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ABSTRACT 

The largest tropical lake in Mexico, Lake Chapala, is a major fishery and a 

recipient of many contaminants (industrial and agricultural) via the Lerma River.  The 

objectives were to evaluate concentrations of mercury (Hg), aluminum (Al), barium 

(Ba), copper (Cu), manganese (Mn), strontium (Sr), vanadium (V), and zinc (Zn) in fish 

and wildlife of Lake Chapala.  I also used stable isotopes carbon (δ
13

C) and nitrogen

(δ
15

N) to determine trophic differences between the 3 collected fish species.  I collected

water, sediment, fish, and feather samples and measured these samples for Hg and other 

metals.  

Mercury concentrations in water were higher compared to other lakes around the 

world, but not as high as those determined from the Jose Antonio Alzate reservoir in 

Mexico.  Sediment Hg concentrations were similar to those reported by other studies 

from Lake Chapala.  Also, the Hg concentrations measured in fish were similar to those 

from other studies.  Feather samples collected had a wide range of δD values; therefore 

using these values were not useful for predicting significant relationships between areas 

of feather growth and areas of Hg acquisition.  Concentrations of other metals in water, 

sediments, and fish were also similar to those reported in previous studies. 

An Attwater’s prairie-chicken (APC) study was conducted to determine the diet 

of wild APC populations once released from captivity with the use of stable isotope 

analysis of δ
13

C and δ
15

N.  I also compared historic and contemporary APC feather δ
13

C
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and δ
15

N values to one another.  I collected vegetation, insect, fecal, and blood samples

from APCs on the Attwater Prairie Chicken National Wildlife Refuge (APCNWR). 

The stable isotope analysis revealed the mixing model produces different results 

dependent on the number of diet sources used.  When analyzing δ13
C and δ15

N from

blood, the main diet source is C3 vegetation (forbs) when 3, 4, and 5 diet sources are 

used.  Historic feather’s δ13
C and δ15

N values showed that spiders (3 and 4 diet sources)

and rice (5 diet sources) contributed the most to APC diet.  Contemporary feather δ13
C

and δ15
N values determined insects (3 sources), forbs (3 sources), and C4 vegetation

(grasses; 5 sources) contributed the most. 
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NOMENCLATURE 

 

Hg Mercury 

Al Aluminum 

Ba Barium 

Cu Copper 

Mn Manganese 

Sr Strontium 

V Vanadium 

Zn Zinc 

δ
13

C Stable isotope carbon 

δ
15

N Stable isotope nitrogen 

APC Attwater’s prairie-chicken 

APCNWR Attwater Prairie Chicken National Wildlife Refuge 
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CHAPTER I  

INTRODUCTION 

 

Mercury and Other Metal Contaminations 

The presence of mercury (Hg) in the atmosphere is due to both anthropogenic 

and natural sources (Angot et al. 2016).  Major anthropogenic sources of Hg include: 

solid waste incineration, coal and oil combustion, pyrometallurgical processes, and gold 

production (Pirrone et al. 1996, Pai et al. 2000).  Gold and silver mining releases Hg into 

the environment through the metal’s amalgamation with those mined metals (Lacerda 

1997).  Since the beginning of the industrial period, there has been a significant increase 

in atmospheric Hg levels caused by industrial activities (Wang et al. 2004).  Domestic 

sewage discharge, without being treated properly, increases Hg concentrations in aquatic 

systems (Hermanson 1998).  Globally, Asia contributes the most anthropogenic emission 

of Hg by 54%; Africa contributes 18%, and then Europe with 15% (Pacyna et al. 2006).  

Naturally occurring Hg sources consist of degassing from Hg mineral deposits, volcanic 

emissions, and forest fires (Biswas et al. 2007, Pirrone et al. 2010).  Pirrone et al. (2010) 

suggested that approximately 342 mg/yr of Hg is emitted annually from forest fires 

around the world.  Natural and re-emitted Hg emissions have a wide range distribution, 

which differ from anthropogenic Hg sources.  This makes estimating emission amounts 

and applying control methods a more complicated process (Wang et al. 2004).   

The natural Hg cycle (e.g. volcanoes, forest fires, etc) is disturbed by human 

activity, which causes an increased amount of Hg found in the environment (Roulet et al. 
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2000).  Aquatic systems become contaminated with Hg by both sources through surface 

run-off and atmospheric deposition (Ullrich et al. 2001).  Once in the aquatic system, Hg 

can be methylated by anaerobic microorganisms, becoming methylmercury (MeHg) 

(Hsu-Kim et al. 2013).  Methylmercury can be stored in fatty tissues (Ravichandran 

2004), causing it to become biomagnified throughout the food web (Scheuhammer et al. 

2007). 

Mercury Toxicity to Fish 

Methylmercury is a cause for concern since it is a known neurotoxin that can 

affect fish, wildlife, and humans (Wolfe et al. 1998, Crump and Trudeau 2009, Angot et 

al. 2013).  Fish exposed to MeHg affects their behavior, biochemistry, growth, 

reproduction, development, and survival (Sorensen 1990, Wiener and Spry 1996).  

Exposure of dietary MeHg to fish in long-term laboratory studies, suffered loss of 

coordination, decreased swimming activity, starvation, and increased mortality (Wiener 

et al. 2003).  Fish populations also may be affected by low concentrations of Hg 

indirectly by impairment of physiological processes (Crump and Trudeau 2009).  At 

current Hg levels found in aquatic ecosystems, the most observed effect of Hg on wild-

fish is reduced reproductive success (Wiener and Spry 1996).  Sex steroid levels can be 

reduced by apoptosis in steroidogenic gonadal cells in fish exposed to MeHg (Crump 

and Trudeau 2009).  Interstitial cells in fish secrete androgens, which mediate 

gonadotropic regulation of spermatogenesis and spermiogenesis (Yaron 1995). When 

male Walking catfish’s (Clarias batrachus) were exposed to Hg, their interstitial cells 

became inactive and had signs of degeneration (Kirubagaran and Joy 1992).  Male Nile 
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tilapia (Oreochromis niloticus) had a decrease in spermatogenesis and atrophied 

seminiferous tubules after being exposed to MeHg for 7 months.  In female fish, Hg can 

inhibit steroid hormone synthesis, affect ovarian morphology, and hinder oocyte 

development (Crump and Trudeau 2009).  Furthermore, female fish’s fecundity and 

spawning can be altered when they are exposed to Hg.  Kihlstrom et al. (1971) found 

that Zebrafish (Danio rerio) produced fewer eggs after being exposed to a mercurial 

fungicide.  Additionally, MeHg may be transferred to eggs and embryos maternally and 

potentially reduce hatching success (Crump and Trudeau 2009). 

Mercury Toxicity to Birds 

In birds, MeHg can penetrate the blood-brain barrier causing central nervous 

system dysfunctions and brain lesions (Wolfe et al. 1998).  Acute MeHg poisoning can 

lead to birds experiencing reduced food intake, advanced weakness in wings and legs, 

trouble flying, walking and standing, and reduced muscle coordination (Scheuhammer 

1987).  Inorganic Hg causes major toxic effects to bird kidneys, which happens when the 

proximal tubular cells undergo necrosis (Ware et al. 1975).  The avian kidney may be 

more vulnerable to Hg toxicity because birds have a renal portal system.  This means 

bird’s venous blood travels from the digestive tract to the kidney, instead of traveling to 

the liver to be filtered (Wolfe et al. 1998).   

Reproductive effects in birds due to Hg toxicity include reduced hatchability, 

thinning of eggshells, decreased clutch size, a greater chance of eggs being laid outside 

nests, abnormal behavior and impaired hearing of juveniles (Stoewsand et al. 1971, 

Heinz 1975, Scott 1977, Heinz 1979).  Mallard ducks fed MeHg over 3 generations were 
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found to have decreased reproductive success and ducklings showed a change in 

behavior (Heinz 1974).  Male quail also experienced delayed development of their 

testicles (Scheuhammer 1987).   

Other Metals Toxicity to Fish and Birds 

There are other metals besides Hg that can be detrimental to fish and wildlife at 

certain concentrations.  Sparling and Lowe (1996) found toxic and sublethal effects to 

fish due to high concentrations of aluminum (Al), such as asphyxiation.  Eisler (1998) 

determined behavior and growth defects due to high concentration of copper (Cu), and 

Eisler (1993) noticed hemorrhaging due to zinc (Zn).  In birds, vanadium (V) 

concentrations (0.5 mg/kg) can affect the metabolism of mallards (Anas platyrhynchos; 

White and Dieter 1978).  Zinc toxicity studies conducted on ducks (Anas spp.) 

determined reduced survival when their diet contained 742 Zn/kg body weight (force-fed 

zinc metal shot equivalent) (Grandy et al. 1968), but domestic chickens (Gallus sp.) had 

a higher tolerance (2,000 > Zn/kg ration affected chicks negatively; Stahl et al. 1990). 

Carbon, Nitrogen, and Deuterium Stable Isotopes in Ecological Studies 

Past ecological studies have used stable isotopes carbon (δ
13

C) and nitrogen 

(δ
15

N) to investigate trophic relationships within a food web (Kelly 2000, Mora 2008, 

Boecklen et al. 2011).  δ
13

C can help distinguish between a consumer diet based on 

autochthonous or allochthonous carbon sources (Watanabe et al. 2008).  Due to an 

enrichment of the δ
15

N isotope (approximately 2.2 - 3.4‰) with every trophic level 

increase (McCutchan et al. 2003); it has been used in animal diet studies to determine 

the trophic position of an animal within the food chain (Fry 2006).  Previous studies also 
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have analyzed aquatic biota’s metal concentrations and δ
13

C and δ
15

N to determine if 

bioaccumulation, biomagnification, and/or biodilution occur (Capelli et al. 2008 and 

Watanabe et al. 2008).  Deuterium (δD) has been used in past avian studies to determine 

from which area the feathers were grown (Hobson 1999).  This is possible since δD 

values in feathers reflect δD values present in precipitation from around the North 

American continent (Hobson 2005). 

Lake Chapala Study 

Few studies have been conducted on the impact of Hg as well as other metal 

contamination on fish and surrounding wildlife in Lake Chapala (Fig. 1).  A study 

conducted at Lake Chapala assessed Hg contamination in fish (i.e., carp (Cyprinus 

carpio), whitefish or silverside (Chirostoma spp.), and tilapia (Oreochromis spp.)), 

sediments, and human hair (Trasande et al. 2010).  The researchers studied routes of 

MeHg exposure to the human fishing population of Lake Chapala.  They concluded the 

lake’s carp had enough Hg to be a cause of concern for locals who consume fish.  

Recently, Stong et al. (2013) conducted a lake wide survey of carp from Lake Chapala to 

acquire total Hg concentration information.  They found the majority of carp were safe 

to consume on a limited basis due to the detected Hg concentrations below 1.0 ppm total 

Hg.  In addition, they determined Hg concentrations decreased the further away fish 

were collected from the Lerma River.  They concluded that a large sample size, 

comprising the whole lake, would be needed for dependable results to be obtained.  Both 

studies focused on fish, but neither looked at the Hg levels from the wildlife surrounding 

Lake Chapala. 
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Figure 1: American white pelican colony at Lake Chapala, Mexico. 

 

 

I analyzed metal concentrations (Hg and others) in fish that could be consumed 

by the aquatic avian community of Lake Chapala.  The main objectives for this study 

were to (1) determine concentrations of metals (Hg, Al, Ba, Cu, Mn, Sr, V, and Zn) in 

water, sediments, fish, and birds (Hg only), (2) evaluate potential problems that could be 

associated with metal concentrations to fish and birds (Hg only), (3) analyze δ
13

C and 

δ
15

N from fish fillet samples (tilapia and common carp) and silverside (composite whole 

body), and δD in feathers collected.   
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Fish and Wildlife of Lake Chapala 

For this study, I collected 3 different fish species from Lake Chapala (Fig. 2)  

Silversides (Chirostoma spp.) are endemic to this lake and consume cladocerans 

(Bosmina, Ceriodaphnia, and Daphnia), copepods (Cyclops), and other small biota in 

the lake (Moncayo-Estrada et al. 2011).  They were the smallest fish collected for this 

study and can measure from 28–104 mm total length (Mercado-Silva et al. 2015).  

Tilapias (Oreochromis mozambique) are known to eat smaller vertebrates including 

small fish and crayfish (Mercado-Silva et al. 2015).  Carp (Cyprinus carpio), the largest 

fish collected in this study, are benthic feeders and consume detritus from the bottom of 

the lake as well as silverside eggs and fingerlings (Trasande et al. 2010, Burton 1997).  

Fish metal levels were monitored because they are a main source of protein for the 

surrounding human population. 
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Figure 2: Silversides (A), tilapia (B), and carp (C) samples collected from Lake Chapala. 

 

 

Aquatic birds residing at Lake Chapala are the resident great (GREG; Ardea 

alba) and snowy egrets (SNEG; Egretta thula), plus a migratory species, the American 

white pelican (AWPE; Pelecanus erythrorhynchos) (Villamagna 2009).  American white 

pelicans breed in Canada and in the northern United States during spring, and then travel 

south for winter (Knopf and Evans 2004).  They prefer freshwater environments such as 

A 

B 

C 
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lakes and rivers opposed to more open waters like oceans, but are found there as well 

(Findholt and Anderson 1995).  This is due to their foraging habits, unlike brown 

pelicans (Pelecanus occidentalis), they do not dive for food, but instead swim in a group 

on the surface of the water corralling fish underneath them and then placing their bills 

into the water and scooping up fish (Findholt and Anderson 1995).  The 2 egrets utilize 

different foraging techniques compared to the AWPE as well as target smaller fish for 

their diet.  The foraging technique by the GREG consists of walking slowly, standing-

and-waiting, and uses peering techniques at usually fresh water and wetland habitats 

(Mccrimmon et al. 2011).  The SNEG uses a wide range of foraging behaviors, greater 

than the GREG, and can be seen sometimes chasing its prey (Parsons and Master 2000). 

 

Attwater’s Prairie-chickens in Texas 

The Attwater’s prairie-chicken (APC; Tympanuchus cupido attwateri) population 

has been declining since the early 1900s (Lehmann and Mauermann 1963).  Their 

decline is mainly due to habitat loss caused by conversion of prairie to agricultural 

fields, woody plant encroachment, urban development, and overgrazing (Lehman 1941).  

The current wild APC population is estimated to be less than 200 birds, compared to 

their historic numbers of 300,000 to 1 million (Lehman 1941, Hammerly et al. 2013).  

Lehmann and Mauermann (1963) reported an 85% decrease of the APCs population 

(8,700 in 1937 to 1,335 in 1963), and soon after they were listed as an endangered 

species in 1967. Since their listing as an endangered species, there have been numerous 

research efforts to save this species.   
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A captive breeding program was started in 1992 in order to prevent extinction 

due to low numbers of wild APCs (432 birds; Lockwood et al. 2005).  This program was 

met with some difficulties in the form of disease (REV) and malformations of chick feet 

and leg growth (Griffin 1998).  Nonetheless, the captive rearing program has persevered 

and has helped prevent the extinction of APCs.  With the use of captive birds to 

supplement the wild population a danger of loss of genetic variability could occur 

(Ellsworth et al. 1994).  In addition, proper records must be maintained of the APCs 

released back into the wild so that genetic variability is kept and no inbreeding is present 

(Hammerly et al. 2013).  

Once released back into the wild, proper precaution must be maintained to ensure 

APC survival.  Predator management for APCs nest predators took place during 1980-

1981 and it was determined their removal resulted in an increase of nest success.  

However, the researchers saw that coyotes (Canis latrans) and birds of prey began to 

target rabbits and adult APCs more since there was a reduction of small mammals on the 

refuge (Lawrence and Silvy 1995).  For future control methods to be effective they 

suggest targeting nest predators as well as those that prey on adult APCs.  All of these 

studies were conducted to help understand the APCs decline, as well as to increase the 

wild population of APCs by supplementing them with captive reared birds.   

Use of Carbon and Nitrogen Stable Isotopes in Ecological Studies 

As mentioned earlier, stable isotopes are commonly used to determine animal 

diets.  Carbon is useful for distinguishing between those animals that consume C3 or C4 

vegetation.  This is due to plants having different photosynthetic pathways.  C3 plants fix 
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CO2 with the enzyme ribulose bisphosphate carboxylase (RUBISCO) while C4 plants fix 

CO2 with carboxylate phosphoenolpyruvate (PEP; O’Leary 1988).  Some examples of C3 

plants include trees, shrubs, and grasses and have a δ
13

C value of approximately -26.7‰ 

± 2.3‰ (range -22‰ to -30‰), while C4 plants consists of corn, sugar cane, and dryland 

grasses with an approximate value of -12.5‰ ± 1.1‰ (range -10‰ to -14‰) (Cerling et 

al. 1997,  Fry 2006).  The trophic increase of δ
15

N is caused by the isotopically light 

nitrogen (
14

N) being excreted in the urine, leaving the heavier (
15

N) isotope in the 

consumer, causing a retention of 
15

N and thus an increase between different trophic 

levels.  An increase of δ
15

N values also happens when an animal is water and 

nutritionally stressed (Kelly 2000).   

δ
13

C and δ
15

N stable isotopes have been used in previous studies to compare 

historic feather samples, collected from museums, to contemporary ones in order to 

determine any diet changes.  For example, Thompson et al. (1995) used the northern 

fulmar (Fulmarus glacialis) contemporary and historic feather samples, and compared 

their isotopic signatures (δ
13

C and δ
15

N).  They found that both stable isotopes declined 

over time, showing long-term changes to bird diet.  Another study used seabird’s 

feathers to determine if their diet was altered by environmental change over a span of 

150 years (Blight et al. 2015).  The authors indicated that there was a decline in diet 

quality of this seabird caused by either decrease of fish abundance or other human 

impacts.   

Other studies have used δ
13

C and δ
15

N in stable isotope mixing models, which 

are used to infer the composition of the animal’s assimilated diet (Phillips et al. 2014).  
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Recently, MixSIAR has been used to study a variety of animal including: sea turtles 

(Hall et al. 2015), platypus (Ornithorhynchus anatinus; Klamt et al. 2015), and 

invertebrates and fishes (Schroeter et al. 2015).  One study looked at the diet of an 

endangered penguin, and determined that penguins targeted both squids and fish as prey 

sources (Connan et al. 2016).  They stressed this finding since these penguins use squids 

to sustain themselves, while they feed fish to their chicks.  With this new information, 

they recommend fish and squid stocks to be monitored to ensure penguin population 

recovery. 

Stable Isotopes Study 

This study aims to determine current APC populations preferred diet through the 

use of stable isotope analysis of δ13
C and δ15

N of potential sources (Fig. 3).  

