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ABSTRACT 

 

Drought is a recurrent natural hazard that has impacts on agriculture, hydrology, 

ecosystem, and social-economy. A comprehensive analysis of drought is valuable for 

drought assessment and mitigation. Oklahoma is a state that frequently experiences 

drought. The goal of this dissertation is to analyze the spatial-temporal patterns of 

drought in Oklahoma. Specifically, it developed a new drought index and evaluated it 

against a number of widely-used drought indices. Then, the spatial-temporal patterns of 

drought in Oklahoma were investigated using the most suitable drought index. Finally, 

the impacts of climate oscillations on the drought were quantified and used to develop 

drought forecasts. 

A new drought index called the Precipitation Evapotranspiration Difference 

Condition Index (PEDCI) was developed. It overcomes a number of the limitations of 

other drought indices. The comparison of PEDCI and six widely used drought indices 

(Palmer’s Drought Severity Index, Z-Index, Standardized Precipitation 

Evapotranspiration Index (SPEI), Standardized Precipitation Index, percent normal, and 

percentiles) demonstrated that the performance of drought indices varies temporally and 

spatially. The SPEI is the drought index that is the most representative of soil moisture 

conditions. The correlations with winter wheat yield indicated that drought indices such 

as SPEI, Z-Index and PEDCI, which are based on precipitation and evapotranspiration, 

are most appropriate for representing the impact of drought conditions on crop yield. 
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Oklahoma was divided into four regions (southeast, southwest, northeast, and 

northwest Oklahoma) for the spatial and temporal analysis of drought. Drought 

frequency in northwest Oklahoma is higher than in other regions, and the frequency in 

spring is higher than in other seasons. There is a decadal-scale drought cycle in 

Oklahoma. Droughts are caused by both decreases in precipitation and increases in 

evapotranspiration, especially in recent years. 

Finally, drought is influenced by multiple climate oscillations. Seven regression 

models were developed for producing drought forecasts. The CCA-based regression 

model using multiple teleconnections at different lags was more skillful than the other 

drought forecast models. While skill is limited in some seasons, this method has promise 

for providing drought early warning in Oklahoma. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Introduction 

Drought is a recurring natural hazard that has an impact on many aspects of 

human life (Heim, 2002).It can cause significant damage to agriculture, ecosystems and 

society (A. K. Mishra & Singh, 2010). A comprehensive drought characterization is 

essential for drought management and mitigation (Zargar, Sadiq, Naser, & Khan, 2011). 

It can improve drought early warning and drought risk analysis, thereby minimizing the 

damage caused by drought (Zargar et al., 2011).  

Drought indices are widely used tools to characterize drought conditions. 

Drought indices quantitatively measure drought conditions using variables such as 

precipitation, evapotranspiration, soil moisture, and streamflow (Heim, 2002; Zargar et 

al., 2011). Since the development of drought indices can be based on different indicators, 

more than 150 drought indices have been developed (Niemeyer, 2008). These drought 

indices have been developed for different places, objectives, and applications (Zargar et 

al., 2011). Since the performance of drought indices varies by region and application, it 

is important to identify the most suitable drought index for a specific region and 

application so that drought conditions can be accurately measured.  

Once the most appropriate drought index for a particular region and application 

has been identified, the spatial-temporal patterns of drought can be quantified. Unlike 
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other natural hazards such as floods, which typically occur in a certain region and have a 

well-defined return period, droughts are more complex (Vicente-Serrano, 2006). 

Drought onset is usually slow, and the impact of droughts can affect a large area for a 

long period of time (A. K. Mishra & Singh, 2010). Knowledge of the temporal behavior 

of droughts and their spatial patterns is vital for the drought management and mitigation 

(Vicente-Serrano, 2006).  

Generally, the complicated spatial-temporal patterns of droughts are controlled 

by atmospheric circulation patterns (Vicente-Serrano, 2006). Among these atmospheric 

patterns, El Niño-Southern Oscillation (ENSO) is regarded as the major factor causing 

drought (Trenberth et al., 2014). However, it is necessary to investigate the impacts of 

multiple atmospheric circulation patterns on drought (Stevens & Ruscher, 2014). The 

relationships between drought conditions and atmospheric circulation patterns can be 

used as the basis for drought forecasting.  

This doctoral research will analyze the spatial-temporal patterns of drought in 

Oklahoma. It will develop a new drought index and evaluate it against a number of 

widely-used drought indices to identify the best drought index for agricultural drought 

monitoring in Oklahoma. This drought index will then be used to analyze the spatial-

temporal patterns of drought in Oklahoma and to investigate the relationship between 

drought and multiple climate oscillations. This dissertation will focus on three research 

questions: 1) What is the best drought index for agricultural drought monitoring in 

Oklahoma? 2) What are the primary spatial-temporal patterns of drought in Oklahoma? 

3) What causes drought in Oklahoma?  
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Specifically, it will:  

(1) Establish a new drought index; 

(2) Identify the best drought index for agricultural drought monitoring in 

Oklahoma; 

(3) Analyze the spatial-temporal patterns of drought in Oklahoma; 

(4) Investigate the impacts of climate oscillations on the spatial-temporal 

variations of drought in Oklahoma. 

 

1.2 Study Area 

Oklahoma is a state that frequently experiences drought. For example, the 1998 

drought caused about $2.0 billion in agricultural losses in Oklahoma (Graumann, Lott, 

McCown, & Ross, 1998). Recently, the 2011 drought caused $1.6 billion in agricultural 

losses in Oklahoma (Stotts, 2011). Oklahoma is located in a temperate region and 

experiences occasional extremes of temperature and precipitation typical of a continental 

climate. Weather patterns within the state vary dramatically over relatively small regions 

in a short time. The climate of the eastern part of Oklahoma is heavily influenced by 

southerly winds bringing moisture from the Gulf of Mexico. The climate of the western 

part of Oklahoma is semi-arid. There are strong precipitation and temperatures gradients 

from east to west. The average annual temperature in the southeast areas is about 16 °C 

with an annual rainfall over 1200 mm, while, in the western areas, the average annual 

temperature is about 14 °C, with an annual rainfall of  ~500 mm (Illston, Basara, & 

Crawford, 2004). 
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This region contains the Oklahoma Mesonet, the densest network of 

continuously-monitoring in situ soil moisture stations in the United States. The 

Oklahoma Mesonet consists of 121 meteorological stations across Oklahoma. The 

stations are evenly distributed across Oklahoma (Figure 1.1). The stations measure ten 

variables including rainfall, temperature, soil moisture, humidity, pressure, solar 

radiation, soil temperature, leaf wetness, wind speed and direction every 15 minutes 

(Brock et al., 1995). This study will use soil moisture observations from these stations to 

evaluate the drought indices. 

 

 

 

Figure 1.1 Dominant land cover in Oklahoma. Stars indicate the location of 

Oklahoma Mesonet stations that are used in this study. 
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CHAPTER II  

DEVELOPMENT OF A NEW DROUGHT INDEX 

 

2.1 Introduction 

Drought is one of the most complex natural hazards, which has impacts on 

agriculture, hydrology, environment, society and economy. It is difficult to have a single 

definition of drought because of the broad impacts of drought as well as the differences 

in water demand in different regions around the world (William M Alley, 1985; A. Dai, 

Trenberth, & Qian, 2004; Keyantash & Dracup, 2002; Wilhite, 2000). The drought 

definitions developed by the American Meteorological Society (AMS) in 1997 have 

been widely used (Heim, 2002; A. K. Mishra & Singh, 2010; Zargar et al., 2011). The 

AMS divides the drought definitions into four categories: meteorological drought, 

agricultural drought, hydrological drought, and socioeconomic drought (American 

Meteorological Society, 1997). Meteorological drought is caused by precipitation 

deficiency (Palmer, 1965). It can develop quickly and end abruptly. The subsequent soil 

water depletion can cause an agricultural drought (William M Alley, 1985; Heim, 2002). 

Agricultural drought occurs during the crop growing season and has impacts on crop 

yield. Prolonged precipitation deficits that cause reductions in streamflow, groundwater, 

reservoir, and lake levels will result in hydrological drought (William M Alley, 1985; 

Dracup, Lee, & Paulson, 1980). Finally, the impacts of meteorological, agricultural, and 

hydrological drought can also affect people and economic activities, this is defined as 
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socioeconomic drought (American Meteorological Society, 2004; Heim, 2002; Zargar et 

al., 2011). 

Drought indices are widely used for drought quantification. However, because of 

the complexity of drought characteristics and definitions, it is difficult to have a single 

index to adequately capture the intensity and severity of drought and its potential 

impacts (Vicente-Serrano et al., 2012). Many studies have developed drought indices 

and, at present, there are more than 150 drought indices (Zargar et al., 2011). These 

indices are used to measure different types of drought and are developed for a variety of 

applications. Some of the indices can describe the meteorological drought, such as the 

Rainfall Anomaly Index (Van Rooy, 1965), Drought Severity Index (Bryant, Arnell, & 

Law, 1992), and National Rainfall Index (Gommes & Petrassi, 1996). Some drought 

indices are used to quantify the impacts on agriculture and hydrology, such as Crop 

Moisture Index (Palmer, 1968), Crop Specific Drought Index (Meyer, Hubbard, & 

Wilhite, 1993) and Palmer Hydrological Drought Index (Palmer, 1965; Zargar et al., 

2011).    

Among these indices, the Palmer Drought Severity Index (PDSI), Standardized 

Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index 

(SPEI) are three of the most widely used drought indices. PDSI is a popular drought 

index for meteorological and agricultural drought analyses. It is based on a water 

balance model. Precipitation, temperature, evapotranspiration, and soil moisture are all 

considered in this index. It is more comprehensive than precipitation-only indices. 
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However, the calculation is more complicated and the index is less transparent than the 

SPI (Vicente-Serrano, Begueria, & Lopez-Moreno, 2010; Zargar et al., 2011). 

The SPI was developed after the PDSI and it is only based on precipitation. It 

overcomes some of the limitations of PDSI. For example, it can be used for the analysis 

of drought at variable time scales. It can be used to monitor meteorological, agricultural 

and hydrological drought, depending on the timescale of the SPI. One limitation of SPI 

is that it only uses precipitation data, so it cannot reflect actual water demand (PET) (S. 

M. Vicente-Serrano et al., 2010; Zargar et al., 2011). 

The SPEI was developed by Vicente-Serrano et al. (2010) and it combines the 

advantages of PDSI and SPI. It is based on precipitation and temperature and can be 

calculated at different time scales. S. M. Vicente-Serrano et al. (2010) indicated that 

temperature and evapotranspiration can play an important role in drought. Therefore, it 

is important to use a drought index that captures this influence. SPEI is calculated in a 

similar way to the SPI. The difference is that SPI only uses precipitation as input, while 

the SPEI uses the difference between precipitation and potential evapotranspiration 

(PET). One of the limitations of SPEI is that it is sensitive to the method of calculating 

PET. In addition, the SPEI is based on probability distribution function. The calculation 

of SPEI is complicate. 

In this chapter, a new drought index will be developed. It is simpler than the 

SPEI and it can be applied for meteorological, agricultural, and hydrological drought. 

The new drought index, called the Precipitation Evapotranspiration Difference Condition 

Index (PEDCI), is based on the difference between precipitation and evapotranspiration. 
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The PEDCI is calculated using PET based on the Penman scheme. One advantage of the 

PEDCI is that it uses a normalization method that does not require any empirical 

parameters.  

 

2.2 Data and Methods 

2.2.1 PRISM Precipitation 

Precipitation data from the Parameter elevation Regression on Independent 

Slopes Model (PRISM) is used for the study. PRISM is a set of monthly gridded climatic 

data product for the United States developed by the Spatial Climate Analysis Service at 

Oregon State University. The dataset includes precipitation, mean temperature, 

maximum/minimum temperature and dewpoint temperature. In-situ station data are 

ingested into the PRISM statistical mapping system. PRISM products use a weighted 

regression scheme for the complex climate regimes associated with orography, rain 

shadows, temperature inversions, slope aspect, coastal proximity, and other factors. The 

number of stations used in the analysis is nearly 13000 (Daly et al., 2008). Normals are 

available at 30-arcsec (800 meters) and monthly data are available at 2.5 arcmin (4 km) 

resolution. The monthly precipitation data can be downloaded at 

http://prism.oregonstate.edu/. Monthly precipitation data from 1981to 2014 were used in 

this study.  

 

 

 

http://prism.oregonstate.edu/
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2.2.2 NLDAS Potential Evapotranspiration 

Monthly PET from North American Land Data Assimilation System (NLDAS) 

from 1981 to 2014 were used in this study. NLDAS is available in near-real time and has 

a spatial resolution of 0.125 * 0.125 degrees. The dataset is available from 1979 to the 

present at hourly and monthly resolution. The potential evaporation data in the NLDAS-

2 primary forcing dataset was computed using the modified Penman scheme of Mahrt 

and Ek (1984) (Ek et al., 2011). Figure 2.1 shows the NLDAS PET in January, 2000. 

 

 

 

Figure 2.1 Monthly Potential Evapotranspiration (mm) derived from NLDAS-2 in 

Oklahoma in January, 2000. 
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2.2.3 Soil Moisture Data 

Soil moisture data are used to evaluate the performance of the new drought 

index. This study uses in situ soil moisture measurements from 90 Oklahoma Mesonet 

stations (http://www.mesonet.org/) (Figure 1.1). Soil moisture measurements from 

Oklahoma Mesonet is volumetric water content of the soil which is estimated using the 

thermal matric potential that is measured by Campbell 229-L heat dissipation sensors at 

5 cm, 25 cm and 60 cm. Daily volumetric water content were converted to monthly soil 

moisture percentiles. Soil moisture percentiles at 5 cm and 60 cm depth were used to 

evaluate the performance of the new drought index PEDCI. Figure 2.2 shows the 

monthly soil moisture percentile at 5cm from 2000 to 2014 at the station ACME, which 

is located in Grady, Oklahoma. 

 

 

http://www.mesonet.org/
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Figure 2.2 Mean monthly soil moisture (5 cm) from 2000 to 2014 in Acme, 

Oklahoma. Soil moisture data have been converted to percentiles based on the 

period of record. 

 

 

 

2.2.4 PEDCI Calculation 

The PEDCI is calculated using a location-based normalization method that is 

similar to that of the Vegetation Condition Index (Kogan, 1995). There are two steps to 

calculate PEDCI. The first step is to calculate the difference (𝐷𝑖) between the 

precipitation P and PET for month i is calculated using: 

𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖                                               (Equation 2.1) 

This provides a simple measure of moisture supply (P) versus atmospheric water 

demand (PET) for the month. 

The second step is to calculate the PEDCI for the month i using:  
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𝑃𝐸𝐷𝐶𝐼𝑖 = 100 ∗ (𝐷𝑖 − 𝐷𝑖𝑚𝑖𝑛)/(𝐷𝑖𝑚𝑎𝑥 − 𝐷𝑖𝑚𝑖𝑛)                 (Equation 2.2) 

Where 𝐷𝑖, 𝐷𝑖𝑚𝑎𝑥, and 𝐷𝑖𝑚𝑖𝑛 are the monthly difference between precipitation 

and PET for month i, its multi-year absolute maximum and minimum values for that 

month. The PEDCI varies from 0 to 100. PEDCI equals to 0 when 𝐷𝑖 equals to 𝐷𝑖𝑚𝑖𝑛, 

which corresponds to the driest conditions ever experienced. PEDCI equals to100 when 

𝐷𝑖 equals to 𝐷𝑖𝑚𝑎𝑥, which corresponds to the wettest month ever experienced at that 

location in that month. The 𝐷𝑖 values are positive when precipitation is larger than PET. 

The 𝐷𝑖 values are negative when precipitation is less than PET. No matter whether the 

𝐷𝑖 values are positive or negative, the closer of the 𝐷𝑖 values to 𝐷𝑖𝑚𝑎𝑥 values, the higher 

of PEDCI, which corresponds to the wetter conditions. The closer of the 𝐷𝑖 values to 

𝐷𝑖𝑚𝑖𝑛 values, the lower of PEDCI, which corresponds to the drier conditions. 

 

 

2.3 Results 

2.3.1 Regional Results 

The PEDCI will first be compared to the SPEI from the global SPEI database 

(http://spei.csic.es/database.html) and the U.S. Drought Monitor 

(http://droughtmonitor.unl.edu/) for a single year so that the similarities and differences 

between these different drought indices can be visualized. This will be followed by a 

quantitative comparison of the PEDCI to soil moisture and SPEI in section 2.3.2 and 

2.3.3. The SPEI and U.S. Drought Monitor were chosen for this comparison because 

they are both commonly used for drought monitoring. In addition, PEDCI uses similar 

http://spei.csic.es/database.html
http://droughtmonitor.unl.edu/)
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input data to the SPEI (P and PET) and therefore it is useful to directly compare these 

two indices. They have similar input data, but different calculation methods. The USDM 

is developed through an expert analysis a complex drought monitoring tool which 

incorporated with lots of drought information such as the measurements of climatic, 

hydrologic and soil moisture as well as reported drought impacts and observations.  

In order to visually compare the PEDCI to the SPEI and USDM, the PEDCI and 

SPEI have been classified into five categories based on the USDM drought classification 

percentiles that are shown in Table 2.1.  

 

 

Table 2-1 USDM Drought Classification 

Level Drought classes Percentile 

 0 Abnormally dry 20% to 30% 

1 Moderate drought 10% to 20% 

2 Severe drought 5% to 10% 

3 Extreme drought 2% to 5% 

4 Exceptional drought Less than 2% 

 

 

The year of 2000 was subjectively chosen for this analysis because the available 

soil moisture data are from 2000 to 2014. The spatial patterns of drought conditions in 

2000 based on PEDCI (Figure 2.3). Moisture conditions vary significantly from month 

to month. The year starts with no evidence of drought in Oklahoma. In February, there is 
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evidence of some scattered locations in western and southeastern Oklahoma where 

drought conditions are evident. However, these events are short-lived and by March, 

there is no evidence of drought in the state. The relatively moist conditions continue 

until August, when suddenly the majority of the state is in D3 and D4 conditions, except 

for a small region in northeastern Oklahoma. These drought conditions continue into 

September, although the severity and spatial extent of drought conditions, as represented 

by the PEDCI, has decreased by then. In October, conditions return to normal as a result 

of increased rainfall and there is no evidence of drought through the end of the year.  

Figure 2.4 shows the spatial patterns of drought conditions in 2000 based on the 

SPEI. The SPEI is based the CRU precipitation and potential evapotranspiration dataset, 

which has a 0.5 * 0.5 degree spatial resolution. The spatial patterns of drought conditions 

based on the SPEI are similar to the spatial patterns of PEDCI in February, April, August 

and September. Since both of SPEI and PEDCI are based on the difference between 

precipitation and potential evapotranspiration, this makes sense. However, the PEDCI is 

available at a much higher spatial resolution (0.125 degrees). Therefore, it provides some 

finer-scale detail with regards to the spatial variability of drought conditions that is not 

available from the SPEI. It is also helpful to note that both the PEDCI and SPEI are in 

agreement that drought conditions are not present in March, June, October, November 

and December. 
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Figure 2.3 Monthly PEDCI values in 2000. PEDCI has been converted to USDM 

percentiles based on Table 2.1. 
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Figure 2.4 Monthly SPEI (1-month SPEI) in Oklahoma (January to December 

2000). 

