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ABSTRACT

Data Analytics for education is fast growing into an important part of higher learning

institutions, which helps to improve student success rate and decision-making with regards

to teaching methods, course selection, and student retention.

The undergraduate program at Texas A&M University requires students to take up

a general engineering program during their freshman and sophomore years. During the

course of this period, student academic performance, abilities and participation is assessed.

As per the Entry-to-a-Major policy, departments place the students in the best possible ma-

jor based on their displayed capacities and in alignment with their goals. Our focus is on

the Electrical Engineering department and the success rate of students with aspirations

and background in this major. An approach to improve student retention rate is to predict

beforehand the performance of students in specific course disciplines based on the infor-

mation that is mined from their previous records. Based on the outcome, decisions can

be made in advance regarding their further enrollment in the area and need for specific

attention in certain aspects to get students up to the benchmark.

In this thesis, we put together a set attributes related to students in the general pro-

gram and with an electrical engineering aligned background. The analysis centers around

building a method that explains the joint influence of attributes on our target variable and

comparison of prediction performances between our models. The prime tools used are Su-

pervised classification and Ensemble learning methods. We also develop a metric-based

learning framework suitable for our application that enables competitive accuracy results

and efficient pattern recognition from the underlying data.
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NOMENCLATURE

TAMU Texas A&M University
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1. INTRODUCTION

1.1 Overview

1.1.1 ETAM Policy

The Entry-to-a-Major policy is the system followed by the College of Engineering for

the admission of undergraduate students to a major engineering program. This decision

is taken during the transition of students from sophomore to junior year. Students are

part of a general engineering program in their freshman and sophomore years and take

up basic engineering courses and pre-requisites that align with their major of interest.

Every student is eligible to take part in two cycles of ETAM applications at the end of his

freshman year and during the course of his sophomore year to give himself a good chance

of getting into the major of his preference. Departments place students in the highest

possible major based on the evaluation of their academic performance and abilities shown

thus far. Students who do not get into a major at the end of their second cycle are given

specific attention by their advisors and faculty.

1.1.2 Motivation

Students in the general engineering program are provided with the chance to take part

in two ETAM cycles to get into their favoured major. There is a window of opportunity to

improve students’ chances of making it into their first-choice major in the period between

first and second cycles of ETAM applications. Tentative knowledge about a student’s

potential performance in important pre-requisite courses related to their major choice be-

forehand can enable advisors, instructors as well as students themselves to give more time

and focus on the aspects in which they are not yet at a level expected of them especially

with important deciding courses to be taken in the second year of the program in between

the cycles. This is where predictive analytics plays a key role in improving student success
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rates into their choice of major.

1.2 Problem Statement

The main focus of our analysis is the prediction of student performance in the ECEN

pre-requisite engineering courses. This would provide a metric for both the admissions

body as well as the students to decide on pursuing an Electrical Engineering major. An

important pre-requisite course in sophomore year for higher-level courses in the EE major

is ECEN 214, and the student performance in this course based on the acquired student

historical records and related attributes is the target of our prediction modeling.

1.3 Approach

A natural starting point for this problem was to first model the data without consider-

ing any attribute interactions. Based on the results, we were able to build suitable models

which capture the hypothesis of feature interaction to influence the target variable. The

important features, which together have a significant impact on our target were identi-

fied. The next step was to develop a metric-based framework. Learning an appropriate

similarity metric from our student data and utilizing this for our prediction task gave com-

petitive results and enabled efficient interpretation of the patterns that was present in the

underlying data.

2



2. LITERATURE REVIEW

2.1 Impact of Analytics on Education

Generally, the role of data analytics in improving education standards and student suc-

cess is a significant one as highlighted by some interesting statistics from past analysis.

Research by Kimberly E. Arnold and Matthew D. Pistilli have revealed that the imple-

mentation of a student success system called Course Signals which allows faculty to work

with students based on predictive results boosted up grades and student retention rates.

Within various courses, was a strong increase in the higher grades
(
As and Bs

)
ranging

from 2.23 to 13.84 percentage, decrease in Cs ranging from 1.84 to 9.38 percentage and

a decrease in Ds and Fs ranging from 0.59 to 9.40 percentage. Thus follows an increase

in student retention rate into the next year of the program. Bryan Beaudoin [1] developed

a model that identifies ’at-risk’ students. The model had a 74% recall meaning 3 out of

4 students who do not achieve retention were marked as ’at-risk’ students by his method.

Such information known beforehand will enable faculty to give appropriate attention to

such students. These figures thus show the profound impact of analytics and predictive

modeling on education and provide encouragement to work on a systematic approach that

would better assist our students to potentially being admitted to the EE major program.

2.2 Student attributes

There is a wide pool of academic, social and demographic attributes related to a student

that influence his or her academic performance. This is an age old research and the earliest

studies by Spady
(
1970

)
seemed to pick on academic potential, grade performance and

social factors as those with the most impact on a student. Research by Tinto showed that a

student’s pre-entry attributes (high school performance, test scores, family background) ,

goals, social integration and academic factors
(
course performances, grade point average,

teaching facilities
)

are the factors which influence his success rate. In the 2000’s Tinto

3



proposed that academic support and accessibility to teaching services improve student

performance. Studies by Wyckoff and Habley [2] showed positive student-faculty interac-

tion greatly influence student retention. A summary of these analysis make it apparent that

the various factors mentioned are largely interconnected and come down to academic po-

tential and performance which enables faculty to identify areas where students need more

interaction and thus enable them to improve to the required standards.

2.3 Machine Learning in Education

This is a more recent application
(
2000’s

)
of machine learning. Among the early re-

search is the one by Corbett and Anderson
(
2000

)
who implemented a knowledge tracing

model using a Bayesian framework. This model estimated the probability a student is ca-

pable of a certain skill based on his or her previous attempts with an accuracy of up to 48

percent. There are plenty of commercial applications of user experience modeling but its

application in education is a new trend. Kardan and Conati
(
2010

)
proposed a modeling

which uses learner interaction with the system and classify new learners with similar goals

and abilities. Thus we can observe that classification and clustering techniques can be used

to profile or categorize students with respect to their relevant attributes and this falls under

the machine learning framework. [3]

2.4 Predictive Analytics

Predictive analytics is an association of data mining, pattern analysis, statistics and ma-

chine learning to discover associations in the data and determine in advance various values

which can be inferred from the data. We study in literature about how predictive analytics

has evolved and what are the more recent developments in this domain. Different forms

of predictive analytics has its applications from the early 90’s. Predictive analytics was

used to decode German messages during the world wars, Kerrison Predictor automates

targeting missiles against enemy planes, weather forecasting models, predictive modeling

in FICO to predict credit risk scores and fraud detection to name a few. Later, predic-

tive analytics evolved into modeling using machine learning algorithms and specifically
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into classification and regression problems. The more recent developments have been in

the fields of natural language processing, anticipatory analytics in the medical field and

information retrieval applications.

2.5 Feature Selection

Feature selection is an important step in modeling as it brings down dimensionality and

complexity issues and improves associative learning for prediction of the target variable.

This method eliminates irrelevant or redundant features which do not impact the output

variable and hinder predictive accuracy. Existing literature propose a number of methods

for selection of the optimal feature set for the modeling process.The early feature selection

methods involved an exhaustive search of the feature set, generating different combina-

tions of subsets of features and evaluating model performance with subsets of features to

determine the best choice of features for the model. The early methods involved random

search methods. This method starts of with a random subset of features and the generation

of successive subsets were all completely random. This is known as the Las Vegas algo-

rithm with a quadratic search complexity. The feature selection methods further developed

into more specific procedures that can be classified into filter and wrapper feature selection

methods. Filter methods are based on various statistical relationships that can be inferred

from the data and are independent of the predictive algorithm to be learned from the data.

These measures involve statistics like correlation of the independent variables with the

dependent variable, variance filter approaches which for instance eliminate features with

very low variance on the basis that they do not carry much information and missing values

ratio of the features. On the other hand wrapper methods are based on the performance

of the learning algorithm with the selected feature set. This is a more computationally

prohibitive method and can be classified into a forward and backward method. The for-

ward feature construction method involves evaluating performance of the model starting

from individual features alone and recursively adding to the feature set. The backward

elimination procedure works with the entire feature set initially and recursively eliminates
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those features which do not contribute to model accuracy. The choice of feature selection

method is totally dependent on the data to be modeled and the associations present in the

data.

2.6 Ensemble Learning

Supervised Learning is a subset of machine learning which involves predictive model-

ing of the data with knowledge of the true class or labels against which model performance

or accuracy can be evaluated. Important issues with this kind of learning methods is the

bias-variance tradeoff, complexity and dimensionality. Supervised learning algorithms

have been extended to a family of classifiers termed an ensemble to primairly overcome

bias-variance issues. The need for ensemble learning methods is deeply related to the

bias-variance tradeoff in classifier methods. Early research regarding this started with the

Error Correcting Ouput Coding Method by Dietterich and Bakiri in 1995. There have been

varying but no constant definition of bias-variance relationship over the years of research.