Additionally, I examined δ13
C and δ15

N values in feathers of museum and current APC 

feather to determine potential shifts in diet of historic versus contemporary prairie 

chickens.  The specific objectives of this study were to: (1) determine δ
13

C and δ
15

N 

stable isotope signatures in wild APCs feathers, blood, and feces collected from the 

Attwater Prairie Chicken National Wildlife Refuge (APCNWR) in Eagle Lake, Texas, 

(2) collect vegetation and arthropod samples to determine their δ
13

C and δ
15

N stable 

isotope signatures, and (3) determine and compare δ
13

C and δ
15

N isotopic signatures in 

feathers of historic and contemporary APCs. 
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Figure 3: A male (left) and female (right) Attwater prairie-chicken at the APCNWR. 
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CHAPTER II 

HAZARD ASSESMENT OF MERCURY TO WATERBIRDS AT LAKE CHAPALA, 

MEXICO 

Summary 

1

Lake Chapala is the largest lake in Mexico and serves as a fishery for the 

surrounding communities.  This study was conducted to determine mercury (Hg) 

concentrations in fish and aquatic birds from Lake Chapala and evaluate for 

bioaccumulation.  From the 3 species of fish collected, their Hg concentrations ranged 

from 0.021 to 0.568 µg/g wet weight.  Fish Hg concentrations were positively and 

significantly correlated with total fish length (R
2
 = 0.4434, P < 0.05).  I also analyzed

fish tissues for stable isotopes δ
13

C and δ
15

N, and determined fish δ
15

N values to be

significantly correlated with Hg concentrations from Lake Chapala and San Antonio 

Guaracha Reservoir (R
2
 = 0.6936, P < 0.001 and R

2
 = 0.4032, P < 0.05).  Compared to

other lakes, this study’s fish Hg concentrations were within the same values reported.  

As for the feather Hg concentrations, no significant differences were determined 

between years, locations, nor among species.  Feather δD values showed a great range (-

163‰ to -11‰) and had Hg concentrations ranging from 0.805 to 18 µg/g dw, which 

suggests exposure for aquatic birds (American white pelicans and egrets) are 

1
 Reprinted with permission from “Accumulation and hazard assessment of mercury to waterbirds at Lake 

Chapala, Mexico” by Torres, Zaria, Miguel A. Mora, Robert J. Taylor, Dioselina Alvarez-Bernal, Hector 

R. Buelna, and Ayumi Hyodo, 2014. Environmental Science & Technology, 48, 6359-6365, Copyright 
2014 by the American Chemical Society. 
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widespread.  The next step would be to monitor contaminant exposure to breeding 

aquatic birds at Lake Chapala to help determine potential effects of Hg on these resident 

birds. 

 

Introduction 

Mercury (Hg) emissions from anthropogenic sources have contributed to the 

contamination of aquatic ecosystems all over the world (Wang et al. 2004).  Mercury 

occurs in the aquatic environment in inorganic and organic forms; however, the 

predominant form of Hg is dependent on suspended organic matter (Meili 1997).  

Mercury methylation occurs naturally in an aquatic environment through acidification, 

and methylmercury (MeHg) is more easily accumulated through the food web 

(Scheuhammer and Blancher 1994).  Aquatic systems become contaminated with Hg in 

many ways, but primarily by soil erosion, runoff, and atmospheric deposition (Roulet et 

al. 1999).  Anthropogenic sources of Hg include solid waste incineration, coal and oil 

combustion, pyrometallurgical processes, and production of Hg and gold mining 

(Pirrone et al. 1996, and Pai et al. 2000).  Domestic sewage discharge, also contributes to 

increased Hg concentrations in aquatic systems (Hermanson 1998).  Non-anthropogenic 

sources of Hg include volcanic emissions and forest fires, as well as degassing from Hg 

mineral deposits, and degassing from Hg contaminated aquatic and terrestrial systems 

(Nriagu and Pacyna 1988, Lindqvist 1991, Nriagu 1994, and Camargo 2002).  Brunke et 

al. (2001) estimate that approximately 590–930 metric tons of Hg is emitted annually 

from forest fires around the world.  
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Fish exposed to MeHg could be affected in their behavior, growth, reproduction, 

development, and survival (Sorensen et al. 1990, Wiener and Spry 1996).  The most 

commonly observed effect of Hg on wild-fish is reduced reproductive success (Weiner 

and Spry 1996).  Male Nile tilapia (Oreochromis niloticus) had a decrease in 

spermatogenesis and atrophied seminiferous tubules after being exposed to MeHg for 7 

months (Crump and Trudeau 2009).  In female fish, Hg can inhibit steroid hormone 

synthesis, affect ovarian morphology, and hinder oocyte development (Crump and 

Trudeau 2009).  Kihlstrom et al. (1971) found that Zebrafish (Danio rerio) produced less 

eggs after being exposed to a mercurial fungicide.   

In birds, MeHg has been associated with brain lesions, spinal cord deterioration, 

and central nervous system dysfunctions (Wolfe et al. 1998).  Methylmercury in birds 

also leads to reduced food intake, advanced weakness in wings and legs, trouble flying, 

walking and standing, and an inability to coordinate muscle movements (Scheuhammer 

1987).  Reproductive effects of Hg in birds include reduced hatchability, decreased 

clutch size, abnormal behavior of juveniles, and possible impaired hearing of juveniles 

(Heinz 1979, Heinz 1975, Stoewsand et al. 1971, and Scott 1977). 

The Lerma-Chapala Basin concentrates about 10% of Mexico’s human 

population.  Industrial, agricultural, and urban settings along the basin contribute a great 

variety of contaminants to the Lerma River which discharges its waters into Lake 

Chapala, the largest tropical lake in Mexico.  Lake Chapala represents a major fishery 

and recreation resource for various communities surrounding the lake, as well as for 

tourists from many parts of the country (SEMARNAT 2009).  It also is the ultimate 
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receptor of a great variety of contaminants from the sub-basin, including pesticides, 

industrial residues, oils, detergents, and heavy metals such as, chromium, lead, zinc, and 

Hg (Hansen and Van Afferden 2001, Jay and Ford 2001).  Local sources of pollution 

also are noticeable; Chapala County generates over 95 tons/day of trash which is 

deposited without treatment in an open pit (SEMARNAT 2009).  Despite concerns for 

the effects of pollutants on human and ecosystem health, studies addressing contaminant 

issues in Lake Chapala are few. 

Important fishes to the fishing community and are among the most harvested and 

consumed include: silverside (Chirostoma spp., commonly known as charal), common 

carp (Cyprinus carpio), and tilapia (Oreochromis spp.; Lind et al. 2000).  One recent 

study suggests that pollution in Lake Chapala has led to differences in relative 

abundance of tolerant and non-tolerant fish species, with the most tolerant showing an 

increase in relative abundance (Becerra-Munoz et al. 2003).  Contaminant studies in 

Lake Chapala have focused primarily on metal pollution.  Studies show a seasonal 

variability in the accumulation of metals in water, with potential increases during the dry 

season (likely because of evaporation) and decreases during the rainy season, because of 

dilution (Ford et al. 2000).  Elevated concentrations of copper (Cu) were reported for 

tilapia and carp (Ford et al. 2000).  In 1993, elevated concentrations of chromium, 

nickel, and Cu were reported in sediments (Hansen and Van Afferden 2001).  Elevated 

concentrations of Hg were reported previously in silverside (up to 4.9 µg/g dry weight 

(dw)) from Lake Chapala (Ford et al. 2000, and Jay and Ford 2001).  High 
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concentrations of Hg also were reported recently in carp (0.87 µg/g wet weight (ww), 

Trasande et al. 2010).  

Lake Chapala has been recognized as one of the most important wetlands of 

Mexico and in 2011 was designated as a Ramsar site (Ramsar 2011).  More than 80 

species of aquatic birds have been reported for Lake Chapala and it is one of the largest 

wintering areas for American white pelicans (AWPE; Pelecanus erythrorhynchos) in 

Mexico.  It is estimated that 20,000–30,000 AWPEs winter and stay about 5 months 

from October to March in Lake Chapala (D.W. Anderson pers. comm.).  Currently, to 

my knowledge, there are no studies which have evaluated the impacts of metals and 

other contaminants on fish-eating birds and other wildlife in Lake Chapala.  Given the 

importance of Lake Chapala as a Ramsar site, understanding the effects of pollution on 

aquatic wildlife are important.  The AWPE is a species of special concern in the United 

States and is protected under the Migratory Bird Treaty Act.  The objectives of this study 

were to determine bioaccumulation of Hg in fish and to evaluate the potential impacts of 

Hg in the diet of aquatic birds, particularly the AWPE, in Lake Chapala.  I also measured 

stable isotopes of δ
13

C and δ
15

N in fish tissue to determine trophic differences among the 

3 fish species and predict potential Hg movement from water and sediments to fish.  

Mercury also was analyzed in feathers of AWPE wintering at Lake Chapala to determine 

Hg exposure in their breeding and molting grounds in the north and to compare with an 

AWPE colony from North Padre island, Texas, as well as with resident aquatic species 

such as great and snowy egrets (GREG; Adrea alba, and SNEG; Egretta thula).   
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Methods 

Study area 

Lake Chapala is located on the border of Jalisco and Michoacán, Mexico, with 

the majority (114,659 ha) being located in Jalisco.  It is south of the major city, 

Guadalajara and is 1,510 m above sea level (Moncayo-Estrada 2011; Fig. 4). 

 

 

 

Figure 4: Lake Chapala and study sites located in Jalisco, Mexico. 
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Sample Collection 

Six water and 6 sediment samples were collected per year in the winter of 2011 

and 2012 from 3 locations southeast of Lake Chapala near the cities of Petatan, La 

Palma, and Palo Alto.  During 2011, water was collected at each location in duplicate 

with pre-cleaned 125 ml LDPE bottles for clean metals and 125 ml pre-combusted flint 

glass bottles, preserved with BrCl, to maintain Hg(II) ions in solution and to oxidize 

organic Hg so that total Hg could be measured.  Fish were purchased from fisherman 

right after they came out of the lake in the towns of La Palma and Petatan during 2011 

and 2012 at the same time of the water and sediment collection. Tilapia and carp also 

were collected from a reference location in San Antonio Guaracha about 25 km 

southeast of Lake Chapala.  Sediment and fish samples were placed in Ziploc bags and 

stored on ice until taken to an ultra-cold freezer and stored at -80°C. Primary feathers of 

American white pelicans and egrets (mostly great egrets), were collected from roosting 

areas along the shore in Lake Chapala near the towns of La Palma and Petatan southeast 

of the lake during 2011 and 2012. The feathers were collected haphazardly and were 

stored in Ziploc bags until analysis.  Additionally, feathers from adult AWPEs were 

collected right after the breeding season from Padre Island National Seashore in 2011 

only (North Padre Island, Texas) for comparison with those collected in Lake Chapala.   

Chemical Analyses 

All the samples were analyzed for Hg at the Trace Element Research Laboratory, 

College of Veterinary Medicine, Texas A&M University.  Water was analyzed for 

mercury using EPA method 1631 revision E, with an automated sampling analysis 
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system (Tekran 2600).  The amount of Hg in samples is calculated by comparing the 

detector response with that of known calibration standards that are processed and 

analyzed identically to the samples.  The sediment samples were freeze dried and then 

ground up using a mortar and pestle.  Approximately, 0.5 g dried, powdered sediment 

were dissolved in nitric acid, hydrochloric acid, and then brought to a final volume of 

50ml with deionized water.  Prior to analysis, all carp and tilapia were measured for total 

length.  Carp and tilapia were filleted on each side with the scales intact and then 1 fillet 

portion was freeze dried and homogenized with a titanium blade grinder.  Silversides 

(approximately 12 mm in length) were pooled (8 individuals for each sample) for 

analysis and also were homogenized with a titanium blade grinder.  Primary feathers of 

AWPE from Lake Chapala and North Padre Island and egrets from Lake Chapala (10 

from each species) were washed in an ionized water bath for 5 minutes each and then 

oven dried at 30°C over night.  Once dried, they were cut into 4 sections and grounded 

up into a homogenized sample.  

The sediments, fish, and feather samples were analyzed for total mercury by a 

Direct Mercury Analyzer (DMA-80) equipped with a 40 position auto sampler and a 

dual cell detector.  Samples were weighed on pre-combusted boats and placed into an 

auto sampler carousel.  The boats were then subjected to a sequence of heating steps 

while under a constant flow of oxygen.  After the samples were combusted and the Hg 

collected for a sufficient time, the gold trap was heated in order to release the trapped Hg 

as a concentrated slug into the gas stream.  The released Hg was swept into a 2-stage 

absorption cell where free Hg0 atoms absorb light from a Hg vapor lamp.  Mercury 
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concentrations in samples were quantitatively measured by comparing peak absorption 

with that of known calibration standards.  Accuracy was verified by analyzing a blank 

and a certified reference material.  Precision was evaluated by analyzing replicate 

samples.  The lowest limit of detection for Hg was 0.0000002 µg for water, 0.006 µg for 

sediments, and 0.004 µg for fish.  The Hg QA/QC results for water, sediments, fish, and 

feathers from Lake Chapala can be found in Appendix A. 

Stable Isotope Analysis of Fish Tissue and Avian Feathers 

Approximately 10 g of previously homogenized fish muscle was further 

grounded in a ball mill grinder (Retsch MM400) for 30 seconds (30.0 frequency/ 

seconds).  Afterwards, approximately 1 mg of ground fish homogenate was placed in tin 

capsules (4×6 mm, Costech) and then in a sample tray. The capsules were analyzed for 

δ
13

C and δ
15

N with a Delta V Advance stable isotope ratio mass spectrometer (Thermo 

Scientific
®
) coupled to an Elemental Combustion System (EA) (Costech) and Conflo IV.  

Deuterium isotopes (δD) were measured in avian feathers to determine potential 

differences in molting origin of AWPE wintering in Lake Chapala relative to patterns 

observed in AWPE breeding in North Padre Island.  Feathers were washed in an 

ultrasonic bath for 5 minutes in deionized water, before any analysis.  Each feather was 

then ground, in its entirety, with a Retsch MM400 mill grinder. Two grams of each 

ground sample were then washed of any debris and surface oils by a 2:1 chloroform to 

methanol solution for 24 hours and then allowed to air dry for 48 hours.  Once dried, a 

portion (0.5mg) of each feather sample was placed in a silver capsule.  Both standards 

and samples were left in room temperature for exchange with ambient vapor (Wassenaar 
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and Hobson 2003) for 7 days, and kept in a desiccator for at least 5 days prior to 

analysis.  Feather samples also were analyzed in a Delta V Advance stable isotope ratio 

mass spectrometer (Thermo Scientific) coupled to a High Temperature Conversion 

Elemental Analyzer (TC/EA; Thermo Scientific) and Conflo IV (Thermo Scientific).  

Standards used were KHS and CBS (keratin standards from Environment Canada), and 

USGS42 and USGS43 (from U.S. Geological Survey).  Isotopes results are reported as 

permil (‰) relative to Vienna Standard Mean Ocean Water (VSMOW).   

Statistical Analyses 

The data for water and sediment data were normally distributed as indicated by 

the Shapiro-Wilk test, and then were analyzed by ANOVA to determine significant 

differences comparing locations.  The Tukey-Kramer HSD test was used to determine 

which means were significantly different.  Fish and feather data were log transformed to 

meet the normality assumptions and equality of variance.  ANOVA of log transformed 

data were used for comparisons by using the Tukey-Kramer HSD, which also was used 

to determine significant difference among locations.  A linear regression analysis was 

done between log transformed Hg values and total fish length.  Mercury concentrations 

in avian feathers from AWPEs and GREG/SNEG were compared by ANOVA and t-

tests.  Feather deuterium and Hg values also were compared by a linear regression 

analysis.  The level of significance used in this study was set at α = 0.05 (JMP
®
, Version 

12.1. SAS Institute Inc., Cary, NC).  
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Results 

Mean Hg concentrations in water collected in January 2011 from Lake Chapala 

were 0.015 ± 0.002 ng/ml (n = 6, range 0.01–0.019).  Mean Hg concentrations in 

sediments collected from the same locations during 2011 and 2012 ranged from 0.4 to 

1.0 µg/g dry weight (n = 12, x‾ = 0.597 ± 0.190 µg/g dw).  Mercury concentrations in fish 

were, for the most part, below 0.2 µg/g ww in the 3 species collected in Chapala and San 

Antonio during both years, except during 2011, when carp had mean Hg concentrations 

= 0.357 µg/g ww (Table 1).  Mercury concentrations in carp collected during 2011 from 

Lake Chapala were significantly greater (P < 0.0001) than carp collected during 2012; 

they also had greater Hg concentration than silverside and tilapia from Lake Chapala 

during both years of collection.  Lake Chapala carp collected in 2011 also were 

significantly greater than carp collected from San Antonio Guaracha Reservoir from 

both years, and tilapia (2012 only).  Silverside collected in 2011 in Lake Chapala also 

had significantly higher concentrations of Hg than those collected in 2012.  Similarly, 

Hg concentrations in silverside during both years were significantly greater than Hg 

concentrations in tilapia from Chapala, and carp and tilapia from San Antonio.  Carp 

collected in 2012 in Chapala also had significantly higher concentrations of Hg than in 

tilapia collected both years in Chapala as well as in tilapia collected in San Antonio in 

2012.  Overall, concentrations of Hg in carp and silverside were significantly greater 

than those in tilapia.  Mercury in fish was positively and significantly correlated with 

fish length (R
2
 = 0.4434, P < 0.05, Fig. 5).  
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Table 1. Total Hg levels (geometric mean and range, µg/g wet weight) in fish collected 

from Lake Chapala and San Antonio Reservoir in 2011 and 2012.  Mean values not 

sharing the same letter are significantly different. 

Year Location Species n Hg (µg/g ww) 

2011 Chapala Carp 8 0.357  A 

(0.265-0.568) 

  Tilapia 10 0.035  E 

(0.021-0.108) 

  Silverside 8* 0.150  B 

(0.126-0.172) 

 San Antonio Carp 5 0.073  CD 

(0.042-0.134) 

2012 Chapala Carp 6 0.101  BC 

(0.056-0.215) 

  Tilapia 6 0.036  DE 

(0.024-0.064) 

  Silverside 8* 0.076  C 

(0.067-0.091) 

 San Antonio Carp 3 0.072  BCDE 

(0.033-0.11) 

  Tilapia 3 0.031  DE 

(0.027-0.033) 

* Composite samples (8 individuals each)  
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Figure 5: Relationship between fish length (mm) and Hg concentrations (silverside fish 

not included). 

 

 

Stable isotopes δ
13

C and δ
15

N in fish tissue varied among species, primarily 

between carp and tilapia from Lake Chapala with those in the San Antonio Reservoir 

(Table 2).  Silverside which grows to an average of 90 mm, approximately 3 times 

smaller (in length) than carp, had δ
15

N values very similar to those of carp (Table 2, Fig. 