 

 

However, there are a few months when differences between the SPEI and PEDCI 

are observed. The SPEI shows some D1 and D2 drought conditions scattered across 

Oklahoma in January, while the PEDCI does not indicate any drought conditions. 

Similarly, in April and May the SPEI indicates more widespread and severe drought 

conditions than depicted by the PEDCI. It is not surprising to observe that there are 

differences between these two drought indices because they have different spatial scales, 

different sources of input data and different calculation methods. 
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Figure 2.5 shows the drought patterns based on the USDM (Staff National 

Drought Mitigation Center, 2000). One challenge in comparing the PEDCI to the USDM 

is that it has a different spatial and temporal resolution. The USDM is relatively coarse 

spatially, but provides a weekly map of conditions. In addition, the USDM is a hybrid 

drought monitoring product. The USDM is developed using expert analysis of many 

types of information including precipitation, streamflow, soil moisture and drought 

impacts and observations, including the SPEI. It is updated on a weekly basis and the 

spatially resolution is roughly at the county level. Qualitatively, the spatial and temporal 

drought patterns depicted by the USDM are consistent with the PEDCI. For example, the 

presence and location of drought conditions depicted by the USDM on February 29, 

2000 is consistent with the February PEDCI. There also is agreement between the 

USDM and PEDCI on the general lack of drought conditions in April through July. 

Beginning in August, the USDM depicts the onset of drought conditions across much of 

Oklahoma and that by the end of September the drought has peaked and covers most of 

the state. The USDM also depicts that recovery occurs relatively quickly and that by 

November, Oklahoma is drought free. The primary disagreement between the USDM 

and PEDCI is in regards to the severity and timing of drought onset and recovery. 

During September, the USDM depicts the drought severity as D1 and D2 (moderate and 

severe drought), while the PEDCI and SPEI depict drought conditions as D3 and D4 

(extreme and exceptional drought). In general, the PEDCI depicts that drought 

conditions are substantially more severe than the USDM. This is in part because the 

USDM represents all types of drought, not just meteorological or agricultural. Therefore, 
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during short-term drought events, like August and September 2000, it will tend to under-

predict the severity of meteorological drought because it is likely that long-term 

hydrological drought indicators like lake and reservoir levels have not responded. There 

is also a difference in the timing of drought onset and demise. The USDM tends to show 

that drought onset and demise occurs later than operational drought monitoring products. 

This is, in part, due to the fact that the USDM is an impacts-based drought monitoring 

product and so there is a lag between precipitation deficits and drought impacts.  

Generally, it appears that the PEDCI can represent the spatial and temporal 

patterns of drought in Oklahoma. 
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Figure 2.5 United States Drought Monitor maps for Oklahoma. A single weekly 

map is selected for each month to represent the evolution of drought conditions in 

Oklahoma during 2000 (Staff National Drought Mitigation Center, 2000). 
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Figure 2.5 Continued 

 

 

2.3.2 PEDCI Comparison with SPEI 

Both PEDCI and SPEI are based on the difference between precipitation and 

potential evapotranspiration. In this section, the PEDCI is compared with the 1-month, 

3-month, 6-month and 12-month SPEI. Figure 2.6 compares the time series of PEDCI 
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and SPEI at these four timescales. The PEDCI and SPEI values that are shown represent 

the mean for the state of Oklahoma. It is evident that both the PEDCI and SPEI can 

capture the fluctuations in moisture conditions. The timing of drought onset and the 

drought severity appear to be similar. For example, when the SPEI is negative, the 

PEDCI approaches 0. Not surprisingly, the variability in these two indices tends to 

decrease at longer time scales. Given that the SPEI has been shown as an effective tool 

for drought monitoring at different timescales (Vicente-Serrano, Begueria, Lopez-

Moreno, Angulo, & El Kenawy, 2010), the consistency between the PEDCI and SPEI 

suggests that the PEDCI can also be an effective tool for drought monitoring. 
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Figure 2.6 Mean state-wide PEDCI and SPEI in Oklahoma (1981-2014) at different 

timescales: (a) 1-month, (b) 3-month, (c) 6-month, and (d) 12-month. 

 



 

23 

 

 

Figure 2.6 Continued 
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Figure 2.6 Continued 
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Figure 2.6 Continued 

 

 

Figure 2.7 shows scatter plots of PEDCI and SPEI at different timescales. PEDCI 

is highly correlated with SPEI at all timescales. Correlations between the PEDCI and 

SPEI at 1-month to 6-month timescales are approximately 0.94. This suggests that these 

two drought indices share a lot of common variance (~88%) and that there is strong 
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agreement between these two indices in terms of their month-to-month evolution. 

Correlations between 12-month PEDCI and 12-month SPEI are lower than the 

correlations at other timescales. The correlation at the 12-month scale is 0.81, which is 

significant at the 95% significance level. It appears that the weaker correlations between 

the PEDCI and SPEI are because the PEDCI is more variable than the SPEI. For 

example, when looking at major drought events in 2007 and 2011, the SPEI stays 

persistently negative for a much longer period of time that the PEDCI. The 12-month 

SPEI tends to vary more slowly and smoothly than the PEDCI. This is a direct result of 

how each of these indices is calculated. The 12-month SPEI is based on precipitation 

over the last 12 months and therefore it integrates the long-term conditions and once a 

drought event begins, it takes a while for the SPEI to return to normal. The 12-month 

PEDCI is based on an average of the 12 monthly PEDCI values. Therefore, one high 

PEDCI value (of 90 or 100) can have a large influence on the mean PEDCI. The PEDCI 

tends to show a quicker drought recovery than the SPEI. This difference between the 

SPEI and PEDCI becomes more pronounced at longer timescales. 
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Figure 2.7 Scatter plots of PEDCI and SPEI at different scales. 
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Figure 2.7 Continued 
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Figure 2.7 Continued 
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Figure 2.7 Continued 

 

 

2.3.3 PEDCI Comparison with Soil Moisture 

Soil moisture is an important indicator of drought conditions. Oklahoma Mesonet 

provides soil moisture at four depths. Correlations between the 1-month PEDCI and soil 
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moisture percentiles at the 5 cm are used to evaluate how well the PEDCI captures 

variations in near-surface soil moisture (Figure 2.8). The correlations between the 

PEDCI and the station-based soil moisture measurements varies significantly across 

Oklahoma. The minimum correlation between PEDCI and soil moisture is 0.26, while 

the maximum correlation is 0.74. There is a strong west to east gradient in the strength 

of the correlations. They tend to be higher in western Oklahoma than in eastern 

Oklahoma. There are a variety of reasons for these spatial variations in the strength of 

the correlations. Differences in climate, soil characteristics and land cover all likely play 

a role in these patterns. In addition, there is a spatial and temporal mismatch between 

these data. They PEDCI is calculated at a 0.125 degree grid cell, while soil moisture is 

measured at a point. Near-surface soil moisture varies substantially on a daily to weekly 

timescale. Therefore, comparing mean monthly soil moisture with the monthly PEDCI 

masks some of this high frequency variability. Nonetheless, it is evident that the PEDCI 

does capture some of the variance in soil moisture conditions in Oklahoma. Therefore, it 

may have some utility as an agricultural drought index.  

Figure 2.9 shows the correlations between the 1-month PEDCI and soil moisture 

at 60 cm. The minimum correlation between PEDCI and soil moisture at 60 cm is 0.04, 

while the maximum correlation is 0.68. The west-east gradient in the strength of the 

correlations is less pronounced at 60 cm than at 5 cm. The decrease in the strength of the 

correlations is not surprising since near-surface soil moisture is more sensitive to 

environmental conditions. H. Wang, Rogers, and Munroe (2015) demonstrated that near-

surface soil moisture is more effectively characterized by a drought index at shorter 
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timescales, while soil moisture deeper in the soil column is best characterized by a 

drought index at longer timescales. In this case, since the 1-month PEDCI was used for 

comparison with both the 5 cm and 60 cm soil moisture, it is not surprising that the 

correlations are weaker at 60 cm. 

Figure 2.8 Correlations between the 1-month PEDCI and soil moisture at 5 cm 

(based on data from 2000 to 2014). 
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Figure 2.9 Correlations between PEDCI and soil moisture at 60 cm (based on data 

from 2000 to 2014). 

2.4 Discussion and Conclusion 

In this chapter, a new drought index Precipitation Evapotranspiration Difference 

Condition Index (PEDCI) was established based on the difference between precipitation 

and PET. This index combines the advantages of SPEI and VCI. The differences 

between water supply (precipitation) and atmospheric water demand (PET) can provide 

a simple water balance (S. M. Vicente-Serrano et al., 2010). By adopting the 

normalization method that is used by VCI, the PEDCI can compare the water balance at 

a given location and time period with the normal conditions. As a result, the PEDCI 



34 

provides a normalized value that removes the climatic and seasonal variations in water 

supply/demand. 

There is strong agreement between the PEDCI, SPEI and USDM in terms of the 

spatial-temporal patterns in moisture conditions. In addition, there is strong agreement 

between the PEDCI and SPEI in terms of drought severity and month-to-month 

variations in drought conditions at timescales ranging from 1 to 6 months. There is less 

agreement between these two indices at the 12-month timescale due to differences in 

how these two indices are calculated. The primary differences between the PEDCI and 

the USDM are related to drought severity, and to a lesser extent, drought timing. The 

PEDCI and the SPEI both tend to show that drought conditions are more severe than the 

USDM. These differences are due to the fact that the USDM represents meteorological 

(short-term), agricultural and hydrological drought (long-term). While the PEDCI is 

most representative of short-term drought conditions. The USDM also incorporates 

drought impact information, so it is not solely based on climatic conditions. 

Correlations between the PEDCI and SPEI at different timescales demonstrate 

that the PEDCI can capture fluctuations in drought conditions as effectively as SPEI. 

The direct correlations between PEDCI and soil moisture indicate that the PEDCI has 

utility for monitoring agricultural drought conditions. However, the correlations between 

the PEDCI and soil moisture are much higher in western Oklahoma than in eastern 

Oklahoma. This suggests that differences in soil characteristics and land cover have an 

influence on the strength of the relationships. 
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Robustness, tractability, transparency, sophistication, extendibility, and 

dimensionality are six criteria that can be used for evaluating drought indices (Steven M 

Quiring, 2009). Robustness refers to the spatial and temporal comparability of an index. 

Tractability refers to the practical ability of calculating the drought index. Transparency 

means the ability of an index to be understood. Sophistication is related to the conceptual 

merit of the index. Extendibility means the ability of an index to be extended back in 

time. Dimensionality refers to the connections between the drought index and the 

physical world. The relative importance of these six criteria are 30%, 25%, 15%, 10%, 

10% and 10% (Keyantash & Dracup, 2002; Steven M Quiring, 2009). Both of PEDCI 

and SPEI can measure drought over a wide range of conditions, and they can be 

calculated for any interested time periods. SPEI is a standardized index, therefore, it is 

comparable spatially and temporally. PEDCI is based on normalization method, thus, its 

ability for the spatial and temporal comparison is not as good as SPEI. Based on the 

scoring method from Steven M Quiring (2009), SPEI is given 5 out of 5 for robustness, 

while PEDCI is given 4 out of 5 for robustness. In terms of tractability, since PEDCI is 

easier to calculate, PEDCI is given 5 out of 5, while, SPEI is given 4 out of 5. About the 

transparency, PEDCI also has advantage over the SPEI. The method to calculate SPEI is 

more complicate than the method to calculate PEDCI. Therefore, PEDCI receives 5 out 

5 in terms of transparency while SPEI receives 4 out of 5. The complicate calculation of 

SPEI gives advantage to the sophistication of SPEI. Both of PEDCI and SPEI can be 

extended back in time for the locations that have long record of precipitation and PET. 

In addition, the units of SPEI and PEDCI can be easily related to the simple water 
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balance model. Therefore, they receive 5 out 5 for these two criteria. Table 2.2 shows the 

scores of SPEI and PEDCI based on these six criteria. Overall, PEDCI is comparable to 

SPEI. 

 

 

Table 2-2 Qualitative evaluation of PEDCI and SPEI 

 PEDCI SPEI 

 Robustness 4 5 

Tractability 5 4 

Transparency 5 4 

Sophistication 4 5 

Extendibility 5 5 

Dimensionality 5 5 

Weighted Total 4.6 4.6 

 

 

In this study, PEDCI were converted to a drought severity classification (D0 to 

D4) using the USDM percentiles. The classification was based on using the mean 

PEDCI values for Oklahoma. In the future, the PEDCI should be categorized based on 

the PEDCI values in each pixel. In addition, the PEDCI should be compared with more 

drought indices such as PDSI, Z-index and SPI for a further evaluation the performance 

of the PEDCI.  
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CHAPTER III 

COMPARISON OF SEVERAL WIDELY USED DROUGHT INDICES FOR 

AGRICULTURAL DROUGHT MONITORING IN OKLAHOMA1 

3.1 Introduction 

3.1.1 Drought Indices 

Drought indices are used to quantitatively measure drought conditions. More 

than 150 drought indices have been development for different types of drought and 

different places (Niemeyer, 2008). A number of studies have reviewed the development 

of drought indices and concluded their advantages and disadvantages (Heim, 2002; A. K. 

Mishra & Singh, 2010). For example, Kempes, Myers, Breshears, and Ebersole (2008) 

evaluated several different drought indices including PDSI and SPI in response to the 

tree-ring growth in the southwestern United States. The results indicated PDSI was best 

indicator of the tree ring width. Steven M Quiring (2009) compared the Palmer Drought 

Severity Index (PDSI), Palmer’s Z-Index, Standardized Precipitation Index (SPI), 

Effective Drought Index (EDI), Vegetation Condition Index (VCI), percent normal, and 

percentiles for meteorological drought monitoring in the United States. Both of the 

literature and the drought index evaluation suggest that the SPI and percentiles are most 

suitable for monitoring meteorological drought. Lorenzo-Lacruz et al. (2010) compared 

1 A portion of this chapter is a part of paper that will be submitted to Agricultural and Forest Meteorology. 

Tian, L., Yuan, S. and S. M. Quiring, “Evaluation of six drought indices for agricultural drought 

monitoring in South Central United States”. 
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the performance of SPEI and SPI to identify the impacts of droughts and water 

management on various hydrological systems in central Spain. They found that SPEI 

better reflects the influence of precipitation and temperature on the temporal variability 

of river discharge and reservoir storage. Vicente-Serrano et al. (2012) compared the 

PDSI, SPI and Standardized Precipitation Evapotranspiration Index (SPEI) for 

agricultural, hydrological, and ecological drought monitoring at global scale. Their 

results demonstrated that SPEI is the best drought index to capture the impacts of 

drought on those above agricultural, hydrological, and ecological variables. Drobyshev, 

Niklasson, and Linderholm (2012) compared the performance of six drought indices for 

fire frequency analysis in Sweden. They found that the calibrated PDSI is a better proxy 

of fire activity for the southern region, while, the ratio between actual and equilibrium 

evapotranspiration is better for the northern region. The aforementioned studies show 

that the performance of drought indices varies based on the region and intended 

application.   

 

3.1.2 Agricultural Drought Monitoring 

S. M. Quiring and Papakryiakou (2003) evaluated PDSI, Z-index, SPI and 

NOAA drought index by comparing the yield models predictions based on these drought 

indices. The result indicated that the Z-index is the most appropriate index for 

agricultural drought monitoring in Canadian prairies. H. Wang et al. (2015) compared 

PDSI, scPDSI, Z-index, SPEI and SPI based on the correlations with soil moisture in 

China. Their results showed SPEI has a higher correlation with soil moisture than SPI, 
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PDSI, and Z-index. Also, they found that the Z-index has a higher correlation with soil 

moisture in the top 5 cm of the soil column than the PDSI. However, the PDSI has a 

higher correlation with soil moisture at 90-100 cm. Correlations between soil moisture 

and four drought indices, including PDSI, Z-index, SPI, and SPEI, were compared at 

global scale and country level by Vicente-Serrano et al. (2012). Their results were 

similar with the results by H. Wang et al. (2015). Vicente-Serrano et al. (2012) also 

compared PDSI, Z-index, SPI and SPEI based on the correlations with wheat yield at 

global scale and country level. They calculated the correlation with de-trended wheat 

yields since yield changes over time not only depend on climate factors but also other 

factors such as new technologies and managements (Potopova, Boroneant, Boincean, & 

Soukup, 2016). 

Potopova et al. (2016) investigated the impact of agricultural drought on main 

crop yields. The same method was used to de-trend yield. However, only low-yielding 

years were considered to show the variability in yield losses explained by drought. Even 

though a lot of research have been done about the comparison of drought indices, the 

results were not consistent. The performance of drought indices varies from regions 

since the specific physical environment varies from region to region. Comparison of 

drought indices for agricultural drought monitoring in one specific region is necessary 

for drought management and mitigation. 

In this chapter, six commonly used drought indices: PDSI, Z-index, SPEI, SPI, 

precipitation percent normal, and precipitation percentiles, are compared for agricultural 

drought monitoring in Oklahoma. These indices were selected because past studies have 
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shown that they have utility for agricultural drought monitoring and they are used by 

stakeholders and ranchers. The newly developed PEDCI is also compared with these six 

drought indices to determine whether it outperforms existing drought indices. The goals 

of this chapter are to: (1) determine which drought index is the most representative of 

soil moisture conditions in Oklahoma, (2) identify which drought index is the best for 

the primary crop in Oklahoma, (3) evaluate the performance of drought indices in 

abnormal yielding year and investigate the variability in yield losses explained by 

drought. 

3.2 Data and Methods 

3.2.1 PRISM Precipitation 

Monthly Parameter Elevation Regression on Independent Slope Model (PRISM) 

precipitation data (http://www.prism.oregonstate.edu) at 4 km resolution are used to 

calculate drought indices in this study. Long-term records from 1895 to the present at 

800 meters and 4 kilometer resolution are available. For the intended climate study, a 

long and consistent record is needed to reduce the potential of error (A. K. Mishra & 

Singh, 2010). Therefore, data used in this study cover a 34-year period from 1981 to 

2014. 

3.2.2 NLDAS Potential Evapotranspiration 

The potential evapotranspiration (PET) data are needed to calculate PDSI, Z-

index, SPEI, and PEDCI. We use the PET data from North American Land Data 

http://www.prism.oregonstate.edu/
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Assimilation System (NLDAS)-2 forcing dataset 

(http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php). 

3.2.3 Soil Moisture 

Soil moisture is a good indicator of meteorological and agricultural drought 

conditions. Observed soil moisture data from the North American Soil Moisture 

Database (NASMD) (http://soilmoisture.tamu.edu/) are used to compare the 

performance of drought indices. The NASMD is a harmonized and quality-controlled 

soil moisture dataset (Steven M Quiring et al., 2016). It can be used to validate the 

accuracy of soil moisture simulations in global land-surface models and from satellite 

platforms and in climate-hydrological research. The NASMD contains daily soil 

moisture data from 30 soil moisture networks. This study only uses data from the 

Oklahoma Mesonet. Figure 1.1 shows the soil moisture stations used in this study. Data 

from the NASMD are daily quality controlled soil moisture data. The soil moisture data 

from different depths are averaged in the top 60 cm of the soil column since 70% to 85% 

of the total water uptake for winter wheat occurs in the top 60 cm of the soil column 

(FAO Land and Water division, 2015). Daily soil moisture data are averaged to monthly 

values. Data from 2000 to 2014 are used in this study since data are only available since 

2000 for most stations. Since missing data exists in some stations and some months, only 

months with less than 5 missing days are considered in this study. Otherwise, the 

monthly soil moisture value is set to missing. Soil moisture is transformed into 

percentiles so that it can be directly compared over space and time. 

http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php
http://soilmoisture.tamu.edu/
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3.2.4 Crop Yields 

Winter wheat yield from United States Department of Agriculture (UDSA) 

(https://quickstats.nass.usda.gov/) during the period from 1981 to 2014 are also used in 

this study. According to the land cover map (Figure 1.1), winter wheat is the primary 

agricultural crop grown in Oklahoma. 