Kohavi and Wolpert in 1996 measured bias and variance of a model in terms of squared

error. Dietterich and Kong defined bias and variance such that the probability of misclas-

sification is a sum of the bias and variance measures of the model. Heskes defined bias-

variance decomposition for a model with Kullback-Leibler loss functions. The concept of

bias-variance tradeoff has evolved over the years and the need for ensembles was further

worked on and formulated into specific methods such as Bagging by Breiman in 1996 and

Boosting by Freund and Schapire in 1996. These methods specified various parameters

and loss functions for construction of an ensemble of classifiers which gives a reasonable

bias-variance tradeoff, ranking of feature importance to bring down dimensionality and

redundancy issues and improve the overall predictive performance.

2.7 Metric Learning

Metric learning is a prominent means of realization of many machine learning algo-

rithms right from the start of their implementations. An appropriate similarity or distance

metric is learned for the data and this has its utilization in realizing various learning al-
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gorithms, both supervised and unsupervised. The k-Nearest Neighbor algorithm brought

about by Cover and Hart in 1967 was one of the first algorithms to make use of a distance

metric to predict the label of the target variable. This was followed by an unsupervised

counterpart which is also based on distance metrics called k-Means algorithm brought

about by Lloyd in 1982. Further research brought about the application of Mahalanobis

distance metric for nearest neighbor algorithms. In 2011, metric learning was used in link

prediction in dynamic networks where links were predicted based on the features and local

neighborhood around the endpoints which required a distance metric of estimation. Metric

learning gained prominence in 2012 from the work of Eric P. Xing and Pengtao Xie who

applied it for multi-modal applications. Multi-modal metric learning found its importance

in applications such as recommendation systems, data clustering and information retrieval.

Applications of metric based learning was also a prominent research in computer vision

and bioinformatics. This further extended to the emergence of kernel learning which is

nonparametric and implicity learns relationships or similarities among the datapoints. The

emergence of kernel learning has found its way into several machine learning applications

such as support vector machines and pattern analysis.

2.8 Performance Criteria

There are several machine learning algorithms but over the years of development gen-

eral characteristics of learning and performance evaluation criteria have been established.

The general idea is to split the available data into training, validation and test data parts.

The training and validation parts are used in the learning of the algorithm and construc-

tion of the model while the test data is used to evaluate the model performance on novel

data that it has never observed beforehand in its learning. There are various performance

measures of the model depending on whether it is a classification or regression problem.

These measures include mean square error, absolute error and cross validation techniques

for regression problems and prediction error, precision, recall, F-measure (weighted av-

erage of precision and recall of the model), confusion matrix, ROC (sensitivity vs speci-
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ficity curves) and AUC curves for classification problems. The initial work by C Shang in

1996 involved developing an absolute error based algorithm for evaluating communication

channel equalisers adapting single-layer perceptron models. Research by Paolo Sonego in

2008 shows the application of ROC curve estimates to evaluate performance in biomedical

application models and classification of biological sequences and 3D structures. Recently,

precision, recall and F-measures have found their application in evaluating models in text

classification for sentiment analysis and social media analytics.
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3. ATTRIBUTE ANALYSIS

An important part of building predictive models from data is identifying a suitable set

of attributes which characterize our goal of prediction. By attribute or feature selection,

we seek to eliminate those attributes which do not contribute to the precision of our model

and do not have a significant impact on the outcome of our target variable. Removing

redundant features also helps with generalization issues which can occur with enormous

number of non-representative attributes. With regards to features in our model, the first

step is to obtain a suitable subset of predictors from the original dataset which are repre-

sentative of our target of prediction and improve model precision. The next step is to study

these features to check for possible interactions among them which jointly influence the

dependent variable.

3.1 Correlation and Interaction

There are some aspects to consider in feature selection and it may not always be

straightforward to arrive at an optimal feature set. Correlation and interaction are two

terms which express some form of relationship between variables and it is important that

we do not get mixed up with these terms in our feature selection process. The correlation

coefficient of the features with the target can be viewed in Table 3.1. We want to select

features that are highly correlated with our target variable but within our set of features

we may want to eliminate those which are highly correlated with each other and may lead

to redundancy. However it is possible that there exists a feature which does not have a

high correlation with the target or with another feature in the set, but along with one of the

correlated features may have a joint influence on the prediction. So direct elimination of

such a feature may lead to loss of information. This represents a feature interaction and as

we observe correlation is not the same as interaction and is not indicative of interactions

among variables which affect the model.
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3.2 Feature Selection Methods

Feature selection is an important part of learning algorithms. It resolves dimensionality

issues and improves prediction performance of the model by eliminating irrelevant and re-

dundant features from the predictor set. A good feature set consists of variables which are

predictive in nature. In other words, feature variables should be strongly correlated with

the target of the prediction model but should be ideally uncorrelated with each other. This

is because features which are highly correlated with each other may tend to carry the same

information which could lead to redundancy in predictor data. Likewise features which

have no correlation with the target may not carry any relevant information for the target

prediction. However as discussed previously, features cannot be just eliminated in terms of

correlation with the target as presence of interaction terms is also something to consider in

the modeling. Feature selection methods can be classified into filter and wrapper methods.

Filter methods are based on various statistical relationships that can be inferred from the

data and are independent of the predictive algorithm to be learned from the data. These

measures involve statistics like correlation [7] of the independent variables with the depen-

dent variable, variance filters and missing values ratio of the features. Wrapper methods

are based on the performance of the learning algorithm with the selected feature set. This

is computationally more complex than filter methods and consist of forward and backward

feature set construction. Forward feature construction involves evaluating performance of

the model starting from individual features alone and recursively adding to the feature set

while backward elimination procedure works with the entire feature set initially and elim-

inates those features which do not contribute to model accuracy. These methods are more

feasible in the scenarios when the number of features in the original set is not too high as

they are exhaustive or greedy methods [4]. Filter methods are adopted to eliminate sparse

and low variance (less information) or irrelevant features which do not have any positive

impact on prediction performance. [5]
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3.3 Feature Set

We are presented with a set of attributes relevant to students under study. These in-

clude pre-entry variables such as high school, high school grade point average, test scores

and demographic information and academic factors of the students in the Texas A&M

engineering program such as their performance in courses ranging from the generic en-

gineering courses to pre-requisite courses that are relevant to their major of interest. On

observation we analyze that the pre-entry variables are extremely sparse, show negligible

variance across student records or have negligible correlation with the target variable. As

we discussed previously, though correlation is not a complete indication of importance as

it does not consider presence of feature interactions, it must be noted the former two con-

ditions are not ideal for the modeling. A low variance filter approach enables us to prune

out irrelevant features to our problem. Intuitively, we can understand that high school

performance and test scores do not show any interesting variance and do not carry much

information that are contributive to our model. The sparse data here is quite similar and at

a fairly high standard to gain entry into the TAMU engineering program. The focus of the

feature set is on the academic factors of students at Texas A&M which influence further

decision making.

3.4 Model Variables

The objective of our analysis is the prediction of student performance in the ECEN

pre-requisite engineering courses during the freshman and sophomore years.An important

pre-requisite course in sophomore year for higher-level courses in the EE major, ECEN214

is a metric for further admission decisions.The student performance in this course based

on the mined student records is the target of our prediction modeling and the dependent

variable of the model.

The independent variables or predictors as they are called for the model is a set of

ten Texas A&M courses taken up by students in the semesters leading up to their ETAM

applications and impart the basis they need to take up the higher courses in the major.
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The predictors are listed below and an initial study to get a heuristic idea about their

association with the dependent variable is done. The correlation of individual predictors

with the target variable is measured. The grade distributions in each of the ten independent

variables can be viewed in Figure 5.1 and the value of their correlation coefficients with

the target variable can be viewed in Figure 5.2

Predictors Correlation Coefficient with ECEN214
ENGR 111 0.21
ENGR 112 0.19
CSCE 121 0.42
MATH 151 0.51
MATH 152 0.45
MATH 251 0.49
PHYS 208 0.51
PHYS 218 0.39
CHEM 107 0.45
CHEM 117 0.46

Table 3.1: Independent Variables and Association with the Target
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4. CLASSIFICATION PROBLEM

The problem at our disposal is essentially a classification problem. The explanatory

variables are categorical in nature and can assume any of five letter grades namely ’A’,

’B’, ’C’, ’D’, ’F’. Likewise the target variable, ECEN214 is also categorical and outcomes

are expected to be classified into one of the above mentioned letter grades. As we model

the classification problem, we also analyze the potential presence of interaction among the

categorical features that influence classification results. The applications we consider for

this problem are supervised learning methods and ensemble learning methods.