6).  The δ
15

N values in these 2 species were nearly 1 trophic level above (difference in 

δ
15

N of 2.69 ‰ for carp, and 2.48 ‰ for silverside) the level observed for tilapia in 

Chapala.  Also, δ
15

N values in carp and tilapia from Lake Chapala were greater 

(difference in δ
15

N of 5.46 ‰ and 5.07 ‰, respectively) than those in carp and tilapia 

from the San Antonio Reservoir (Table 2, Fig. 6).  The δ
15

N was a very good predictor 

of Hg concentrations both in Lake Chapala and in the San Antonio Reservoir (Fig. 7); 

the coefficient of determination was highly significant for the fish in Chapala (R
2 

= 

R² = 0.4434 
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0.6936, P ≤ 0.001) and also for the San Antonio reservoir (R
2
 = 0.4032, P ≤ 0.05).  The 

predictive equation for Hg based on δ
15

N values in fish from Chapala was: Log Hg = - 

4.3 + 0.19 (δ
15

N).  The δ
13

C values were somewhat broader in carp from San Antonio 

(range -20.2 to -30.93 ‰) than in carp from Chapala (-25.06 to -27.26‰).  The 3 fish 

species from Chapala had much narrower δ
13

C values than the fish from San Antonio 

(Table 2, Fig. 6). 

 

 

Table 2. Stable isotope ratios (x‾  ± SD) of carbon (δ
13

C) and nitrogen (δ
15

N) in fish from 

Lake Chapala, Jalisco, and San Antonio Guaracha Reservoir, Michoacán, Mexico. 
Location Species n Length (mm) δ

13
C (‰) δ

15
N (‰) 

Lake Chapala Carp 14 263 ± 14 -26.11 ± 0.63 18.03 ± 1.37 

 Tilapia 16 199 ± 8 -26.86 ± 1.68 15.35 ± 0.95 

 Silverside 16* 90 ± 0 -26.65 ± 0.19 17.83 ± 1.16 

San Antonio Carp 8 244 ± 40 -25.79 ± 3.63 12.57 ± 1.03 

 Tilapia 3 158 ± 7 -30.77 ± 0.64 10.27 ± 0.43 

* Composite samples. 
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Figure 6: Relationship between δ
13

C and δ
15

N in fish from Lake Chapala and San 

Antonio Reservoir. 

 

 

 

Figure 7: Relationship between Hg concentration and δ
15

N in fish muscle from Lake 

Chapala and San Antonio Reservoir. 
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Mercury concentrations in bird feathers were not significantly different (F4,45 = 

2.1, P = 0.09) among locations or among species; however, they were slightly higher in 

egrets from Chapala and were much lower in AWPE from Padre Island National 

Seashore than in AWPE from Lake Chapala (Table 3).  The δD in the same feathers 

analyzed for Hg from the 3 species were quite variable and ranged from -11 to -161‰ 

suggesting many locations of feather growth (Table 3, Fig. 8). Only a few δD values in 

feathers were close to the δD values in water from Lake Chapala (x‾  = –25.9 ± 0.5‰).  

There was a slightly significant negative relationship (P ≤ 0.05, R
2
 = 0.14) between Hg 

in feathers and δD showing there was a tendency for higher Hg accumulation in feathers 

which grew in more northern or inland locations. 
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Table 3. Total mercury levels (geometric mean and range, µg/g dry weight) and δD range values (‰) in feathers of American 

white pelicans from Lake Chapala, Mexico and North Padre Island National Seashore, Texas, and egrets from Lake Chapala. 
   2011   2012  

Species Location n 

Hg 

(µg/g dw) δD range (‰) n 

Hg 

(µg/g dw) δD range (‰) 

AWPE Lake Chapala 10 3.37 

(0.81-9.57) 

-46 to -163 10 4.02 

(1.17-18.0) 

-62 to -135 

 North Padre Island 

National Seashore 

10 2.75 

(1.56-4.21) 

-11 to -123    

GREG/SNEG Lake Chapala 10 4.54  

(2.36-11.5) 

-62 to -120 10 5.69 

(1.37-16.3) 

-62 to -131 
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Figure 8: Relationship between Hg concentration (µg/g ww) and δD values (‰) in 

feathers of egrets and American white pelicans from Lake Chapala, Mexico, and North 

Padre Island National Seashore, Texas. 

 

 

Discussion 

Total Hg values in water from lake Chapala were somewhat high compared with 

results from other freshwater lakes; however, the highest Hg values (18.8 ppt) were 

lower than those measured in the Jose Antonio Alzate Reservoir, Mexico in 1995 (104 

ppt), which is formed by the Lerma river upstream of Lake Chapala (Avila-Perez et al. 

1999).  However, that study did not report their method for Hg analysis, thus their results 

may not be comparable to mine.  Notwithstanding, Hg levels in water from Lake 

Chapala were higher than those observed in Minnesota, Nova Scotia, eastern 

Massachusetts, Lake Michigan, and in south Brazil (Dennis et al. 2005, Wiener et al. 

2006, Mirlean et al. 2008, Gabriel et al. 2009, and Jeremiason et al. 2009).  Lake 
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Chapala is a highly alkaline lake (pH = 9.6) which likely influenced the Hg 

concentrations in water.  Accordingly, in alkaline lakes there is less assimilation or 

methylation of Hg by bacteria than in more acidic lakes (Kelly et al. 2003).   

Sediment Hg concentrations in Lake Chapala were similar to those reported in 

previous studies (Hansen and Van Afferden 2001, and Trasande et al. 2010); however, 

sediment samples collected from deeper sites showed higher Hg concentrations (up to 

1.28 ppm; Trasande et al. 2010).  Mercury concentrations in sediments from Lake 

Chapala were much greater than those observed in some Mississippi lakes (Huggett et al. 

2001) and in Lake Ontario (Marvin et al. 2004). 

Mercury concentrations in fish from Lake Chapala were within values reported in 

many parts of the world (Huggett et al. 2001, and Mirlean et al. 2008).  Hg 

concentrations in silverside were higher in previous years (0.704–4.937 µg/g dw) (Ford 

et al. 2000, and Trasande et al. 2010) than what I observed (0.257–0.626 µg/g dw) in 

2011–2012.  Higher Hg values also were reported for carp in previous years (0.87 µg/g 

ww, Trasande et al. 2000) relatively to what I observed in 2011–2012.  Previous studies 

indicate that most Hg in fish is actually MeHg (Evers et al. 2005), which is highly toxic 

to aquatic and terrestrial organisms.  Common carp was the only species with mean Hg 

values above the fish tissue residue criterion for freshwater and estuarine fish of 0.3 mg 

MeHg/kg fish wet weight recommended by the U.S. EPA (USEPA 2001), but only 

during 2011.  In all cases, total Hg geometric mean values were well below the FDA 

action level of 1 mg/kg wet weight of MeHg in fish (USFDA 2000). The high pH value 
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of Lake Chapala also could help explain the lower than expected Hg concentrations in 

fish (Wiener et al. 2006, and Burgess and Meyer 2008).   

Stable isotopes δ
13

C and δ
15

N in fish tissue were useful to establish trophic 

differences among the 3 fish species as well as establish differences in Hg accumulation 

based on δ
15

N levels.  There were noticeable differences in δ
15

N values particularly for 

carp and tilapia from Lake Chapala and the San Antonio Guaracha Reservoir.  Within 

reservoirs, the fish species’ diet was very similar in the 2 years of sampling (Table 2). 

Carp and silverside from Lake Chapala appeared to be feeding almost at the same 

trophic level, or close to 1 trophic level above (δ
15

N difference of 2.72 ‰ and 2.27 ‰, 

respectively) the level observed in tilapia in Lake Chapala. The fish δ
15

N values 

differences between the 2 reservoirs were quite great.  Carp and tilapia in Lake Chapala 

seem to be feeding at nearly 2 trophic levels higher (δ
15

N difference of 5.7 ‰ and 5.3 

‰, respectively) than carp and tilapia in the San Antonio Guaracha Reservoir.  

However, caution should be taken on labeling this as such; I address this in Chapter III.  

Clearly, both silverside and carp in Lake Chapala are feeding at a much higher level than 

carp in San Antonio.  These feeding differences help explain differences in Hg 

accumulation between the species in Lake Chapala and those from San Antonio 

Guaracha Reservoir. The most surprising finding was that silverside, a small fish 

growing no more than 90 mm, seemed to be feeding almost at the same level than carp, 

which can grow up to 3 times higher or more. 

The high accumulation of Hg in carp and silverside in Chapala has implications 

for the accumulation and impacts of Hg on fish-eating birds, such as the AWPE and 
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GREG/SNEG.  The AWPE in Lake Chapala feeds primarily on scraps from tilapia 

provided by fisherman; however, they also feed on carp or other available fish. The 

silversides are probably too small for the AWPE to pursue them as part of their diet.  

Great and snowy egrets are more likely to feed on smaller fish, such as silverside, 

suggesting that Hg intake from eating this smaller fish species is quite high. This intake 

is probably reflected in the observed higher levels of Hg in egrets’ feathers.  The highly 

positive significant relationship between (δ
15

N) and Log Hg (Fig. 7) suggests this

isotope could be a good predictor of Hg concentration in fish in Lake Chapala.  This is 

particularly important for tropical lakes such as Lake Chapala to allow for more 

continuing monitoring of pollutants, such as Hg, with the use of less expensive analyses 

such as stable isotopes.  Because of a smaller sample size, the relationship between Hg 

and δ
15

N for fish from San Antonio was not as strong as that for Chapala.

The highest Hg concentrations in feathers were from egrets which were 

considered resident birds.  However, the δD values in water from Lake Chapala were at 

least 3 times less negative (-25.9 ± 0.5) than the δD values observed in egrets’ feathers, 

suggesting that perhaps the egrets wintering in Chapala were not resident species, but 

migrants and molted elsewhere in the north.  Feathers of AWPE wintering in Lake 

Chapala had intermediate levels of Hg, whereas feathers of AWPE nesting in North 

Padre island had the lowest. The Hg in feathers suggests a wide pattern of exposure for 

AWPE with differences in locations relative to the North Padre Island colony.  I 

analyzed δD values in feathers with the overall purpose to be able to predict potential 

breeding or molting areas for AWPE and egrets.  Unfortunately, the δD values were too 
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broad and inconclusive.  The δD values in egret feathers were not different from those in 

feathers of AWPE wintering in Chapala. Surprisingly, even the δD values in feathers of 

AWPE from North Padre, believed to have been grown there, did not have a consistent 

δD pattern and the values were much broader than those that would be expected from 

North Padre Island.  The above suggests that with the available data it is difficult to 

determine where the AWPE wintering in Chapala came from, although more likely from 

western breeding colonies and Pacific coastal areas in the north (Anderson and Anderson 

2005).  Similarly, the egrets may have migrated from northern areas in the United States.  

Recent studies have pointed out the use of δD values to infer origin of molting and 

breeding bird location should be taken with caution given there are other variables which 

influence δD (Wolf et al. 2013).  For this study, the slightly significant negative 

correlation between Hg and δD suggests birds that grew feathers in the north or in areas 

with more negative δD values were more likely to have greater concentrations of Hg 

than those that grew their feathers in dryer areas with less negative δD values.  Hg 

concentrations in feathers of AWPE wintering in Lake Chapala were within the lower 

range of those reported previously for AWPE from various regions of Nevada, Idaho, 

and Oregon (3.7–20 µg/g dw; Wiemeyer et al. 2007). Similarly, Hg values in carp from 

Chapala were within the ranges observed in fish regurgitated from various colonies in 

Nevada and Oregon in 1996 (Wiemeyer et al. 2007) 

Lewis and Furness (1991) estimated that primary feathers of black-headed gulls 

(Larus ridibundus) accumulated between 1.33 and 4.67 µg/g dw MeHg when chicks 

were dosed with 20 and 100 µg MeHg, respectively.  There was a progressive reduction 
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in the concentration of Hg in the primary feathers as growth continued.  AWPE consume 

an average of 1.8 kg fish/da or 20–40% of their body mass (Knopf and Evans 2004). If 

pelicans in Chapala were feeding exclusively on carp, the Hg intake would have been on 

average, 0.182 to 0.642 mg Hg/da for 2012 and 2011, respectively.  This estimate 

indicates that Hg intake by AWPE could lead to much higher residues in feathers. 

However, AWPE are often seen in big groups near fisherman which throw out the 

remains of tilapia and carp after removing the muscle to be sold commercially in nearby 

towns.  AWPE feeding on tilapia would be expected to ingest lesser concentrations of 

Hg.  Exposure of AWPE to Hg in their diet while wintering in Lake Chapala could be of 

concern depending on the variability of Hg in fish.  Lake Chapala is a very shallow lake 

and the total volume of water in the lake could oscillate significantly based on drought 

and the amount of water taken out by different municipalities and the city of 

Guadalajara.  Thus, it is expected that Hg concentrations in water, sediments, and biota 

undergo considerably annual variations.  Scheuhammer (1991) has suggested that diets 

of about 1 µg/g ww in birds can result in Hg concentrations in feathers near 20 µg/g dry 

weight.  He also indicates that in raptorial birds normal Hg concentrations in feathers are 

around 1-5 µg/g dry weight.  Clearly, there is some variability in Hg accumulation in 

bird feathers.  Contaminant exposure in aquatic birds in Lake Chapala during the 

breeding season should be monitored to better determine the potential effects of Hg on 

aquatic birds. 
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CHAPTER III 

METAL CONCENTRATIONS IN WATER, SEDIMENT, AND FISH FROM LAKE 

CHAPALA, MEXICO 

Summary 

2

Anthropogenic sources of pollution to Lake Chapala include metals, pesticides, 

industrial residues, and polycyclic aromatic hydrocarbons.  My main objective was to 

measure metal (aluminum, barium, copper, manganese, strontium, vanadium, and zinc) 

concentrations in water, sediment, and fish from Lake Chapala and a nearby reference 

location to determine potential negative effects on wildlife, particularly fish-eating birds.  

Fish metal concentrations ranged from 0.05 µg/g wet weight (ww) for Al and Cu to 

64.70 µg/g ww for Sr.  There was a positive and significant correlation between fish 

length and metals particularly for Ba, Cu, Mn, and Zn in Lake Chapala (P < 0.05).  

However, there were no significant correlations between metal concentrations and δ
15

N

values in fish suggesting that most metals did not biomagnify through the food chain.  

Overall, metal concentrations in water, sediments, and fish were similar and in some 

cases below those that have been reported for Lake Chapala over the last 20 years.  Also, 

metal concentrations were below those that could be of concern for negative effects on 

fish and wildlife using this ecosystem. 

2
 Reprinted with permission from “Tracking Metal Pollution in Lake Chapala: Concentrations 

in Water, Sediments, and Fish” by Torres, Zaria, Miguel A. Mora, Robert J. Taylor, and Dioselina 

Alvarez-Bernal, 2016. Bulletin of Environmental Contamination and Toxicology, 97, 418-424, 

Copyright 2016 by Springer Science + Business Media. 
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Introduction 

Out of Mexico’s 310 hydrologic basins, the Lerma-Chapala basin is the most 

important and receives attention from the federal, state, and municipal government levels 

(Mestre 1997).  This basin contains Lake Chapala, which has the Lerma River draining 

into it and the Santiago River flowing westward from it into the Pacific Ocean, serving 

as a natural drainage for the lake (Mestre 1997).  Recently, however, the Santiago 

River’s water outflow from Lake Chapala has been reduced (Hansen and van Afferden 

2001).  Lake Chapala, Mexico’s largest freshwater lake, serves as more than a source of 

water to its surrounding cities (Mestre 1997, and Stong et al. 2013).  It also provides a 

livelihood for the fishermen and serves a recreational source for retired residents (Shine 

et al. 1998).  The fish commonly harvested from the lake are silverside (Chirostoma 

spp.), tilapia (Oreochromis spp), and common carp (Cyprinus carpio).  These fish are 

frequently consumed by the local community (Lind et al. 2000).  In the Lerma-Chapala 

basin, there is regional pollution from surface run-off of irrigation and discharge of 

untreated effluents (Mestre 1997), which can then lead to Lake Chapala.  Natural sources 

of metals coming into rivers are rock weathering, soil erosion, and dissolution of water-

soluble salts (Hansen and van Afferden 2001).  Other forms of pollution that affect Lake 

Chapala include: metals, pesticides, industrial residues, and polycyclic aromatic 

hydrocarbons (Ford et al. 2000, Hansen and van Afferden 2001, Jay and Ford 2001).  

Fish metal levels were monitored because of concern for effects on fish-eating wildlife 

and the surrounding human population who use fish as a main source of protein.  

Aluminum (Al), barium (Ba), copper (Cu), manganese (Mn) strontium (Sr), vanadium 
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(V), and zinc (Zn) could be associated with a wide range of health effects on fish and 

wildlife (Eisler 1998, and Mora 2003).  Elevated concentrations of Al have been shown 

to affect salmonids growth and swim speed (Price 2013).  Copper is known to cause 

sensory and physical impairments to fish, such as damage to their olfactory system and 

reduction of growth (Price 2013), as well as cause hyperglycemia in carp (5 mg/L; 

Asztalos et al. 1990).  Studies of Zn exposure in salmonids showed that fish avoided Zn 

polluted areas, which could prevent them from reaching their rearing habitat (Price 

2013).   

Stable isotopes carbon (δ
13

C) and nitrogen (δ
15

N) have been used in aquatic 

studies to determine feeding relationships between fish species (Beaudoin et al. 2001, 

Power et al. 2002, and Syvaranta et al. 2006).  The δ
13

C isotope can help distinguish 

between consumers who prefer pelagic or benthic algae since the each algae type have 

distinct carbon signatures from one another (Hecky and Hesslein 1995).  In addition, 

δ
15

N can also help elucidate the presence of biomagnifcation of contaminants, if any, 

within freshwater food webs (Atwell et al. 1998).  Thus, both δ
13

C and δ
15

N can be used 

to determine an animal’s trophic position and how it might relate to their metal 

concentration. 

Even though there are concerns about the pollution with regards to human and 

ecosystem health, few studies have been conducted measuring metals in fish tissue from 

Lake Chapala (Ford and Ryan 1995, Shine et al. 1998, and Ford et al. 2000).  The main 

objectives of the present study were to (1) determine concentrations of metals in water, 

sediments, and fish, and (2) evaluate potential adverse effects on fish and wildlife.    
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Methods 

The sample locations and methods were the same as Chapter II; however, for this 

chapter I did not analyze feather samples.  Water was collected in pre-cleaned 125 ml 

LDPE bottles.  Sediment samples were taken at the surface of the lake (5–10 cm top 

layer) at 0.47, 0.59, and 0.71 m depths.  Silverside, tilapia, and carp were collected with 

the assistance of local fishermen.  Sediments and fish were placed in Ziploc plastic bags, 

stored on ice to be transported to the lab, and then stored in a -80
o
C freezer.  All samples 

were transported from Mexico to Texas A&M University, College Station, Texas and 

were kept at -80
o
C until analysis at the Trace Elements Research Lab, Texas A&M 

University. 

I analyzed all samples for the following metals: Al, Ba, Cu, Mn, Sr, V, and Zn.  

Water samples collected in 2011 and 2012 were acidified and then were analyzed with 

inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled 

plasma optical emission spectrometry (ICP-OES).  For the ICP-OES method a Spectro 

CirOS instrument equipped with an axial torch was utilized.  Ytterbium was used as an 

internal standard, and calibration was based on a blank and at least 3 standards.  Off-

peak background correction and correction for inter-element spectral overlap were used.  