Since crop yield is affect by many factors besides climate, such as technological 

advances in cropping system and new management practices, crop yields show a positive 

trend (Potopova et al., 2016; Vicente-Serrano et al., 2012). Therefore, crop yield 

timeseries are detrended to isolate the non-climatic factors following the method of 

Lobell, Schlenker, and Costa-Roberts (2011). Equation 3.1 is used to detrend the crop 

yield: 

𝑦𝑖𝑇 = 𝑦𝑖 − 𝑦𝑖𝜏                                               (Equation 3.1) 

Where 𝑦𝑖𝑇 is the detrended crop yield,  𝑦𝑖 is the observed crop yield, and 𝑦𝑖𝜏 is the 

mean dynamical value resulting from fitting a quadratic polynomial line (Potopova et al., 

2016). 

The detrended crop yields are then standardized using equation 3.2 to compare 

yield variability among the locations with different means and standard deviations: 

𝑆𝑌𝑅𝑆 =
𝑦𝑖𝑇−𝜇

𝜎
                                               (Equation 3.2) 

Where 𝑆𝑌𝑅𝑆 is standardized yield residuals series, 𝑦𝑖𝑇 is the detrended yield, 𝜇 is 

the mean of the detrended yield, and 𝜎 is the standard deviation of the detrended yield.  

 

 

https://quickstats.nass.usda.gov/
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3.2.5 Drought Indices 

PDSI and Z-index were developed in 1965 (Palmer, 1965). The PDSI and Z-

index are calculated based on a water balance model using a time series of daily 

temperature and precipitation data, and information on the available water content 

(AWC) of the soil. PDSI calculates evapotranspiration, runoff, soil recharge, and 

moisture based on the water balance model (Zargar et al., 2011). Z-index is an 

intermediate term within the PDSI. It is monthly standardized anomaly of available 

moisture. The PDSI was the first comprehensive drought index developed in the U.S. 

and it is still a popular drought index.  

The Standardized Precipitation Index (McKee, Doesken, & Kleist, 1993) is a 

meteorological drought index that is calculated only using precipitation data. The SPI is 

simple and versatile. It can be calculated for any timescale of interest. Different 

timescales can be used for monitoring different types of drought. A probability 

distribution function, such as gamma distribution, is applied to transform the distribution 

of precipitation data into a normal distribution. Since the precipitation is transformed 

into a normal distribution, the mean of precipitation is set to zero. Therefore, it is 

possible to compare precipitation departures in regions with different climates. 

The percent of normal precipitation (Keyantash & Dracup, 2004) is a simple 

method to reflect precipitation deficits by comparing observed precipitation to normal 

precipitation for a particular location and period. Normal precipitation is the mean 

precipitation based on a 30 years of data. It can be calculated for any time scale of 
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interest (Steven M Quiring, 2009). The strength of percent normal is it only requires 

precipitation data, and it is easy to calculate. 

Percentiles are another simple method for representing precipitation deficits 

(Gibbs, 1967). Percentiles can be determined empirically by arranging the data (monthly 

precipitation) from lowest to highest (Steven M Quiring, 2009). Similar to percent 

normal, percentile only require precipitation data and they are easy to calculate.  

The SPEI is similar to SPI, but it is produced by standardizing the probability of 

the difference between water supply (P) and atmospheric water demand (PET) (S. M. 

Vicente-Serrano et al., 2010). The SPEI can provide a more complete representation of 

drought since potential evapotranspiration is a function of surface air temperature, wind 

speed, solar radiation and humidity (H. Wang et al., 2015). The advantage of SPEI is it 

combines advantages of the SPI, but also includes information about evapotranspiration.  

 

3.2.6 Crop Mask 

There is a spatial mismatch between the drought indices that are calculated at 

0.125 degrees and the county-level crop yield data. This makes it difficult to directly 

compare these data. To address this issue, we developed a crop mask to identify the 

locations where winter wheat is grown (Figure 3.1). Then, the drought index values in 

these grid cells were averaged to calculate a mean drought index value for each county. 

The crop mask was generated based on the 2015 crop frequency layer from USDA 

National Agricultural Statistics Service (NASS) (https://www.nass.usda.gov/). The crop 

frequency layers provide the planting frequency of winter wheat between 2008 and 

https://www.nass.usda.gov/
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2015. The crop frequency layers are at 30 meter resolution. Only locations where winter 

wheat was grown more than 4 times during this 8 year period were retained to generate 

the crop mask.  

We followed the method presented by Huang et al. (2015) to re-scale the crop 

masks from 30 meter resolution to 0.125 degrees. A 0.125 degree grid was overlaid on 

the 30 meter winter wheat mask to obtain a pixel purity map based on the percentage of 

winter wheat in each grid cell. Only grid cells with more than 20 percent purity were 

identified as a winter wheat grid cell (Figure 3.1). 

 

 

 

Figure 3.1 Winter wheat mask at 0.125 degree resolution. The pixels shown in 

green are locations where winter wheat was planted higher than 4 times during 

2008 to 2015. 
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3.3 Results 

Correlations between drought indices and soil moisture are reported at the station 

level, while correlations with crop yields were shown at the county level. Two different 

approaches were used to evaluate the relationship between the drought indices and crop 

yields. The first approach calculates correlations between crop yields and drought 

indices using the entire timeseries from 1981 to 2014. The second approach excludes the 

years with near-normal climate conditions (where near-normal is defined as the middle 

40 percent of drought index distribution) and near-normal crop yield (where near-normal 

is defined as the middle 40 percent of SYRS). A second-order polynomial function was 

used to estimate the drought-yield relationship. In dry years, crop yields may be lower 

than normal due to the water stress. However, crop yields may be also lower than normal 

in wet seasons due to the factors associated with wet season, such as low global 

radiation, root anoxia, and higher infestation pressure of fungal diseases. A second-order 

polynomial function has been shown to provide a good approximation of the nature of 

crop yield-water relationships (Potopova et al., 2016). 

3.3.1 Soil Moisture 

Figure 3.2 shows the box plots of the correlations between different drought 

indices and soil moisture in the four seasons. The performance of the drought indices 

varies by season. All the drought indices have the highest correlations with soil moisture 

in JJA. The correlations between PDSI and soil moisture do not vary much from season 

to season ( 07.0r ). This is primarily because the PDSI integrates moisture conditions 
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over the last 9 months. Therefore, it is influenced by moisture conditions over multiple 

seasons.  

Generally, the correlation between soil moisture and SPEI is higher than the 

correlations with other indices, except in DJF. During the winter, the Z index 

outperforms the other indices. These differences are statistically significant. PDSI has 

the lowest correlation with soil moisture in all the seasons and it is insensitive to the 

seasons. As noted above, this is because it integrates weather conditions over a much 

longer period of time than the other drought indices. This means that the PDSI is not 

particularly useful for representing soil moisture conditions.  

In most seasons, SPEI has the highest median correlation followed by PEDCI, Z-

index, SPI, percent normal, percentiles, and PDSI. It is interesting to note that the best 

drought indices (SPEI, PEDCI and Z-index) all have a similar water budget formulation. 

They are based on the differences between P and PET at the monthly timescale. This 

suggests that the most appropriate drought indices for representing soil moisture 

conditions should account for both P and PET. However, each of these indices uses a 

different approach to standardize the monthly water balance (P-PET) values. 
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Figure 3.2 Boxplots of the correlations between drought indices and soil moisture (0 

to 60 cm) (2000 to 2014) at 90 stations from the Oklahoma Mesonet. Results are 

reported separately for each season: (a) MAM, (b) JJA, (c) SON, and (d) DJF. 
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Figure 3.2 Continued 

 

 

Figure 3.3 shows the percentage of stations with significant correlations 

(α=0.05). In general, the SPEI has the largest number of stations with statistically 

significant correlations and the PDSI has the smallest number of stations with 
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statistically significant correlations. All of the drought indices, except the PDSI, show 

substantial seasonal variation. The number of stations with statistically significant 

correlations percentage is greatest during the warm season and least during the cold 

season. Specifically, in MAM, the percentage of stations with statistically significant 

correlations varies substantially among the drought indices. The variation between 

drought indices is minimal in JJA. The percentage of stations with significant 

correlations in SON is lower than in JJA. In DJF, the Z-index has the highest number of 

stations with statistically significant correlations followed by PEDCI, SPEI, SPI, 

percentiles, percent normal, and PDSI. 

 

 

 

Figure 3.3 Percentage of stations with statistically significant correlations between 

the monthly drought indices and soil moisture (0 to 60 cm) (α=0.05). Based on data 

from 2000 to 2014. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MAM JJA SON DJF

P
er

ce
n

ta
ge

PDSI Z SPEI PEDCI SPI Percent Normal Percentiles



51 

Figure 3.4 shows the spatial pattern of the correlations between soil moisture and 

the seven drought indices. Generally, correlations in summer months are higher than the 

correlations in winter months. In JJA, the correlations with SPEI and percentiles are 

higher than the other drought indices. SPI and percent normal both have a distinct spatial 

pattern to the correlations, with higher correlations in western Oklahoma and lower 

correlations in eastern Oklahoma. Z-Index and PEDCI do not have a strong spatial 

pattern. This is particularly interesting since the results from Chapter 2 show that the 

PEDCI does have a strong spatial pattern in the strength of the correlations when it is 

compared to the 5 cm soil moisture. This suggests that much of the spatial pattern is 

driven by the near-surface variability. By integrating soil moisture conditions over the 

root zone (0 to 60 cm), this pattern no longer appears. 

At most stations, correlations with PEDCI are higher than correlations with SPI, 

percentiles, Z-Index and PDSI. This demonstrates that the new drought index 

outperforms many of the traditional drought indices. 
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Figure 3.4 Spatial distribution of correlations between monthly drought indices and 

soil moisture (0 to 60 cm) (2000 to 2014) by season: (a) MAM, (b) JJA, (c) SON and 

(d) DJF. 
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Figure 3.4 Continued 
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Figure 3.4 Continued 

 

 

3.3.2 Winter Wheat Yield Results: All Years 

Correlations between winter wheat yield and drought indices for each month 

during the planting period to harvesting period were calculated to evaluate the 

performance of drought indices based on the crop phenophase. NASS (2010) provides 

typical planting and harvest dates for major field crops. In Oklahoma, winter wheat is 

typically planted in October and harvested in June of the following year. Therefore, 

correlations between winter yield and drought indices for each month from October to 

June were calculated. There are 30 counties in Oklahoma where winter wheat is planted. 
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Figure 3.5 shows the percentage of counties with statistically significant 

correlations between drought indices and winter wheat yield. There are peaks in 

December and April, which is related to the sensitivity of winter wheat to water supply. 

There are two main phases when winter wheat is sensitive to water supply (FAO Land 

and Water division, 2015). The first occurs about 40 to 130 days after seeding when the 

plants complete tillering and start elongation. The total number of heads and the number 

of seed per head are determined during this period. The second occurs around 130 to 180 

days after seeding, when the flowering period begins. The number of seeds per head is 

greatly influenced by the water deficits during this period. In December, PEDCI is the 

drought index that has a statistically significant correlation with winter wheat yield in the 

greatest number of counties. While in April, SPEI is the drought index that has a 

statistically significant correlation with winter wheat yield in the greatest number of 

counties. Overall, the Z-index has the most consistently strong relationship with winter 

wheat yield between November and April. It has a statistically significant correlation 

with winter wheat yield in about 80% of the counties during this time period. 

Conversely, the PDSI consistently has the weakest relationship with winter wheat yield, 

except in May. This is because the timescale of the PDSI is not appropriate for 

monitoring weather conditions that influence yield. 
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Figure 3.5 Percentage of the 30 counties in Oklahoma with statistically significant 

correlations between drought indices and winter wheat yield, based on data from 

1981 to 2014. 

Figure 3.6 shows boxplots of the correlations between the drought indices and 

winter wheat yield in December and April. The median correlations in December are all 

around 0.4, except for PDSI. Percent normal appears to be the best drought index to use 

in December because it has the highest median correlation and the least variability in the 

county correlations. This suggests that it is not necessary to use a drought index that 

accounts for PET during the winter. Z-index, SPEI, and PEDCI also have relatively high 

median correlations, but they show greater variability from county to county. 

In April, the median correlations are higher than in December (> 0.45) and the 

SPEI is the drought index with the highest median correlation. A number of the other 

drought indices have similar performance to the SPEI, including the PEDCI and Z-

index. It appears that the drought indices that incorporate PET are more important during 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Oct Nov Dec Jan Feb Mar Apr May Jun

P
er

ce
n

ta
ge

PDSI Z SPEI PEDCI SPI Percentiles Percent Normal



57 

the warmer months. However, it should be noted that there is substantial county-to-

county variability in the strength of the correlations between winter wheat yield and the 

drought indices. For example, the correlations for the SPEI vary between about 0.1 and 

0.6. The PDSI has even greater inter-county variations in the correlations, minimum 

correlations are 0.05 and maximum correlations are nearly 0.7. This suggests that these 

results should be interpreted with caution and that there are factors other than moisture 

conditions that have an important influence on yield. 

Figure 3.6 Correlations between the seven drought indices and winter wheat yield 

for 30 counties in Oklahoma (1981 to 2014): (a) December and (b) April. 
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Figure 3.6 Continued 

The spatial distribution of the correlations between the winter wheat yield and 

the seven drought indices can also be used to evaluate the performance of the drought 

indices (Figure 3.7). The performance of drought indices varies from the counties. In 

December, Z-index and PEDCI have high and significant correlations with winter wheat 

yield in more counties than other drought indices. In April, correlations between drought 

indices and winter wheat yield are higher than in December in many of the counties. 

SPEI has a statistically significant correlation with winter wheat yield in more counties 

than other indices. 
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Figure 3.7 Spatial distribution of correlations between drought indices and winter 

wheat yield based on data from 1981 to 2014 in: (a) December and (b) April. 
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Figure 3.7 Continued 

 

 

3.3.3 Winter Wheat Yield Results: Abnormal Years 

Correlations between winter wheat yield and drought indices were also 

calculated using only years when moisture conditions and yield were well above or 

below normal. There are 34 years of crop yield and drought index data (1981 to 2014). 

Since years with near-normal yield and moisture conditions were excluded from this 

analysis, correlations are only calculated and reported when there are at least 10 years of 

data.  
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Figure 3.8 shows the percentage of counties with significant correlations with 

winter wheat yield during extreme conditions (years when neither yield or moisture 

conditions are near-normal). Peaks in the percentage of counties with statistically 

significant correlations occur in December and March/April. In December, SPI is the 

drought index that has the highest percentage of counties with statistically significant 

correlations with winter wheat yield. In March and April, Z-index has the highest 

percentage of counties with statistically significant correlations with winter wheat yield. 

However, it is evident that other indices such as PEDCI and percent normal also are 

among the best performing indices in most months.  

 

 

 

Figure 3.8 Percentage of the 30 counties in Oklahoma that have statistically 

significant correlations between drought indices and winter wheat yield during 

years with extreme moisture and yield conditions. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Oct Nov Dec Jan Feb Mar Apr May Jun

P
er

ce
n

ta
ag

e

PDSI Z SPEI PEDCI SPI Percentiles Percent Normal



 

62 

 

Figure 3.9 shows the correlations between the drought indices and winter wheat 

yield for December and April. In December, Z-index have the highest median 

correlation with yield. However, it is obvious that all of the drought indices, except for 

the SPEI, have a similarly strong relationship with winter wheat yield. The influence of 

only considering the years when moisture and yield conditions are extreme can be seen 

by comparing this figure to Figure 3.6. The median correlations have increased from 

~0.4 (all years) to ~0.9 during extreme years for most of the drought indices, except 

SPEI. This suggests that drought indices are most useful for determining winter wheat 

yield during years that are abnormally wet or dry. It is unclear why the performance of 

the SPEI is relatively poor as compared to the other drought indices.  

In April, the median correlations are similar for each drought index, except SPEI. 

Since none of the 30 counties has more than 10 years of time series of SPEI and winter 

wheat yield after exclude the normal yielding and climate years, no correlations are 

calculated for the SPEI in April. Interestingly, even the PDSI has strong correlations 

with winter wheat yield when only extreme years are considered. 
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Figure 3.9 Correlations between the drought indices and winter wheat yield years 

with extreme moisture and yield conditions in: (a) December and (b) April. 

Figure 3.10 shows the spatial distribution of correlations between drought indices 

and winter wheat yield in December and April. The correlations between drought indices 

and winter wheat yield during extreme years differ from the correlation maps using all 
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years. Generally, the correlations during extreme years are quite high in most counties. 

However, the SPEI correlations have decreased substantially. In December, percent 

normal performs somewhat better than the other drought indices. In April, Z-index has 

higher correlations and statistically significant correlations in more counties than other 

indices.  

 

 

 

Figure 3.10 Spatial distribution of correlations between drought indices and winter 

wheat yield during years with extreme moisture and yield conditions: (a) December 

and (b) April. 
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Figure 3.10 Continued 

 

 

3.4 Conclusions and Limitation 

3.4.1 Discussions and Conclusions 

The performance of the seven drought indices was evaluated using soil moisture 

and winter wheat yield data to identify the most appropriate drought index for 

agricultural drought monitoring in Oklahoma. Correlations between soil moisture and 

drought indices are higher in JJA than in DJF. This result is consistent with Vicente-

Serrano et al. (2012). Specifically, in JJA, correlations between soil moisture and 
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drought indices shows SPEI and percentile have higher correlations with soil moisture. 

In MAM and SON, SPEI has higher and more significant correlations with soil moisture. 

In DJF, Z-index has higher and more significant correlations with soil moisture, but the 

correlations are lower than correlations in warm months. One reason for the low 

correlations during winter months is that soil moisture recharge typically occurs during 

this period. Figure 3.11 shows the mean monthly soil moisture and precipitation 

percentiles in Oklahoma. Soil moisture is determined by inputs from precipitation and 

outputs from evapotranspiration (Belmans, Wesseling, & Feddes, 1983; Denmead & 

Shaw, 1962; Rushton, Eilers, & Carter, 2006). In summer, the soil dries out because 

evapotranspiration increases and these increases are not offset by the increases in 

precipitation. In winter, there is less precipitation than in summer, but there is also much 

less evapotranspiration. Therefore, soil moisture recharge occurs during this time 

(Hamlet, Mote, Clark, & Lettenmaier, 2007; Scott, Shuttleworth, Keefer, & Warrick, 

2000; Vicente-Serrano et al., 2012). Due to the recharge factor in cold months, the 

performance of drought indices were evaluated based on correlations in warm months. 

Therefore, SPEI is more representative of soil moisture conditions in Oklahoma.  
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Figure 3.11 Mean monthly soil moisture and precipitation percentiles in Oklahoma 

(2000 to 2014). 