4.1 Supervised Learning

Supervised learning is a category of machine learning where labeled data is available

for modeling. The training data is a set of (X,Y) where X= (x1,x2...,xm), m
(
m=10 for

our problem
)

is the number of explanatory variables or features. Y is the target vari-

able, ECEN214 in our case which is the labels to compare the accuracy of our predictions

against. In supervised learning, our algorithm tries to learn an appropriate function Y=f(X)

which when used with novel incoming data points is able to predict the correct Y label as

closely as possible. The difference with unsupervised learning is that we do not have these

labels available during learning of the model on training data and hence require other met-

rics to evaluate the model rather than prediction error. [8]

4.1.1 Factors

There are certain key factors that go along with supervised learning methods that have

an important role in the performance of these algorithms. This includes bias-variance

tradeoff, curse of dimensionality and complexity. The curse of dimensionality [9] occurs

when there are a large number of irrelevant or redundant features to the target variable and

large number of model features or coefficients could lead to variance issues in the model.

This could lead to the model being extremely sensitive to training data noise and variations
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which brings down the generalization of the model. Hence as discussed previously, feature

selection plays a huge part in resolving this issue and penalizing large number of model

coefficients which increase model complexity and variance.

4.1.1.1 Bias-Variance Tradeoff

This is one of the most important factors which determines the performance of a ma-

chine learning model. The error due to bias occurs from over simplification or of the

model for easy learning of the prediction function.This error can be defined as the differ-

ence between expected model prediction and true values. When models are simplified or

generalized to reduce the range of this prediction error, the bias increases. The error due to

variance occurs from complexity of the model such that it mimics or memorizes the vari-

ations in the training dataset and is sensitive to the noise in the training data. This leads to

over fitting issues and poor generalization of the models. Ideally we want models to have

low bias and low variance. The optimal model requires a tradeoff between minimizing the

bias and variance.

4.2 Independence Assumption

The initial set up where we are yet to learn about potential relationships is to model

the attributes with an independence assumption. The aim is to check performance with the

hypothesis of class-conditional independence of explanatory variables. This assumption

models the data with the basis that the predictors are independent of each other statistically

given the class [6]. In other words, the joint distribution of features given the class can

be factorized into the product of their marginal distributions. Let us consider the data

in the form of (X,Y) where X=(x1,x2,...xm) are the input features and Y is the target

variable which can take on c classes. According to the class-conditional independence of

the features

P (x1, x2...xm|Y = c) = P (x1|Y = c)P (x2|Y = c)....P (xn|Y = c) (4.1)
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P(xi | Y=c) represents the marginal distribution of each of the features. In our case,

we have 10 feature variables and without the assumption of independence, the number of

feature combinations to evaluate the likelihood of each class would be exponential. This

is drastically reduced when independence assumption comes into play and hence resolves

curse of dimensionality. Although the independence assumption has high possibilities of

not holding true for data, this estimation gives us a simplified analysis of the problem and

helps infer potential associations in features.

4.2.1 Multinomial Naive Bayes

Naive Bayes is a simple, probabilistic classifier which we can use as the baseline model

for our problem. The setting is a multiclass classification problem. Naive Bayes is set on

the conditional independence assumption. Each of the features contribute independently

to the outcome class and hence this model does not consider any feature interactions that

could be existent in the data.

The training data is a set of (X,Y) where X is the set of features and Y is the true labels

of the target variable. The model is set against the backdrop of predicting which of the

classes to which an input vector could belong to. The estimation of posterior probability

of generating a class given the feature set is based on the likelihood and priors. We define

the notations of parameters that the model considers. [10]

The prior is given by P(X). The likelihood is given by the conditional probablity of

the data given the class. This is denoted by P(X/Y). The posterior probability is given by

the probability of the class of the output variable given the input data. This is denoted by

P(Y/X). Joint probability distribution of the input features X and the target Y is given by

P (Y = c,X) = P (Y = c, x1, x2, .., xm)

P (Y = c,X) = P (Y = c)xP (X|Y = c)

P (Y = c,X) = P (Y = c)P (x1|Y = c)P (x2|Y = c)....P (xm|Y = c)
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The above relation is based on the class conditional independence assumption of the

feature variables. According to the Bayes theorem, a relationship can be derived between

the likelihood, posterior and priors. The posterior distribution is given by

P (Y = c|X) =
P (Y = c, x1, x2, .., xm)

P (X)

P (Y = c|X) =
P (x1, x2, .., xm|Y = c)P (Y = c)

P (X)

P (Y = c|X) =
P (x1|Y )P (x2|Y )....P (xm|Y )P (Y = c)

P (X)

P (Y = c|X) =

∏m
i=1 P (xi|Y )P (Y = c)

P (X)

Naive Bayes holds with categorical features conforming them as Multinomial distri-

butions where the model is based on class counts. In other words, the Multinomial naive

bayes is a specific instance of naive bayes which is used with discrete counts. The pri-

ors can be modeled with equally likely probabilities or based on the class count values.

A parameter to consider is when the class count is equal to zero. There is a likelihood

that a particular class may not occur at all which means it has a zero probability. So the

laplacian parameter adds one to each of the classes including zero-count ones. In this case

the laplacian smoothing term gives a small non-zero probability to such classes so that the

posterior probabilities do not abruptly fall to zero. Thus in the case when P(xi / Y) is zero,

by laplacian smoothing [11],

P (xi = x|Y = c) = (1 + count with xi = x, Y = c)/(no. of values x can take

+count with Y = c)

The experimental results of the Naive Bayes model with the hold-out and cross-validation

methods can be viewed in Table 5.1 and Table 5.2 respectively. The class-wise perfor-

mance can be studied from the confusion matrix and the metrics in Table 5.3.
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4.3 Hierarchical Models

Hierarchical models are multilevel models which capture co-existence of predictor

variables that lead to an outcome of the target variable [12]. In other words, they capture

the mutual dependence present in the data. Hierarchical models cluster the data into dif-

ferent degrees of homogeneous groups at each level such that the terminal nodes contain

samples of the same category. A target variable depends on a combination of feature vari-

ables and contributions of individual feature variables is termed as the main effect. The

target can also depend on combination of feature variables in addition to the main effect

which is known as the interaction terms.The number of possible interaction combinations

which can exist is of exponential order and hence interactions should only be considered

in the context of the target variable in the classification problem. In order to limit the ex-

ponentially growing interaction set, certain constraints are imposed in the construction of

hierarchical models. For instance, an interaction term is relevant only when its individual

variables are predictive in nature i.e. only interaction terms whose variables have non-zero

coefficients in the main effect are considered as a significant interaction which impacts

the target of prediction. These constraints can be visualized for a two-way or pairwise

interaction as follows.

Let us consider the input in the form of (X,Y) where X=(x1,x2,....,xm) are the m predictor

variables and Y is the target variable. The target variable Y can be expressed as

Y = β0 +
∑

jβjxj + 1/2
∑

jθjkxjxk + ε

where
∑

jβjxj represents the main effect,
∑

jθjkxjxk represents the interaction term and

ε represents some form of irreducible noise term in the data. According to strong and

weak hierarchical constraints, the two way interaction is only considered relevant with the

following conditions.

Strong hierarchical constraint θjk 6= 0 ⇐⇒ βj 6= 0 and βk 6= 0

Weak hierarchical constraint θjk 6= 0 ⇐⇒ βj 6= 0 or βk 6= 0
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4.3.1 Decision Tree

Decision tree is a hierarchical model which can be used to predict potential outcomes

of the target variable. Decision trees can either be classification or regression trees. In

our case, the input to the decision tree is discrete or finite values and hence our task is to

model an appropriate classification tree. Decision trees also enable interpretability, in that

the conjunction of features which lead to a class of the target variable can be visualized in

the form of a nested or hierarchical structure. [13]

Decision trees are binary trees constructed by recursive binary splitting of the feature

space. The internal nodes represent a particular split of a t predictor variable and the leaf

nodes represent a class of the output variable. The branches in conjunction from root

to leaf node represent a group of decision rules which categorize the target variable. A

decision tree can be interpreted as a group of classification rules by following the paths

from the root to the leaf nodes. The algorithm follows a top-down approach to stratify the

feature space. It can also be viewed as a divide and conquer approach of splitting the input

space recursively into smaller subspaces until the results can be aggregated to arrive at a

particular outcome of the target variable.

The input to a decision tree is in the form of (X,Y) where X=(x1,x2,...,xm) is the set of

m predictor variables and Y is the target variable which can assume any of c classes. The

algorithm procedure derives the condition distribution of Y given X through a pathway

of nodes and branches. This involves construction of a maximum tree and then pruning

it down to the right size in order to overcome high variance and over fitting issues. The

stopping criterion for the construction of the maximum tree is when homogeneity of the

split cannot be improved any further and the leaf nodes have the least possible count of

instances of the training data.The best split at each node can be measured in terms of

certain impurity metrics based on the information gain and Gini index.