Calibration was verified with an independent standard and it was monitored after every 

10 samples as well as at the end of the run.  For the ICP-MS analysis, I used a Perkin 

Elmer DRC 2 instrument, operated in “dynamic reaction cell” mode to correct for mass 

spectral overlaps.  The same procedure for calibration and calibration verification and 

valid checks was utilized for the ICP-OES method. 
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Sediment samples were freeze dried, then ground with a mortar and pestle.  After 

grinding, the samples were sifted and only the finely ground sediment was used for 

analysis.  Ground sediment samples were weighed out to 0.5 g subsamples then 

dissolved in nitric and hydrochloric acid at 95
o
 C, and brought to a final volume of 50 ml 

with deionized water.  Carp and tilapia were filleted on each side with their scales left 

on, and then fillets were freeze dried and homogenized using a Retsch mill grinder 

(Retsch ZM200).  Due to their small size of ~12 mm, silversides were pooled as 8 whole 

individuals per sample set.  They were additionally freeze dried and then homogenized.  

For analysis, the homogenized fish samples were weighed out to 0.2 g subsamples and 

dissolved in nitric acid, hydrogen peroxide, hydrochloric acid, and brought to a final 

volume of 20 ml with deionized water.  The Quality Assurance and Quality Control 

(QA/QC) results for Al, Ba, Cu, Mn, Sr, V, and Zn are reported in Appendix B.   

Carbon and nitrogen (δ
13

C and δ
15

N) stable isotope values were obtained from 

fish fillets and composite of silverside samples (same as Chapter II methods) and were 

used to compare with the 7 metal concentrations.  

Statistical analysis 

Less than 50% of the metal values were below the limit of detection, thus, I used 

one-half the limit of detection value for the statistical analysis.  A Shapiro-Wilks test 

was used to test for normality of water, sediment, and fish data.  This was used because 

the data were not normally distributed, and a non-parametric Wilcoxon rank sums test 

was performed for both water and sediments to determine the differences in the metal 

concentrations between the 2 years of sample collection.  Fish samples were analyzed 
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using Kruskal-Wallis test on the 3 fish species from Lake Chapala, followed by a Steel-

Dwass post-hoc test for each pair, with alpha = 0.05.  A linear regression analysis was 

conducted between each metal (Al, Ba, Cu, Mn, Sr, V, and Zn) and δ
13

C and δ
15

N values 

to determine significant relationships between them (JMP
®
, Pro 11, SAS Institute Inc., 

Cary, NC).   

 

Results 

 Median and range metal concentrations in water (µg/L), sediments (mg/kg dry 

weight (dw)), and fish (µg/g wet weight (ww)) are provided in Table 4.  For the most 

part, concentrations of metals in water and sediment were not significantly different 

between 2011 and 2012 for both Lake Chapala and San Antonio reservoir.  However, 

concentrations of Al, Mn, V, and Zn in water from Chapala were higher (P < 0.05) in 

2011 than in 2012; whereas concentrations of Cu and V in sediments were higher (P < 

0.05) in 2012.  Most concentrations of metals in water, sediments, and fish were below 

levels of concern for effects on biota, except for a few cases (water Al concentrations).  

There was a positive and significant correlation between fish length and metal 

concentrations (Fig. 9; P < 0.05) for Ba, Cu, Mn, and Zn (Lake Chapala) and V (San 

Antonio Reservoir). 
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Table 4. Median (range) metal concentrations in water (µg/L), sediment (mg/kg dw), and fish muscle (µg/g wet weight) 

collected from Lake Chapala and San Antonio Guaracha reservoir, Mexico, in 2011 and 2012. 

Year Location 

Sample 

Type   Al Ba Cu Mn Sr V Zn 

2011 Lake 

Chapala 

Water  3,815 205.5 2.8 39 544 33.2 4.65 

 (n = 6)   (3,630-

3,860) 

(202-207) (2.70-

2.80) 

(36.80-

49.10) 

(541-552) (32.50-

34.90) 

(4.50-

4.80) 

  Sediment  66,400 218.5 18.95 698.5 86.05 54.65 77.9 

  (n = 6)   (23,100-

70,500) 

(138-270) (10.80-

22.60) 

(335-936) (74.80-

99.90) 

(35.20-

56.50) 

(35.80-

92.90) 

  Fish Silverside
a
 0.05 2.63 0.14 0.94 17.89 0.26 18.16 

   (n = 8) (0.05-

0.06) 

(2.30-

2.88) 

(0.12-

0.23) 

(0.79-

1.74) 

(15.84-

18.92) 

(0.24-

0.30) 

(16.30-

19.52) 

   Tilapia 0.41 0.9 0.16 0.5 29.75 0.16 8.04 

   (n = 10) (0.05-

1.59) 

(0.72-

1.64) 

(0.05-

0.20) 

(0.27-

0.76) 

(23.54-

64.70) 

(0.14-

0.27) 

(6.75-

11.07) 

   Carp 0.42 2.61 0.3 0.95 22.44 0.15 24.56 

     (n = 8) (0.14-

0.73) 

(2.05-

3.44) 

(0.23-

0.42) 

(0.74-

1.20) 

(11.90-

26.18) 

(0.11-

0.17) 

(15.20-

29.27) 

 San 

Antonio 

  Carp 0.05 4.18 0.22 1.86 22.44 0.18 16 

    (n = 5) (0.04-

3.39) 

(3.70-

8.64) 

(0.16-

0.45) 

(1.21-

3.00) 

(15.92-

31.68) 

(0.15-

0.25) 

(11.45-

22.22) 

2012 Lake 

Chapala 

Water  124 213 2.8 8.63 596 32 2.6 

 (n = 9)   (2.50-

474) 

(132-222) (2.70-

2.80) 

(3.05-

28.50) 

(351-608) (24-34) (1.20-

5.90) 

  Sediment  61,800 222 22.1 768 80 57.9 81.4 

  (n = 9)   (47,800-

68,200) 

(190-262) (21-

24.20) 

(569-906) (76.70-

86.40) 

(53.20-

63.20) 

(59.80-

88.40) 
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Table 4. Continued 

  Fish Silverside
a
 9.26 3.44 0.47 2.15 18.84 0.2 21.83 

   (n = 8) (6.50-

30.60) 

(3.03-

3.88) 

(0.38-

0.49) 

(1.67-

2.52) 

(17.61-

21.54) 

(0.08-

0.34) 

(21.00-

27.62) 

   Tilapia 6.24 1.26 0.38 0.7 24.16 0.37 9.46 

   (n = 6) (3.92-

26.80) 

(0.95-

2.97) 

(0.26-

0.46) 

(0.61-

1.83) 

(18.60-

37.25) 

(0.24-

0.41) 

(7.53-

12.18) 

   Carp 13.59 3.28 0.55 1.29 23.47 0.2 30.43 

     (n = 6) (4.83-

18.27) 

(2.45-

4.56) 

(0.39-

0.65) 

(0.86-

1.90) 

(20.31-

31.01) 

(0.14-

0.28) 

(22.41-

35.03) 

 San 

Antonio 

 Carp 2.45 3.77 0.57 2.01 20.52 0.18 22.71 

  (n = 3) (1.39-

2.55) 

(3.67-

4.33) 

(0.55-

0.87) 

(1.63-

2.02) 

(15.84-

23.79) 

(0.18-

0.27) 

(17.42-

25.27) 

   Tilapia 2.72 2.42 0.25 3.38 16.89 0.16 11.04 

      (n = 3) (2.64-

3.05) 

(1.51-

3.07) 

(0.25-

0.28) 

(3.26-

3.52) 

(15.38-

22.45) 

(0.13-

0.19) 

(10.11-

11.50) 
a
Composite sample of 8 individuals each. 
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Figure 9: Relationship between fish length (mm) and Ba, Cu, Mn, V, and Zn 

concentrations (silverside fish not included). 

 

 

Discussion 

In 2011, Al concentrations in water (x‾ = 3,796.67 µg/L) from Lake Chapala 

exceeded the United States Environmental Protection Agency’s (USEPA) freshwater Al 

criteria maximum concentration (CMC; 750 µg/L) and criterion continuous 

concentration (CCC: 87 µg/L; USEPA 1988).  High concentrations of Al in water could 

be associated with the lake’s high alkalinity (Gundersen et al. 1994); since the pH varied 

between 9.5–9.6 during the 2 years of study.  High concentrations of Al could become 
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toxic to aquatic biota; however, the concentrations measured in fish are well below those 

at which some sublethal effects have been reported (Sparling and Lowe 1996).   

Copper concentrations in water were similar to those reported previously (Ford 

and Ryan 1995, Shine et al. 1998) suggesting that inputs and outputs of Cu to the lake 

have not changed much over the last 20 years.  However, Cu concentrations from the 

Alzate reservoir upstream of the Lerma River were much higher (Avila-Perez et al. 

1999).  Copper concentrations in sediments were nearly 2 times lower in my study than 

those reported earlier for the lake (Rosales-Hoz et al. 2000, Trujillo-Cardenas et al. 

2010), and for the Alzate reservoir (Avila-Perez et al. 1999).  Also, Cu concentrations in 

the 3 fish species analyzed in the present study were similar or lower to those reported in 

the same species in the late 1990s (Ford and Ryan 1995, Shine et al. 1998, Ford et al. 

2000).  Copper concentrations in carp (1.65 µg/g dw) were about 2–4 times lower than 

those reported by Ford and Ryan (1995), and Shine et al. (1998).  The results in fish 

suggest that Cu inputs to the lake may have decreased over the last 2 decades, in contrast 

with the results observed in water which suggested no change over time.  Copper 

concentrations in fish also were below levels at which sublethal or chronic effects could 

be observed in fish or wildlife (Eisler 1998). 

Zinc concentrations in water decreased nearly 20% over a 20 year period (Ford 

and Ryan 1995, Trujillo-Cardenas et al. 2010).  Zinc concentrations in water also were 

lower than those observed in water from the Alzate reservoir (Avila-Perez et al. 1999).  

Similarly, Zn concentrations in sediments were 2-3 times lower than those reported in 

the 1990s and early 2000s (Rosalez-Hoz et al. 2000, Trujillo-Cardenas et al. 2010).  It 
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appears the Alzate reservoir, upstream of the Lerma River is or was much more 

contaminated with metals than Lake Chapala.  Zinc concentrations in fish from the 

present study also were somewhat lower than those reported in previous studies (Ford 

and Ryan 1995, Shine et al. 1998, Ford et al. 2000) and at levels that are not of concern 

for effects on fish or wildlife (Eisler 1993). 

The significant correlation between fish length and metal concentrations suggests 

these metals (Ba, Cu, Mn, V, and Zn) are subject to bioaccumulation with age (Quinn et 

al. 2003, Pereira et al. 2010).  However, there were not significant correlations between 

metal concentrations and δ
15

N values.  The lack of correlations suggests most metals do 

not biomagnify through the food chain.  The δ
15

N values are often used as indicators of 

trophic structure; thus, greater values generally indicate a higher position in the food 

web (Kelly 2000).  

Barium, Mn, and Zn concentrations were greater in carp and tilapia from San 

Antonio (reference site) than in those from Lake Chapala (Table 4).  San Antonio 

reservoir is a much smaller lake than Chapala and carp and tilapia from the reservoir 

appear to be feeding at a lower trophic level (δ
15

N = 10.27‰ and 12.57‰, for tilapia and 

carp respectively) than in Lake Chapala (δ
15

N = 15.35‰ and 18.03‰; Chapter II).  

However, various studies also have shown δ
15

N values can increase in aquatic systems 

that have anthropogenic input of sewage (Cabana and Rasmussen 1996, Wayland and 

Hobson 2001).  Thus, even though the tilapia and carp from Lake Chapala have higher 

δ
15

N values than those from San Antonio, it may not necessarily indicate that they are at 

a higher trophic level, but may be exposed to enriched δ
15

N sources in their 
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environment.  It has been pointed out that δ
15

N baseline values could vary between 

different systems and δ
15

N values should only be used to compare to biota within the 

same food web (Cabana and Rasmussen 1996, Atwell et al. 1998).    

 Overall, metal concentrations in water, sediments, and fish from Lake Chapala 

were similar or lower than those reported in previous studies suggesting metal pollution 

in Lake Chapala has stayed consistent and in some cases (Cu and Zn) decreased over the 

last 20 years.  Most of the metals analyzed do not exceed the USEPA’s recommended 

levels for aquatic life, except for Al.  However, even though Al is highly concentrated in 

the water column it does not seem to be bioaccumulating or biomagnifying up the food 

chain.  Fish-eating wildlife in Lake Chapala may not be at risk from most metal 

exposure; however, mercury could be of concern for some fish-eating birds, such as the 

American white pelican (Pelecanus erythrorynchos) wintering in Lake Chapala (Chapter 

II). 
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CHAPTER IV  

PREDICTING DIET SOURCES OF ATTWATER’S PRAIRIE-CHICKEN IN TEXAS 

 

Summary 

The Attwater’s prairie-chicken (APC; Tympanuchus cupido attwateri) once 

ranged throughout the gulf coastal prairies of Texas and Louisiana with numbers 

approaching 1,000,000 individuals.  It has been listed as an endangered species since 

1967 and ranged from the gulf coastal prairies of Texas (Nueces River) to Louisiana 

(Abbeyville).  Since its listing as an endangered species, multiple research studies have 

been conducted to recover the wild population.  In this study I used stable isotope 

techniques to determine current diets of APCs at the Attwater’s Prairie Chicken National 

Wildlife Refuge (APCNWR) and to correlate with diets from individuals formerly 

occurring at these ranges, and based on feathers from museum specimens.  I collected 

APC feathers, blood and feces at the APCNWR, and APC feathers from selected 

museums (1894–1965) and analyzed them for stable carbon and nitrogen isotopes (δ
13

C 

and δ
15

N).  Vegetation and insect samples also were analyzed for δ
13

C and δ
15

N.  The 

stable isotope results were used in a mixing model (MixSIAR), to help determine the 

preferred diet of the APCs.  MixSIAR produced different results depending on how 

many diet sources were used (e.g., 4 diet sources indicated that C3 vegetation was 

contributed the most to APC diet).  The δ
15

N values in feathers of historical samples 

were greater than those in feathers taken from individuals currently in the wild, for both 

males and females.  However, δ
13

C values in feathers were not significantly different 
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between historic and current specimens; although, δ
13

C values from current specimens 

had a much broader range.  The observation of lower δ
15

N values and a broader range of 

δ
13

C values in feathers of current APCs compared to historic values, suggest the APCs 

are currently utilizing different sources of food or that grasses and forbs have changed 

from what was available in the past. 

 

Introduction 

The Attwater Prairie Chicken National Wildlife Refuge (APCNWR) was 

established in 1972 to protect the endangered Attwater’s prairie-chicken (APC; 

Tympanuchus cupido attwateri) population in Texas.  This species was listed as 

endangered in 1967 when their population was approximately 1,070 birds (USFWS 

2010).  This was a dramatic decrease from when their peak numbers ranged from 

300,000 to 1 million birds (Lehmann 1941, Lehmann 1965).  The decline in APC 

numbers dates to the early 1900s and corresponds mainly with the loss of their habitat, 

native coastal prairie.  This decline of coastal prairie habitat was brought about by 

agricultural conversion, urban and industrial expansion, overgrazing, and woody plant 

encroachment (Lehmann 1941).  As their habitat declined, APC numbers followed suit 

and, from 1937 to 1992, APCs were reduced from 8,700 to 432 birds (Lehmann and 

Mauermann 1963, Silvy et al. 1999, Lockwood et al. 2005).  Due to such low numbers in 

1992, and in efforts to prevent extinction, the Attwater’s Prairie-Chicken Recovery 

Team began a captive-breeding program to supplement the wild APC population with 

pen-reared birds (Lockwood et al. 2005).  Seal (1994) reported that wild APC 
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populations would go extinct by 2000 without the addition of supplementation of 

captive-reared birds.  Currently, the wild APC population ranges from 50–110 and is 

supplemented by captive-reared APCs (Hammerly et al. 2013). 

The prolonged small APC population size contributed to a loss of genetic 

variability and, thus, has been an important factor in determining which APCs get 

released into the wild (Burns-Cusato and Morrow 2003).  The APCs selected for release 

into the wild are those that will increase genetic diversity even though these birds may 

not have the innate fear responses that will aid in predator avoidance (Burns-Cusato and 

Morrow 2003).  Early issues APCs faced in captivity were the contraction and spread of 

reticuloendotheliosis (RE) and reticuloendotheliosis virus (REV; Drew et al. 1998).  

Environmental stochasticity, such as excessive rainfall, also has affected survival of 

post-released captive APCs into the wild (Morrow et al. 1996, Silvy et al. 1999, Morrow 

et al. 2004).  The most recent obstacle the APC is facing in the wild is the introduction 

and expansion of the red imported fire ant (RIFA; Solenopsis invicta) onto the 

APCNWR (Allen et al. 1994, Morrow et al. 2013).  These ants reduce the abundance of 

invertebrates that would otherwise be available to adult and chick APCs (Morrow et al. 

2015).  Undoubtedly, APC population decline is not due to 1 factor alone, but rather 

consists of several factors affecting recovery (Morrow et al. 1996). 

Stable isotopes of carbon (δ
13

C) and nitrogen (δ
15

N) are useful tools in ecological 

studies since they can help determine an animal’s diet from current and/or museum 

specimen samples (Peterson and Fry 1987, Thompson et al. 1995).  Carbon stable 

isotopes are beneficial in environmental studies since plants that use different 
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photosynthetic pathways (i.e., C3 and C4 plants) have distinguishable δ
13

C values 

(Brugnoli and Farquhar 2000).  C3 and C4 plants have δ
13

C means of -27‰ and -13‰, 

respectively (Boutton 1991).  Nitrogen stable isotopes also have distinguishable values 

between different plant types (nitrogen-fixing versus non-nitrogen-fixing; Kelly 2000), 

but in most cases they are used to determine the trophic level of an organism (DeNiro 

and Epstein 1981, Post et al. 2000).  This is due to an organism being more enriched in 

δ
15

N compared to their diet by 2 to 4‰ between each trophic level (Post 2002).   

Mixing models have been used to measure the proportion of sources that 

contribute to an animal’s diet (Phillips 2001, Ward et al. 2011, Phillips 2012).  These 

mixing models have grown from the simple linear mixing models utilized by Fry and 

Sherr (1984) to a multiple-source mixing model (Ben-David et al. 1997) and, more 

recently, to Bayesian mixing models like MixSIAR (Stock and Semmens 2013).  

Bayesian mixing models have improved upon the original simple linear mixing models 

by including source uncertainty, concentration dependence, multiple sources, and prior 

information (Hopkins and Ferguson 2012, Phillips et al. 2014). 

Diet studies for APCs have been conducted in the past, but not since the start of 

the captive breeding program and the release of APCs from captivity into the wild 

(Lehmann 1941, Cogar 1980).  In the present study, my objectives were to (1) determine 

the potential diets of APCs once they are released into the APCNWR using δ
13

C and 

δ
15

N stable isotopes, and (2) compare potential differences and similarities in diets 

between historic APC specimens and contemporary individuals using stable isotopes. 
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Methods 

Study Area 

This study was conducted on the APCNWR, located between Sealy and Eagle 

Lake, Texas (29
o
 40’N, -96

o
 16’W), an area consisting of gulf coastal prairie habitat 

(3,248 ha) with surrounding agriculture fields, primarily rice (Kessler 1978, Lockwood 

et al. 2005; Fig. 10).  The refuge contains the largest remnants of coastal prairie left in 

Texas. 