 

 

The correlation results with winter wheat yield indicate that the performance of 

the drought indices varies by month during the planting period. Winter wheat yield is 

most strongly influenced by water deficit during two phases. In December, the Z-index 

is the best index to use because it has higher correlations with winter wheat yield in 

more counties than other indices. In April, SPEI is the best index to use because it has 

higher correlations with winter wheat yield in more counties than other indices. The Z-

index also has similar performance to the SPEI.  

S. M. Quiring and Papakryiakou (2003) also compared several drought indices 

for agricultural drought monitoring in Canada. They used drought indices in June and 

July, when the spring wheat is during the heading and soft dough stages, to develop a 

series of crop yield models. Their results are in agreement with the findings presented 
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here since they also found that the Z-index is best for predicting wheat yield when there 

is significant moisture stress. The S. M. Quiring and Papakryiakou (2003) was done 

prior to the development of the SPEI and so it was not included in their analysis. 

Vicente-Serrano et al. (2012) evaluated six drought indices for agricultural drought 

monitoring based on correlations between annual wheat yields and the drought indices. 

The maximum correlation between annual wheat yield and the drought indices of the 

month of the year in which the highest correlation was found shows SPEI and SPI have a 

stronger correlations with wheat yield.  

Potopova et al. (2015) argue that years with near-normal yield should be 

excluded from these type of drought index evaluations because moisture conditions may 

not be an important determinant of yield during these years. Therefore, this study also 

evaluated the performance of the drought indices using only years with above- and 

below-normal moisture and yield conditions. The results differ from those based on all 

years of yield data. In December, percent normal is the best drought index because it has 

higher correlations with winter wheat yield than other drought indices, while Z-index is 

better than other drought indices in April.  

Few of the drought index comparisons have focused on the relationship with 

yield during above- and below-normal conditions. The results of this study demonstrate 

that the relationship between drought indices and crop yield can be substantially 

different if only anomalous years are considered. The results of this study also 

demonstrate that even though the PEDCI is not the best index for monitoring agricultural 

drought in Oklahoma, it can provide useful information for monitoring agricultural 
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drought conditions (e.g., soil moisture and crop yield). The correlations between soil 

moisture and the SPEI and PEDCI are very similar. While for winter wheat, the PEDCI 

is more strongly correlated with winter wheat yield than the SPEI.  

 

3.4.2 Limitations 

One of the limitations of the correlation method used in this study is that it is 

sensitive to the sample size. Specifically, when the near normal 40% data were excluded, 

the sample size decreases. Since we only have data from 1981 to 2014, the sample size 

can get quite small. Therefore, we only calculated correlations if the sample size was 

larger than 10. This means that individual years can have a substantial influence on the 

correlation and the results are quite variable from county-to-county. Therefore, we 

reported the results from using all years of yield data as well as the anomalous years. 

Using just the ‘extreme’ years is, theoretically, the best approach for identifying which 

drought index to select for monitoring agricultural drought conditions. However, it 

requires a longer period of record to generate statistically robust results. 

Another limitation of this study is that crop yield is used as one measure of 

agricultural drought impacts. Crop yield is influenced by more than just moisture 

conditions. Therefore, below-normal yield is not necessarily indicative of drier than 

normal conditions. Other factors such as disease, pests, fertility, and crop management 

practices also influence yield. In addition, the crop yield used in this study do not 

account for the influence of irrigation. Although USDA provides non-irrigated crop 

yields at the county level, the period of record is shorter than the regular (irrigated + 
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non-irrigated) crop yield record. The regular winter wheat yield data for Oklahoma are 

available through 2015, while the non-irrigated winter wheat yield data for Oklahoma 

are only available through 2009. An ANOVA analysis showed that there is not a 

statistically significant difference between the mean of the regular yield and non-

irrigated winter wheat yield in Oklahoma. However, it obviously would be better to only 

consider non-irrigated yield. In future, more comparison should be done to investigate 

the impact of irrigation on the performance of drought indices.  

We focused on winter wheat in this study because it is the primary crop type in 

Oklahoma. However, some counties in Oklahoma also plant significant amounts of corn 

and cotton. The relationship between drought indices and yield for other crops does not 

always match the results for winter wheat (results not shown). For example, correlations 

between the drought indices and corn yield in June showed that the SPEI has the highest 

correlation. Correlations between the drought indices and cotton yield in June showed 

that precipitation percentiles are the best index, but in August the SPEI has a higher 

correlations with cotton yield than other drought indices. Generally, the results 

demonstrate that there is no one ‘best’ drought index for monitoring agricultural drought 

in Oklahoma. The best index varies by crop and by month. A number of the drought 

indices have similar correlations with crop yield. For convenience, future chapters will 

use the SPEI and/or Z-index because they are two of the best drought indices for 

monitoring agricultural drought conditions. In addition, it has been widely used in the 

literature and its strengths and weaknesses are well known.    
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CHAPTER IV  

SPATIAL TEMPORAL PATTERNS OF DROUGHT IN OKLAHOMA 

 

4.1 Introduction 

Drought is a normal and recurrent climate feature for all regions of the globe, but 

the character of drought varies spatially and temporally, reflecting the unique climatic, 

meteorological, hydrological, and socioeconomic characteristics (Ge, Apurv, & Cai, 

2016; Wilhite, 1996). A better understanding of the spatial-temporal patterns of drought 

is essential for the evaluation of drought risk and drought mitigation in future. Lack of 

proper information of the spatial-temporal characteristics of droughts may lead to poor 

decisions and additional costs and damages (Saadat, Khalili, Kamgar-Haghighi, & Zand-

Parsa, 2013).   

The spatial-temporal patterns of droughts tend to be complex. As indicated by 

Field (2012), extreme weather and climate events, such as droughts, are influenced by 

the changing climate. Climate change can lead to the changes in the frequency, duration, 

intensity, spatial extent and duration of extreme weather and climate events. Analysis of 

the spatial and temporal patterns of drought can be helpful for improving understanding 

of drought behavior in a region.  

Many previous studies have analyzed the spatial-temporal patterns of drought in 

different regions. Aiguo Dai (2011) analyzed the spatial-temporal variations in drought 

on a global scale from 1900 to 2008 using the PDSI. The results indicated that the global 

percentage of drought-affected area has increased since 1950, and more severe drying 
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will occur in the coming decades. A special report of the Intergovernmental Panel on 

Climate Change (IPCC) also suggests that regions such as southern Europe and West 

Africa have experienced more intense and longer droughts since 1950 (Field, 2012). 

However, Field (2012) also found decreasing drought trends in some regions of the 

world. There is also evidence that the increases in the number extreme droughts found 

by Aiguo Dai (2011) may be overestimated due to their use of the PDSI (Sheffield, 

Wood, and Roderick (2012)). The PDSI uses a simplified method for calculating 

potential evapotranspiration that only considers the impact of temperature. The IPCC 

AR5 report concludes that there is low confidence in the observed trends in global 

drought patterns due to the lack of direct observations (Hartmann, Tank, & Rusticucci, 

2013). 

On a regional scale, the IPCC AR5 report shows that drought frequency and 

intensity has increased in the Mediterranean and West Africa since 1950. While in 

central North America and northwest Australia, drought frequency and intensity has 

likely decreased since 1950 (Hartmann et al., 2013). However, there is a lack of 

consensus about this. Ge et al. (2016) investigated the spatial and temporal patterns of 

drought in the U.S. during the past century. They found that the duration, severity, and 

intensity of droughts had increased in most of the western and eastern U.S. and the Great 

Plains. In addition, the duration, severity, and intensity of more frequent and less severe 

drought events differed from the less frequent and more severe droughts. Obviously, the 

differences in drought trends between extreme and mild droughts complicate the analysis 

and makes comparing the results of different studies more difficult. 
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Ford and Labosier (2014) analyzed the spatial patterns of drought persistence in 

the southeastern U.S. Their results showed that some areas in the southeastern U.S., such 

as north-central Alabama, are more prone to drought than others. In addition, areas in the 

western portion of their study region, such as Texas and Oklahoma have greater 

summer-to-fall drought persistence.  

In China, Xu et al. (2015) found large magnitude droughts were usually centered 

in the region from North China Plain to the downstream of Yangtze River. The western 

part of North China Plain had a significant drying trend due to the significant decrease of 

precipitation. Tan, Yang, and Li (2015) also found the same trends in Ningxia Hui 

Autonomous Region, which is located in the northwest China.  

A review of spatial-temporal patterns of drought on the African continent by 

Masih, Maskey, Mussa, and Trambauer (2014) shows that droughts have become more 

frequent, intense and widespread during the last 50 years. The Sahel and equatorial 

eastern Africa are more prone to the most prolonged and intense droughts.  

Vicente-Serrano (2006) investigated the spatial and temporal patterns of drought 

in Iberian Peninsula, Spain. The main drought period and the spatial distribution of 

drought episodes were identified. Their results highlighted the usefulness of drought 

regionalization in the context of drought management schemes.  

The studies that are summarized above demonstrate that, even though the IPCC 

AR5 provides regional summaries of drought trends, it is still important to analyze 

drought characteristics because the results are sensitive to the data and methods that are 

used. For example, some studies indicate that drought frequency and intensity is 
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decreasing in central North America (Hartmann et al. (2013). While others suggest that 

the duration, severity, and intensity of droughts in this region has increased (Ge et al., 

2016). 

The main objective of this chapter is to investigate the spatial and temporal 

patterns of drought in Oklahoma. SPEI and Z-index will be used to analyze the spatial-

temporal patterns of drought because these two indices are two of the best indices for 

agricultural drought monitoring in Oklahoma. 

 

4.2 Data and Methods 

4.2.1 CRU Precipitation and Evapotranspiration 

The precipitation and potential evapotranspiration from the Climatic Research 

Unit Time-Series (CRU TS) 3.24 dataset, which is produced by the Climatic Research 

Unit at the University of East Anglia, are used for the calculation of SPEI and Z-Index in 

this study. Long-term drought indices are needed for the spatial and temporal drought 

analysis. The CRU TS 3.24 dataset contains monthly time series of climatic variables 

covering Earth’s land area over a long period from 1901 to 2015. The climate variables 

include cloud cover, PET, precipitation, diurnal temperature range, daily mean 

temperature, monthly average daily minimum temperature, monthly average daily 

maximum temperature, vapor pressure, wet day frequency, and frost day frequency. The 

spatial resolution of CRU dataset is 0.5 * 0.5 degree. The principal sources used for the 

CRU datasets include the climatic data from the World Meteorological Organization 

(WMO), monthly climatic data for the world (MCDW) provided by National Climatic 
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Data Center (NCDC), and World Weather Records (WWR) decadal data publications. 

Many of the input records have been homogenized, but the dataset itself is not 

homogeneous. However, it is pointed out that the dataset can be used for climate trend 

analysis (Harris, Jones, Osborn, & Lister, 2014). According to Schneider et al. (2014), 

the full database has data for more than 10,000 stations around 1970. Even though the 

number of stations used in the CRU dataset changes over time, the CRU dataset uses a 

correlation decay distances (CDD) method in the interpolation procedure. Data for each 

grid cell is interpolated using stations that are outside the cell, but lie within the CDD 

range (Harris et al., 2014). This method produces gridded values that are relatively 

robust to changes in the station density over time. 

The PET dataset is calculated based on the Penman-Monteith method, which has 

been shown to be better than the temperature-only based Thornthwaite method (Yuan & 

Quiring, 2014). The CRU PET data incorporates the values of daily mean temperature, 

minimum temperature, maximum temperature, vapor pressure, cloud cover, and a fixed 

monthly climatology for wind speed (Harris et al., 2014). The Penman-Monteith method 

is a physical-based method which considers both of the earth’s surface energy balance 

and atmospheric water demand (Westerhoff, 2015). The Food and Agricultural 

Organization (FAO) defines PET as equation 3.1 

𝑃𝐸𝑇 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇+273.16
𝑈2(𝑒𝑎−𝑒𝑑)

∆+𝛾(1+0.34𝑈2)
                (Equation 4.1) 

Where 

𝑈2 = 𝑈10
ln⁡(128)

ln⁡(661.3)
                                             (Equation 4.2) 
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∆ is slope of the vapour pressure curve; 𝑅𝑛 is net radiation at crop surface; 𝐺 is 

soil heat flux; 𝛾 is psychrometric constant; 𝑇 is average temperature at 2 m height; 𝑈2 is 

wind speed at 2 m height; 𝑈10 is wind speed at 10 m speed; (𝑒𝑎 − 𝑒𝑑) is vapour pressure 

deficit at 2 m height (Harris et al., 2014).  

The Z-Index and SPEI from 1901 to 2014 were use for the spatial and temporal 

analysis of drought patterns in Oklahoma. Drought indices at 1-month, 3-month and 6-

month timescales were selected for this analysis because these timescales are most 

appropriate for agricultural drought monitoring (Vicente-Serrano et al., 2013). Shorter or 

longer time scale may be too sensitive to extreme conditions and may miss relevant 

drought events (Spinoni, Naumann, Carrao, Barbosa, & Vogt, 2014). 

 

4.2.2 Principal Component Analysis 

Principal Component Analysis (PCA) is used to define regions in Oklahoma that 

have similar drought characteristics. PCA is commonly used for spatial regionalization 

because it can effectively reduce dimensionality and extract patterns (Hannachi, Jolliffe, 

& Stephenson, 2007; Lorenz, 1956; Navarra & Simoncini, 2010). The main procedure of 

PCA technique is linearly transforming the original set of variables to a new substantial 

smaller set of uncorrelated variables, called principal components (PCs). The goal of 

PCA analysis is to explain the maximum amount of variance with the fewest number of 

PCs. The first PC is the linear combination of x-variables that has the largest variance 

among all linear combinations. The ith PC is the linear combination that has as much of 

the remaining variation as possible, and it is not correlated with the other PCs. The first 
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several PCs can explain the major variance of the original variables. Therefore, they can 

identify the major spatial patterns of the original high-dimensional dataset (Song et al., 

2014; Xie, Ringler, Zhu, & Waqas, 2013). The first step of PCA analysis is to calculate 

the covariance matrix among all variables. PCA can be performed using either a 

covariance matrix or a correlation matrix. When the input data have same units and 

scales for all variables, covariance matrix is better than the correlation matrix method 

(Kwitt & Hofmann, 2006). Before calculating the covariance matrix, the input dataset 

was centered by removing the mean values from the dataset. 

A VARIMAX (orthogonal) rotation method was applied because it simplifies the 

structure of the resultant patterns by forcing the value of the loading coefficients towards 

zero or ± 1 (Hannachi et al., 2007). The VARIMAX rotation technique is a popular 

method used in climate regionalization studies because the rotation tends to produce 

more spatially coherent regions [White et al., 1991]. An unrotated PCA is primarily used 

for data reduction and it is not appropriate for climate regionalization (Yarnal, 1993). 

After rotation, each grid cell was assigned to the factor on which they had the highest 

loadings. 

4.2.3 Mann-Kendall Test 

Mann-Kendall test is a nonparametric trend test technique. It is widely used to 

detect the significant increasing or decreasing trend in hydro-meteorological time series 

(Tan et al., 2015). Comparing to other trend test methods such as simple linear 
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regression and Student-t test, Mann-Kendall test is less sensitive to outliers and the 

sample distributions (M. N. Kumar, Murthy, Sai, & Roy, 2012). 

The first step of Mann-Kendall organizing the data in rank order. The differences 

between any two data in rank order are used to determine the number of positive 

differences and the number of negative difference. Then, the Mann-Kendall test statistics 

can be calculated. A positive value of the statistics means the increasing trend in the 

data, while, a negative value of the statistics indicates a decreasing trend over time. The 

significance of the trend can be checked at the 95% significance level to reject the null 

hypothesis that there is no trend in the time series. More details about the Mann-Kendall 

test can be found in S. Kumar, Merwade, Kam, and Thurner (2009) and Song et al. 

(2014) 

Many studies have indicated the autocorrelations of the time series may affect the 

results of Mann-Kendall test (Bayazit & Onoz, 2007; Tan et al., 2015; Von Storch, 1999; 

Yue & Wang, 2002). Therefore, prewhitening was applied to the autocorrelated time 

series before the Mann-Kendall test to reduce the effects of the autocorrelation on the 

trend detection.  

 

4.2.4 Drought Characteristics 

Yevjevich (1967) proposed a running theory to define a drought event. A drought 

starts when the drought indicator first falls below a certain threshold and it ends when 

the drought indicator is greater than the threshold (McKee et al., 1993). Drought 

duration is the number of months or days during the drought event. Drought severity is 
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the maximum absolute value of the drought index values during the event. Spatial extent 

of a drought event is the percentage of the study region that has a drought index value 

less than the threshold for each month during the drought event and then averaging them 

over the entire drought duration (Steven M Quiring & Goodrich, 2008). Drought 

frequency is the ratio of the number of drought events to the total number of years of the 

study period (Tan et al., 2015).  

Table 4.1 and 4.2 shows the drought severity classification for the SPEI (McKee 

et al., 1993; A. Mishra & Desai, 2005) and Z-Index (W. M. Alley, 1984). 

  

 

Table 4-1 Drought classification based on the SPEI (A. Mishra & Desai, 2005) 

 

 

Table 4-2 Drought classification based on the Z-Index (W. M. Alley, 1984) 

Drought class Z-Index values 

Mild drought -2.0 < Z-Index ≤ -1.0 

Moderate drought -3.0 < Z-Index ≤ -2.0 

Severe drought -4.0 < Z-Index ≤ -3.0 

Extreme drought Z-Index ≤ -4.0 

Drought class SPEI values 

Mild drought -1.0 < SPEI < 0 

Moderate drought -1.5 < SPEI ≤ -1.0 

Severe drought -2.0 < SPEI ≤ -1.5 

Extreme drought SPEI ≤ -2.0 
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These drought classifications are derived subjectively. However, S. M. Quiring 

(2009) indicated objective method should be used to define the drought thresholds for 

specific locations. Figure 4.1 shows the probability density function (PDF) of the SPEI 

for locations in west and east Oklahoma. The distributions in eastern and western 

Oklahoma are different. This suggests that the SPEI is not a spatially invariant (i.e., 

SPEI values from one climate region cannot directly be compared to another climate 

region because the probability of occurrence for a given index value is not the same in 

both locations). Therefore, it is necessary to define drought severity using objective 

thresholds. 

S. M. Quiring (2009) developed objective operational drought definitions based 

on the PDFs of several drought indices. Normal, gamma, lognormal, and exponential 

PDFs were compared, and one of these functions was selected to determine the 

operational drought thresholds for each drought index. The drought categories criteria is 

based on the drought classes employed by the United States Drought Monitor (USDM), 

as shown in Table 4.3 (Svoboda et al., 2002). According to S. M. Quiring (2009), the 

normal PDF is more appropriate for the objective operational drought thresholds for 

SPEI and Z-Index. Therefore, the normal PDF is used in this study. 
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Figure 4.1 Probability density function of SPEI for east and west Oklahoma (1901 

to 2014). 

 

 

Table 4-3 USDM drought definitions 

Category Drought classes Percentile 

D0  Abnormally dry 20% to 30% 

D1 Moderate drought 10% to 20% 

D2 Severe drought 5% to 10% 

D3 Extreme drought 2% to 5% 

D4 Exceptional drought Less than 2% 
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4.3 Results 

4.3.1 Spatial Patterns of Drought 

Since the results of SPEI and Z-Index are similar, we have chosen to only show 

the results for the SPEI in this section. The regionalization results are similar for the 

SPEI at different scales. Here, we display the PCA results for the 6-month SPEI (SPEI6). 