The construction of the tree with choice of a node split by measuring the information

is based on how much uncertainty about the class of the dependent variable is decreased

from knowledge of the feature value. In other words, the choice of split is the attribute
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which leads to a maximum decrease in entropy. The procedure based on this metric is as

follows.

The entropy of the target variable is first computed. The input space is then split on the

different attributes and the resulting entropy of each branch is computed. The difference in

the entropy before and after each split is calculated and the difference represents a decrease

in entropy of the information gain. The attribute which gives the highest information gain

is chosen as the best split for that node and the process is repeated recursively until the

stopping criterion is reached.

Step 1: Calculating entropy of target H(Y).

Step 2: Calculating the decrease in entropy of target due to knowledge of a feature Xi. For

a particular class ci of the feature variable Xi , information gain is computed and averaged

over all classes of the input variable.

I[Y, xi = c] = H[Y ]−H[Y |xi = c]

I[Y, xi] = P (xi = c)I[Y, xi = c]

Step 3: The feature xi which gives the maximum I[Y,xi] is the decision rule at that node.

The CART algorithm constructs the splits based on the impurity criterion called Gini index

which is our basis for the construction of maximum tree. The Gini index which is a

generalization of binomial variance is a measure of the impurity of a data split and the

attribute with the least Gini index is chosen as the best split. The leaf nodes can either be

chosen to contain the class labels of the result of classification or probability scores of the

class likely to represent the decision rules at that leaf node. [4] A full size decision tree

without pruning for our data problem can be viewed in Figure 5.3.
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4.3.2 Pruning

The construction of the maximum tree involves recursive splitting until the leaf nodes

contain a very small set of homogenous values. The large number of model features and

coefficients and splits in the tree could lead to over fitting issues and high variance with

respect to the learning data. There could be several parts or branches of the classification

tree that have weak predictive power. A complex tree model could lead to over fitting

while a very simple model with one split like a decision stump could be over simplified

and not capture the underlying structural information in the data. Hence an optimal size of

the tree should be chosen from cross-validation such that the accuracy of the classification

model is not affected. This is accomplished by first constructing the complete tree model

and then pruning down to an optimal size of the tree depending on cross-validation results

such that the tree is generalized but also captures the underlying information patterns. The

trend of misclassification rate for different levels of pruning in our data problem can be

viewed in Figure 5.4 and an optimal level is selected. The pruned decision tree which

gives the optimal accuracy in a decision tree model can be viewed in Figure 5.5.

The experimental results of the decision tree model with the hold-out and cross-validation

methods can be viewed in Table 5.4 and Table 5.5 respectively. The class-wise perfor-

mance can be studied from the confusion matrix and the metrics in Table 5.6.

4.3.3 Ensemble Learning

Ensemble learning is a method by which multiple models are strategically constructed

and aggregated to give the best possible prediction results. The performance of ensemble

learning for an application depends on the choice of classifiers and the parameters speci-

fied for the model. The classifiers should have a performance better than random guessing

for a new value and the errors made by the classifiers should be diverse or uncorrelated.

There also exists the potential of combining multiple types of classifiers based on its per-

formance for the particular application. The method of aggregation for prediction results

in classification is a form of voting. [15]
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Ensemble learning methods improve the statistical, computational and representational

aspects of the prediction problem than individual models. Statistically the ensemble method

comes up with the best hypothesis for the input space that gives a prediction of the target

variable. Computationally, it attempts to find the best generalization of the output variable.

It also tries to find the combination of classification rules which best represent the data by

voting from different learning models.

Ensemble learning methods are of two types namely Bagging and Boosting methods.

The difference between bagging and boosting is the method of construction of the models.

Bagging works with different subsets of data for each construction which can be done in

parallel while boosting is a sequential or iterative procedure that works with the entire

training data but with different parameters in each construction. The learning methods

of our application are random forest which is a specific instance of bagging and adaptive

boosting techniques.

4.3.3.1 Bagging

Bootstrap Aggregating otherwise known as Bagging is an ensemble learning method

that involves construction of multiple models to derive the most accurate prediction results.

Bagging combines results from models based randomly sampled subsets of the training

data to improve prediction accuracy when compared to an individual model. This method

involves creating subsets of training data by randomly sampling with replacement from

the original data. Our choice of classifier being the decision tree is constructed on each of

the subsets of data and in the case of classification a voting scheme is used to aggregate

the results from multiple classifiers. [16]

The algorithm can be summarised as follows.

The input data is in the form of (X,Y) where X=(x1 , x2,...xm) are the predictors and Y is

the target variable which can take on c classes where c=(c1,c2 .. cn).

Step1: A base learner is chosen and the no. of classifiers to be constructed is specified.

Step2: The proportion of samples to be randomly sampled is specified and the sampling is
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done with replacement for each classifier.

Step3: For each classifier a hypothesis or set of decision rules is constructed. Thus from

all classifiers, an ensemble of decision rules is now constructed to test on new, incoming

data.

Step4: When a test sample whose label is to be predicted is evaluated on the model, the

class picked by the majority of classifier rules is assigned as the label of the test data

sample.

4.3.3.2 Random Forest

Random Forest is a specific form of bagging and in many ways an improvement from

traditional bagging methods. Traditional bagging methods with decision tree as classifier

involves a top-down greedy approach where the input feature which gives the most ho-

mogeneous splits are chosen and the process is repeated. So there exists a possibility of

structurally similar trees and correlation between multiple models constructed on the train-

ing data. On the other hand, random forest has an additional parameter to conventional

bagging methods in that apart from a random subset of training data, a random subset of

predictors is chosen to pick the best split at each node which reduces the likelihood of

correlation between the forest of trees. The characteristics which improve performance of

random forest classifier is uncorrelation between trees and the strength of each individual

classifier tree. The individual trees are not pruned and are grown to the smallest possible

homogeneous group of values at the leaf nodes. [17]

The parameters to be considered in a random forest model are the number of trees to

be constructed and the size of the subset of predictors to be chosen for each split. The

number of trees to be constructed in the model is a critical parameter in order to avoid

high variance and consequently overfitting issues. The size of the subset of predictors

for classification problems is usually set around the square root of the size of the entire

predictor set. [18]

The model involves construction of specified number of decision trees. For each tree,
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the training data is obtained by random sampling with replacement of N samples where N

is the number of samples in the original data. A constant number m less than the number

of input variables M is specified such that at each node m variables is randomly chosen

and the best split on these nodes is chosen as the node decision. The randomness with

replacement of the sampling ensures a portion of samples approximately around one third

the original samples are left out of the training data for the construction of each tree in the

forest. These left out samples form the Out-of-Bag set and can be used for validation pur-

poses for their respective trees. Random forest does not require a separate test dataset or

separate validation procedures. The mechanism runs an internal cross validation method.

Since for each tree, a set of samples are left out as the OOB set, these samples can be run

down the classification tree to test for the OOB error estimate. This procedure is carried

out for different sample sets on each of the constructed classification trees which is anal-

ogous to cross-validation.The variable importance or ranking of features in the context of

target variable can be inferred from the random forest construction in terms of decrease in

accuracy due to permutation of the feature and contribution to homogeneous splits mea-

sured in terms of Gini index.

The experimental results of the random forest model with the hold-out and cross-

validation methods can be viewed in Table 5.8 and Table 5.9 respectively. Table 5.7 is

a sample result with a random choice of parameters which do not give the optimal accu-

racy results. The class-wise performance can be studied from the confusion matrix and the

metrics in Table 5.10.

4.3.3.3 Boosting

Boosting is an ensemble method similar in part to bagging but the training data for

each iteration is generated based on the results of the previous iteration. The objective of

this ensemble is to aggregate a set of weak learners into a strong classification.The weak

learners are learned iteratively and a weighted sum of the output of the weak learners is

combined to result in the final classifier.This iteration procedure is repeated until a par-
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ticular misclassification rate is reached and no further improvements can be made[19].

Different boosting techniques differ in their method of weighting the weak learners and

aggregating the outcomes.The generalized boosting algorithm is as follows.

The input data is in the form of (X,Y) where X=(x1,x2,....xn) are the input predictors and

Y is the target variable which takes on any of k classes.

Step1: A base learner is specified which constructs a function approximation based on the

data tuples.

Step2: A reweighting scheme is chosen for the data points based on the results from the

base learner and the reweighted samples are passed as input to the base learner for the next

iteration.

Step3: A weighted aggregate of the constructed functions combine to give a strong classi-

fier with improved prediction accuracy from the individual learners.

The boosting technique of choice is Adaptive Boosting which is distinguished from other

methods by the weighting scheme it follows from every iteration [20]. The adaboost tech-

nique inititally specified for binary classification based on an exponential loss function

and this can be extended to muticlass classification. The extension is termed as SAMME(
Stagewise Additive Modeling using Multiclass Exponential Loss Function

)
.The ad-

aboost algorithm can be summarised as follows.