 

 

 

Figure 10: Location of the APCNWR near Eagle Lake and Sealy, Texas. 
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During 2012 and 2013 I collected possible diet sources of the APCs including 

vegetation (forbs: n = 112, grass: n = 13, rush: n = 1), and arthropod (insect: n = 219, 

and spiders (Araneae): n = 24) samples (Appendix C and D).  Attwater’s blood (n = 86) 

and fecal (n = 35) samples were collected during 2012 and 2013 as well (Appendix E).  

Flank feather samples were obtained from wild APCs (2004–2013; hereafter referred to 

as contemporary feathers), and from museum specimens (APCs), obtained from the 

museums listed in the acknowledgement section (1894–1965; hereafter referred to as 

historic feathers).  The blood, feather, and fecal samples from APCs were collected by 

biologists from the APCNWR.  The feather samples were kept in paper bags while blood 

samples (0.5–3.0 cc) were collected using 25 gauge needles with a non-heparinized 3 cc 

syringe and placed in 2 ml tubes (Nalgene
®
 cryogenic vials) and stored in a -80

o
 C 

freezer, and the fecal samples were collected fresh (M.E. Morrow, personal 

communication). 

Vegetation samples were collected in their entirety, excluding roots, and were 

stored in labeled paper bags.  These samples were oven dried at 40
o
 C for 24 hours and 

then ground using a Retsch Oscillating Mixer Mill (MM400) prior to stable isotope 

analysis.  Arthropod samples were collected using sweep nets and placed into labeled 

paper bags which were then placed in Ziploc bags.  Once taken to the lab, arthropods 

were frozen for 2 weeks and then were oven dried at 40
o 
C for 24 hours to remove any 

extra moisture and to prepare the insects to be ground for stable isotope analysis.  

Captive diet sources, meal worms (n = 4), and Mazuri feed were oven dried at 25
o 
C for 

1 hour and ground using a mortar and pestle.  Blood samples were freeze dried and 
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ground using a mortar and pestle.  Fifteen APC fecal samples were prepared for stable 

isotope analysis.  These fecal samples were oven dried at 60
o 
C (24 hours), then ground 

using the Retsch Oscillating Mixer Mill prior to stable isotope analysis.  Thirteen 

additional APC fecal samples were submitted to Pacific Analytics in Scio, Oregon, for 

arthropod fragment identification. 

Stable Isotope Analyses 

Samples were weighed and analyzed at the Stable Isotopes for Biosphere 

Sciences Laboratory, Texas A&M University.  Arthropod, blood, and fecal samples were 

weighed to 1 mg, vegetation to ~2.2 mg, and then placed into individual tin capsules (4 x 

6 mm, Costech).   Both historic and contemporary APC feathers were cleaned using a 

2:1 chloroform to methanol solution to remove any surface oils.  Then the right side of 

the flank feather’s barbs (not the vane) was cut finely to be prepared for stable isotope 

analysis.  A portion (0.5 mg) of each feather sample was placed in tin capsules.  δ
13

C and 

δ
15

N isotope ratios were measured for all samples using an Elemental Analyzer (EA 

Costech) coupled to a Delta V Advance stable isotope ratio mass spectrometer (Thermo 

Scientific) via a Conflo IV interface (Thermo Scientific).  These isotope ratios were 

reported as per mil (‰), relative to Vienna Pee Dee Belemnite (VPDB) for δ
13

C, and 

atmospheric nitrogen (AIR) for δ
15

N, respectively.   

Statistical Analyses 

I used the Shapiro-Wilk test to determine if the data were normally distributed.  

If the data were normal I used an analysis of variance (ANOVA) to test for differences 

of δ
13

C and δ
15

N between vegetation and arthropod samples, respectively, then a Tukey-
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Kramer HSD test (post-hoc) to determine significant differences.  When the data was 

determined to be non-normal, I used the Kruskal-Wallis and Steel-Dwass tests for 

comparisons.  For both δ
13

C and δ
15

N values an ANOVA and Student’s t-test was 

conducted to determine if there were any differences between historic and contemporary 

APC feather samples.  I also looked at potential seasonal changes in vegetation and 

arthropod δ
13

C and δ
15

N values on the refuge using the above tests.  All statistical tests 

were conducted in JMP (JMP
®
, Pro 11, SAS Institute Inc., Cary, NC). Statistical 

differences were set at an alpha value of 0.05. 

MixSIAR Model Analyses 

To estimate which sources contribute to the APC diet, I used the stable isotope 

mixing model, MixSIAR (Stock and Semmens 2013), which is part of the statistical 

software R (R core team 2015).  This model has improved upon the original linear 

mixing model by accounting for uncertainty in sources measured (Moore and Semmens 

2008), categorical or continuous covariates (Semmens et al. 2009, Parnell et al. 2013), as 

well as prior information (Moore and Semmens 2008).  MixSIAR accounts for 

variability of isotopic values in consumer, sources, and tissue-diet discrimination factors 

(Phillips et al. 2014).  It also has summary statistics that report the probability 

distributions (2.5 to 97.5%) for individual diet sources in relation to the stable isotope 

values of the consumer (APCs). 

For the different model scenarios, I chose the run length to be “normal” for all 

models to make sure all the Markov Chain Monte Carlo (MCMC) chains converged.  If 

any did not properly converged I then used “long” and “very long”.  Convergence was 
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checked by running Gelman-Rubin and Geweke diagnostic reports (Gelman et al. 2014, 

Geweke 1991).  Stable isotope transfer from a diet source to the consumer cannot be 

accounted for directly, thus the need to use diet-tissue discrimination factors (TDF) for 

both δ
13

C and δ
15

N stable isotopes in this model (Hobson and Clark 1992, Tieszen et al. 

1983).  If TDF values are not used, then the assessment of the consumer’s diet will be 

misinterpreted (Therrien et al. 2011).  To calculate specific TDF values (Δdiet-tissue) for 

APCs, I used blood, feathers, and diet samples from APCs in captivity (Houston Zoo) 

and analyzed them for δ
13

C and δ
15

N. The resulting discrimination factors were: Blood 

Δdiet-tissue δ
13

C: +0.2 ± 0.2, δ
15

N: +3.9 ± 0.27; Feather Δdiet-tissue δ
13

C: +1.14 ± 0.28, δ
15

N: 

+3.46 ± 0.53.   

 I also used other TDF values from the literature to compare specifically with 

those calculated in this study (Healy et al. 2017; Caut et al. 2009; Hobson and Clark 

1992).  All the results using the 3 different TDF values gathered from these articles are 

presented in Appendix F.  As mentioned by Ben-David and Schell (2001), the TDF 

value is the most important parameter in a mixing model, since these values can 

sometimes significantly alter the model output.  In this study, if I had used a proxy TDF 

value instead of the determining APC’s specific TDF values, I would have received very 

different outputs for contributing diet sources.  The proxy TDF values derived from Caut 

et al. (2009), produced similar results as to when the model was run with the APC actual 

TDF values. 

 For MixSIAR analysis, APC blood samples were analyzed separately by season 

of collection (summer, fall, and winter) and then grouped together (hereafter referred to 
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as combined blood).  Feathers were analyzed separately as historic and contemporary.  

Potential vegetation sources were classified as either C3 (δ
13

C values within the -22‰ to 

-30‰ range) or C4 (δ
13

C values in the -10‰ to -14‰ range).  Arthropods were separated 

by insects and spiders.  This was done since spiders had significantly higher δ
15

N values 

compared to other insects when grouped together. 

The MixSIAR model was run using 3 potential diet source combinations.  The 

first model used δ
13

C and δ
15

N values from 3 potential sources: C3 vegetation, spiders, 

and insects.  After I conducted this model, there were some blood and feather samples 

that fell outside the mixing polygon (see model verification); this suggested there were 

potential missing diet sources.  During certain periods (July to mid-October; Dr. Morrow 

personal communication) corn (C4 plant), along with sweet and black-eyed peas are 

provided as extra food to newly released APCs.  Accordingly, I performed another 

model that had the same diet sources from the first model, plus the addition of C4 

vegetation.  The third model used the same sources as the second model, plus rice, as an 

extra source, using δ
13

C and δ
15

N values reported by others (Alisauskas and Hobson 

1993).  I included rice as a diet source in the last model since rice fields are near the 

refuge, and APCs have been known to forage there (M. E. Morrow personal 

communication).  For all MixSIAR model results, the median percentage values will be 

reported in the results section. 
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Verifying Model Fit Using Mixing Polygons 

Prior to performing any MixSIAR analyses, I performed a model evaluation 

using the Monte Carlo simulation developed by (Smith et al. 2013).  By using the means 

(± standard deviation) of each diet source (C3 and C4 vegetation, spiders, insects, and 

rice), along with the consumer’s (APC) TDF values, this simulation provides 

information if mass balance is established.  Since the TDF values used in this simulation 

are from APCs and are not proxy values (e.g. quail TDF values from Hobson and Clark 

1992), I checked if the diet sources selected are validated to be used in a mixing model.  

Validation of the diet sources is when all of the consumer samples fall within the 95% 

mixing region, meaning I can then use this data in a mixing model.  If some of the 

consumers fall outside this mixing region, I can either exclude those consumers, or reject 

to use a mixing model with the data.       

The model using only 3 potential sources was run using blood values separated 

by seasons (summer and fall) and with all seasons combined. The mixing polygon 

simulation indicated that most data were adequate to use for the MixSIAR analysis, 

except for 3 samples from the combined blood analysis (Fig. 11). Both summer and fall 

blood samples fell inside the 95% mixing polygon and all were included in the analysis 

(Fig. 12).  Blood samples collected in the winter did not fall within the 95% mixing 

polygon, thus, they were not used in the analysis. For feather data, the mixing polygon 

simulation suggested that values from 3 historic and 14 contemporary feathers were not 

adequate to include in the model and they were excluded (Fig. 13). 
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Figure 11: (A) Isospace plot of the δ
13

C and δ
15

N values for combined blood and 3 

sources, and (B) the simulated mixing region for the isospace plot in (A). 
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Figure 12: Isospace plot of the δ
13

C and δ
15

N values for summer (A) and fall (C) blood 

and 3 sources, and the simulated mixing region for their respective isospace plots 

(summer [B], and fall [D]). 
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Figure 13: Isospace plot of the δ
13

C and δ
15

N values for historic (A) and contemporary 

(C) feathers and 3 sources, and the simulated mixing region for their respective isospace 

plots (historic [B], and contemporary [D]). 
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When 1 extra source was added, the data from combined blood samples, as well 

as those collected in the summer and fall fell within the 95% mixing polygon and none 

were excluded from the model (Fig. 14).  Blood and diet sources collected during winter 

did not fall within the 95% mixing polygon, and were not analyzed with the model.  In 

the case of feathers, only 1 historic and 2 contemporary feathers were excluded from the 

model (Fig. 15).  For the model with 5 sources the same sets of blood samples also were 

within the 95% mixing polygon (Fig. 16), and only 2 contemporary feathers had to be 

excluded (Fig. 17). 
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Figure 14: Isospace plot of the δ
13

C and δ
15

N values for combined (A), summer (C), and 

fall (E) blood and 4 sources, and the simulated mixing region for their respective 

isospace plots (combined [B], summer [D], and fall [F]). 
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Figure 15: Isospace plot of the δ
13

C and δ
15

N values for historic (A) and contemporary 

(C) feathers and 4 sources, and the simulated mixing region for their respective isospace 

plots (historic [B], and contemporary [D]). 
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Figure 16: Isospace plot of the δ
13

C and δ
15

N values for combined (A), summer (C), and 

fall (E) blood and 5 sources, and the simulated mixing region for their respective 

isospace plots (combined [B], summer [D], and fall [F]). 
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Figure 17: Isospace plot of the δ
13

C and δ
15

N values for historic (A) and contemporary 

(C) feathers and 5 sources, and the simulated mixing region for their respective isospace 

plots (historic [B], and contemporary [D]). 

 

 

 

 



 

68 

 

Results 

Vegetation and Arthropods 

 A detailed list of vegetation and arthropod samples collected from the APCNWR 

and their δ
13

C, δ
15

N, and carbon and nitrogen percent concentration values is provided in 

Appendix C&D.  I collected arthropods from 11 orders, and vegetation from 26 different 

families.  Vegetation samples more commonly obtained were from the families 

Asteraceae, Fabaceae, and Poaceae (Table 5).  The arthropods most often collected were 

from the order Orthoptera, Hemiptera, and Coleoptera (Table 5). 

 

 

Table 5. The δ
13

C and δ
15

N mean (± standard deviation) values of vegetation and 

arthropods collected from the Attwater Prairie Chicken National Wildlife Refuge during 

2012-2013. 

 

Source n Family δ
13

C δ
15

N %C %N

Vegetation

Ambrosia psilostachya 7 Asteraceae -29.74 0.95 42.61 1.47

(-1.04) (-3.41) (-1.52) (-0.42)

Anagallis arvensis 4 Primulaceae -31.44 2.56 42.2 2.08

(-0.39) (-1.27) (-2.95) (-0.51)

Anemone caroliniana 3 Ranunculaceae -28.98 3.01 42.11 2.59

(-0.06) (-1.21) (-2.03) (-0.22)

Baptisia bracteata 1 Fabaceae -27.88 0.75 46.02 4.27

Briza sp. 1 Poaceae -27.96 1.56 42.1 1.13

Callirhoe involucrata 2 Malvaceae -29.38 1.62 40.19 1.52

(-0.37) (-0.16) (-1.13) (-0.01)

Chamaecrista fasciculata 10 Fabaceae -30.42 -0.64 49.34 2.16

(-0.8) (-0.62) (-1.56) (-0.22)

Chloris sp. 1 Poaceae -12.23 1.89 43.42 0.3

Cirsium spp. 1 Asteraceae -30.91 -2.16 32.98 2.2

Coreopsis tinctoria 1 Asteraceae -30.77 0.5 44.37 1.55

Croton capitatus 7 Euphorbiaceae -29.06 1.7 44.73 1.93

(-1.08) (-3.12) (-0.7) (-0.59)

Dichanthelium oligosanthes 2 Poaceae -29.78 -0.72 43.73 0.97

(-0.04) (-0.94) (-0.4) (-0.15)
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Table 5. Continued 

 

Source n Family δ
13

C δ
15

N %C %N

Dichanthelium  spp. 8 Poaceae -29.54 0.87 41.8 1.96

(-0.98) (-2.51) (-3.42) (-1.26)

Dracopis amplexicaulis 3 Asteraceae -28.49 -0.15 46.46 1.77

(-0.21) (-1.11) (-1.25) (-0.07)

Eryngium yuccifolium 1 Apiaceae -26.85 5.71 41.58 1.12

Euphorbia  spp. 2 Euphorbiaceae -29.97 4.53 44.97 3.18

(-0.08) (-0.35) (-1) (-0.35)

Euthamia sp. 1 Asteraceae -30.83 0.07 45.66 2.59

Geranium carolinianum 1 Geraniaceae -31.12 3.09 41.75 3.6

Helenium amarum 1 Asteraceae -28.5 1.63 45.21 1.27

Hordeum pusillum 1 Poaceae -28.28 4.45 42.75 0.92

Hypoxis sp. 1 Liliaceae -29.84 1.53 42.76 1.63

Iva annua 2 Asteraceae -29.39 4.98 38.88 1.61

(-0.58) (-4.79) (-1.64) (-0.83)

Juncus sp. 1 Juncaceae -29.72 2.23 44.58 0.74

Krigia sp. 2 Asteraceae -22.42 0.43 44.04 1.06

(-0.03) (-0.07) (-0.08) (-0.01)

Lepidium sp. 1 Brassicaceae -27.65 5.68 38.31 2.38

Liatris mucronata 1 Asteraceae -29.12 0.7 44.42 4.16

Linaria sp. 1 Scrophulariaceae -29.9 0.16 39.96 0.68

Lythrum sp. 2 Lythraceae -29.41 4.96 40.96 2.58

(-3.54) (-2.5) (-5.22) (-2.04)

Medicago lupulina 1 Fabaceae -28.18 -0.81 44.48 2.79

Medicago polymorpha 3 Fabaceae -30.13 -0.08 43.47 4.16

(-0.31) (-0.18) (-1.24) (-0.48)

Mimosa nuttallii 4 Fabaceae -30.04 -1.28 45.1 2.39

(-0.76) (-1.19) (-0.68) (-1.13)

Mimosa  spp. 3 Fabaceae -30.39 -1.35 46.18 1.87

(-0.54) (-0.74) (-0.71) (-0.41)

Neptunia lutea 2 Fabaceae -29.58 -0.54 46.1 1.92

(-0.58) (-1.64) (-0.33) (-0.61)

Neptunia  spp. 1 Fabaceae -25.74 -2.25 44.05 7.48

Nothocalais sp. 2 Asteraceae -30.83 4.27 42.48 3.21

(-0.78) (-4.83) (-0.5) (-2.79)

Nothoscordum bivalve 4 Liliaceae -29.02 1.77 37.26 3.09

(-0.91) (-1.22) (-4.55) (-1.19)

Oenothera laciniata 1 Onagraceae -31.56 2.16 41.48 1.34

Oenothera  spp. 4 Onagraceae -27.35 2.65 44.49 1.24

(-0.91) (-2.25) (-0.73) (-0.4)

Oxalis  spp. 4 Oxalidaceae -30.23 4.62 41.76 2.92

(-0.12) (-2.72) (-3.89) (-0.97)

Oxalis stricta/corniculata 2 Oxalidaceae -30.16 3.81 45.21 2.9

(-0.04) (-0.02) (-0.07) (-0.01)

Phalaris sp. 1 Poaceae -29.28 0.59 39.67 1.08
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Table 5. Continued 

 

Source n Family δ
13

C δ
15

N %C %N

Phlox sp. 1 Polemoniaceae -30.85 0 43 1.1

Plantago sp. 1 Plantaginaceae -23 2.36 42.61 1.14

Rosa bracteata 1 Rosaceae -27.99 -6.2 43.34 2.33

Rubus spp. 1 Rosaceae -28.96 1.88 45.24 1.19

Rudbeckia  spp. 1 Asteraceae -30.06 1.69 45.91 1.19

Ruellia humilis 1 Acanthaceae -29.68 0.26 39.62 2.24

Ruellia  spp. 3 Acanthaceae -28.94 2.11 41.33 1.58

(-0.72) (-4.93) (-0.16) (-0.46)

Rumex  spp. 1 Polygonaceae -29.84 1.08 43.08 0.95

Sabatia campestris 2 Gentianaceae -29.58 2.68 44.77 1.43

(-0.01) (-0.23) (-0.08) (-0.01)

Sisyrinchium  spp. 2 Iridaceae -29.75 3.53 43.6 1.38

(-0.32) (-1.2) (-2.05) (-0.22)