PCA of the SPEI6 field demonstrates that four regions should be retained for 

spatiotemporal analysis of drought patterns in Oklahoma. Figure 4.2 shows the explained 

variance of SPEI6 by PCA. The first four PCs account for 83.8% of the variance. 

Figure 4.3 shows the loadings of the first four PCs. The loadings are the 

correlation coefficients between the PC scores and the original variables. The first PC 

has the highest loadings in southeastern Oklahoma. The second PC has the highest 

loadings in southwestern Oklahoma. The third PC has the highest loadings in 

northeastern Oklahoma. The fourth PC has the highest loadings in northwestern 

Oklahoma. Based on the PC loadings, drought regions in Oklahoma are generated as 

shown in Figure 4.4. 
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Figure 4.2 Explained variance of SPEI. 
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Figure 4.3 Loadings for the first four PCs. 

 

 

 

Figure 4.4 Drought regions based on PCA. 
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Based on the PCA results, drought indices for each region are calculated by 

averaging all the grid cells in each region. Figure 4.5 shows the SPEI6 in the four 

regions in Oklahoma. The data have been smoothed by applying a 120-month moving 

average. For example, the SPEI6 in 1910 is the based on the mean SPEI6 from 1901 to 

1910. Similarly, SPEI6 in year𝑋 is the mean SPEI6 from year𝑋−9 to year𝑋. The SPEI6 

indicates that there are decadal-scale cycles in Oklahoma. Prolonged periods of drier 

than normal conditions occurred in the 1910s, 1930s, 1950s, 1970s, and 1980s. 

Conditions from the 1980s to the 2000s were wetter than normal. Recently, the SPEI6 

has decreased in Oklahoma, which suggests that the state may be at the beginning of 

another dry cycle. These findings are consistent with the report from the Oklahoma 

Water Resources Board (Oklahoma Water Resources Board, Oklahoma Climatological 

Survey, & (U.S.), 2012). 

Regionally, drought conditions during the 1930s were most severe in region 4. 

Drought conditions during the 1980s were most severe in region 1. During the wetter 

conditions from the 1980s to the 2000s, Region 4 remained drier than other regions. 

The trends in the 3-month SPEI (SPEI3) and 1-month SPEI (SPEI1) are 

consistent with SPEI6. These figures are shown in Appendix A (Figure A.1 and A.2). 
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Figure 4.5 6-month SPEI (SPEI6) for each region in Oklahoma from 1901 to 2014. 

Data have been smoothed with a 120-month moving average. 

4.3.2 Historical Drought Characteristics 

Figure 4.6 shows the SPEI6 for each region in Oklahoma from 1901 to 2014. For 

Region 1, the objective drought threshold for the SPEI6 is -0.75. In Region 1 there were 

42 drought events between 1901 and 2014. Six drought events lasted more than ten 

months. These drought events occurred in 1900s, 1920s, 1950s, and 2005. In Region 2 

the objective SPEI drought threshold is -0.74. There were 47 drought events during the 

study period in this region. Three of these drought events lasted longer than 10 months. 

These drought events occurred in the 1900s and 1950s. In Region 3 the objective SPEI 

drought threshold is -0.73. There are 37 drought events during the study period and 6 of 

them lasted longer than 10 months. Four of these drought events occurred between 1952 

and 1964. The objective SPEI drought threshold in Region 4 is -0.72. There are 40 



87 

drought events that occurred in this region and 5 of them lasted longer than 10 months. 3 

of these events occurred in the 1950s. 

The SPEI is much more variable at shorter timescales. Therefore, the number of 

drought events increases and the severity and duration decreases when using the SPEI1 

and SPEI3 as shown in Appendix A (Figure A.3 and A.4). 

The duration, severity, and spatial extent of each drought event in Region 1 are 

reported in Table 4.4. The top ranked drought (based on drought severity) began in 

March 1909 and ended in July 1911 (29 months). This was the most severe drought that 

occurred in this region. The rank of drought duration is similar to the rank of drought 

severity. The top 10 ranked droughts based on drought duration are also the top 10 

ranked droughts based on drought severity. 7 of the 10 top ranked droughts occurred 

before 1960. The rank of spatial extent is different from the rank of drought duration and 

severity, which suggests that the spatial extent of drought events is not as strongly 

correlated as drought duration and severity. The drought climatology developed in this 

study using the SPEI was compared to the drought history developed by the South 

Central Climate Science Center (SC-CSC) 

(http://www.southcentralclimate.org/index.php/pages/resources/category/oklahoma_drou

ght_histories). The SC-CSC drought history is based on temperature and precipitation 

records and PDSI for each climate division in Oklahoma as shown in Figure 4.7 

(Oklahoma Climatological Survey, 2014). Region 1 in our study is similar to climate 

divisions 6, 8 and 9. Based on the drought history for climate divisions 6, 8 and 9, there 

were severe droughts in 1909 to 1918, 1930 to 1944, 1950 to 1956, 1962 to 1967, 1977 

http://www.southcentralclimate.org/index.php/pages/resources/category/oklahoma_drought_histories
http://www.southcentralclimate.org/index.php/pages/resources/category/oklahoma_drought_histories
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to 1981, 2002 to 2006, and 2010 to 2012. The top ten ranked drought events in region 1 

from our study were also recorded in the SC-CSC, except the drought events in 1924 and 

1901. These differences are likely due the spatial mismatch between the region and the 

climate divisions. 

Figure 4.6 6-month SPEI for each region in Oklahoma from 1901 to 2014 (SPEI6). 
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Figure 4.6 Continued 
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Table 4-4 Drought characteristics for each drought event from 1901 to 2014 in 

Region 1 (southeastern Oklahoma). 

Start 
Month 

End 
Month 

Duration 
(month) 

Duration 
Rank 

Severity 
Severity 

Rank 
Spatial 

Extent (%) 
Spatial 

Extent Rank 

190903 191107 29 1 37.50 1 84.21 12 

192407 192508 14 2 16.10 5 76.32 28 

195601 195701 13 3 17.90 3 83.81 17 

200505 200605 13 3 16.18 4 77.73 27 

196304 196403 12 5 18.92 2 96.49 1 

190106 190204 11 6 13.37 6 84.21 12 

197912 198008 9 7 11.13 8 80.70 23 

191710 191805 8 8 10.58 9 81.58 21 

193909 194003 7 9 8.46 10 84.96 11 

193604 193609 6 10 11.55 7 90.35 5 

196610 196703 6 10 8.09 11 83.33 18 

193405 193410 6 10 7.58 12 75.44 29 

197808 197901 6 10 7.52 13 78.95 25 

195209 195302 6 10 7.18 14 85.09 10 

195901 195906 6 10 6.89 15 78.07 26 

199601 199606 6 10 6.75 16 71.93 32 

198806 198810 5 17 6.59 17 88.42 6 

193809 193901 5 17 6.57 18 85.26 9 

200304 200308 5 17 5.48 21 81.05 22 

197206 197209 4 20 6.50 19 93.42 3 

197104 197107 4 20 6.04 20 86.84 8 

190412 190503 4 20 5.33 22 94.74 2 

195102 195105 4 20 5.27 23 84.21 12 

191612 191703 4 20 4.98 24 88.16 7 

199807 199810 4 20 4.97 25 82.89 19 

192112 192203 4 20 4.66 26 73.68 31 

190402 190405 4 20 4.46 27 84.21 12 

200607 200610 4 20 4.43 28 71.05 35 

201106 201109 4 20 3.51 32 64.47 38 

197712 197803 4 20 3.49 33 59.21 40 

194311 194401 3 31 4.06 29 91.23 4 

197601 197603 3 31 3.60 30 84.21 12 

191306 191308 3 31 3.54 31 82.46 20 

193108 193110 3 31 3.48 34 71.93 32 

194811 194901 3 31 3.45 35 80.70 23 

201404 201406 3 31 3.38 36 75.44 29 

198103 198105 3 31 3.05 37 71.93 32 
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Table4-4 Continued 

Start 
Month 

End 
Month 

Duration 
(month) 

Duration 
Rank 

Severity 
Severity 

Rank 
Spatial 

Extent (%) 
Spatial 

Extent Rank 

199911 200001 3 31 2.80 38 68.42 36 

193209 193211 3 31 2.71 39 64.91 37 

197611 197701 3 31 2.67 40 59.65 39 

190702 190704 3 31 2.66 41 57.89 41 

193007 193009 3 31 2.63 42 52.63 42 

 

 

 

Figure 4.7 Climate divisions of Oklahoma from South Central Climate Science 

Center (Oklahoma Climatological Survey, 2014) 

 

 

Table 4.5 shows the drought characteristics for Region 2. The most severe 

drought in this region began in May 1910 and ended in June 1911 (14 months). 94.81% 

of the region experienced drought during this drought event. It is ranked as the second 

largest drought area. Similar to region 1, the rank of drought duration is similar to the 

rank of drought severity but the rank of spatial extent is different from the rank of 
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drought duration and severity. Among the top 10 ranked droughts, 8 of them happened 

before 1960. Specifically, 3 of them happened in 1900s, 2 of them happened in 1910s, 

and 3 of them happened in 1950s. The drought durations and severities of droughts in 

region 2 is moderate than the drought conditions in region 1. Region 2 in our study based 

is similar to the climate divisions 4, 5 and 7. Based on the drought history for climate 

divisions 4, 5 and 7, there were severe droughts in 1909 to 1918, 1933 to 1940, 1950 to 

1957, 1963 to 1972, 1976 to 1981, and 2003 to 2012. The top ten drought events in 

region 2 from our study were also recorded in the SC-CSC drought climatology, except 

the drought events in 1900s. 

Table 4-5 Drought characteristics for each drought event from 1901 to 2014 in 

Region 2 (southwestern Oklahoma). 

Start 
Month 

End 
Month 

Duration 
(month) 

Duration 
Rank 

Severity 
Severity 

Rank 
Spatial 

Extent (%) 
Spatial 

Extent Rank 

191005 191106 14 1 20.67 1 94.81 2 

195603 195702 12 2 17.21 2 84.47 14 

190106 190203 10 3 12.74 3 79.09 21 

195208 195303 8 4 11.39 4 84.09 15 

195409 195504 8 4 11.10 6 82.39 18 

191710 191805 8 4 8.76 10 71.02 34 

190311 190405 7 7 11.28 5 98.70 1 

190904 190910 7 7 9.73 7 90.91 6 

198405 198411 7 7 9.41 8 79.22 20 

201103 201109 7 7 9.27 9 85.71 11 

198008 198102 7 7 8.68 11 77.27 22 

193909 194003 7 7 8.49 12 82.47 17 

196304 196310 7 7 6.66 16 67.53 37 

197103 197108 6 14 8.14 14 86.36 10 

200602 200607 6 14 6.50 18 73.48 29 

197204 197209 6 14 6.43 19 66.67 38 
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Table 4-5 Continued 

Start 
Month 

End 
Month 

Duration 
(month) 

Duration 
Rank 

Severity 
Severity 

Rank 
Spatial 

Extent (%) 
Spatial 

Extent Rank 

197711 197804 6 14 5.18 28 51.52 47 

193604 193608 5 18 8.44 13 92.73 4 

199603 199607 5 18 7.42 15 89.09 7 

191704 191708 5 18 6.54 17 84.55 13 

194309 194401 5 18 5.76 21 71.82 32 

193406 193410 5 18 5.74 22 68.18 35 

192210 192302 5 18 5.51 25 75.45 27 

193810 193902 5 18 4.80 30 65.45 39 

195901 195904 4 25 6.04 20 93.18 3 

199807 199810 4 25 5.73 23 80.68 19 

192112 192203 4 25 5.61 24 92.05 5 

196605 196608 4 25 5.50 26 88.64 8 

196702 196705 4 25 5.31 27 77.27 22 

195101 195104 4 25 5.11 29 88.64 8 

201402 201405 4 25 4.74 31 84.09 15 

197005 197008 4 25 4.17 32 68.18 35 

197811 197902 4 25 4.02 33 72.73 30 

192505 192508 4 25 3.67 34 63.64 40 

197610 197701 4 25 3.64 35 61.36 43 

194810 194901 4 25 3.60 36 59.09 44 

191607 191610 4 25 3.48 38 53.41 46 

193108 193110 3 38 3.57 37 75.76 25 

190412 190502 3 38 3.27 39 84.85 12 

192501 192503 3 38 3.27 40 75.76 25 

194711 194801 3 38 3.19 41 71.21 33 

201210 201212 3 38 3.11 42 77.27 22 

193703 193705 3 38 3.02 43 74.24 28 

200505 200507 3 38 2.89 44 72.73 30 

191108 191110 3 38 2.87 45 62.12 42 

197601 197603 3 38 2.80 46 63.64 40 

192409 192411 3 38 2.75 47 56.06 45 
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Table 4.6 shows the drought characteristics for Region 3. The most severe 

drought in region 3 began in November 1955 and ended in February 1957 (16 months). 

86.88% of the region experienced drought during this drought event. It is ranked as the 

third largest in terms of drought area. The rank of drought duration is also similar to the 

rank of drought severity in this region. The rank of spatial extent is different from the 

rank of drought duration and severity. Among the top 10 ranked droughts, 8 of them 

happened before 1960. Specifically, 3 of them happened in 1910s and another 3 of them 

happened in 1950s. Region 3 in our study is similar to the climate divisions 2, 3 and 5. 

Based on the drought history for climate divisions 2, 3 and 5, there were severe droughts 

in 1909 to 1926, 1930 to 1940, 1950 to 1958, 1962 to 1972, 1975 to 1982, 2003 to 2006, 

and 2010 to 2012. The top ten ranked drought events in region 3 were also recorded in 

the SC-CSC drought climatology, except the drought events in 1901. 

Table 4-6 Drought characteristics for each drought event from 1901 to 2014 in 

Region 3 (northeastern Oklahoma). 

Start 
Month 

End 
Month 

Duration 
(month) 

Duration 
Rank 

Severity 
Severity 

Rank 
Spatial 

Extent (%) 
Spatial 

Extent Rank 

195511 195702 16 1 22.98 1 86.88 3 

191005 191106 14 2 18.51 2 82.14 11 

195401 195502 14 2 16.13 4 71.79 26 

196303 196403 13 4 16.46 3 78.08 17 

191710 191809 12 5 13.43 6 71.25 27 

195205 195302 10 6 12.84 7 84.00 7 

190106 190202 9 7 12.30 8 85.56 5 

198008 198104 9 7 10.17 9 80.00 14 

193604 193611 8 9 14.37 5 90.00 2 

191612 191707 8 9 10.17 10 82.50 10 

199601 199607 7 11 9.03 11 80.00 14 
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Table 4-6 Continued 

Start 
Month 

End 
Month 

Duration 
(month) 

Duration 
Rank 

Severity 
Severity 

Rank 
Spatial 

Extent (%) 
Spatial 

Extent Rank 

193909 194003 7 11 8.08 12 84.29 6 

196610 196704 7 11 8.04 13 77.14 21 

200602 200607 6 14 7.21 14 70.00 28 

192505 192510 6 14 7.16 15 80.83 13 

191306 191311 6 14 7.06 16 69.17 30 

197611 197704 6 14 6.59 18 75.00 22 

197809 197902 6 14 6.50 19 75.00 22 

201209 201301 5 19 6.68 17 91.00 1 

197104 197108 5 19 5.64 21 78.00 18 

193405 193408 4 21 6.06 20 86.25 4 

197205 197208 4 21 4.68 22 77.50 19 

190412 190503 4 21 4.64 23 72.50 25 

190402 190405 4 21 4.61 24 78.75 16 

195101 195104 4 21 4.60 25 81.25 12 

196205 196208 4 21 4.52 26 75.00 22 

195901 195904 4 21 4.44 27 77.50 19 

194608 194611 4 21 4.37 28 70.00 28 

194710 194801 4 21 4.22 29 66.25 31 

193207 193210 4 21 3.98 30 65.00 32 

193812 193903 4 21 3.48 33 58.75 35 

192112 192202 3 32 3.83 31 83.33 8 

191406 191408 3 32 3.79 32 83.33 8 

191608 191610 3 32 2.83 34 63.33 33 

200609 200611 3 32 2.72 35 56.67 37 

196606 196608 3 32 2.71 36 58.33 36 

191211 191301 3 32 2.59 37 63.33 33 

 

 

Table 4.7 shows the drought characteristics for Region 4. The most severe 

drought in region 4 began in November 1955 and ended in February 1957 (16 months). 

The drought severity is 22.62. 91.35% of the region experienced drought during this 

drought event and it is ranked as the fourth largest drought area. The rank of drought 
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severity is also similar to the rank of drought duration in this region. Among the top 10 

ranked drought events, 8 of them happened before 1960s. Specifically, 3 of them 

happened in 1950s. Region 4 in our study is similar to the climate divisions 1 and 2. 

Based on the drought history for climate divisions 1 and 2, there were severe droughts in 

1909 to 1926, 1932 to 1940, 1950 to 1957, 1962 to 1972, and 2010 to 2012. The top ten 

ranked drought events in region 4 were also recorded in the SC-CSC drought 

climatology, except the droughts in 1903 and 2001. 

Region 1 tends to have the longest and most severe drought in history. Drought 

from March 1909 to July 1911 in region 1 lasted 29 months and was the most severe 

drought from 1901 to 2014 in Oklahoma. Drought from November 1903 to May 1904 in 

region 2 influenced the largest area in Oklahoma. 98.7% of region 2 experienced drought 

during this drought event. 

 

 

Table 4-7 Drought characteristics for each drought event from 1901 to 2014 in 

Region 4 (northwestern Oklahoma). 

Start 
Month 

End 
Month 

Duration 
(month) 

Duration 
Rank 

Severity 
Severity 

Rank 
Spatial 

Extent (%) 
Spatial 

Extent Rank 

195511 195702 16 1 22.62 1 91.35 4 

193212 193311 12 2 14.02 3 73.72 24 

191005 191103 11 3 13.07 6 74.83 21 

195407 195504 10 4 13.39 4 77.69 20 

195206 195303 10 4 13.19 5 80.00 14 

190309 190405 9 6 11.47 7 83.76 10 

200111 200207 9 6 11.16 8 79.49 16 

191302 191310 9 6 9.41 10 70.09 29 

201104 201111 8 9 14.41 2 95.19 2 
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Table 4-7 Continued 

Start 
Month 

End 
Month 

Duration 
(month) 

Duration 
Rank 

Severity 
Severity 

Rank 
Spatial 

Extent (%) 
Spatial 

Extent Rank 

193405 193412 8 9 9.57 9 77.88 19 

193706 193801 8 9 8.09 14 74.04 23 

190107 190202 8 9 7.90 16 54.70 36 

197005 197011 7 13 8.35 12 82.42 11 

194306 194312 7 13 7.07 18 70.33 28 

195001 195006 6 15 8.46 11 88.46 6 

193909 194002 6 15 8.05 15 89.74 5 

196604 196609 6 15 7.79 17 80.77 12 

192210 192303 6 15 6.44 20 79.49 16 

198010 198102 5 19 8.12 13 95.38 1 

199602 199606 5 19 6.88 19 84.62 7 

191703 191707 5 19 6.15 21 78.46 18 

201208 201212 5 19 5.99 22 80.00 14 

200604 200607 4 23 5.78 23 94.23 3 

196702 196705 4 23 5.12 24 80.77 12 

193606 193609 4 23 4.89 25 71.15 26 

197610 197701 4 23 4.37 26 71.15 26 

196303 196306 4 23 4.37 27 84.62 7 

191607 191610 4 23 3.94 28 59.62 32 

199312 199403 4 23 3.55 29 63.46 31 

192004 192007 4 23 3.22 31 44.23 40 

191603 191605 3 31 3.51 30 84.62 7 

195305 195307 3 31 3.14 32 71.79 25 

193507 193509 3 31 3.10 33 58.97 33 

198409 198411 3 31 3.09 34 69.23 30 

197512 197602 3 31 3.09 35 74.36 22 

196407 196409 3 31 2.74 36 58.97 33 

194711 194801 3 31 2.72 37 48.72 39 

197103 197105 3 31 2.68 38 56.41 35 

200905 200907 3 31 2.62 39 53.85 37 

196802 196804 3 31 2.59 40 51.28 38 

 

 

Figure 4.8 shows the drought frequency for each region in Oklahoma. There is 

not a large difference in the drought frequency between regions. Drought frequency in 
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Region 4 is highest, followed by Region 2, Region 1, and Region 3. Seasonally, droughts 

are more likely to occur in spring (MAM) season in all of the regions, except Region 2, 

as shown in Figure 4.9. In Region 2, summer has the highest drought frequency. 