Step1: Specify the number of iterations for the boosting process to be repeated. Let this

be denoted as N iterations.

Step2: A weak classifier is specified which takes in X,Y and weights of the samples as

input. Initially all samples are given equal weights wi=1/N where N is the number of

samples in the training data. C(i) = train(X,Y,wi)

Step3: The classifier is learned on the samples and prediction is carried out. Let the

predicted labels be denoted as yhat.

yhat = predict(C(i),X)

Step4: The error of the classification is computed as
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e(i) =
∑n

1 wi × I(ci 6= yhat ) /
∑n

1 wi

Step5: The coefficient alpha is computed equivalent to the log odds ratio.

α(i) = log ( (1-ei) / ei )

Step6: The samples are reweighted such that the misclassified points have a higher weight.

Misclassified points are up weighted by a factor of exponential of alpha and renormalized.

wi = wi ( αm . I(Ci(x) 6= c ))

where Ci(x) is the classifier output at the ith iteration and c is the true class. Thus when

the classifier output is not equal to the true class, that is a misclassification occurs, the

exponential term is retained and the misclassified samples are reweighted in the upward

direction.

Step7: The final classifier is an aggregation of the learned weak classifiers and their coef-

ficients alpha.

C(x) = argmax
c

∑N
i=1 α

i . I(Ci(x) = c )

The important criterion in this binary classification is that the weak classifier should have

a performance better than random guessing of 1/2. In other words for the boosting to

or reweighting of samples in the right direction for successive iterations, the error term

e(i) should be less than 1/2 for alpha to be a positive term and misclassified points to be

weighted in the increasing order. Else alpha gets a negative value and the weighting pro-

cedure follows the opposite order.

The same theory can be extended to a multiclass classification with slight variations. [21]

The SAMME algorithm is summarized as follows:

Step1: The initial steps are which involve equal weighting of sample, defining a weak clas-

sifier, prediction and computation of the error term are the same as the two class adaboost.

Step2: The difference lies in the computation of the coefficient alpha.

α(i) = log ( (1-ei) / ei ) + log(k-1)

where k is the number of classes in the multiclass classification.The second term included

is in relation to maintaining the direction of boosting. In the two class method we required
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the error term to be less than random guessing of 1/2 for alpha to be positive and weighting

to be done correctly. The threshold 1/2 is too rigid a metric for the case where multiple K

classes exist. Hence the inclusion of this term now requires the classifier to perform better

than random guessing which is 1/K in this case of K classes for boosting to follow the

right direction.

Step3: The reweighting of samples with boosted weights for misclassified points is given

by

wi = wi ( αm . I(Ci(x) 6= c ))

Step4: The final classifier is given by the aggregation from the iterations as

C(x) = argmax
c

∑N
i=1 α

i . I(Ci(x) = c )

A key parameter to consider in the boosting procedure is the termination point. There

could be instances when the training error is almost negligible but the validation or testing

error is still relatively high. Hence an optimal choice of number of iterations is to be

specified after which there can be no further improvements in prediction accuracy.

The experimental results of the Adaboost model with the hold-out and cross-validation

methods can be viewed in Table 5.11 and Table 5.12 respectively. The class-wise perfor-

mance can be studied from the confusion matrix and the metrics in Table 5.13.

4.4 Metric Learning

Classification performance can be greatly influenced by definition of an appropriate

metric that captures the relationship between data in the input space. Metric based learn-

ing is a means to encode higher order interactions and model the data based on important

factors observed from it. A similarity or distance metric between pair of input points in the

feature space should be able to define minimum distance between similar points and max-

imum distances between dissimilar points. This method optimizes a loss function which
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defines distance measures between similar class of points and those between different class

of points.

We define an appropriate similarity metric for our application using a support vector ap-

proach for the classification problem.

4.4.1 Support Vector Approach

The support vector approach to a classification problem involves categorizing a sample

into one of two categories separated by a distinct gap or margin. The basic support vector

machine is a non-probabilistic linear classifier which assigns class predictions to incoming

data samples based on which side of the margin they fall in the feature space. Data points

are plotted in a m-dimensional space where m represents the number of predictors and

the hyperplane which separates different categories of data is to be defined. The optimal

choice of separating hyperplane is the one which has the largest possible gap between the

opposite categories of data points. Hence the support vector approach to classification can

also be termed as a maximum margin hyperplane classifier. This optimization problem

depends on the linear separability of data in the input space. The support vector approach

can be summarized as follows. [23]

The input data to learn the algorithm is in the form of (X,Y) where X=(x1,x2.,..,xm) are

the input feature variables and Y is the target variable for prediction. For the base case,

let us assume that Y takes one of two classes. The input space can be visualized as m-

dimensional datapoints and the objective is to find the maximum margin hyperplane in this

input space which separates the two classes of the target variable. The optimal hyperplane

can be defined as the one satisfying

wx-b=0

where w is the normal to the hyperplane.The key feature in this approach is the linear

separability of data and hence we can define margins on either side of the hyperplane

such that points from either side do not fall inside this margin and the distance from the

hyperplane is maximized. The margins can be defined as
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wx-b=1

wx-b=-1

The classification is such that points which lie above wx-b ≥ 1 belong to a class and the

points which lie below wx-b ≤ -1 belong to the other class thus obtaining a classification

between the two groups.

This approach originally based on classification between two classes can be extended

to define a multiclass classification problem. The multiclass problem can be construced as

a group of two class problems. There are different approaches to do this such as ’one-vs-

one’ and ’one-vs-all’ [24]. Let us assume Y takes any of c classes.The one-vs-all approach

involves formulation of c support vector classifiers. The first support vector machine con-

siders the first class as the positive label and the other classes as the opposite category.

Likewise the cth support vector machine considers class c points as the positive label

and the other classes as those which lie on the other side of the hyperplane thus resem-

bling multiple two class SVM constructions.The one-vs-one approach considers a pair of

classes for each support vector machine construction. Hence if there exists c classes, there

exists construction of c(c-1)/2 support vector machines each involving a pair of classes

and the results are aggregated for the final classification of multiple classes. The choice of

approach for our mutliclass classification problem is the one-vs-all approach. Thus if the

output variable Y takes n classes, n binary classifiers are constructed which categorizes

one class from the rest. This is combined to determine multiclass decision based on the

maximal output. Each classifier returns a signed value which is a confidence value of the

sample x belonging to the positive class in that classifier. Higher distance away from the

hyperplane gives a larger value. The sample x is labeled with the class with maximum

confidence value among all the classes.
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Figure 4.1: SVM with Support Vectors - Adapted from [23]

The SVM optimization problem involves maximizing the margin of separation be-

tween opposite classes and this is where a similarity or distance metric between pairs of

datapoints comes into play and metric based learning can be applied with a support vector

classification approach. The objective is to maximize the margin L between the categories

of samples. The critical samples for the optimization are those called as support vectors

which lie on the margins and only these samples are assigned a non-zero weight coeffi-

cient. The support vectors are the points on the margins which are highlighted in Figure

4.1. This can be defined as follows.

max L =
∑

i ai - 1/2
∑

ai aj yi yj ( xi . xj)

where,
∑

i ai = 0 and ai ≥ 0.

ai is non-zero only for the support vectors. Consider the case when two similar support

vectors xi and xj , i 6= j have the same sign of labels yi and yj . Note that x here only for

the support vector formulation represents m-dimensional data points and not the features.
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In this case the margin L will be decreased based on the second term in the right hand side

of the above equation. The critical case to maximize the margin is when similar samples

have opposite sign of labels. Consider xi and xj are similar points but have opposite labels

yi and yj . Hence from the above equation we observe that this is the case which enables

maximization of the margin L.

4.4.2 Linear Separability

The support vector approach that has been described can be realized in the input space

if and only if there exists linear separability between the categories of data. Thus a hy-

perplane and margin can be defined between the separable categories of data and margin

distance between the nearest points maximised. There is a huge probability that the linear

separability condition does not hold for real-world data as is our case and hence the max-

imum margin approach cannot be implemented in the input space. Hence a means should

be defined such that linear separability can be achieved in the data which can be viewed in

Figure 4.2. This can be achieved by mapping the data points to a higher dimensional space

such that linear separability of data is achievable in the transformed space. A mapping

function φ is defined such that the trannsformed data points given by φ(x) in the higher

dimensional dot product space shows linear separability between different classes of the

data. Thus the problem to be solved in the transformed space with data points mapped

with the function φ can be defined as

max L =
∑

i ai - 1/2
∑

ai aj yi yj (φ( xi).φ(xj))
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Figure 4.2: Mapping function - Adapted from [26]

4.4.3 Kernel Trick

The explicit computation of the mapping of data points to a higher dimensional space

can be prohibitive. The explicit mapping can be avoided by a method called as Kernel

trick. This method involves the substitution of a kernel metric between pairs of data points

in the input feature space which is equivalent to the dot product of transformed data points

in the higher dimensional space without having to explicitly compute the mapping co-

ordinates. Thus the dot product of non-linearly separable data points can be computed in

the input feature space with the kernel metric without explicit mapping to the higher di-

mensional dot product space [25]. Hence the problem to be solved transforms as follows.