Symphyotrichum  spp. 3 Asteraceae -29.45 2.34 35.13 3.41

(-1.74) (-2.32) (-5.89) (-0.71)

Tephrosia onobrychoides 1 Fabaceae -28.38 -0.58 45.41 2.68

Tradescantia sp. 2 Commelinaceae -29.41 7.98 41.24 6.52

(-0.09) (-0.11) (-3.11) (-0.6)

Tridens strictus 1 Poaceae -12.84 1.48 40.85 1.18

Triodanis perfoliata 3 Campanulaceae -29.33 2.77 40.33 1.36

(-0.5) (-2.67) (-5.46) (-0.27)

Vicia ludoviciana 1 Fabaceae -31.1 1.98 40.79 3.92

Vicia  spp. 2 Fabaceae -30.39 0.2 43.53 4.07

(-0.59) (-0.08) (-1.63) (-1.94)

Arthropods

Araneae 22 -22.26 6.58 48.23 10.63

(-3.98) (-1.71) (-2.51) (-3.11)

Coleoptera 29 -25.13 5.32 50.93 10.23

(-3.12) (-2.37) (-2.48) (-0.97)

Diptera 4 -24.48 6.46 48.25 10.49

(-3.03) (-1.81) (-0.46) (-0.9)

Hemiptera 42 -24.72 2.77 50.81 10.82

(-4.48) (-2.31) (-2.7) (-1.09)

Hymenoptera 11 -24.4 6.84 48.9 12.46

(-4.27) (-3.75) (-0.82) (-1.3)

Lepidoptera 18 -26.14 4.97 48.97 10.78

(-4.81) (-2.76) (-3.24) (-2.35)

Mantodea 2 -18.38 5.48 49.76 11.59

(-1.41) (-1.11) (-2.76) (-1.13)

Neuroptera 2 -23.39 4.01 49.19 9

(-2.97) (-0.06) (-1.19) (-2.06)

Orthoptera 63 -25.01 3.74 49.7 10.94

(-3.8) (-2.14) (-6.67) (-2.03)



 

71 

 

Table 5. Continued 

 

 

 

Overall, vegetation δ
13

C values ranged from -31.91‰ to -12.23‰, and δ
15

N 

values ranged from -6.20‰ to 8.36‰.  No significant differences in isotope values were 

observed for vegetation samples among seasons or years of collection; however, when 

vegetation was grouped into legumes and non-legumes, δ
15

N values in legumes were 

significantly greater in winter than in spring (P = 0.0171; Appendix C), but δ
13

C values 

were not different.  Seasonal differences were determined in spiders and insects δ
13

C and 

δ
15

N values.  During spring, δ
13

C values in Orthoptera were significantly greater than in 

Lepidoptera (P = 0.0179).  Also in spring, spiders had significantly greater δ
13

C values 

than Lepidoptera and Orthoptera (P < 0.05) and greater δ
15

N values than Hemiptera and 

Orthoptera (P < 0.05; Appendix D). 

 Captive diet (Mazuri APC feed and meal worms) was ~1.17 times more enriched 

in δ
13

C (x‾  = -22.71‰) and ~1.20 times less enriched in δ
15

N (x‾  = 2.79‰) compared to 

vegetation and arthropods stable isotope values (x‾ : δ
13

C = -26.47‰, δ
15

N = 3.35‰) 

collected from the refuge. 

 

 

 

Source n Family δ
13

C δ
15

N %C %N

Phasmida 2 -27.22 5.5 47.7 11.05

(-0.89) (-2.75) (-2.08) (-1.2)

Sternorrhyncha 1 -28.93 -0.49 51.72 6.82
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Blood and Feathers 

A list of all δ
13

C and δ
15

N blood, feathers, and feces is provided in Appendix E.  

The δ
13

C or δ
15

N values in APC blood were not significantly different between sexes 

throughout 2012–2013.  However, 1 female had very low δ
15

N values (3.78‰), 

compared with the rest.  The δ
13

C values in APC blood ranged from -28.6‰ to -18.35‰, 

and the δ
15

N values ranged from 3.78‰ to 8.66‰.  When separated by season, δ
15

N 

values in blood were more enriched in the summer than in the fall (P = 0.0105) and 

winter (P = 0.0010).  The δ
13

C values also were more enriched in the fall compared to 

summer and winter blood samples (P = 0.0015; Fig. 18). 

 

 

 

Figure 18: The δ
13

C and δ
15

N values for Attwater’s prairie-chicken blood samples 

collected from the APCNWR by season. 
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Feather δ
13

C and δ
15

N values collected from historic and contemporary APCs in 

the wild, were rather similar; however the range for δ
13

C values was more widespread 

for recent individuals than for historic specimens, whereas feathers from historic 

specimens had greater δ
15

N values compared to recent individuals (Table 6).  Also, no 

differences were observed for feather δ
13

C and δ
15

N values between APC males and 

females.  However, ranges in δ
13

C values in feathers of contemporary individuals from 

the refuge were much broader than in those from historic specimens.  In contrast, feather 

δ
15

N values were significantly more enriched in those from historic specimens compared 

to contemporary individuals (P = 0.0001).  The δ
13

C values in fecal samples did not vary 

much and ranged from (-30.58‰ to -29.19‰); however, δ
15

N values had a wider range 

(2.38‰ to 6.4‰; Table 6). 

 

 

Table 6. Attwater’s prairie-chicken mean (± standard deviation) δ
13

C and δ
15

N values 

from blood, feathers (historic and contemporary), and feces. 

Sex Sample collected δ
13

C δ
15

N 

Male Blood -24.73 (1.76) 6.86 (0.80) 

 Contemporary Feathers -21.14 (4.04) 8.00 (1.10) 

 Historic Feathers -21.37 (1.50) 9.08 (0.90) 

 Feces -30.12 (0.49) 3.71 (1.22) 

Female Blood -24.27 (2.25) 6.42 (0.59) 

  Contemporary Feathers -20.26 (3.15) 8.28 (1.63) 

  Historic Feathers -21.42 (1.07) 9.81 (1.00) 

  Feces -30.12 (0.42) 4.11 (1.12) 
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Arthropod Fragments in Fecal Samples 

A large array of arthropods was found in the 13 APC fecal samples analyzed by 

Pacific Analytics.  A total of 8 families within 7 Orders was identified in the fecal 

material: Araneae: Lycosidae; Coleoptera: Curculiondiae, and Elateridae; Hemiptera: 

Coreidae, and Lygaeidae; Homoptera: Aphididae; Hymenoptera: Formicidiae; 

Orthoptera: Acrididae; and Lepidoptera. The most abundant insects found were 

grasshoppers (25%; Orthoptera:Acrididae), butterflies/moths (21.6%; Lepidoptera), and 

weevils (20.5%; Coleoptera:Curculionidae; Fig. 19). 

 

 

 

Figure 19: Total arthropod remains found in Attwater’s prairie chicken feces.  Numbers 

above bars represent total taxa found in feces. 
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Diet Predictions Using a Stable Isotope Mixing Model 

 The MixSIAR model using δ
13

C and δ
15

N values for combined blood and 3 

sources (vegetation, insects, and spiders) suggested insects were the main contributor to 

diet (87.2%; Fig. 20A).  Insects also were the main contributor to diet for blood collected 

during the summer (57.3%) and fall (42.7%; Figs. 20B, 20C).  For combined blood and 

fall blood samples, the second most prevalent diet source was C3 vegetation (11.4% and 

25.5%, respectively), and third was spiders (0.9% and 22.7%, respectively).  For blood 

and diet samples collected during summer, the model results indicated spiders were the 

second most abundant diet source (21.9%), followed by C3 vegetation (20.6%). 
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Figure 20: Posterior density plot for combined (A), summer (B), and fall (C) blood using 

3 sources (C3 vegetation, Spiders, and Insects). 
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Using historic feathers δ
13

C and δ
15

N values and 3 sources, the model results 

indicated spiders had the greatest contribution to diet (63.2%), then insects (32.3%), and 

C3 vegetation contributed the least (3.5%; Fig. 21A).  Using values from feathers 

collected from contemporary specimens, the mixing model indicated insects had the 

greatest contribution to the APC diet (63.4%), then spiders (26.4%), and C3 vegetation 

(9.1%; Fig. 21B). 

 

 

 

Figure 21: Posterior density plot for historic (A) and contemporary (B) feathers using 3 

sources (C3 vegetation, Spiders, and Insects). 
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Results for combined blood δ
13

C and δ
15

N values and 4 sources (C3 vegetation, 

insects, spiders, and C4 vegetation) indicated the following 3 sources contribute the most 

to APC diet: C3 vegetation, C4 vegetation, and insects (60.8%, 24.6%, and 11.2%, 

respectively; Fig. 22A).  For summer blood samples, the main 3 contributors were:  C3 

vegetation, insects, and spiders (43.4%, 27.7%, and 14.7%, respectively; Fig. 22B).  For 

fall blood samples, C3 vegetation, C4 vegetation, and insects contributed 36.6%, 33.7%, 

and 19.4%, respectively to APC diet (Fig. 22C). 
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Figure 22: Posterior density plot for combined (A), summer (B), and fall (C) blood using 

4 sources (C3 and C4 vegetation, Spiders, and Insects). 
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By using the δ
13

C and δ
15

N values from historic feathers with 4 sources, the 

model results indicated spiders (37.1%) contributed the most to the diet, then C4 

vegetation (23.3%), C3 vegetation (22.8%), and insects (15.7%; Fig. 23A).  Using δ
13

C 

and δ
15

N values with contemporary feathers and 4 sources, the model suggests C4 

vegetation contributed the most (32.7%; Fig. 23B) to the diet, followed by C3 vegetation 

(32.1%), insects (19.6%), and spiders (14.8%). 

 

 

 

Figure 23: Posterior density plot for historic (A) and contemporary (B) feathers using 4 

sources (C3 and C4 vegetation, Spiders, and Insects). 

 

 

 When 5 sources (C3 vegetation, insects, spiders, C4 vegetation, and rice) were 

considered and the δ
13

C and δ
15

N values for combined blood, the model indicated C3 
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vegetation (53.6%) contributed the most to APC diet, followed by C4 vegetation 

(23.1%), rice (10.9%), insects (7.8%), and spiders (1.9%; Fig. 24A).  When only the 

isotope values from blood samples collected in the summer were used, the model 

showed different results with rice (34.2%) contributing the most to APC diet, followed 

by C3 vegetation (25.6%), insects (18.8%), C4 vegetation (11.2%), and spiders (6.6%; 

Fig. 24B).   

 

 

 

Figure 24: Posterior density plot for combined (A) and summer (B) blood using 5 

sources (C3 and C4 vegetation, Spiders, Insects, and Rice). 

 

 

 Using historic feather stable isotope values with 5 sources, the model results 

indicated almost half of their diet was comprised of rice (45.3%), followed by C4 
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vegetation (25.6%), spiders (12.3), C3 vegetation (9.4%), and insects (6.4%; Fig. 25A).  

Contemporary feather δ
13

C and δ
15

N values used in the model indicated C4 vegetation 

(30.2%) contributed the most to APC diet, followed by insects (19.9%), C3 vegetation 

(18.9%), rice (18.7%), and then spiders (8.7%; Fig. 25B).   

 

 

 

Figure 25: Posterior density plot for historic (A) and contemporary (B) feathers using 5 

sources (C3 and C4 vegetation, Spiders, Insects, and Rice). 

 

 

Discussion 

 One of the main objectives of this study was to determine if stable isotopes 

carbon (δ
13

C) and nitrogen (δ
15

N) could be used to predict the diet of wild APCs on the 
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APCNWR.  Assessing diet using stable isotopes could be useful to determine seasonal 

abundance and distribution of the most important diet sources for APCs once they are 

released at the refuge.  The results from the MixSIAR model suggest diverse 

contribution of sources which are quite variable and not easy to interpret. Using only 3 

sources (vegetation, insects, and spiders) and isotope values for contemporary APC 

feathers and blood, the model suggests APCs have a diet high in insects (87.2%), 

followed by C3 vegetation (11.4%) then spiders (0.9%); however, these results should be 

taken with caution because when the isotope values for sources and compartments were 

plotted, some of those values fell off the triangle recommended for proper analysis (Fig. 

13), which suggested that some additional sources were needed. This is when I 

considered adding C4 plants, although I collected only a few C4 plants at the refuge. The 

majority of plants and forbs at the refuge are C3. Additionally, finding insects as the 

predominant food source runs opposite to what Lehman (1941) and Cogar (1980) 

reported in previous studies (1936-1980) , which indicate that plant matter (foliage and 

seeds) is the dominant food choice, with insects comprising less than 20% of their diet.  

However, both studies reported APCs consumed more insects during summer.  This can 

explain why analysis of summer blood indicates a high percentage of insects 

contributing to the diet during that time.  However, it does not explain the results for 

feathers and fall blood samples.  When an additional source (C4 plants) was added to the 

model vegetation (C3 plants) was observed to be the main component to APCs’ overall 

diet.  These results are similar to Lehman (1941) and Cogar (1980) and the consumed 

vegetation stable isotope values had similar signatures to C3 plants.  Even though APCs 



 

84 

 

are historically known to eat primarily forbs (C3 vegetation), no surrounding crops (e.g. 

corn) were noticed near the refuge with C4 plants during the collection period.  However, 

corn and a mixture of peas (sweet or black-eyed peas) are given to captive-reared APCs 

during (inside enclosure) and after (outside enclosure) acclimation onto the refuge 

(USFWS 2010).   Millet, a C4 crop, was planted on the refuge during 2011 and 2012, but 

was stunted, so it could have been eaten by APCs there at that time.  However, whether 

the birds sampled in this study were exposed to C4 plants or not, remains uncertain.  

Using 5 sources to run the model I observed C3 (53.6%), C4 plants (23.1%), and rice 

(10.9%) contributed the most to APC diet.  Rice was considered a separate diet source 

since it had high δ
15

N values compared to the other sources.  Rice crops surround the 

refuge, an area where APCs are known to forage (USFWS 2010).  The availability of 

corn, peas, and rice to current APCs likely explains why the stable isotope analysis 

indicates a much greater contribution of these additional sources in comparison to 

naturally available dietary sources from the refuge.  The major diet source for APCs 

changes between each model, which suggests that the source variability is important.  

The results from the models using 4 and 5 sources provide information about APC diet 

that may be more reliable based on experience and previous studies. 

There may be unintended consequences of having extra food provided to APCs 

once on the refuge, particularly corn. A study done by Feret et al. (2003) showed that 

wild geese eating a corn based diet had a better body condition compared to geese that 

did not.  Thus, a shift in diet from a high energy food source like corn (Gauthier et al. 

1992) to a diet of forbs and insects that are less enriched in δ
13

C values may cause a 
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problem for the overall health of newly released APCs (Krapu et al. 1995, Feret et al. 

2003) unless it is continuously made available throughout the year.   

Burns-Cusato and Morrow (2003) pointed out that introducing captive APCs to 

the wild has limited success, most likely because released birds are not prepared for their 

new, wild environment.  Hess et al. (2005) suggest rearing APC chicks with forbs that 

APCs are known to eat and also use as natural cover.  Enriching the APCs’ captive 

environment with natural food (forbs and insects from the refuge) could help APCs learn 

important foraging strategies early on, skills they can then utilize once released to the 

wild (Carlstead and Shepherdson 1994).  Accordingly, chicks reared in a semi-natural 

environment may have an increased chance for survival, though more experiments 

should be done to further explore this possibility for APCs. 

 Even though there were no statistically significant differences for δ
13

C values of 

APC historic feathers compared to contemporary feathers, I observed δ
13

C values in 

feathers of APCs currently in the wild to have a wider range of values (-13.37‰ to -

26.41‰) than those in historic specimens.  Other studies that have observed this shift in 

birds suggest the wide variation in δ
13

C values could be due to changes in the birds’ 

foraging strategies (Bearhop et al. 2006).  However, I do not have data from this study to 

fully support this observation.  Food plots (peanuts, corn, and rice) used to be prevalent 

around the APCNWR and were utilized by APCs as food sources in the past (Lehman 

1941).  Both peanuts and rice are C3 crops (Teramura 1983, Rajwade et al. 2015), and 

APCs primarily ate peanuts and rice during the fall (Kessler 1978).  Currently, peanut 

crops are no longer present around the APCNWR due to the risk of aflatoxins forming 
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and potentially harming the APCs (USFWS 1992, 2010).  Rice fields have decreased due 

to drought (Baddour 2014) and some have even been acquired by the APCNWR for 

eventual conversion into APC habitat (Morrow et al. 2004).  However, they do surround 

the refuge today (Werner et al. 2016). 

The decrease in δ
15

N values of contemporary APC feathers when compared to 

historic APC feathers is not enough to be considered a decrease in trophic level (Kelly 

2000), but it is still statistically significant.  There can be a few reasons for the observed 

decrease in APC feather δ
15

N values when comparing historic to contemporary.  One 

reason could be potential diet shifts based on the current available food choices on the 

refuge, such as the supplemental corn and peas provided.  Another reason could be due 

to the introduction of red imported fire ants (RIFA; Solenopsis invicta) to the United 

States in the 1930s (Allen et al. 1994).  Since their introduction, RIFA have spread 

across the southern U.S., including Texas and the APCs’ natural habitat (Morrow et al. 

2013).  Invertebrate numbers can decrease in the presence of RIFA since they prey upon 

invertebrates as they scavenge (Holway et al. 2002).  By making invertebrates relatively 

scarce, the presence of RIFA in the refuge could account in part for why δ
15

N values in 

contemporary feathers are less enriched than in the past.  Another reason for the decrease 

in APC feather δ
15

N values when comparing historic to contemporary could be that 

some areas of the APCNWR were previous cropland that had fertilizer applied.  

Sometimes there is a decrease in δ
15

N values of plant samples collected when there is an 

application of fertilizer since it is depleted in δ
15

N itself (Hogberg et al. 1995). 
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This study is the first to present δ
13

C and δ
15

N values for the endangered APCs 

and their diet sources.   However, some caveats should be addressed, including the use 

of captive APC TDF values for the mixing models used.  Since wild APCs may be under 

nutritional stress compared to their captive counterparts, their TDF values could differ 

(Phillips and Koch 2002).  Also, I did not collect and analyze any current Texas rice 

samples for δ
13

C and δ
15

N analyses in this study, instead using values obtained by 

Alisauskas and Hobson (1993).  Consequently, the δ
13

C and δ
15

N values for my rice 

source may be different from current rice crops surrounding the refuge.  Also, due to 

limited arthropod collection during winter, the mixing model was unusable for 

determining APC diet during that time. 

