprit for the observed cyclic variation. Please note

that from this point forward, the good cycles are colored green, while the bad cycles are

shown in red.

Figure B.2 shows the heat release rate for all the simulated cycles. It is clear in the

graph that the rate of heat release is much higher for the good cycles (e.g. cycle#7),

compared to the bad cycles (e.g. cycle #6). The higher slopes of ROHR at the initial part

of the combustion for the good cycles, implies a faster flame speed. It also should be noted

that the bad cycles have a longer heat release duration (slow-burn), while the good cycles

have a narrower heat release duration (fast-burn).
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Figure B.2: Simulated heat release rate for all the cycles

It was mentioned in the Literature Review, that one of the global variables which influ-

ences the CV is the trapped φ of the combustion chamber. Figure B.3 presents this value

for all the cycles, and it can be seen that the trapped φ does not significantly change for

these cycles; hence, it cannot be concluded that the trapped φ is the dominant factor caus-

ing the CV. In addition, the figure includes the chamber’s trapped mass, which again does

not vary that significantly, and can be ruled out as the main cause of the observed CV.

The mixing characteristics of the trapped mixture could also be an important factor

affecting the combustion rate. Figure B.4 shows the distribution of the trapped cells within

each range of equivalence ratio (φ). It can be seen that except for cycle #2, for almost all

the rest of cycles, all the trapped cells are within φ-range of 0.8 to 0.9. This means that

all the cycles have comparable mixing at the ignition timing. This observation rules out

mixing as the main reason for having this much CV.
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Figure B.3: Trapped φ and trapped mass inside the combustion chamber

It was mentioned in the Literature Review that factors local to the spark plug are more

likely to cause the delay in the transitioning of the initial flame kernel into a developed

flame front, which can increase the CV. For this purpose, a few local variables were studied

as well. The first variable was the equivalence ratio in the vicinity of the spark plug, as

presented in Figure B.5. It is evident in the graph that the changes in the φ values near the

spark plug from one cycle to another are minimal. It also is clear that there are both good

and bad cycles with slightly richer or leaner than average mixtures. This means that most

probably the φ near the spark plug is not the controlling factor for the CV.

Another important factor local to the spark plug is the turbulent kinetic energy (TKE)

which is presented in Figure B.6. It can be seen in this plot that the better cycles have

higher TKE values; this suggests that the difference in velocity field near the spark plug

could be the reason for having cyclic variation in this engine. TKE is calculated by Equa-
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Figure B.4: Fraction of trapped mixture within each equivalence ratio (φ) range for all the
cycles

tion B.1, and includes all the components of the velocity vector. Further analysis seems

required to realize which of the three components of the velocity is the most influential

factor.

TKE =
1

2

(
(u′)2 + (v′)2 + (w′)2

)
(B.1)

In order to look at individual velocity components, swirl ratio, tumble ratio x, and

tumble ratio y were plotted. Before presenting the results, it would be helpful to take

another look at Figures 4.2 and 4.4 to better understand the coordinates.

Swirl ratio which represents the rotational velocity around the Z-axis is shown in Fig-

ure B.7 . The swirl ratio is averaged in the whole combustion chamber. As shown in this

figure, most of the good cycles had larger absolute values for the swirl ratio during the

131



Figure B.5: Equivalence ratio (φ) in the vicinity of the spark plug

scavenging process. It also is very interesting that the swirl ratio for all the good cycles

has the same shape or profile. This implies that the flow is being developed differently for

the good cycles.

In addition to swirl ratio, tumble ratio X and tumble ratio Y were plotted. The results

are presented in Figures B.8 and B.9 respectively. It can be seen in Figure B.8 that the

good cycles have a different behavior as bad ones; the tumble ratio X decreases much

faster for the good cycles, and is slightly lower at spark timing. On the other hand, Figure

B.9 shows a very distinct pattern for the good cycles. The absolute values of the tumble

ratio Y are much higher during the scavenging process for the good cycles. Additionally,

the tumble ratio Y absolute values are almost 10 times higher than the bad cycles at the

spark timing.

A look at the flame front expansion behavior reveals interesting observations. It can
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Figure B.6: TKE (turbulent kinetic energy) at the vicinity of the spark plug

be observed that for a bad cycle, unlike the good cycles (shown in Figure 5.27), the flame

front expands much slower. Also, the shapes of the flame fronts are clearly distinguishable.

Both of these are mostly happening because of the explained differences in the velocity

fields inside the combustion chamber and around the spark plug.

To better look at these mentioned differences in flow fields, velocity vectors could be

used. ordinarily, for some geometries having a cut plane of the velocity field is helpful, but

in this case with its complicated geometry there is no reasonable 2D view that provides

meaningful information, thus the velocity vector figures are not included in the disserta-

tion.

Scavenging process is what develops the flow field inside the combustion chamber.

Since swirl ratio, tumble ratio X, tumble ratio Y, and TKE were concluded to be the reason

for having the observed CV, it can be stated with confidence that the ’scavenging process’
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Figure B.7: Crank angle resolved swirl ratio in the combustion chamber

is the main culprit for such a high cyclic variation.

Further detailed studies are required to find out why the scavenging process varies as

it does. A causation analysis could later result in a significantly improved engine perfor-

mance.
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Figure B.8: Crank angle resolved tumble ratio X in the combustion chamber

Figure B.9: Crank angle resolved tumble ratio Y in the combustion chamber
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Figure B.10: Flame front propagation within one bad combustion cycle
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