[27]

max L =
∑

iai - 1/2
∑
ai aj yi yj (φ( xi).φ(xj))

max L =
∑

i ai - 1/2
∑

ai aj yi yj K( xi,xj )

where,

K(xi,xj) = φ(xi).φ(xj)
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4.4.4 Kernel Conditions

Mercer’s theorem gives a set of conditions for the kernel metric to represent a proper

inner product [27]. We know that for a mapping function φ : X -> Z

K(xi,xj) = < φ(xi),φ(xj) >Z

K(xi,xj) = φ(xi) . φ(xj)

where Z is an inner product space. The condition is that the pairwise inner products is

equivalent to a positive-definite kernel matrix. In other words for any h(x) with finite L2

norm, that is ∫
h(x)2 dx is finite

The kernel function of the pair of samples which is equivalent to the dot product of their

mapped or transformed points in the space Z holds if and only if

For real valued K(xi,xj) ∫
K(xi,xj) h(xi) h(xj) dxi dxj ≥ 0

For discrete scenarios, the kernel matrix should satisfy∑
K(xi,xj) h(xi) h(xj) dxi dxj ≥ 0

Thus the kernel matrix should be positve semi-definite. The kernel matrix is called the

gram matrix which satisfies the positive semi-definite condition i.e. KTK is positive semi-

definite. If there are N data points, the Gram matrix is defined as

K ∈ RNxN and Kij = K(xi,xj) = φ(xi) . φ(xj)

4.4.5 Kernel Definition

The input data at our disposal is categorical in nature and the objective is to be able

to define our kernel metric with categorical predictors rather than re-encoding them as

numeric values. The common scheme is to encode c distinct categorical levels of the input

variables into c-1 numeric predictors called as dummy variables and then learn them using

a metric.
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Kernels provide a metric for pattern analysis and likewise prediction of similar pairs of

variables. According to the support vector machine approach, the critical case of support

vectors is when similar pairs of variables have opposite classes and the margin is to be

maximized between them. So defining a similarity metric between pairs of students acts

as a suitable distance metric to classify between different grade labels of the students.

We define a form of kernel which computes the overlapping grades between a pair of

students and provides an exponential weighting for the average number of course-wise

similar grades between the students.

Our kernel metric for this application can be defined as follows. Consider every pair

of data points denoted as x and y. Let m be the dimension of the data point which is the

number of feature variables (m=10 in this case ). A data point x is of the form x= (x1,

x2,...,xm) where xi is a feature value of the data point. The kernel or similarity metric

between a pair of data samples is given by

K(x,y) = φ(x).φ(y)

K(x,y) = exp (
γ

m

∑m
i=1 1 (xi = yi))

where m is the number of features (10) , γ is a tuning parameter which is constant and x

and y are a pair of data points. The kernel matrix or Gram matrix M is a nxn matrix where

n is the number of data points and Mij represents the kernel metric between ith and jth

data points.

4.4.6 Mapping Intuition

The function of the kernel trick is to avoid explicit computing of the mapping function

φ. We attempt to formulate how the mapping function φ equivalent to our kernel metric

maps the data points to achieve linear separability in a higher dimensional space.

Consider the input X which consists of N data points each with m dimensions or feature

variables. Thus a data point xi is given by xi=(x1i , x2i ,.....,x
m
i ). Let us take a pair of points

x1 , x2 ∈ Xm.
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K(x1,x2) = φ(x1).φ(x2)

The mapping φ can be defined as φ : Xm -> Zn where n < m and

n = no. of values xi can take × m

In our case, the dimension of the transformed space is 5×10 because X can take one of the

5 grades A,B,C,D,F and the number of predictor variables is 10.

The mapping of a point to the mentioned dimension can be viewed as a one-hot encoding

scheme. For example the following grades have a mapping to a higher dimensional vector

as follows.

A -> [0, 0, 0, 0, 1]

B -> [0, 0, 0, 1, 0]

C -> [0, 0, 1, 0, 0]

D -> [0, 1, 0, 0, 0]

F -> [1, 0, 0, 0, 0]

Thus to examine this mapping in a feature vector, let us for example take two data points

with 4 features x1 = [3,2,1,0] amd x2 = [3,1,0,0]. Thus their mapping can be defined as

follows

x1=[3,2,1,0] , φ(x1) = [[0,0,0,1,0] , [0,0,1,0,0] , [0,1,0,0,0] , [1,0,0,0,0] ]

x2=[3,1,0,0] , φ(x2) = [[0,0,0,1,0] , [0,1,0,0,0] , [1,0,0,0,0] , [1,0,0,0,0] ]

The dot product of the transformed points is the average sum of the overlapping encoded

feature vectors. This is equivalent to our defined kernel in the input space which gives

an exponential weighting to the similarity or overlap measure between the feature values

between every pair of data points.

The experimental results of the kernel-based support vector classification model with

the hold-out and cross-validation methods can be viewed in Table 5.14 and Table 5.15

respectively. The class-wise performance can be studied from the confusion matrix and

the metrics in Table 5.16.
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5. EXPERIMENTAL RESULTS

5.1 Performance Assessment

The problem to be modeled is essentially a classification problem and we define certain

performance assessment criteria to evaluate the performance of each applied algorithm and

derive inferences from it. The evaluation metrics for our models are listed as follows

5.1.1 Prediction Error

We tackle the classification problem using supervised learning methods due to the

availability of true class labels of the available data. Hence it is possible to compute the

correct and incorrect class predictions for the samples of data by comparing prediction re-

sults with the true labels and hence determine the misclassification error as the proportion

of incorrectly classified samples. Conversely, the prediction accuracy is a measure of the

proportion of samples that have been correctly classified by the models.

5.1.2 Hold-out and Cross-Validation Accuracy

We determine the model performance using two types of validation methods. One

being the hold-out accuracy and the other being cross-validation accuracy. The hold-out

procedure consists of splitting the data into two sets namely the training and the testing

set. The two sets of data are disjoint or mutually exclusive of each other and commonly

the training set is the larger of the two sets. Hence, in this method the classifier is learned

or trained on the training set without any exposure to the test set. The trained model is then

applied to the test set and outputs predictions for each of the test sample classes which is

compared with the true labels. Cross validation on the other hand involves splitting data

into folds and training the classifier on data except a particular fold which is left for vali-

dation. This procedure is repeated across all folds and the final accuracy is representative

of the average performance accuracy over all folds. We are interested to see how hold-out
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and cross validation accuracies of our chosen models compare against each other. [29]

The per class statistics for classification performance of the model is visualized using the

following criteria.

5.1.3 Confusion Matrix

The confusion matrix is a means to visualize the per class prediction performance of

the chosen models. The confusion matrix is of the form (true class, predicted class) where

the rows represent true class and columns represented predicted class. Hence we can infer

that correctly classified points are grouped corresponding to the classes in the diagonal

entries of the confusion matrix.
F D C B A

0 0 0 0 0 F

0 0 0 0 0 D

0 0 0 0 0 C

0 0 0 0 0 B

0 0 0 0 0 A

A sample at Mij where i=j indicates the true class and predicted class are the same thus

representing an accurate classification (diagonal positions). A sample which goes into

Mij where i 6= j indicates that the true class i and predicted class j are not the same thus

representing a misclassification.

5.1.4 Precision and Recall

Precision and recall are metrics which give us a picture about model performance and

can be evaluated from the confusion matrix. Precision is a measure of how many of the

predicted values in a class are correctly classified or actually part of the true labels of

the class. Hence it is a measure of positive prediction by the model. Recall on the other

hand is a measure of the amount of information correctly retrieved or in other words the

number of samples correctly predicted. Models can be optimized based on a measure
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which combines or balances both precision and recall. This is called F-measure which is

a weighted average of the precision and recall of the model. Precision and recall can be

computed from the confusion matrix to determine model performance. In a binary sense,

the confusion matrix portrays the number of true positives, true negatives, false positives

and false negatives.

In the binary case, the confusion matrix is given by

TP FN

FP TN

The precision and recall of the classifier can be computed from these values by the follow-

ing formulations.

Precision = TP / (TP+FP )

Recall = TP / (TP+FN )

This concept can be extended to the multiclass case for the precision and recall formula-

tions.If M represents a confusion matrix for multiple classes, M being a k x k matrix where

k is the number of classes

Precision = Mii /
∑

j Mji

Recall = Mii /
∑

i Mij

5.1.5 ROC Curve and AUC

Sensitivity and specificity are two measures which also capture model performance.