Figure 4.10 shows the seasonal frequency for different drought categories and 

each region in Oklahoma. The seasonality of drought frequency is most variable in 

Region 4. The frequency of each drought category varies among the seasons and regions. 

Generally, moderate drought is more frequent than severe drought and extreme drought 

for all regions and in all seasons. For severe and extreme drought, there is little 

difference between the drought frequency in spring and summer. However, in fall and 

winter, severe droughts are more frequent than extreme droughts. 

In Region 1, moderate droughts are most frequent in summer, severe droughts 

are most frequent in winter, and extreme droughts are most frequent in spring. In Region 

2, moderate droughts are most frequent in cold seasons (DJF and MAM), severe 

droughts are most frequent in warm seasons (JJA and SON), and extreme droughts are 

most frequent in spring and summer. In Region 3, moderate droughts are most frequent 

in fall, severe droughts are frequent in all seasons, except in fall, and extreme droughts 

are most frequent in spring and summer. In Region 4, moderate droughts are most 

frequent in spring and extreme droughts are most frequent in summer. Severe droughts 

do not show a seasonal preference. 
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Figure 4.8 Drought frequency for each region in Oklahoma.  

 

 

 

Figure 4.9 Seasonal drought frequency for each region in Oklahoma. 
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Figure 4.10 Seasonal drought frequency for each region in Oklahoma for different 

drought categories. 

 

 

4.3.3 Mann-Kendall Trend Tests 

The Mann-Kendall test was applied to all possible periods that are at least 10 

years in length between 1901 to 2014 since trends can be sensitive to the beginning and 

ending date (McCabe & Wolock, 2002; Zhu & Quiring, 2013). Figure 4.11 shows the 

results of the SPEI6 trend test for each region in Oklahoma. Only trends that are 

statistically significant at the 95% significance level are shown.  

At long timescales, like from 1901 to 2014, the SPEI has a significant increasing 

trend in all regions. However, at a shorter timescales, there are decadal-scale increasing 

and decreasing trends in the SPEI. There are about five periods that have statistically 

significant decreasing trends (i.e., trends toward drier conditions). The first significant 

occurs in the 1910s, and it is prominent in Region 3. The trends in Region 3 from 1901 
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to the late of 1910s are all negative. There is another period with decreasing trends in the 

SPEI from the 1920s to 1940s. The decreasing rate is especially prominent in Region 4. 

During the 1930s to 1970s, the SPEI also has a decreasing trend. However, the periods 

from the 1980s and 1990s to 2010s show decreasing trends, especially in Region 1. This 

is primarily due to the major drought events during 2011, 2012 and 2013. 

 

 

 

 

Figure 4.11 Kendall’s tau statistic to test for trends in the 6-month SPEI for all time 

periods longer than 10 years. Blue colors indicate statistically significant increasing trends 

(wetter conditions) in the SPEI and red colors indicate statistically significant decreasing 

trends (drier conditions). Each region in Oklahoma is shown separately. 
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Trends in the SPEI can either be caused by trends in precipitation or trends in 

evapotranspiration, or both. Therefore, in this section the trends in precipitation and 

temperature are evaluated to determine which is the most important determinant of the 

drought conditions. Figure 4.12 shows the results of the Mann-Kendall test of 

precipitation trends for each region in Oklahoma. The precipitation trends are very 

similar to the SPEI trends. For example, for most time periods between the 1990s and 

2010s, there are statistically significant increasing trends in both of precipitation and 

SPEI, especially in Region 3. The decreasing trends in the SPEI during the 1930s and 

1950s in Region 4 and the decreasing trends in the SPEI between 1980s to 2010s in 

Region 1 are also coincident with decreasing precipitation trends. 

The temperature trends are also evaluated using the Mann-Kendall test (Figure 

4.13). All regions show that drought conditions from 1980s to 2010s are related to 

increases in temperature. With the increase of temperature, PET increases, therefore, the 

SPEI decreases. Especially in region 1, the significant decreases in the SPEI in recent 

years coincide with increases in temperature. However, there are many fewer statistically 

significant trends in temperature than in precipitation. This suggests that the 

precipitation trends are more important in determining drought trends than the 

temperature trends. 
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Figure 4.12 Kendall’s tau statistic to test for trends in precipitation for all time 

periods longer than 10 years. Blue colors indicate statistically significant increasing 

trends (wetter conditions) in precipitation and red colors indicate statistically 

significant decreasing trends (drier conditions). Each region in Oklahoma is shown 

separately. 
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Figure 4.13 Kendall’s tau statistic to test for trends in temperature for all time 

periods longer than 10 years. Blue colors indicate statistically significant increasing 

trends (warmer conditions) in temperature and red colors indicate statistically 

significant decreasing trends (cooler conditions). Each region in Oklahoma is 

shown separately. 

 

 

PET based on Penman-Monteith method is a more direct variable reflecting 

water demand because it incorporates the information of temperature, vapor pressure, 

cloud cover, and wind speed. Figure 4.14 shows the Mann-Kendall test of PET for each 

region in Oklahoma. The PET trends are very similar to the temperature trends in each 

region. In recent years, PET significantly increased in all regions. Therefore, droughts in 
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recent years are the result of both decreases in precipitation and increases in water 

demand (PET). Drying trends during the 1940s to 1970s are also related with the 

statistically significant increase in water demand in all regions in Oklahoma. Droughts 

from 1920s to 1940s in the north Oklahoma (Region 4) are also related to the significant 

increase of PET. 

 

 

 

Figure 4.14 Kendall’s tau statistic to test for trends in PET for all time periods 

longer than 10 years. Blue colors indicate statistically significant increasing trends 

in PET and red colors indicate statistically significant decreasing trends. Each 

region in Oklahoma is shown separately. 
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The Mann-Kendall trend tests of SPEI, precipitation, temperature, and PET at the 

1-month and 3-month timescales are shown in Appendix A (Figure A.5 to A.10). There 

are fewer statistically significant trends than at the 6-month timescale. No statistically 

significant trends were found in temperature and PET at 1-month timescale in any 

region. Only a few significant trends were found in temperature and PET at the 3-month 

timescale in some regions in Oklahoma as shown in Figure A.9 and A.10. 

 

 

4.4 Limitations and Conclusions 

4.4.1 Limitations 

In this study, we investigated the spatial and temporal patterns of agricultural 

drought in Oklahoma based on 1-month to 6-month SPEI from 1901 to 2014. The SPEI 

was calculated based on CRU precipitation and PET datasets. The CRU data provides 

data from 1901 to the present. Even though the spatial resolution of CRU dataset is only 

0.5 degree * 0.5 degree, the CRU dataset was applied in our study because of the period 

of record.  

The SPEI at 1-month to 6-month timescales was used in this study. Vicente-

Serrano et al. (2013) found vegetation activity predominantly related to drought 

conditions at 2-4 month time scales. The choice of timescale will have an influence on 

the results. For example, we demonstrated that the trends in the 1-month SPEI are not 

the same as the 6-month SPEI. Therefore, future studies may also want to investigate 
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longer timescales (12 or 24 months) to provide more comprehensive knowledge of 

drought conditions in Oklahoma.  

Another limitation of this study is that we chose SPEI and Z-Index for the spatial 

and temporal drought analysis based on the results from Chapter 3. We analyzed the 

spatial and temporal drought patterns based on both the SPEI and Z-Index, however, 

since there were no significant differences between these two indices, we only discussed 

the results of SPEI. SPEI is based on a water balance model. Both of the water supply 

and water demand are considered in SPEI. The spatial and temporal patterns of drought 

may change if we use a precipitation-based drought index. For example, the SPI is a 

widely used drought index that is solely based on precipitation. In future, it would be 

useful to compare the spatial and temporal variations of drought in Oklahoma based on 

the SPI to those based on the SPEI. 

4.4.2 Conclusions 

The study of spatial and temporal variations of drought is important for the 

evaluation of drought risk. The PCA results of indicate that Oklahoma can be divided 

into 4 drought regions, which are located in southeast, southwest, northeast and 

northwest Oklahoma. All four regions show that drought in Oklahoma has decadal-scale 

variability. In the 1910s, 1930s, 1950s, 1970s, and 1980s conditions were drier than 

other time periods. From late 1980s to the early 2000s, conditions were much wetter 

than normal in Oklahoma. The drought frequency results showed that droughts occur 
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more frequently in Region 4 (northwestern Oklahoma). Based on the seasonal analysis, 

drought occurs more frequently in spring than any other season.  

The Mann-Kendall trend tests showed that there is a statistically significant 

increasing trend in the SPEI from 1901 to 2014. However, at short timescale, moisture 

conditions are more variable. For example, five major drought periods have occurred 

between 1901 and 2014. These droughts are primarily driven by decreases in 

precipitation. In contrast, recent droughts (e.g., 2011), were caused by both of the 

decreases in water supply (precipitation) and increases in water demand (PET). Due to 

climate change, this may be indicative of future drought conditions in Oklahoma. 

Precipitation and PET are two important factors directly related with drought. 

Other factors such as different climate oscillations also influence drought conditions 

through their impact on atmospheric circulation. Relationships between multiple climate 

oscillations and drought will be investigated in next chapter.  
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CHAPTER V 

IMPACTS OF MULTIPLE CLIMATE OSCILLATIONS ON DROUGHT IN 

OKLAHOMA2 

5.1 Introduction 

Drought is one of the most complex natural disaster that affects humans 

(Hagman, Beer, Bendz, & Wijkman, 1984), ecosystems (Chen, Werf, Jeu, Wang, & 

Dolman, 2013), water resources (Zhang et al., 2015), and agricultural productions (Q. 

Wang et al., 2014). Climate oscillations have been shown to be one of the factors that 

causes variations in drought (Mendez & Magana, 2010; Seager & Hoerling, 2014; 

Sutton & Hodson, 2005). A climate oscillation is defined as a slowly varying change of 

climate about a mean that recurs with some regularity (American Meteorological 

Society, 2012). An understanding of the interactions between climate oscillations and 

drought is vital for the prediction and mitigation of drought. 

Drought occurs when precipitation is deficit considerably. A great deal of 

previous research has focused on how El Niño-Southern Oscillation (ENSO) affects 

precipitation and drought conditions. For example, Hunt (2015) performed a multi-

millennial simulation with a coupled global climatic model to investigate extreme 

rainfall events in the Dust Bowl region, located in the southern Great Plains. This region 

2 Reprinted with permission from "Potential to improve precipitation forecasts in Texas through the 

incorporation of multiple teleconnections" by Liyan Tian, Zachary Leasor, and Steven M. Quiring, 

2016. International Journal of Climatology, in press, Copyright [2016] by John Wiley and Sons. 
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was characterized by a persistent drought and associated dust storms during the 1930s  

(Schubert, Suarez, Pegion, Koster, & Bacmeister, 2004). Schubert et al. (2004) found 

that ENSO has a significant impact on the generation of rainfall anomalies at an 

interannual timescale. In contrast, Hu and Feng (2001) analyzed the effects of ENSO on 

the interannual variations in summer rainfall in the central United States and found that 

there is no persistent effect of ENSO on the summer rainfall in the central United States. 

The correlations between summer rainfall and tropical Pacific SSTs were strong during 

1871-1916 and 1948-1978, but the relationship was weak during 1917-1947 and 1979-

present. There are also studies regarding the impact of other teleconnections on 

precipitation and drought, such as the Atlantic Multidecadal Oscillation (AMO) 

(Schlesinger & Ramankutty, 1994), North Atlantic Oscillation (NAO) (Wallace & 

Gutzler, 1981), Pacific Decadal Oscillation (PDO) (Mantua & Hare, 2002), and Pacific-

North American pattern (PNA) (Wallace & Gutzler, 1981). For example, Hurrell (1995) 

found that changes in the mean circulation patterns over the North Atlantic are 

accompanied by shifts in storms tracks and synoptic-scale eddy activity. These changes 

affect the transport and convergence of atmospheric moisture and consequently alter 

regional precipitation. Sutton and Hodson (2005) demonstrated that the boreal summer 

climate was affected by the AMO on multidecadal timescales during the 20th century. 

Kingston, Stagge, Tallaksen, and Hannah (2015) indicated the Europe-wide drought is 

associated with patterns of large-scale climate variations such as NAO. Leathers, Yarnal, 

and Palecki (1991) found that the PNA was highly correlated with regional temperature 

and precipitation from 1947 to 1982 for the fall, winter, and spring months when the 
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PNA serves as a main mode of North Hemisphere mid-tropospheric variability. McCabe, 

Palecki, and Betancourt (2004) demonstrated that climatic oscillations occurring at the 

decadal scale such as the AMO and PDO have been found to explain around half of the 

variance in drought frequency across the United States since the 1900s. While the AMO 

and PDO are important for explaining precipitation variability when considered by 

themselves, decadal climate oscillations also tend to modulate the impact that ENSO has 

on precipitation. Enfield, Mestas-Nunez, and Trimble (2001) found that the AMO has a 

significant impact in the Mississippi River basin, but not in the Okeechobee river basin. 

In Texas, the warm phases of the AMO greatly diminish the well-known positive 

relationship between ENSO and precipitation during the winter season (DJF). Schubert 

et al. (2016) investigated the relationships between sea surface temperatures (SST) and 

precipitation variability on a global scale. In North America, they found that SST 

variability in the tropical Pacific is the dominant factor that influences precipitation, with 

some contribution from Atlantic SSTs. Therefore, at interannual time scales, ENSO is 

the primary driver of precipitation variability throughout much of North and South 

America. At decadal time scales, the AMO and PDO are the primary drivers of 

precipitation variability. Cook, Smerdon, Seager, and Cook (2014) investigated the pan-

continental droughts in North America over the last Millennium. They defined pan-

continental drought as synchronous drought in three regions. The results showed that 

droughts in the Southwest and Central Plains occur in conjunction with either the 

Southeast or Northwest during La Niña conditions, while droughts in Central Plains, 

Northwest, and Southeast are primarily associated with the PDO and AMO. Mendez and 
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Magana (2010) also demonstrated the low frequency AMO and PDO can explain the 

spatial patterns of prolonged meteorological droughts in Mexico in the nineteenth 

century. 

These studies demonstrate that climate across space and time is influenced by 

climate oscillations. However, because the impact of each climate oscillation does not 

occur in isolation, it is important to analyze the impact that multiple teleconnections 

jointly have on drought. Stevens and Ruscher (2014) investigated the impact of AMO, 

NAO, PDO and ENSO on temperature and precipitation in the Apalachicola-

Chattachoochee-Flint (ACF) River Basin, which supplies water to Alabama, Georgia, 

and Florida. Their results showed that each of the sub-basins of the ACF are affected in a 

unique way by climatic oscillations, and no single climatic oscillation can adequately 

explain/predict the variations in meteorological conditions. Wise, Wrzesien, 

Dannenberg, and McGinnis (2015) analyzed the associations of cool-season 

precipitation patterns in the United States with teleconnection interactions, including 

ENSO, NAO, PNA, East Atlantic pattern (EA) and West Pacific pattern (WP). Their 

results emphasized the importance of considering multiple climatic oscillations when 

forecasting the seasonal rainfall variability. Ning and Bradley (2014) also studied the 

relationships between winter precipitation variability and teleconnections over the 

northeastern United States. Their correlation analysis showed that the first Empirical 

Orthogonal Function (EOF) pattern is significantly correlated with PNA and PDO, the 

second EOF pattern is significantly correlated with NAO and AMO, and the third EOF 

pattern is associated with ENSO, PNA and PDO. Therefore, multiple teleconnections 
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should be considered when analyzing the relationship between climate oscillations and 

precipitation variability. The aforementioned research has shown that ENSO, NAO, 

AMO, PNA and PDO are the major climate oscillations that have an impact on climate 

in the United States; therefore, this study will investigate the impacts of the five climate 

oscillations on drought in Oklahoma. 

Only simultaneous relationships (zero lead time) between teleconnections and 

climate were evaluated in the studies described above. However, there can be significant 

time lags between teleconnections and drought. For example, Redmond and Koch (1991) 

analyzed how ENSO and PNA influence precipitation, temperature, and streamflow in 

the western United States. Their results indicated that June-November ENSO was 

strongly correlated with October-March precipitation, suggesting that the winter 

precipitation was related to ENSO at a six-month time lag. Harshburger, Ye, and 

Dzialoski (2002) also demonstrated that the state of ENSO during the fall season can be 

used to predict winter precipitation in the western U.S. McCabe and Dettinger (1999) 

investigated the relationship between ENSO during fall season and the winter 

precipitation. Their results indicated that the strength of the correlations between fall 

ENSO and winter precipitation in the western U.S. varied over space and time during the 

20th century. When PDO is negative, the relationship between ENSO and precipitation is 

strong. When PDO is positive, ENSO and precipitation are weakly correlated. Brown 

and Comrie (2004) studied the impact of fall ENSO on winter precipitation in the 

western U.S. They found significant correlations between fall ENSO and winter 

precipitation in the Southwest U.S. Specifically, they found that wet winters tend to 
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follow El Niño events, and dry winters follow La Niña. Our study will also investigate 

the lagged relationships between multiple teleconnections and drought.  

The state of Oklahoma frequently experiences drought. Droughts in Oklahoma 

are caused by numerous factors, including natural atmospheric variability (i.e., climate 

oscillations), land-atmosphere interactions, and thermodynamic conditions (Fernando et 

al., 2016; Myoung & Nielsen-Gammon, 2010; Seager, Goddard, Nakamura, Henderson, 

& Lee, 2014). This study investigates the simultaneous and lagged relationships between 

Oklahoma drought and ENSO, NAO, AMO, PNA and PDO. The goals of this study are 

to: (1) determine which climate oscillation accounts for the greatest amount of SPEI 

variance in Oklahoma, (2) identify at what time lag the relationship between climate 

oscillations and SPEI are strongest and (3) forecast SPEI based on multiple climate 

oscillations using different forecast models and compare with the forecast from Climate 

Prediction Center (CPC). 