Overall, when using 3 diet sources (C3 vegetation, insects and spiders) and 

contemporary feather δ
13

C and δ
15

N values, the model suggests that insects contribute 

mainly to APC diet.  This result is possibly misleading since so many APC feather 

samples fell outside the mixing polygon.  When the model was run with the same 

contemporary feather δ
13

C and δ
15

N values and 4 (C3, C4 vegetation, insects, and 

spiders) and 5 diet sources (C3, C4 vegetation, insects, spiders and rice), the results 

shifted to vegetation (C3 and C4) plants contributing the most to APC diet.  The results of 

C3 plants (forbs) comprising the most to APC diet are similar to what past APC diet 

studies have noted; however, C4 is a new main contributor to APC diet.  In the past corn 

(C4 plant) was foraged by APCs opportunistically and in this study did not show to 

comprise much of historic APCs diet.  The opposite was determined for contemporary 

APCs, and C4 plants contributed more so compared to past APC diet. 
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CHAPTER V  

DISCUSSION AND CONCLUSIONS 

 

The results from Chapter II, “Hazard Assessment of Mercury to Waterbirds at 

Lake Chapala, Mexico” indicated that there was a positive and significant correlation 

between fish Hg concentrations and fish length.  Fish δ
15

N values also were significantly 

correlated with fish Hg concentrations from both Lake Chapala and the San Antonio 

Guaracha Reservoir (reference site).  When I compared fish Hg concentrations from this 

study with the results of other studies, I found fish Hg concentrations were similar to 

what others reported.  No significant differences for feather Hg concentrations were 

determined between years, locations, or species.  The feather δD values had a wide range 

(-163‰ to -11‰).  The majority of them had more depleted δD values, which suggests 

these feathers were grown in more northerly regions.   

For Chapter III, “Metal Concentrations in Water, Sediment, and Fish from Lake 

Chapala, Mexico”, I found a significant correlation between fish metal concentrations 

(Ba, Cu, Mn, and Zn) and fish length.  As opposed to Chapter II, no fish metal 

concentrations were significantly correlated with δ
15

N values, suggesting no 

biomagnification occurring with these particular metals.  Also, I found Lake Chapala 

metal concentrations in water, sediments, and fish were similar to, or below past metal 

concentrations recorded in previous studies.  All metal concentrations I analyzed were 

below levels of concern for both fish and wildlife.  This study is unique in that it reports 
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recent metal data not only in the water, sediments, and fish from Lake Chapala, but from 

aquatic birds as well. 

In Chapter IV, “Using Stable Isotopes to Determine Diet Sources of the 

Endangered Attwater’s Prairie Chicken (Tympanuchus cupido attwateri) in Texas”, I 

found C3 vegetation (mostly forbs) contributed over 50% to APC diet when blood was 

grouped from all seasons (summer, fall, and winter).  When the model was run using 

summer APC blood samples it indicated APCs mainly consume rice, then forbs 

(legumes more than non-legume sources), insects, C4 vegetation (primarily grasses and 

possibly corn), and spiders during this time. 

I also found there was an apparently wider range in contemporary feather δ
13

C 

values (-26.41‰ to -13.37‰) compared to historic individuals (-23.80‰ to -18.65‰).  

Feather δ
15

N values were significantly lower in contemporary compared to historic 

APCs.  When I used contemporary APC feather δ
13

C and δ
15

N values in the MixSIAR 

model, I determined C4 vegetation was predominantly consumed compared to the other 

diet sources available (forbs, rice, spiders, and insects).  This differed from historic APC 

feather stable isotope values, which determined rice was the main contributor to APC 

diet, then grasses/corn, spiders, forbs, and insects. 

 

Conclusions 

 For the Lake Chapala study, metal concentrations in water, sediment, and fish 

were similar, or to some extent lower, compared to those reported in previous studies.  

Lake Chapala is an alkaline lake, which could contribute to the low metal concentrations 
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in water and possibly fish since there is less assimilation of Hg and other metals by 

bacteria compared to more acidic lakes.  This lake is also very shallow and 

concentrations of contaminants in it can fluctuate greatly depending on the weather.  

Hence, metal concentrations in water and biota in Lake Chapala could experience annual 

variations. 

 The Attwater’s prairie chicken study determined different sources were being 

assimilated by the bird depending on which diet sources were used in the mixing model.  

I used the three initial diet sources (forbs, insects, and spiders) since I was directed by 

the refuge biologists in my selection of those samples.  After running the mixing 

polygon simulation, I determined that I should add the grasses to my model since there 

seemed to be a missing diet source with similar δ
13

C values.  This then lead me to add 

rice for my last mixing model, since there showed to be a missing diet source with high 

δ
15

N values.  All of the described mixing models results are possible predictions for 

current APC diet.  However, the models with grasses as an added diet source are better 

predictors for APC diet since those stable isotope values fill in a possible missing APC 

diet source.  Forbs were shown to contribute mainly to APC diet (when using blood δ13
C 

and δ15
N values).  These results are similar to past APC diet studies conducted by 

Lehman (1941) and Cogar (1980).  When looking at the fecal arthropod fragments, 

Orthoptera, Lepidotera, and Coleoptera were the most consumed by APCs during the 

winter months.  Even though I was not able to conduct a mixing model analysis during 

this period, I know APCs were consuming these particular insects; however, I cannot 
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determine if these insect sources were assimilated by APCs.  The results of this study 

reaffirm that APCs are omnivorous and opportunistic foragers. 
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APPENDIX 

Appendix A 

The Hg QA/QC results for water, sediments, fish, and feathers from Lake Chapala. 
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Sample Type MDL (ng/g)
a
 Precision

b
 Accuracy

c
 

   Spike CRM
d
 

Water 0.0002 7.49 (n =3 ) 105 (n = 2) 94 (n = 1) 

Sediment 0.68 14.5 (n = 2) 100 (n = 2) 95.5 (n = 2) 

Fish 4.6 2.4 (n = 5) 99.2 (n = 5) 98.4 (n = 18) 

Feathers 11.7 2.62 (n = 4) 100.7 (n = 3) 96.8 (n = 6) 

 

a 
Method detection limit 

b 
Relative percent difference (RPD) 

c 
Average percent recovery 

d 
Certified reference material (Water: NIST 1631d; Sediment: NRCC MESS-3; Fish and 

feathers: NIST 2976, NRCC DOLT-4) 
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Appendix B 

The QA/QC results of water, sediment, and fish analysis from Lake Chapala.
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  Sample Al Ba Cu Mn Sr V Zn 

MDL 

(µg/mL, 

µg/g) 

Water 0.00255 0.000525 0.000125 0.000035 0.000275 0.00275 0.0002 

(n = 2)        

Sediment 0.93 0.093 0.187 0.093 0.019 0.467 0.187 

(n = 1)        

Fish 0.4487 0.0897 0.4487 0.1793 0.0449 0.4487 0.1793 

(n = 3)               

Precision 

Water 0 0.5 4.5 0.5 1.5 2.5 2 

(n = 2)        

Sediment 7 2 3 2 0 7 5 

(n = 1)        

Fish 15.67 1.67 20 2.33 4.33 6 2 

(n = 3)               

Accuracy 

(Avg: Lab 

control 

sample, 

Spike, and 

SRM)  

Water 92.33 98.67 96.25 100.25 98.83 100.5 100 

Al, Ba, Sr, 

V  

       

(n = 6)        

Cu, Mn, 

Zn  

       

(n = 4)        

Sediment 87.67 106 96.33 99.67 76.67 82.33 96.33 

(n = 3)        

Fish 83.75 92.63 84.5 99.92 86.63 96.25 92.67 

Al, Cu, 

Mn, Zn  

       

(n = 12)        

Ba, Sr, V         

(n = 8)               
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Appendix C 

All information for vegetation collected from APCNWR during 2012–2013. 
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Material n

Date 

collected Month Year Season

Collection 

Site Common Name Scientific Name Family

C3 or 

C4 Forb/grass/rush

Legume/non-

legume δ
13

C δ
15

N %C %N

Vegetation 1 6/26/2012 June 2012 Summer CAG Cuman ragweed Ambrosia psilostachya Asteraceae C3 Forb Non-legume -30.5 8.07 40.97 1.1

Vegetation 1 7/18/2013 July 2013 Spring RWR Cuman/western ragweed Ambrosia psilostachya Asteraceae C3 Forb Non-legume -30.57 -0.89 41.4 1.27

Vegetation 1 7/18/2013 July 2013 Spring CN1 Cuman/western ragweed Ambrosia psilostachya Asteraceae C3 Forb Non-legume -29.97 -0.88 42.46 1.02

Vegetation 1 7/18/2013 July 2013 Spring RN7 Cuman/western ragweed Ambrosia psilostachya Asteraceae C3 Forb Non-legume -30.47 1.29 42.72 1.65

Vegetation 1 9/25/2013 September 2013 Fall CN1 Cuman/western ragweed Ambrosia psilostachya Asteraceae C3 Forb Non-legume -30.14 -2.07 41.44 1.73

Vegetation 1 9/25/2013 September 2013 Fall RN7 Cuman/western ragweed Ambrosia psilostachya Asteraceae C3 Forb Non-legume -28.56 -0.59 44.88 1.32

Vegetation 1 9/25/2013 September 2013 Fall RWR Cuman/western ragweed Ambrosia psilostachya Asteraceae C3 Forb Non-legume -27.97 1.69 44.37 2.23

Vegetation 1 2/3/2012 February 2012 Winter CAG Scarlet pimpernel Anagallis arvensis Primulaceae C3 Forb Non-legume -31.48 2.45 39.19 2.38

Vegetation 1 2/3/2012 February 2012 Winter CAG Scarlet pimpernel Anagallis arvensis Primulaceae C3 Forb Non-legume -30.88 4.38 40.16 2.65

Vegetation 1 4/23/2012 April 2012 Spring CAG Scarlet pimpernel Anagallis arvensis Primulaceae C3 Forb Non-legume -31.7 1.65 44.7 1.65

Vegetation 1 4/23/2012 April 2012 Spring CAG Scarlet pimpernel Anagallis arvensis Primulaceae C3 Forb Non-legume -31.69 1.75 44.76 1.64

Vegetation 1 2/3/2012 February 2012 Winter CAG Carolina anemone Anemone caroliniana Ranunculaceae C3 Forb Non-legume -29.02 1.61 42.6 2.42

Vegetation 1 2/3/2012 February 2012 Winter CAG Carolina anemone Anemone caroliniana Ranunculaceae C3 Forb Non-legume -29.01 3.6 39.88 2.51

Vegetation 1 2/3/2012 February 2012 Winter CAG Carolina anemone Anemone caroliniana Ranunculaceae C3 Forb Non-legume -28.92 3.81 43.86 2.83

Vegetation 1 2/8/2013 February 2013 Winter DN4 Aster Symphyotrichum spp. Asteraceae C3 Forb Non-legume -31.43 -0.19 38.12 2.74

Vegetation 1 2/8/2013 February 2013 Winter Aster Symphyotrichum spp. Asteraceae C3 Forb Non-legume -28.14 2.84 38.92 4.16

Vegetation 1 2/8/2013 February 2013 Winter Aster Family Symphyotrichum spp. Asteraceae C3 Forb Non-legume -28.78 4.36 28.35 3.32

Vegetation 1 4/5/2013 April 2013 Spring RER Longbract wild indigo Baptisia bracteata Fabaceae C3 Forb Legume -27.88 0.75 46.02 4.27

Vegetation 1 4/23/2012 April 2012 Spring CAG Quaking grass Briza Poaceae C3 Grass Non-legume -27.96 1.56 42.1 1.13

Vegetation 1 4/23/2012 April 2012 Spring CAG Wine cup Callirhoe involucrata Malvaceae C3 Forb Non-legume -29.64 1.5 40.99 1.53

Vegetation 1 4/23/2012 April 2012 Spring CAG Wine cup Callirhoe involucrata Malvaceae C3 Forb Non-legume -29.12 1.73 39.39 1.51

Vegetation 1 7/18/2013 July 2013 Spring CN1 Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -31.33 -0.66 50.51 2.23

Vegetation 1 7/18/2013 July 2013 Spring RWR Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -30.44 -0.61 50.74 2.27

Vegetation 1 7/18/2013 July 2013 Spring RWR Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -30.44 -0.61 50.57 2.26

Vegetation 1 7/18/2013 July 2013 Spring RN7 Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -30.23 -0.31 50.45 2.16

Vegetation 1 7/18/2013 July 2013 Spring CN2 Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -31.29 0.61 48.1 2.32

Vegetation 1 9/25/2013 September 2013 Fall CN2 Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -29.51 -1.67 49.4 2.32

Vegetation 1 9/25/2013 September 2013 Fall RWR Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -29.2 -0.89 49.49 1.92

Vegetation 1 9/25/2013 September 2013 Fall CN2 Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -29.87 -0.62 47.49 1.67

Vegetation 1 9/25/2013 September 2013 Fall RN7 Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -30.2 -0.28 50.39 2.08

Vegetation 1 4/23/2012 April 2012 Spring CAG Partridge pea Chamaecrista fasciculata Fabaceae C3 Forb Legume -31.64 -1.34 46.24 2.41

Vegetation 1 2/8/2013 February 2013 Winter DN4 Thistle Cirsium spp. Asteraceae C3 Forb Non-legume -30.91 -2.16 32.98 2.2

Vegetation 1 4/23/2012 April 2012 Spring CAG Golden tickseed Coreopsis tinctoria Asteraceae C3 Forb Non-legume -30.77 0.5 44.37 1.55

Vegetation 1 8/16/2012 August 2012 Summer DN4 Hogwort Croton capitatus Euphorbiaceae C3 Forb Non-legume -30.62 -1.8 43.83 0.98

Vegetation 1 7/18/2013 July 2013 Spring CN2 Hogwort/croton Croton capitatus Euphorbiaceae C3 Forb Non-legume -29.68 3.6 44.02 2.1

Vegetation 1 7/18/2013 July 2013 Spring CN2 Hogwort/croton Croton capitatus Euphorbiaceae C3 Forb Non-legume -28.79 7.07 44.39 2.99

Vegetation 1 9/25/2013 September 2013 Fall DN4 Hogwort/croton Croton capitatus Euphorbiaceae C3 Forb Non-legume -29.28 -1.58 44.8 1.88

Vegetation 1 9/25/2013 September 2013 Fall RN7 Hogwort/croton Croton capitatus Euphorbiaceae C3 Forb Non-legume -28.65 0.21 45.72 1.83

Vegetation 1 9/25/2013 September 2013 Fall CN2 Hogwort/croton Croton capitatus Euphorbiaceae C3 Forb Non-legume -27.09 1.79 45.42 1.88

Vegetation 1 9/25/2013 September 2013 Fall CN2 Hogwort/croton Croton capitatus Euphorbiaceae C3 Forb Non-legume -29.31 2.58 44.93 1.87

Vegetation 1 2/3/2012 February 2012 Winter CAG Rosette grass Dichanthelium spp. Poaceae C3 Grass Non-legume -28.69 2.36 39.39 3.73

Vegetation 1 2/3/2012 February 2012 Winter CAG Rosette grass Dichanthelium spp. Poaceae C3 Grass Non-legume -30.57 2.8 34.65 2.69

Vegetation 1 2/8/2013 February 2013 Winter CN1 Rosette grass Dichanthelium spp. Poaceae C3 Grass Non-legume -31.2 4.81 41.07 3.75
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Appendix C Continued 

 

Material n

Date 

collected Month Year Season

Collection 

Site Common Name Scientific Name Family

C3 or 

C4 Forb/grass/rush

Legume/non-

legume δ
13

C δ
15

N %C %N

Vegetation 1 7/18/2013 July 2013 Spring RWR Dichanthelium Dichanthelium oligosanthes Poaceae C3 Grass Non-legume -29.75 -0.05 44.01 1.07

Vegetation 1 9/25/2013 September 2013 Fall CN1 Dichanthelium Dichanthelium oligosanthes Poaceae C3 Grass Non-legume -29.8 -1.38 43.45 0.86

Vegetation 1 7/18/2013 July 2013 Spring CN1 Dichanthelium Dichanthelium spp. Poaceae C3 Grass Non-legume -29.1 -2.26 43.22 1.12

Vegetation 1 7/18/2013 July 2013 Spring RN7 Dichanthelium Dichanthelium spp. Poaceae C3 Grass Non-legume -28.97 1.08 43.12 1.13

Vegetation 1 9/25/2013 September 2013 Fall DN4 Dichanthelium Dichanthelium spp. Poaceae C3 Grass Non-legume -28.32 -2.59 45.13 0.78

Vegetation 1 9/25/2013 September 2013 Fall CN1 Dichanthelium Dichanthelium spp. Poaceae C3 Grass Non-legume -29.86 -0.03 43.3 0.81

Vegetation 1 9/25/2013 September 2013 Fall RN7 Dichanthelium Dichanthelium spp. Poaceae C3 Grass Non-legume -29.62 0.75 44.51 1.64

Vegetation 1 7/18/2013 July 2013 Spring DN4 Clasping coneflower Dracopis amplexicaulis Asteraceae C3 Forb Non-legume -28.24 -1.43 47.9 1.85

Vegetation 1 7/18/2013 July 2013 Spring CN1 Clasping coneflower Dracopis amplexicaulis Asteraceae C3 Forb Non-legume -28.61 0.45 45.6 1.72

Vegetation 1 7/18/2013 July 2013 Spring CN1 Clasping coneflower Dracopis amplexicaulis Asteraceae C3 Forb Non-legume -28.61 0.53 45.88 1.73

Vegetation 1 6/26/2012 June 2012 Summer CAG Button eryngo Eryngium yuccifolium Apiaceae C3 Forb Non-legume -26.85 5.71 41.58 1.12

Vegetation 1 7/18/2013 July 2013 Spring CN2 Spurge Euphorbia spp. Euphorbiaceae C3 Forb Non-legume -30.03 4.28 44.26 2.93

Vegetation 1 7/18/2013 July 2013 Spring CN2 Spurge Euphorbia spp. Euphorbiaceae C3 Forb Non-legume -29.91 4.78 45.67 3.43

Vegetation 1 4/5/2013 April 2013 Spring DN4 Goldentop Euthamia spp. Asteraceae C3 Forb Non-legume -30.83 0.07 45.66 2.59

Vegetation 1 8/16/2012 August 2012 Summer CN2 Beeblossom Oenothera spp. Onagraceae C3 Forb Non-legume -26.25 3.67 43.77 1.22

Vegetation 1 9/25/2013 September 2013 Fall RWR Beeblossom Oenothera spp. Onagraceae C3 Forb Non-legume -27.13 -0.42 44.57 0.7

Vegetation 1 9/25/2013 September 2013 Fall CN2 Beeblossom Oenothera spp. Onagraceae C3 Forb Non-legume -27.57 2.5 45.46 1.44

Vegetation 1 9/25/2013 September 2013 Fall CN2 Beeblossom Oenothera spp. Onagraceae C3 Forb Non-legume -28.43 4.83 44.14 1.61

Vegetation 1 2/3/2012 February 2012 Winter CAG Carolina geranium Geranium carolinianum Geraniaceae C3 Forb Non-legume -31.12 3.09 41.75 3.6

Vegetation 1 8/16/2012 August 2012 Summer CN2 Sneezeweed Helenium amarum Asteraceae C3 Forb Non-legume -28.5 1.63 45.21 1.27

Vegetation 1 4/23/2012 April 2012 Spring CAG Little barley Hordeum pusillum Poaceae C3 Grass Non-legume -28.28 4.45 42.75 0.92