Sensitivity which is synonymous with Recall is a measure of the proportion of positives

(for each class in a multi class sense) that are correctly predicted by the model. Specificity

is a measure of the proportion of negatives(in the multi class sense it refers to samples

belonging to other classes when we consider a particular class) which are predicted right.

These measures can be combined visually to characterize the model behavior with respect
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to the data. This leads us to the metrics which are ROC curve and AUC generally used

with positives and negatives in a binary classification but can be extended to the multi

class case with a one-vs-rest scheme. The ROC curve is a plot of the true positive rate

or recall or sensitivity vs the false positive rate which is 1-specificity of the model. The

accuracy of the test is characterized by separation of positives and negatives for the class

under consideration. This can be represented by the area under the ROC curve. The

closer this measure is to 1 the better is the performance of the model test. The baseline

measure is random prediction which is 1 / the number of classes. AUC values below

random prediction indicates that the model is performing worse than the baseline which is

random guessing.

5.1.6 PRC Curve Area

The PRC curve is a measure of precision against recall. The recall axis or true positive

rate is common with ROC curve but the other axis in this case is Precision. PRC is hy-

pothesized to carry more information about the classification performance when there is

an imbalance in class sample distribution in the dataset. This is because due to imbalance

in the data, say skew towards the number of negatives, a large change in false positives

affects precision and hence the PRC curve much more significantly than the ROC curve.

Hence performance with respect to skewed datasets is more accurately captured with the

PR Curve. In the case of a balanced dataset, the ROC and PR curve contain the same plot

curves and hence the same interpretation [30].

We start with getting an idea about the data distribution and statistical relationships such as

correlation with the target variable.We observe the correlation coefficient of the explana-

tory variables with the target variable and the degree of individual association with the

target. The following is the distribution statistic of grades in each course considered for

the model and the correlation coefficient of individual courses with the target variable.
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Figure 5.1: Grade Distribution Plots

Figure 5.2: Correlation Coefficients
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5.2 Naive Bayes

The Multinomial Naive Bayes model is evaluated using hold-out accuracy and 4-fold

cross validation technique on the dataset. The data is categorical and has 5 levels or classes

namely A(4) , B(3), C(2), D(1), F(0).The classification results can be observed as follows.

Correctly Classified Instances 62 62.6262 %
Incorrectly Classified Instances 37 37.3737 %

Table 5.1: Naive Bayes Hold-out Accuracy and Error

Correctly Classified Instances 117 64.2857 %
Incorrectly Classified Instances 65 35.7143 %

Table 5.2: Naive Bayes Cross-Validation Accuracy and Error

The confusion matrix is constructed as follows from the cross-validation prediction where

diagonal entries represent correctly classified samples and the rest represent misclassifi-

cations. This enables us to visualize prediction results and related derived statistics in a

class-wise manner from the data.

F D C B A

2 0 1 0 0 F

0 0 0 2 0 D

0 0 8 14 1 C

0 0 12 43 19 B

0 0 2 14 64 A
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TP Rate FP Rate Precision Recall F-
Measure

ROC
Area

PRC
Area

Class

0.667 0.017 0.400 0.667 0.500 0.86 0.513 F
0.000 0.000 0.000 0.000 0.000 0.581 0.019 D
0.348 0.069 0.421 0.348 0.381 0.804 0.375 C
0.581 0.278 0.589 0.581 0.585 0.744 0.587 B
0.800 0.206 0.753 0.800 0.776 0.896 0.896 A

Table 5.3: Naive Bayes Prediction Statistics

5.3 Decision Tree

The decision tree is constructed by recursive binary splitting with the original predictor

set over the feature space. Initially, construction of maximum size tree is done. The full

size tree had a complex model of 75 node splits. The next step is to ensure the tree is

not overfitting with high variance and complexity and hence cross-validation techniques

enable us to discover the opitmal splits of the tree and prune down the tree to that size. The

following plot indicates the best sizes to which the tree should be pruned to achieve optimal

accuracy. We observe that tree size of 2-7 nodes gives reduced error performances. It is

important to choose the pruning such that bias-variance tradeoff is achieved and a sample

pruned decision tree is shown below.
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Figure 5.3: Maximum Size Decision Tree

Figure 5.4: Pruning size vs Misclassification Rate
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Figure 5.5: Sample Pruned Decision Tree

Correctly Classified Instances 64 64.6464 %
Incorrectly Classified Instances 35 35.3535 %

Table 5.4: Decision Tree Hold-out Accuracy and Error

Correctly Classified Instances 120 65.9341 %
Incorrectly Classified Instances 62 34.0659 %

Table 5.5: Decision Tree Cross-Validation Accuracy and Error

The confusion matrix is constructed as follows from the cross-validation prediction where

diagonal entries represent correctly classified samples and the rest represent misclassifi-
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cations. This enables us to visualize prediction results and related derived statistics in a

class-wise manner from the data.

F D C B A

0 0 1 2 0 F

0 0 0 1 1 D

0 0 8 11 4 C

0 1 10 47 12 B

0 0 3 12 65 A

TP Rate FP Rate Precision Recall F-
Measure

ROC
Area

PRC
Area

Class

0.000 0.022 0.000 0.000 0.000 0.808 0.144 F
0.000 0.011 0.000 0.000 0.000 0.342 0.011 D
0.348 0.088 0.364 0.348 0.356 0.820 0.371 C
0.622 0.241 0.639 0.622 0.630 0.763 0.711 B
0.813 0.167 0.793 0.813 0.802 0.885 0.846 A

Table 5.6: Decision Tree Prediction Statistics

5.4 Random Forest

The choices of parameters for the random forest model are shown below and we take a

look at the performance results for different tuning of the parameters.

Base Learner : Decision Tree

No. of trees in the forest : 100

No. of cross-validation folds : 4

Predictor subset size : 3

Max depth of trees : 3
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Correctly Classified Instances 139 76.3736 %
Incorrectly Classified Instances 43 23.6263 %

Table 5.7: Random Forest Cross-Validation Accuracy and Error - Trial parameters

Base Learner : Decision Tree

No. of trees in the forest : 100

No. of cross-validation folds : 6

Predictor subset size : 3

Max depth of trees : 5

Correctly Classified Instances 151 82.967 %
Incorrectly Classified Instances 31 17.033 %

Table 5.8: Random Forest Cross-Validation Accuracy and Error - Optimal Parameters

We analyze that the optimal depth parameter of the constructed base learners is 5 and

determine the hold-out prediction accuracy in this setup.

Correctly Classified Instances 80 80.808 %
Incorrectly Classified Instances 19 19.1919 %

Table 5.9: Random Forest Hold-out Accuracy and Error

The confusion matrix is constructed as follows from the cross-validation prediction where

diagonal entries represent correctly classified samples and the rest represent misclassifi-

cations. This enables us to visualize prediction results and related derived statistics in a

45



class-wise manner from the data.

F D C B A

2 0 1 0 0 F

0 0 0 1 1 D

0 0 10 12 1 C

0 0 1 59 14 B

0 0 0 13 67 A

TP Rate FP Rate Precision Recall F-
Measure

ROC
Area

PRC
Area

Class

0.667 0.000 1.000 0.667 0.800 0.901 0.685 F
0.000 0.000 0.000 0.000 0.000 0.311 0.012 D
0.435 0.006 0.909 0.435 0.588 0.852 0.693 C
0.797 0.250 0.686 0.797 0.738 0.877 0.849 B
0.838 0.157 0.807 0.838 0.822 0.933 0.929 A

Table 5.10: Random Forest Prediction Statistics

5.4.1 Variable Importance

The feature importance can be ranked from the Random Forest construction based on

certain metrics in terms of accuracy and contribution to purity or homogeneity of split

[31]. These metrics are Mean Decrease Accuracy and the Gini Index and the variable

importance plot for this case can be viewed in Figure 5.6. The Mean Decrease Accuracy

metric refers to the drop in accuracy or the proportion of samples that are incorrectly

classified by removing the feature under consideration from the model. This can be done

by first learning the forest of trees and computing the cross-validated out-of-bag error

estimate including the feature. Then, the feature under consideration is permuted from the

predictor set and the out-of-bag error estimate with the feature permuted is computed. The
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level of difference in accuracies is indicative of the importance of the feature variable in the

model. The Gini index represents the contribution of a feature variable to the homogeneity

or purity of a split in the construction of the trees. When a feature variable contributes to

purity of split and the feature is permuted from consideration for the split, it leads to an

increase in impurity of split or a significant drop in mean gini coefficient. Hence the level

of drop is an indicator of how important or useful the variable is in the construction of the

model.