5.2 Data and Methods 

5.2.1 Climate Oscillations 

Five climate oscillations are investigated in this study: ENSO, NAO, AMO, 

PNA, and PDO. ENSO is the most frequently studied climatic oscillation. During an El 

Niño event, easterly trade winds weaken or reverse and cause anomalous warming of the 

ocean surface, changing patterns of meteorological variables such as precipitation 

(Stevens & Ruscher, 2014). The NINO3.4 SST anomaly is used in this study to represent 

ENSO conditions. It is based on departures from the three-month running mean of SSTs 
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in the NINO3.4 region. Positive NINO3.4 values are associated with El Niño events, 

while negative values indicate La Niña events. NINO3.4 SST anomaly data from 1901 to 

2011 can be downloaded from the NOAA PSD website 

(http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/). The NINO3.4 SST 

index is calculated from the Hadley Centre Sea Ice and Sea Surface Temperature data set 

(HadISST1). It is the area averaged SST from 5°S-5°N and 170°-120°W (Rayner et al., 

2003). 

The NAO is an atmospheric oscillation in the North Atlantic Ocean. The NAO 

index from the Climate Research Unit is defined as the normalized pressure difference 

between a station located in the Azores and a station in Iceland (Stevens & Ruscher, 

2014). The NAO index from 1901 to 2011 can be downloaded from the NOAA PSD 

website (http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/). 

 The AMO is a 60-85 year cycle of variable SSTs in the North Atlantic Ocean 

that has been shown to correlate with precipitation in the United States (Stevens & 

Ruscher, 2014). The AMO index is calculated using the Kaplan SST as the detrended 

time series of the area weighted averaged SST over the North Atlantic from 0˚ to 70˚N 

(Enfield et al., 2001). The smoothed AMO index from 1901 to 2011 can be downloaded 

from NOAA PSD (http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO/). 

The PNA index indicates the nature of atmospheric circulation in the Northern 

Hemisphere. A positive phase of the PNA indicates meridional flow with an enhanced 

jet stream while a negative phase indicates zonal flow (Henderson & Robinson, 1994). 

The PNA index is calculated using the 500 mb heights from the 20th Century Reanalysis 

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO/
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Project Version V2 dataset. Area-averaged geopotential heights from four regions in the 

Northern Hemisphere are combined for the PNA index (Barnston & Livezey, 1987). The 

PNA index data from 1901 to 2011 can be downloaded from NOAA PSD 

(http://www.esrl.noaa.gov/psd/data/20thC_Rean/timeseries/monthly/PNA/). 

The PDO is based on monthly SST variability in the North Pacific Ocean. The 

PDO index is calculated based on the EOF analyses of the monthly SST anomalies in the 

North Pacific (Mantua, Hare, Zhang, Wallace, & Francis, 1997). The PDO index from 

1901 to 2011 can be downloaded from NOAA PSD 

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/. 

Besides the climate oscillations, the 1-month SPEI from Chapter 4 will be used 

in this study. 

5.2.2 Canonical Correlation Analysis 

Canonical correlation analysis (CCA) was used to analyze the relationships 

between SPEI and the five teleconnections. Simultaneous (no lag) and lagged 

relationships (1, 3, 6, 12, and 24-month lags) were evaluated using monthly data. 

CCA is a linear multivariate approach used to compare two sets of data, with 

each set composed of multiple arrays of variables (Thompson, 2005). Based on the CCA 

analysis, relationships between a set of independent variables and a set of dependent 

variables can be found. The linear combinations represent the weight of at least two 

variables from the respective set, therefore creating the two variant arrays (U1 & V1) 

seen in Equation 5.1, in which x represents the precipitation anomalies, y represents the 

http://www.esrl.noaa.gov/psd/data/20thC_Rean/timeseries/monthly/PNA/
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/
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climate oscillations, a represents the coefficients for precipitation, and b represents the 

coefficients of the climate oscillations (Borga, 2001; Stevens & Ruscher, 2014). 

𝑈1 = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯𝑎𝑛𝑥𝑛 

𝑉1 = 𝑏1𝑦1 + 𝑏2𝑦2 +⋯𝑏𝑛𝑦𝑛   (Equation 5.1) 

The loading matrices calculated using Equation 5.1 produce canonical loadings, 

which are linear correlations between the variables and the variate. The loadings are 

used to calculate the canonical cross loadings that determine the linear correlation 

between the independent variable and dependent variable. The canonical cross loadings 

of the climate oscillations are estimated using the correlation coefficient in Equation 5.2 

where Sxx and Syy are variance-covariance matrices of the respective variable and Sxy and 

Syx and the covariance matrices of precipitation and the climate oscillations (Stevens & 

Ruscher, 2014). 

𝑟𝑐𝑏 = [𝑆𝑦𝑦]
−1
[𝑆𝑥𝑦][𝑆𝑥𝑥]

−1[𝑆𝑦𝑥]𝑏⁡ (Equation 5.2) 

In this study, the dependent variable set is SPEI at different lags (i.e. 0-month 

lag, 1-month lag, 3-month lag, 6-month lag, 12-month lag, and 24-month lag) and the 

independent set is the five climatic oscillations. Canonical loadings and cross loadings 

are two important variables about the relationships between the independent and 

dependent sets. This approach allows us to simultaneously examine the impacts of 

climatic oscillations on precipitation variations (Stevens & Ruscher, 2014). 

CCA provides information about (1) the varying effects of climate oscillations in 

different regions, and (2) how the strength of the relationships change for each time lag. 
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Canonical roots that are not statistically significant at the 95% confidence level were 

eliminated based upon the methods used by Stevens and Ruscher [2014]. 

5.2.3 Random Forest 

Random forest is an accurate and robust ensemble learning method for 

classification and regression (Leo Breiman, 2004; Liaw & Wiener, 2002). Decision trees 

are very popular in machine learning area. However, a major issue of decision trees is 

that they usually overfit their training data. Random forest is an effective method to 

overcome the overfitting issue (Leo Breiman, 2001). The difference between standard 

trees and random forest is that random forest add an additional layer of randomness. In 

standard trees, each node is split based on the best split among all variables. While, in 

random forest, a subset of variables are randomly selected at each node, then, each node 

is split based on the best split among this subset variables (Liaw & Wiener, 2002). The 

structure of random forest is very simple. Random forest is an ensemble of trees that are 

generated in the way that each tree is different in the training cases and the predictors at 

each node. The training set is a randomly sample from the original training set. For each 

random sample, a tree grows in the way that, each node is split using the best split 

among the randomly selected subset of variables. The tree is grown to the maximum 

depth until no further split is possible (Svetnik et al., 2003). For regression, a new set of 

predicted data is generated by averaging the predictions of the trees (Liaw & Wiener, 

2002). One of the important feature of random forest is the concept of out-of-bag 

(OOB). In random forest, each tree is grown using a different randomly sample from the 
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original data set. About one third of the randomly sample is left out in the construction 

of each tree. This one third OOB cases can be used to get an unbiased estimate of the 

training set error (L Breiman, 2003). 

One of the advantages of random forest is that it is robust and it does not overfit. 

It can run efficiently on large data sets. It can handle thousands of variables without 

variable deletion. It can return the importance of variables. It generate an internal 

unbiased estimate of the training set error (Leo Breiman, 2001). 

5.2.4 Monthly SPEI Prediction 

Several regression models are developed to evaluate whether climate oscillations 

can be used to produce skillful monthly forecasts of SPEI in Oklahoma. Based on the 

CCA results, a CCA-based regression model (CCA1) can be generated based on all of 

the five teleconnections at 1 month lag for each region in each month. The linear 

regression model uses weights for each of the climate oscillations calculated as the 

dividend between the canonical loadings and the dependent and independent arrays. 

Since the CCA results can illustrate the relationships between SPEI and each 

teleconnection at different lags for each region in each month, a CCA-based regression 

model (CCA2) can be developed using another strategy. For each region and each 

month, only the teleconnections at different lags that has significant correlations with 

SPEI are used in the regression model. Random forest (RF) is also used for the SPEI 

forecast. Then, a set of ensemble models are generated for the SPEI forecast, including 

the averaged prediction of CCA1 and CCA2 models (ensemble12), the averaged 
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prediction of CCA1 and RF models (ensemble13), the averaged prediction of CCA2 and 

RF models (ensemble23), and the averaged prediction of CCAs and RF models 

(ensemble123). The forecast models are built using data from 1901-1980 and evaluated 

using data from 1981 to 2011. 

 The Heidke Skill Score (HSS) was used to evaluate the skill of the SPEI forecast 

and to facilitate comparison to the skill of the CPC monthly climate forecast. The HSS 

was calculated based on observed and predicted SPEI values from 1981-2010 which 

were grouped into three percentile ranges based upon their distribution; below normal, 

average, and above normal. This was done to standardize the SPEI predictions in a 

manner that is consistent with the methodology used by CPC. CPC provides monthly 

drought outlook based on the precipitation and temperature outlooks. Since the CPC 

precipitation and temperature forecast skill scores are based on observed and predicted 

precipitation and temperature data from 1981 to 2010 (CPC, 2016b), the skill score of 

the regression models in this study was also calculated using SPEI data from 1981 to 

2010. The HSS values were calculated using Equation 5.3: 

𝐻𝑆𝑆 = ⁡
(𝑁𝐶−𝐸)

(𝑇−𝐸)
(Equation 5.3) 

where NC is the number of correct forecasts, T is the total number of forecasts, 

and E is the number of forecasts expected to verify based upon climatology. 

The CPC monthly drought outlook verification is available from July 2013 to 

October 2015 at a national wide scale. The monthly precipitation and temperature 

prediction are available from February 2004 to the present at a climate division scale. 

The skill scores of the regression models developed in this study are compare to evaluate 
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the regression models. The skill scores from the CPC drought outlook, precipitation and 

temperature outlooks can be a qualitative reference for the evaluations of the regression 

models developed in this study. 

5.3 Results 

5.3.1 Relationships between SPEI and Each Teleconnection 

Figure 5.1 shows the correlations between each teleconnection and SPEI at 

different lags for each month in each region of Oklahoma. These regions are based on 

the PCA results from Chapter 4. Only correlations that are statistically significant at the 

95% confidence level are shown. NAO has the most statistically significant correlations 

with SPEI, followed by ENSO, PNA, PDO, and AMO. There are a total of 288 

month/region/lags combinations (12 months * 4 regions * 6 lags), and there is a 

statistically significant correlation between NAO and SPEI in 32 of the 288 cases 

(11.1%). There is a statistically significant correlation between ENSO and SPEI in 

10.8% of these combinations. PNA, PDO, and AMO have statistically significant 

correlations in 10.1%, 6.3%, and 1.7% of these 288 combinations, respectively. 

Statistically significant correlations between ENSO and SPEI are mainly at shorter time 

lags in most months, except in summer. For NAO, correlations with SPEI are 

statistically significant at shorter time lags in November to March. In the warmer months 

of May to September, correlations between NAO and SPEI are mainly at longer time 

lags (e.g., longer than 6 months). Previous studies of the relationship between 

ENSO/NAO and climate in the United States have shown that the impacts of 
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ENSO/NAO on precipitation and temperature are most pronounced during the winter 

(Durkee et al., 2008; Hu & Feng, 2001). Therefore, it is not surprising that the 

correlations between ENSO/NAO and SPEI have pronounced seasonality. 

Correlations between PNA and SPEI are mainly at shorter time lags. There are 

fewer statistically significant correlations between PDO and SPEI. Correlations between 

PDO and SPEI are significant at different time lags for different regions and months. No 

seasonal trends are evident. Correlations between AMO and SPEI are only significant in 

Region 4 in September. 

Figure 5.1 Correlations between each teleconnection and SPEI from 1901-2011 in 

each region with different lags: (a) ENSO; (b) NAO; (c) PNA; (d) PDO; (f) AMO. 
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Figure 5.1 Continued 
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Figure 5.1 Continued 
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5.3.2 Relationships between SPEI and Multiple Teleconnection 

Figure 5.2 shows how the correlations between multiple climate oscillations and 

SPEI vary by month and region at different lags. The correlations between multiple 

climate oscillations and SPEI are the dependent cross loadings between the observed 

dependent variable (i.e., SPEI) and the opposite canonical variate, which is the linear 

combination of the correlations with the five climate oscillations. The correlations are 

calculated for the following combinations of climate oscillations: ENSO, ENSO/PNA, 

ENSO/PNA/PDO, ENSO/PNA/PDO/NAO, and ENSO/PNA/PDO/NAO/AMO. Most of 

the statistically significant simultaneous correlations (no lag) occur during months 

except April to July. The number of statistically significant correlations increases as 

additional climate oscillations are included. Even the AMO, which did not have many 

statistically significant correlations during the univariate analysis, helps to explain more 

of the variance in SPEI when it is included with the other climate oscillations.  

Not surprisingly, our results show that the inclusion of additional climate 

oscillations helps to explain SPEI variability in Oklahoma. Correlations between SPEI 

and multiple teleconnections at different months of lags also show that the inclusion of 

additional climate oscillations is helpful for explaining SPEI variability in most of 

months and regions in Oklahoma. The number of statistically significant correlations 

between SPEI and multiple teleconnections decreases as the time lag increases. At a 1 

month lag, there are no statistically significant correlations from April to July. At a 3 

month lag, there are no statistically significant correlations from April to September. 

There are only a few statistically significant correlations during July to December at the 
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6 and 12 month time lag. At a 24 month lag, there are statistically significant correlations 

in June and December. 

Figure 5.2 Correlations between multiple teleconnections and SPEI from 1901-2011 

in each region with different lags (0 month lag, 1 month lag, 3 month lag, 6 month 

lag, 12 month lag, and 24 month lag). 



127 

Figure 5.2 Continued 



128 

Figure 5.2 Continued 



 

129 

 

 

Figure 5.2 Continued 

 

 

5.3.3 SPEI Forecast 

As described above, two CCA-based linear regression models and a random 

forest model are developed to evaluate whether the climate oscillations can be used to 

produce skillful monthly forecasts of SPEI in Oklahoma. According to Figure 5.2, the 

number of statistically significant correlations between SPEI and multiple 

teleconnections decreases as the time lag increases. Therefore, a 1 month lag is used in 

the first CCA-based regression model (CCA1). Another reason to select a 1 month lag is 

that it facilitates comparison with the CPC forecast skill. The CPC forecasts precipitation 

and temperature at a 0-month lead and this is similar to the 1 month lag in our study. 

That is, climate oscillations from one month are used to forecast climate in the following 
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month. Therefore, the prediction can only be generated at the end of the month. 

Therefore, this is equivalent to the 0 month lead forecast produced by the CPC. 

Another approach for forecasting the SPEI is to use multiple teleconnections at 

different time lags. Therefore, teleconnections which have significant correlations with 

SPEI in each region and month were selected based on Figure 5.1. This is the second 

SPEI forecast model (CCA2). However, there are no statistically significant correlations 

between SPEI and teleconnections for some regions are months (e.g., Region 1 in 

September). In these cases, multiple teleconnections at a specific lag were selected based 

on the correlations between SPEI and multiple teleconnections at different lags (Figure 

5.2). Table 5.1 shows the combinations of teleconnections for the SPEI forecast for each 

region in each month. The skill of the CCA2 model will be compared to that of the 

CCA1 model. This comparison will show whether the accuracy of SPEI forecasts can be 

improved by using different lags.  

A third method of forecasting the SPEI is based on random forest. In our study, 

the predictors that are included in the random forest model are the 5 teleconnections at 5 

different lags (1 month, 3 month, 6 month, 12 month and 24 month lags). This gives a 

total of 25 co-variates. One of the outputs of random forest is variable importance. 

Therefore, the importance of each variable is weighted in the regression model. Four 

ensemble models from these three regression models are also analyzed in this study. The 

ensemble models are the average prediction of CCA1 and CCA2 models (ensemble12), 

the average prediction of CCA1 and RF model (ensemble13), the average prediction of 
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CCA2 and RF model (ensemble23), the average prediction of all of the 3 models 

(ensemble123). 

Table 5-1 Combinations of teleconnections for SPEI forecast for each region in 

each month 

Region 1 Region 2 Region 3 Region 4 

Jan 1m (E+P1+P2) 1m (E+P1+P2) 1m (E+P1+P2+N+A) 12m P1 

Feb 1m P1 12m (E+P1) 1m (E+P1+P2) 12m (E+P1) 

Mar 1m (E+P1+P2+N) 6m E+1m P2+3m N 6m E+6 P2 +1 N 
3m E+1m P1+1m 

P2+3m N 

Apr 12m (E+P1+P2) 6m (E+P1+P2+N+A) 6m (E+P1+P2+N+A) 6m E 

May 
6m 

(E+P1+P2+N+A) 
6m (E+P1+P2+N) 6m (E+P1+P2+N) 

6m 
(E+P1+P2+N+A) 

Jun 24m (E+P1+P2+N) 24m (E+P1+P2+N+A) 24m (E+P1+P2+N+A) 
24m 

(E+P1+P2+N+A) 

Jul 24m N 12m (E+P1+P2+N+A) 24m N 1m P2 

Aug 1m P1 +24m P2 1m (E+P1+P2+N) 1m E+1m P1+12m N 1m (E+P1+P2+N) 

Sep 
1m 

(E+P1+P2+N+A) 
1m (E+P1+P2+N+A) 1m P2+24m N 3m P1 

Oct 
1m E+3m P1+1m 

P2+1m N 
1m E+3m P1 3m (E+P1+P2+N) 

3m 
(E+P1+P2+N+A) 

Nov 1m P1+6m P2 6m (E+P1+P2+N+A) 1m P1+6m P2+1m N 
6m 

(E+P1+P2+N+A) 

Dec 
6m E+24m P1+6m 

P2+1m N 
1m E+24m P1+1m N 24m P1+1m N 24m E+1m P2 

(*Note: nm means n month lag; E means ENSO; P1 means PNA; P2 means PDO; N means 

NAO; and A means AMO) 

The HSS, correlation coefficient, and correlation coefficient at 80% significance 

level are used to evaluate model performance for each region in each month. Figure 5.3 

shows the HSS of the models. Only HSSs that are great than zero are shown. In January, 

the highest HSS is in Region 4 based on the CCA2 model and the ensemble23 model. In 
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February, the highest HSS is in Region 2 based on the CCA2 model. In March, the 

highest HSS is in Region 4 based on the CCA2 model and ensemble 23 model. In April, 

the highest HSS is in Region 4 based on CCA2 model, ensemble 23 model, and 

ensemble123 model. In May, the highest HSS is in Region 4 based on ensemble 23 

model. In June, the highest HSS is in Region 2 based on CCA2 model. In July, the 

highest HSS is in Region 2 based on ensemble 12 model. In August, the highest HSS is 

in Region 1 based on CCA1 model. In September, the highest HSS is in Region 3 based 

on the RF model, ensemble13 model, and ensemble 123 model. In October, the highest 

HSS is in Region 1 based on the ensemble12 model. In November, the highest HSS is in 

Region 1 based on the ensemble23 model. In December, the highest HSS is in Region 3 

based on the CCA2 model and the ensemble23 model.  

Figure 5.4 shows the correlation coefficients of different prediction models. The 

correlation coefficient of CCA2 model is higher than the correlation coefficient of 

ensemble23 model in January and Region 4. In March and April, the CCA2 model also 

has a higher correlation coefficient than the ensemble models. In September, the 

correlation coefficient of RF model is higher than the correlations coefficient of the 

ensemble models. In December, the CCA2 model also has a higher correlation 

coefficient than the ensemble models. Table 5.2 shows the best SPEI-teleconnection 

regression model based on HSS and correlation coefficient. CCA2 is the best model in 6 

of 12 cases. Overall, the SPEI forecasts are more skillful in western Oklahoma (Region 2 

and 4) than in eastern Oklahoma (Region 1 and 3). 
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Figure 5.3 HSSs of different prediction models. 