Figure 5.6: Variable Importance Plots

5.5 AdaBoost

The critical parameter is to specify when the boosting should be stopped (number of

iterations). An optimal choice is made based on the least obtainable training and prediction

error and adaptive boosting is terminated when no further improvements in accuracy can

be made. The trend of training and testing errors for various choice of termination iteration

and a non-optimal and optimal choice results can be viewed in Figure 5.7 and Figure 5.8
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respectively. For instance, choice of number of iterations as 30 gave almost negligible

training error but the cross validation/testing error was still relatively high. The optimal

choice for no. of iterations in this case was 400 iterations with base learner as the decision

tree.

Figure 5.7: Non-optimal Iteration Number Choice

Figure 5.8: AdaBoost Error Plots

Correctly Classified Instances 75 75.7575%
Incorrectly Classified Instances 24 24.2424 %

Table 5.11: AdaBoost Hold-out Accuracy and Error
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Correctly Classified Instances 140 76.9231%
Incorrectly Classified Instances 42 23.0769 %

Table 5.12: AdaBoost Cross-Validation Accuracy and Error

The confusion matrix is constructed as follows from the cross-validation prediction where

diagonal entries represent correctly classified samples and the rest represent misclassifi-

cations. This enables us to visualize prediction results and related derived statistics in a

class-wise manner from the data.

F D C B A

2 0 1 0 0 F

0 0 0 1 1 D

0 0 11 11 1 C

0 3 4 60 7 B

0 0 0 13 67 A

TP Rate FP Rate Precision Recall F-
Measure

ROC
Area

PRC
Area

Class

0.667 0.006 0.667 0.667 0.667 0.983 0.535 F
0.000 0.017 0.000 0.000 0.000 0.542 0.032 D
0.435 0.019 0.769 0.435 0.556 0.807 0.557 C
0.811 0.241 0.698 0.811 0.750 0.837 0.703 B
0.838 0.098 0.870 0.838 0.854 0.902 0.848 A

Table 5.13: AdaBoost Prediction Statistics

5.6 Kernel Metric Based SVM

The defined kernel metric is suitable for categorical features without having to re-

encode them as dummy values. The optimal value of tuning parameter γ for our applica-
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tion is 10.

K(x,y) = exp (
γ

m

∑m
i=1 1 (xi = yi))

The classification results are shown as follows

Correctly Classified Instances 78 78.7879%
Incorrectly Classified Instances 21 21.2121 %

Table 5.14: Kernel SVM Hold-out Accuracy and Error

Correctly Classified Instances 154 84.6154%
Incorrectly Classified Instances 28 15.3847 %

Table 5.15: Kernel SVM Cross-Validation Accuracy and Error

The confusion matrix is constructed as follows from the cross-validation prediction where

diagonal entries represent correctly classified samples and the rest represent misclassifi-

cations. This enables us to visualize prediction results and related derived statistics in a

class-wise manner from the data.

F D C B A

2 0 1 0 0 F

0 0 0 2 0 D

0 0 14 8 1 C

0 0 0 64 10 B

0 0 0 6 74 A
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TP Rate FP Rate Precision Recall F-
Measure

ROC
Area

PRC
Area

Class

0.667 0.000 1.000 0.667 0.800 0.909 0.686 F
0.000 0.000 0.000 0.000 0.000 0.269 0.011 D
0.609 0.000 1.000 0.609 0.757 0.902 0.782 C
0.878 0.139 0.813 0.878 0.844 0.918 0.895 B
0.925 0.118 0.860 0.925 0.892 0.971 0.965 A

Table 5.16: Kernel SVM Prediction Statistics
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6. SUMMARY AND CONCLUSIONS

We compile a comprehensive summary of the steps taken to tackle this education ana-

lytics problem and model the data to arrive at meaningful prediction methods and compet-

itive accuracy results. The problem is essentially a supervised classification problem and

our goal is to predict student performance based on relevant attributes which gives both the

department and student a better picture for their ETAM applications and decision-making.

We analyze the attributes presented to us and based on preliminary filter methods arrive

at a predictor set which represents their academic performances over the course of the

general engineering program. From here, we take it to wrapper feature selection methods

using classification algorithms to further pin-point important attributes which impact our

target. We initially evaluate model performance with the assumption that feature variables

are statistically independent of each other. The next step was to model the features into

multi-level models signifying non-linear interactions to result in categorical predictions.

The model for this purpose is the decision tree which is a hierarchical model. There is

potential for the hierarchical algorithm to fit and learn the data better in order to vastly

improve prediction accuracy results. This is accomplished by means of ensemble learning

methods. The two types of ensembles used are Random Forest which is a specific type

of bootstrap aggregating method (Bagging) and Adaptive Boosting which is an iterative

boosting ensemble that follows a different algorithm to Bagging. The performance re-

sults are compared for both types. We round up our evaluation with the application of a

support vector based classification. The non-linear separability in the data calls for a met-

ric based support vector approach which involves the application of a kernel metric that

captures similarity between data points and aids in the categorical classification using a

maximum margin separation approach between classes. From our application we are also

able to deduce the ranking of features based on their importance in influencing the target

outcome. In the course of evaluation, we compare the difference in results between two
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types of validation methods, one being the hold-out testing method and the other being a

cross-validation approach. To further breakdown the model, we look at methods like the

confusion matrix and precision-recall based metrics to get a more detailed insight into the

model performance.

A notable observation is the imbalance of classes in our dataset. There is a vast abun-

dance of data points with labels ’A’,’B’ and ’C’ grades which is very high compared to the

number of ’F’ and ’D’ labeled datapoints. Particularly the presence of ’A’ and ’B’ labeled

data points is very high compared to the rest of the classes. Consequently we observe that

per class performance can only be significantly looked at for classes ’A’,’B’ and ’C’ due

to presence of sufficient number of samples and these classes have noteworthy precision-

recall statistics which can be looked at. On the other hand, scarcity of the other classes

makes it difficult to interpret its results. We observe that the individual performances of

classes ’A’ and ’B’ with respect to their total number of samples has a good ratio of cor-

rectly classified to misclassified instances. The independence assumption model gave the

least accuracy results among our applications with an accuracy of 64.29%. This is our

baseline as we observed significant improvements in accuracy results with other models

which consider feature dependencies. An interesting aspect is the difference between the

accuracies in hold-out testing evaluation and cross-validation evaluation. A common trend

we observe in our models is the cross-validation accuracy being slightly better than the

hold-out accuracy. This is expected with the cross-validation being evaluated across mul-

tiple folds and averaging out the results. But a significant difference in accuracy which can

point out the instability in cross-validation accuracy is in the kernel based support vector

method. While the prediction accuracy using testing is 78.79%, we observe quite a signif-

icant jump to 84.62%accuracy in the cross-validation technique. We also note the fact that

this being a multiclass classification problem requires the support vector approach to fit

multiple two-class models using a ’one-vs-all’ scheme. While other models, involve fitting

a model which incorporates a multi-class prediction method, the kernel method comprises

of multiple models to predict the classes and this along with averaging out the results could
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lead to an overfitting issue for this data application. Among the applied models for the pre-

diction problem, we conclude that the best competitive prediction accuracy was obtained

using a the random forest aggregation method. The choice of parameters for this setup

proved to be critical as significant difference in accuracies was observed by tuning the

parameters of the model. The base learner for the ensemble is the decision tree with maxi-

mum depth of tree parameter being 5. The best accuracy results was obtained in this setup

and it gave a hold-out and cross-validation accuracy of 80.8% and 82.97% respectively.

It is possible to deduce information about feature interactions from our best performing

model, the random forest. We examine every tree in the ensemble setup and list out the

top 5 combinations of pairs of features in the non-decreasing order of frequency of co-

occurence in the decision paths. We observe that the feature pairs CSCE121-MATH251,

PHYS208-MATH251, CSCE121-PHYS218, CSCE121-MATH152, PHYS208-CSCE121

are the most frequent co-occurring pairs of features. We can infer that a feature for in-

stance CSCE121 which does not have the highest correlation coefficient with the target,

in interaction or combination with other features makes a significant contribution to the

prediction of the target outcomes thus indicative of its predictive power or influence. We

also note that the models have been applied and evaluated for their performance with cat-

egorical variables instead of conventionally with numeric values and the kernel metric has

also been applied to measure between categorical variables without re-encoding them to

dummy numeric values based on the levels.
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[13] Rokach L, Maimon O (2008). Data mining with decision trees: theory and applica-

tions, World Scientific Publishing, Singapore

[14] Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification and regression

trees, Wadsworth International Group, Belmont, CA

[15] L. Rokach. Ensemble-based classifiers, rtif. Intell. Rev., vol. 33, pp. 1-39, 2010.

[16] Efron B, Tibshirani R (1993). An introduction to the bootstrap, rtif. Chapman and

Hall, New York.

[17] Liaw A, Wiener M. Classification and regression by randomForest, Rnews 2002, 2:

18âĂŞ22.
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