Figure 5.4 Correlation coefficient of different prediction models. 
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Table 5-2 Regression model for the region in each month with highest HSS 

Jan Feb Mar Apr May Jun 

Region 4 2 4 4 4 2 

Model CCA2 CCA2 CCA2 CCA2 Ensembles23 CCA2 

Jul Aug Sep Oct Nov Dec 

Region 2 1 3 1 1 3 

Model Ensembles 12 CCA1 RF Ensembles 12 Ensembles 23 CCA2 

The results of the model evaluation suggest that using a prediction model based 

on multiple teleconnections at different lags can produce somewhat better predictions of 

the SPEI than a model based on multiple teleconnections at same lag. The highest HSS 

of the regression models is 0.38. The HSSs are low in some cases, and the regression 

models are not statistically significant in some cases, as shown in Figure 5.5. This 

indicates that the regression models cannot accurately predict the magnitude of the SPEI. 

However, it is not uncommon that the skill of monthly to seasonal forecasts is relatively 

low (Barnston, Thiao, & Kumar, 1996; McCabe & Dettinger, 1999). Therefore, we also 

compare the climate oscillation-based forecasts developed in this study to the CPC 

forecasts. 
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Figure 5.5 Correlation coefficient of different prediction models with 80% 

significance level. 

5.3.4 Comparing Forecast Skill to CPC 

The CPC provides monthly drought outlooks at a national scale. The monthly 

drought outlook is based on CPC monthly precipitation and temperature forecasts, and 

some other precipitation and temperature forecasts at shorter timescales (CPC, 2017b). 

The monthly drought outlook is a gridded national product. The outlook verification skill 

score is the difference between the drought outlook verification score and the persistence 

forecast score. The drought outlook verification score is the ratio of number of grids 

forecast successfully to the total number of grids (CPC, 2014). The drought outlook 

verification is only available from July 2013 to October 2015. Therefore, the CPC 

drought forecast skill score is only used here for a qualitative analysis. 
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Since the drought outlook is based on CPC monthly precipitation and 

temperature forecast, the forecast skill of monthly precipitation and temperature are also 

used for the qualitative analysis. The CPC provides monthly precipitation and 

temperature forecasts at a 0-month lead. The 0-month lead of precipitation/temperature 

forecast is created and updated the last day of the month for the following month. 

Therefore, all data in the initial month are used to predict precipitation/temperature in 

the subsequent month. Our SPEI forecast is similar to this 0-month lead CPC monthly 

precipitation/temperature forecast. All of the regression models developed in this study 

and the CPC forecast model utilize all antecedent climate data from the first month to 

predict climate in the following month. The CPC precipitation/temperature forecast is 

primarily based on a dynamical model (CPC, 2016a). The dynamical model uses a set of 

current climate variable observations and equations describing the physical behavior of 

the climate variable system to predict the climate variable in a short time future. Then, 

the predicted climate variables are used as the initial condition for a subsequent 

prediction for the next time-step until the future prediction time is reached. The CPC 

reports the Heidke Skill Score for various regions (Figure 5.6) (CPC, 2017a). The 

regions that are used by CPC do not match the regions that were defined in this study 

using PCA analysis, and the years used by the CPC do not match the years of our study. 

Therefore, only a qualitative comparison of the HSSs of our regression model and the 

CPC HSSs is shown here. 
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Figure 5.6 Map of CPC climate divisions with region in Oklahoma highlighted in 

red shade (Adapted from CPC, 2017). 

 

 

Table 5.3 shows the monthly skill score of our regression model, CPC monthly 

drought outlooks, and CPC monthly precipitation and temperature forecast. The HSS 

from this study is the mean HSSs of all models for each month in Oklahoma and the 

highest HSSs from the seven regression models for one region in Oklahoma. The mean 

HSS based on all of the regression models averaged over the entire state is compared to 

the CPC monthly drought outlooks (MDO). The results show that in 10 out of 12 cases 

the mean HSS of our regression models is positive. For the CPC MDO, only 5 out of 12 

cases have a positive skill score.  

Since the purpose of this study is to find the best regression model for SPEI 

forecast in each region and month, the best model (i.e., the one with the highest HSS) is 
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compared to the HSS of the CPC precipitation and temperature forecasts. The results 

show that in 7 out of 12 cases our models have a higher HSS than the HSS of both CPC 

precipitation and temperature forecasts. In 2 out of 12 cases, the HSS of our regression 

model is lower than the HSS of both the CPC precipitation and temperature forecasts. In 

the other 3 cases, the HSS of our regression model is between the CPC precipitation and 

temperature forecast skill scores. These results provide some evidence to suggest that the 

skill of our models is at least equivalent to that of the CPC. Therefore, the models can 

provide useful SPEI forecasts at a 0-month lead in most regions and seasons in 

Oklahoma. Obviously, a more thorough direct comparison of forecast skill is necessary 

before stronger conclusions can be drawn. 

Table 5-3 Forecast skill scores of models in this study comparing to CPC climate 

forecast 

Averaged-
regression 

models 

Highest-
regression 

model 
MDO 

Precipitation 
(%) 

Temperature 
(%) 

Jan -0.05 0.33 -2.05 27.27 18.18 

Feb 0.05 0.33 -4.95 29.17 29.17 

Mar 0.06 0.28 -8.50 45.83 -12.50 

Apr -0.08 0.07 -6.25 16.67 33.33 

May 0.08 0.28 1.55 18.18 4.55 

Jun 0.00 0.28 10.40 31.82 13.64 

Jul 0.01 0.28 -8.60 40.91 31.82 

Aug 0.08 0.38 1.80 13.64 -18.18 

Sep 0.13 0.28 3.67 0.00 18.18 

Oct 0.11 0.33 5.30 -40.91 59.09 

Nov 0.05 0.18 -1.85 9.09 -9.09 

Dec 0.15 0.38 -13.65 22.73 9.09 
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5.4 Limitations and Conclusions 

Correlations between the five climate oscillations and SPEI indicated that NAO 

and ENSO account for the greatest amount of variance in the SPEI in Oklahoma. Many 

previous studies have also shown that NAO and ENSO are important factors that affect 

the climate system and can provide monthly-to-seasonal predictability (Barnston et al., 

1996; Aiguo Dai & Wigley, 2000). However, across nearly every month and region, the 

correlations between the climate oscillations and SPEI were stronger when the combined 

impact of multiple teleconnections was considered. This result is consistent with 

previous studies such as Stevens and Ruscher (2014), Wise et al. (2015),] and Ning and 

Bradley (2014). For example, Stevens and Ruscher (2014) indicated that the sub-basins 

of the ACF are affected differently by multiple climatic oscillations, and no particular 

climatic oscillation can explain surface meteorological variation. 

Using this knowledge, CCA was used to identify the months, regions, and time 

lags where the relationships between teleconnections and SPEI are the strongest. 

Dependent cross loadings were used to provide a means for quantifying the relationship 

between the five combined teleconnections and SPEI at various time lags. The results of 

the CCA analysis were generally in agreement with the correlation results. The strongest 

correlations occurred during the colder months and there were also more time lags that 

were statistically significant during this time. These results agree with studies such as Hu 

and Feng (2001) and Leathers et al. (1991) which suggest that teleconnections have a 

stronger impact on North American climate during the fall, winter, and spring. 

Statistically significant relationships were found for longer time lags (> 6 months) 
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during the warm months, while most of the statistically significant relationships were 

found at shorter time lags (< 6 months) during the cold months. These findings are 

supported by previous studies that observed the strongest relationships between 

precipitation and teleconnections during the winter months (Leathers et al., 1991; Ning 

& Bradley, 2014; Sutton & Hodson, 2005; Wise et al., 2015).  

Several forecast models were developed to predict the SPEI using these five 

climate oscillations. The regression models include a CCA-based model using multiple 

climate oscillations at a 1 month lag, a CCA-based model using multiple climate 

oscillations at different lags, a random forest regression model, and four ensemble 

models. The results show that the CCA-based models developed in this study have 

forecast skill that was similar, and in some cases, better than the CPC. The comparison 

of the seven regression models developed in this study shows that the performance of the 

regression models varies from months and regions. In general, the CCA-based model 

using multiple climate oscillations at different lags is better than other regressions 

models in most of cases. The qualitative forecast skill comparison with CPC climate 

oscillation suggests that the statistical methods used in this study have forecast skill that 

is comparable to the dynamical models used by the CPC. Since one of the objectives of 

this study was to determine the value of considering multiple teleconnections, the 

correlations between the teleconnections and SPEI shows the multiple teleconnections 

can explain more of SPEI variance. Overall, the results demonstrate that using multiple 

teleconnections is valuable for explaining and predicting SPEI in Oklahoma. The 

relative importance of these teleconnections varies by region, month, and time lag. The 
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results presented here suggest that the regression model using multiple teleconnections is 

able to adequately forecast SPEI in Oklahoma. One of the limitations of the CCA-based 

regression model is the relationships among the input variables. For example, both of the 

ENSO and PNA are considered in the regression model, however, ENSO and PNA share 

some of common variance. In the future, PCA should be used to generate orthogonal 

input variables before they are used in the regression model.  

Further research will evaluate whether including additional teleconnections can 

improve the accuracy of SPEI forecasts. In addition, it may also be useful to explore 

other statistical modeling approaches such as weighted multiple linear regression model 

using canonical weights to improving the forecasts. Finally, the skill of the regression 

model was evaluated over a multi-year period. It may be more helpful to evaluate how 

forecast skill changes during years when there are strong ENSO or NAO events. It is 

likely that the skill of the model varies significantly over time and that it is strongest 

during ENSO events and that the forecasts are less skillful when there is not strong 

remote forcing.  

Oklahoma is a region where there are relatively strong relationships between 

teleconnections and SPEI, particularly NAO and ENSO. However, the analysis 

employed in this study can be applied to diagnose the impacts of multiple 

teleconnections on SPEI in other regions around the world. While the regression models 

can effectively predict SPEI with skill comparable to the CPC, climate oscillations only 

explain around half of the SPEI. While the purpose of this study was to observe the 

impact teleconnections have on SPEI at various time lags, the seasonal forecasting of 
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SPEI could improve with the additional consideration of variables not related to 

teleconnections. Including the influence of antecedent temperature, precipitation, and 

soil moisture may help to further improve these forecast. For example, land-based 

hydrological processes have been show to influence drought (Koster & Suarez, 1995; 

Koster, Suarez, & Heiser, 2000). Precipitation is also an important indicator of drought. 

Koster and Suarez (1995) investigated the impacts of sea surface temperatures and land 

surface hydrological state to the annual and seasonal precipitation variability. They 

found that the land surface impacts on precipitation variability are greatest during 

summer when the precipitation processes are sensitive to evaporation. Koster et al. 

(2000) indicated precipitation anomalies can be amplified by land surface processes. A 

positive precipitation anomaly can lead to an evaporation anomaly through land-

atmospheric feedback, which in turn leads to additional precipitation through water 

recycling. Since evaporation is related with soil moisture and temperature, soil moisture 

and temperature can be used to improve the drought forecast. These types of studies are 

useful for examining other areas which could improve drought forecasts, while this study 

focuses primarily on identifying the strength and nature of the relationship between SPEI 

and various teleconnections in Oklahoma.  
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CHAPTER VI  

CONCLUSIONS 

 

6.1 Summary and Conclusions 

This dissertation provided a comprehensive analysis of drought in Oklahoma. A 

new drought index, Precipitation Evapotranspiration Difference Condition Index 

(PEDCI) was developed in Chapter 2. PEDCI is based on SPEI and VCI. SPEI is a 

drought index based on a simple water balance model (difference between precipitation 

and potential evapotranspiration). However, SPEI is sensitive to the calculation of PET, 

and a probability distribution function is needed for the SPEI calculation. PEDCI 

overcomes the shortcomings of the SPEI by using the Penman-Monteith based PET and 

using the algorithm of VCI to normalize the monthly PEDCI values. Penman-Monteith-

based PET is better than using temperature-based methods such as Thornthwaite. Unlike 

SPEI, the calculation of PEDCI is based on a simple normalization method rather than 

probability distribution which is complex to select the most suitable distribution and the 

calculation of the distribution parameters are complex. The normalization of difference 

between precipitation and potential evapotranspiration can avoid the differences between 

short-term weather-related water balance fluctuation and the influence of long-term 

ecosystem changes. 

In Chapter 3, we compared six widely used drought indices and the new PEDCI 

for agricultural drought monitoring in Oklahoma. Soil moisture from Oklahoma Mesonet 

and crop yields from USDA were applied for the drought indices comparison. The 
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results indicated the relationship between soil moisture and drought indices is stronger 

during the warm season and weaker during the cool season. The correlations between 

soil moisture and drought indices during the warm season demonstrated that SPEI and 

PEDCI were most representative of soil moisture conditions.  

The relationship between crop yield and drought indices indicated that the 

performance of drought indices varies from month to month during the crop growing 

period. For the comparison with crop yield, we applied two strategies. The first one is 

using all of the data, and the other excludes the middle 40% of data. The purpose of the 

second strategy is to investigate which drought indices perform best when crop yield and 

climate conditions are both well above- or below-normal. Overall, the comparison of 

drought indices based on the first strategy indicated that SPEI and Z-index are better 

than other indices for monitoring crop yield. The results based on second strategy 

indicated that drought indices that are solely based on precipitation, such as percent 

normal and SPI, are better during the early part of the winter wheat growing season, 

while water balance-based drought indices, such as the Z-index and PEDCI, are better 

closer to harvest. Since the second strategy is sensitive to the record length, it might not 

be the most robust approach for identifying the best drought indices when the period of 

record is relatively short. 

Based on the results from Chapter 3, the spatial and temporal patterns of drought 

in Oklahoma were analyzed using the SPEI. SPEI at 1-month, 3-month and 6-month 

time scales were used in this anaysis since these are suitable for agricultural drought 

monitoring. The results at a 6-month scale showed that drought in Oklahoma has 
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decadal-scale variability. In the 1910s, 1930s, 1950s, 1970s, and 1980s Oklahoma was 

drier than normal. From the late 1980s to the early 2000s, Oklahoma experienced wetter 

than normal conditions. In recent years the SPEI has been decreasing, which suggests 

that another dry cycle may be starting.  

The drought frequency analysis showed that drought occurs more frequently in 

northwestern Oklahoma. The seasonal drought frequency showed that droughts are more 

frequent during the spring. The Mann-Kendall trend tests showed that the SPEI 

significantly increased from 1901 to 2014. However, at shorter time periods, conditions 

are variable. There were five major drought periods between 1901 and 2014. These were 

primarily caused by significant decreases in precipitation. However, the recent 2011 

drought is related to both decreases in water supply (precipitation) and increases in water 

demand (PET). 

The goal of Chapter 5 was to identify the factors that are responsible for causing 

drought in Oklahoma. The results indicated that NAO, ENSO and PNA are the primary 

climate oscillations that influence the climate of Oklahoma. They also showed that the 

inclusion of multiple climate oscillations can enhance the relationship between climate 

oscillations and drought. Based on the relationships between climate oscillations and 

SPEI at different lags, two CCA-based regression model were developed for monthly 

SPEI forecast. The correlations between SPEI and multiple teleconnections decrease as 

the time lag increases. Therefore, a CCA-based regression model using multiple 

teleconnections at 1-month lag was developed. In the second strategy, a CCA-based 

regression model using multiple teleconnections at different lags was developed. The 
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skill scores show that the performance of these regression models varies from months 

and regions. In general, CCA-based regression model using multiple teleconnections at 

different lags is the most skillful approach for forecasting SPEI. 

 

6.2 Future Research 

Soil moisture is a key variable in the land-atmosphere interaction and 

hydroclimate system. A lot of effort has been done devoted to soil moisture monitoring. 

Given the challenges in estimating and measuring soil moisture, drought indices are 

potentially a useful method for estimating soil moisture conditions.  

There are also opportunities to apply the results of the relationships between 

drought indices and winter wheat yield to improve the crop yield modeling. Statistical 

models based on weather conditions and mechanistic models based on fundamental 

mechanisms of plant and soil processes are two major types of crop simulation models. 

Assimilating the drought conditions in the mechanistic models can be promising method 

to improve the crop yield modeling. 

Drought forecast is vitally important for drought assessment and mitigation. 

Droughts are caused by numerous factors such as natural atmospheric variability (i.e., 

climate oscillations), land-atmosphere interactions, and thermodynamic conditions. The 

regression models in this study demonstrate that this method has promise for providing 

drought early warning in Oklahoma. However, the skill of the regression models are 

lower than the skill of CPC drought forecast in some months and regions. It is necessary 
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to do further research to improve the drought forecast skill by integrating more factors 

into consideration. 
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APPENDIX A  

FIGURES 

 

Figure A.1 1-month SPEI (SPEI1) for each region in Oklahoma from 1901 to 2014. 

Data have been smoothed with a 120-month moving average. 
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Figure A.2 3-month SPEI (SPEI3) for each region in Oklahoma from 1901 to 2014. 

Data have been smoothed with a 120-month moving average. 
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Figure A.3 SPEI values for each region in Oklahoma from 1901 to 2014 (SPEI1). 
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Figure A.3 Continued 
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Figure A.4 SPEI values for each region in Oklahoma from 1901 to 2014 (SPEI3). 
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Figure A.4 Continued 



 

172 

 

 

Figure A.5 Kendall’s tau statistic to test for trends in the 1-month SPEI for all time 

periods longer than 10 years. Blue colors indicate statistically significant increasing 

trends (wetter conditions) in the SPEI and red colors indicate statistically 

significant decreasing trends (drier conditions). Each region in Oklahoma is shown 

separately. 
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Figure A.6 Kendall’s tau statistic to test for trends in the precipitation at 1 month 

scale for all time periods longer than 10 years. Blue colors indicate statistically 

significant increasing trends (wetter conditions) in the precipitation and red colors 

indicate statistically significant decreasing trends (drier conditions). Each region in 

Oklahoma is shown separately. 
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Figure A.7 Kendall’s tau statistic to test for trends in the 3-month SPEI for all time 

periods longer than 10 years. Blue colors indicate statistically significant increasing 

trends (wetter conditions) in the SPEI and red colors indicate statistically 

significant decreasing trends (drier conditions). Each region in Oklahoma is shown 

separately. 
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Figure A.8 Kendall’s tau statistic to test for trends in the precipitation at 3 month 

scale for all time periods longer than 10 years. Blue colors indicate statistically 

significant increasing trends (wetter conditions) in the precipitation and red colors 

indicate statistically significant decreasing trends (drier conditions). Each region in 

Oklahoma is shown separately. 
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Figure A.9 Kendall’s tau statistic to test for trends in the temperature at 3 month 

scale for all time periods longer than 10 years. Blue colors indicate statistically 

significant increasing trends (warmer conditions) in the temperature and red colors 

indicate statistically significant decreasing trends (cooler conditions). Each region 

in Oklahoma is shown separately. 
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Figure A.10 Kendall’s tau statistic to test for trends in the PET at 3 month scale for 

all time periods longer than 10 years. Blue colors indicate statistically significant 

increasing trends in the PET and red colors indicate statistically significant 

decreasing trends (drier conditions). Each region in Oklahoma is shown separately. 

 

 