Vegetation 1 4/23/2012 April 2012 Spring CAG Star-grass Hypoxis Liliaceae C3 Forb Non-legume -29.84 1.53 42.76 1.63

Vegetation 1 6/26/2012 June 2012 Summer CAG Annual marsh elder Iva annua Asteraceae C3 Forb Non-legume -29.8 8.36 40.04 1.02

Vegetation 1 8/16/2012 August 2012 Summer CN1 Annual marsh elder Iva annua Asteraceae C3 Forb Non-legume -28.98 1.59 37.72 2.2

Vegetation 1 4/23/2012 April 2012 Spring CAG Rush Juncus Juncaceae C3 Rush Non-legume -29.72 2.23 44.58 0.74

Vegetation 1 4/23/2012 April 2012 Spring CAG Dwarfdandelion Krigia Asteraceae C3 Forb Non-legume -22.44 0.38 44.09 1.06

Vegetation 1 4/23/2012 April 2012 Spring CAG Dwarfdandelion Krigia Asteraceae C3 Forb Non-legume -22.4 0.48 43.98 1.05

Vegetation 1 4/23/2012 April 2012 Spring CAG Pepperweed Lepidium Brassicaceae C3 Forb Non-legume -27.65 5.68 38.31 2.38

Vegetation 1 2/8/2013 February 2013 Winter RWR Gayfeather Liatris mucronata Asteraceae C3 Forb Non-legume -29.12 0.7 44.42 4.16

Vegetation 1 4/23/2012 April 2012 Spring CAG Toadflax Linaria Scrophulariaceae C3 Forb Non-legume -29.9 0.16 39.96 0.68

Vegetation 1 6/26/2012 June 2012 Summer CAG Loosestrife Lythrum Lythraceae C3 Forb Non-legume -26.91 3.19 44.65 1.14

Vegetation 1 2/8/2013 February 2013 Winter CN1 Loosestrife Lythrum Lythraceae C3 Forb Non-legume -31.91 6.72 37.27 4.02

Vegetation 1 4/23/2012 April 2012 Spring CAG Black medic Medicago lupulina Fabaceae C3 Forb Legume -28.18 -0.81 44.48 2.79

Vegetation 1 2/3/2012 February 2012 Winter CAG Burclover Medicago polymorpha Fabaceae C3 Forb Legume -30.29 -0.29 42.54 4.26

Vegetation 1 2/3/2012 February 2012 Winter CAG Burclover Medicago polymorpha Fabaceae C3 Forb Legume -30.33 -0.02 44.88 4.59

Vegetation 1 2/3/2012 February 2012 Winter CAG Burclover Medicago polymorpha Fabaceae C3 Forb Legume -29.78 0.06 42.99 3.64

Vegetation 1 4/23/2012 April 2012 Spring CAG Schrankia (sensitive briar) Mimosa nuttallii Fabaceae C3 Forb Legume -29.5 0.42 44.09 4.05

Vegetation 1 7/18/2013 July 2013 Spring CN1 Sensitive briar Mimosa nuttallii Fabaceae C3 Forb Legume -30.54 -2.22 45.5 1.63

Vegetation 1 7/18/2013 July 2013 Spring RWR Sensitive briar Mimosa nuttallii Fabaceae C3 Forb Legume -30.83 -1.98 45.48 1.77

Vegetation 1 7/18/2013 July 2013 Spring AM150 Sensitive briar Mimosa nuttallii Fabaceae C3 Forb Legume -29.28 -1.34 45.33 2.1

Vegetation 1 7/18/2013 July 2013 Spring AM150 Sensitive briar Mimosa spp. Fabaceae C3 Forb Legume -30.52 -2.17 46.12 2.34
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Appendix C Continued 

Material n

Date 

collected Month Year Season

Collection 

Site Common Name Scientific Name Family

C3 or 

C4 Forb/grass/rush

Legume/non-

legume δ
13

C δ
15

N %C %N

Vegetation 1 7/18/2013 July 2013 Spring DN4 Sensitive briar Mimosa spp. Fabaceae C3 Forb Legume -29.8 -0.72 45.5 1.6

Vegetation 1 9/25/2013 September 2013 Fall RN7 Sensitive briar Mimosa spp. Fabaceae C3 Forb Legume -30.86 -1.17 46.92 1.66

Vegetation 1 2/3/2012 February 2012 Winter CAG Neptunia Neptunia Fabaceae C3 Forb Legume -25.74 -2.25 44.05 7.48

Vegetation 1 4/23/2012 April 2012 Spring CAG Neptunia (sensitive briar) Neptunia lutea Fabaceae C3 Forb Legume -29.17 0.62 45.86 2.35

Vegetation 1 7/18/2013 July 2013 Spring DN4 Yellow sensitive briar Neptunia lutea Fabaceae C3 Forb Legume -29.99 -1.7 46.33 1.49

Vegetation 1 2/3/2012 February 2012 Winter CAG False dandelion Nothocalais Asteraceae C3 Forb Non-legume -30.28 7.68 42.83 5.18

Vegetation 1 4/23/2012 April 2012 Spring CAG False Dandelion Nothocalais Asteraceae C3 Forb Non-legume -31.38 0.85 42.12 1.24

Vegetation 1 2/3/2012 February 2012 Winter CAG Yellow false garlic/ crowpoison Nothoscordum bivalve Liliaceae C3 Forb Non-legume -30.22 1.86 36.35 2.49

Vegetation 1 2/3/2012 February 2012 Winter CAG Yellow false garlic/ crowpoison Nothoscordum bivalve Liliaceae C3 Forb Non-legume -29.2 1.86 40.81 3.17

Vegetation 1 2/3/2012 February 2012 Winter CAG Yellow false garlic/ crowpoison Nothoscordum bivalve Liliaceae C3 Forb Non-legume -28.41 3.16 40.7 4.72

Vegetation 1 4/5/2013 April 2013 Spring RER Crowpoison Nothoscordum bivalve Liliaceae C3 Forb Non-legume -28.23 0.19 31.18 1.98

Vegetation 1 4/23/2012 April 2012 Spring CAG Cutleaf evening primrose Oenothera laciniata Onagraceae C3 Forb Non-legume -31.56 2.16 41.48 1.34

Vegetation 1 2/3/2012 February 2012 Winter CAG Woodsorrel Oxalis Oxalidaceae C3 Forb Non-legume -30.33 5.34 35.96 2.81

Vegetation 1 2/3/2012 February 2012 Winter CAG Woodsorrel Oxalis Oxalidaceae C3 Forb Non-legume -30.18 5.97 43.13 3.62

Vegetation 1 2/3/2012 February 2012 Winter CAG Woodsorrel Oxalis Oxalidaceae C3 Forb Non-legume -30.32 6.56 44.12 3.66

Vegetation 1 4/23/2012 April 2012 Spring CAG Woodsorrel Oxalis Oxalidaceae C3 Forb Non-legume -30.08 0.6 43.82 1.58

Vegetation 1 9/25/2013 September 2013 Fall CN2 Oxalis Oxalis stricta/corniculata Oxalidaceae C3 Forb Non-legume -30.13 3.79 45.16 2.89

Vegetation 1 9/25/2013 September 2013 Fall CN2 Oxalis Oxalis stricta/corniculata Oxalidaceae C3 Forb Non-legume -30.19 3.82 45.26 2.9

Vegetation 1 4/23/2012 April 2012 Spring CAG Canarygrass Phalaris Poaceae C3 Grass Non-legume -29.28 0.59 39.67 1.08

Vegetation 1 4/23/2012 April 2012 Spring CAG Phlox Phlox Polemoniaceae C3 Forb Non-legume -30.85 0 43 1.1

Vegetation 1 4/23/2012 April 2012 Spring CAG Plantain Plantago Plantaginaceae C3 Forb Non-legume -23 2.36 42.61 1.14

Vegetation 1 4/5/2013 April 2013 Spring RN4 Macartney rose Rosa bracteata Rosaceae C3 Forb Non-legume -27.99 -6.2 43.34 2.33

Vegetation 1 4/23/2012 April 2012 Spring CAG Dewberry Rubus spp. Rosaceae C3 Forb Non-legume -28.96 1.88 45.24 1.19

Vegetation 1 9/25/2013 September 2013 Fall CN1 Coneflower/Prairie coneflower Rudbeckia spp. Asteraceae C3 Forb Non-legume -30.06 1.69 45.91 1.19

Vegetation 1 6/26/2012 June 2012 Summer CAG Wild petunia Ruellia Acanthaceae C3 Forb Non-legume -28.11 7.8 41.48 1.72

Vegetation 1 7/18/2013 July 2013 Spring DN4 Wild petunia Ruellia Acanthaceae C3 Forb Non-legume -29.3 -0.77 41.16 1.07

Vegetation 1 4/23/2012 April 2012 Spring CAG Fringeleaf wild petunia Ruellia humilis Acanthaceae C3 Forb Non-legume -29.68 0.26 39.62 2.24

Vegetation 1 9/25/2013 September 2013 Fall CN1 Wild petunia Ruellia spp. Acanthaceae C3 Forb Non-legume -29.42 -0.7 41.35 1.96

Vegetation 1 4/23/2012 April 2012 Spring CAG Dock Rumex spp. Polygonaceae C3 Forb Non-legume -29.84 1.08 43.08 0.95

Vegetation 1 4/23/2012 April 2012 Spring CAG Meadow pink Sabatia campestris Gentianaceae C3 Forb Non-legume -29.58 2.52 44.71 1.42

Vegetation 1 4/23/2012 April 2012 Spring CAG Meadow pink Sabatia campestris Gentianaceae C3 Forb Non-legume -29.57 2.84 44.82 1.44

Vegetation 1 4/23/2012 April 2012 Spring CAG Blue-eyed grass Sisyrinchium spp. Iridaceae C3 Forb Non-legume -29.97 2.68 42.15 1.53

Vegetation 1 4/23/2012 April 2012 Spring CAG Blue-eyed grass Sisyrinchium spp. Iridaceae C3 Forb Non-legume -29.52 4.37 45.05 1.22

Vegetation 1 4/23/2012 April 2012 Spring CAG Multibloom tephrosia Tephrosia onobrychoides Fabaceae C3 Forb Legume -28.38 -0.58 45.41 2.68

Vegetation 1 2/3/2012 February 2012 Winter CAG Spiderwort Tradescantia Commelinaceae C3 Forb Non-legume -29.47 7.9 39.04 6.09

Vegetation 1 2/3/2012 February 2012 Winter CAG Spiderwort Tradescantia Commelinaceae C3 Forb Non-legume -29.34 8.06 43.44 6.94

Vegetation 1 4/23/2012 April 2012 Spring CAG Venus looking glass Triodanis perfoliata Campanulaceae C3 Forb Non-legume -29.91 -0.31 34.34 1.05

Vegetation 1 4/23/2012 April 2012 Spring CAG Venus look glass (white) Triodanis perfoliata Campanulaceae C3 Forb Non-legume -29.04 4.26 45.03 1.56

Vegetation 1 4/23/2012 April 2012 Spring CAG Venus look glass (white) Triodanis perfoliata Campanulaceae C3 Forb Non-legume -29.04 4.36 41.61 1.46

Vegetation 1 2/3/2012 February 2012 Winter CAG Vetch flowering Vicia Fabaceae C3 Forb Legume -29.97 0.14 42.37 2.69

Vegetation 1 2/3/2012 February 2012 Winter CAG Vetch Vicia Fabaceae C3 Forb Legume -30.81 0.26 44.68 5.44

Vegetation 1 2/3/2012 February 2012 Winter CAG Deer pea Vicia ludoviciana Fabaceae C3 Forb Legume -31.1 1.98 40.79 3.92
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All information for arthropods collected at the APCNWR in 2012–2013. 
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Material n Collection Date Month Year Season Collection Site Order Suborder Family Species Adult/ Immature δ
13

C δ
15

N %C %N

Arthropod 40 4/23/2012 April 2012 Spring CAG Araneae -24 6.87 46.46 12.35

Arthropod 6 6/26/2012 April 2012 Spring CAG Araneae -25.34 6.09

Arthropod 27 6/26/2012 April 2012 Spring CAG Araneae -25.24 5.67

Arthropod 1 5/16/2012 July 2012 Summer CN1 Araneae -24.69 7.3 50.04 11.67

Arthropod 1 7/24/2012 June 2012 Summer CN2 Araneae -25.3 8.97 48.65 11.55

Arthropod 11 7/24/2012 July 2012 Summer CN2 Araneae -22.17 6.65 46.45 11.81

Arthropod 2 8/16/2012 March 2012 Spring CN6 Araneae -20.44 6.39 46.41 12.63

Arthropod 1 4/23/2012 May 2012 Spring CN8 Araneae -24.43 6.83 47.32 11.74

Arthropod 1 11/2/2012 May 2012 Spring CN8 Araneae -24.38 6.83 48.98 11.38

Arthropod 2 7/18/2013 June 2012 Summer CN9 Araneae -25.24 8.43 49.54 12.15

Arthropod 1 7/17/2012 June 2012 Summer DN1 Araneae -22.3 7.19 49.68 11.25

Arthropod 2 7/24/2012 June 2012 Summer DN1 Araneae -23 7.33 48.81 11.57

Arthropod 3 7/17/2012 June 2012 Summer DN1 Araneae -22.4 6.74 48.48 11.43

Arthropod 4 7/17/2012 June 2012 Summer DN1 Araneae -26.48 7.48 48.9 11.26

Arthropod 1 7/17/2012 April 2012 Spring GAC Araneae -21.88 7.83 46.82 12.05

Arthropod 1 5/24/2012 May 2012 Spring PWR Araneae -19.61 5.02 49.23 10.83

Arthropod 1 5/16/2012 May 2012 Spring RN2 Araneae -28 7.25 51.52 10.61

Arthropod 1 5/16/2012 May 2012 Spring RN3 Araneae -22.79 6.6 50.84 10.81

Arthropod 15 8/16/2012 June 2012 Summer RN7 Araneae -17.14 6.99 53.27 9.82

Arthropod 1 4/23/2012 April 2012 Spring ZIG Araneae -25.24 7.84 47.8 12.39

Arthropod 1 4/23/2012 April 2012 Spring ZIG Araneae -24.99 6.51 48.96 11.42

Arthropod 1 4/23/2012 April 2012 Spring ZIG Araneae -26.05 7.54 49.44 10.96

Arthropod 8 4/23/2012 June 2012 Summer AM50 Coleoptera -27.1 4.8 52.35 10.31

Arthropod 55 6/26/2012 April 2012 Spring CAG Coleoptera chrysomelidae colaspis favosa -22.46 3.81 46.39 11.14

Arthropod 1 5/16/2012 July 2012 Summer CN1 Coleoptera curculionidea -26.64 11.37 50.95 10.64

Arthropod 2 6/4/2012 August 2012 Summer CN12 Coleoptera curculionidea -26.76 4.16 49.67 10.65

Arthropod 1 4/23/2012 August 2012 Summer CN12 Coleoptera -25.88 3.83 53.08 9.77

Arthropod 8 7/17/2012 November 2012 Fall CN2 Coleoptera curculionidea -26.49 2.78 49.85 9.83

Arthropod 1 4/23/2012 November 2012 Fall CN2 Coleoptera -26.21 5.29 52.16 9.67

Arthropod 62 4/23/2012 November 2012 Fall CN2 Coleoptera -27.27 7.95 47.67 10.72

Arthropod 5 4/23/2012 November 2012 Fall CN2 Coleoptera chrysomelidae -24.22 6.31 54.98 8.81

Arthropod 1 3/3/2012 July 2012 Summer CN2 Coleoptera elateridae -21.09 9.2 49.76 10.82

Arthropod 4 11/2/2012 July 2012 Summer CN2 Coleoptera chrysomelidae griburius -25.26 7.35 49.69 11.49

Arthropod 1 11/2/2012 May 2012 Spring CN8 Coleoptera elateridae -20.6 8.85 47.33 10.67

Arthropod 1 7/17/2012 June 2012 Summer CN9 Coleoptera chrysomelidae cryptocephalus -25.95 3.68 49.84 10.75

Arthropod 1 5/16/2012 May 2012 Spring PWR Coleoptera curculionidea -26.86 4.41 49.82 10.01

Arthropod 1 5/16/2012 May 2012 Spring PWR Coleoptera chrysomelidae -17.93 2.37 47.13 10.26

Arthropod 1 5/16/2012 August 2012 Summer RN1 Coleoptera -27.87 4.52 50.9 10.49

Arthropod 1 5/16/2012 May 2012 Spring RN3 Coleoptera chrysomelidae -22.17 7.84 50.01 10.06

Arthropod 1 6/26/2012 May 2012 Spring RN3 Coleoptera chrysomelidae -25.2 5.56 58.18 13.46
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Material n Collection Date Month Year Season Collection Site Order Suborder Family Species Adult/ Immature δ
13

C δ
15

N %C %N

Arthropod 1 4/23/2012 August 2012 Summer RWR Coleoptera -29.19 4.02 51.86 10.25

Arthropod 1 4/23/2012 April 2012 Spring ZIG Coleoptera chrysomelidae diabrotica undecimpunctata -23.42 6.42 49.79 10.68

Arthropod 1 4/23/2012 April 2012 Spring ZIG Coleoptera curculionidea hypera sp. -23.81 6.9 50.25 10.33

Arthropod 1 4/23/2012 April 2012 Spring ZIG Coleoptera curculionidea sitona sp. -29.76 4.4 51.23 9.8

Arthropod 1 4/23/2012 April 2012 Spring ZIG Coleoptera curculionidea -29.03 6.32 48.9 8.74

Arthropod 3 6/4/2012 April 2012 Spring ZIG Coleoptera carabidae notioba sp. -21.5 4.97 53.53 8.95

Arthropod 4 11/2/2012 July 2012 Summer CN1 Diptera -20.33 5.46 48.72 11.01

Arthropod 14 11/2/2012 July 2012 Summer CN2 Diptera -24.13 9.14 48.42 11.49

Arthropod 3 7/17/2012 April 2012 Spring GAC Diptera syrphidae -26.94 5.26 47.63 9.63

Arthropod 1 4/23/2012 April 2012 Spring ZIG Diptera syrphidae -26.51 5.96 48.23 9.84

Arthropod 9 9/25/2013 November 2012 Fall CN1 Hemiptera Heteroptera -25.85 3.75 50.81 10.93

Arthropod 1 6/26/2012 July 2012 Summer CN1 Hemiptera Heteroptera pentatomidae -23.03 3.36 49.94 11.07

Arthropod 1 4/23/2012 August 2012 Summer CN12 Hemiptera Heteroptera pentatomidae -26.67 1.52 52.52 10.28

Arthropod 1 4/23/2012 August 2012 Summer CN12 Hemiptera Heteroptera pentatomidae -26.25 1.55 49.78 11.61

Arthropod 1 4/23/2012 August 2012 Summer CN12 Hemiptera Heteroptera pentatomidae -25.37 0.58 43.55 12.61

Arthropod 2 7/18/2013 August 2012 Summer CN12 Hemiptera Heteroptera pentatomidae -25.37 0.54 48.34 11.46

Arthropod 5 9/25/2013 August 2012 Summer CN12 Hemiptera Heteroptera -27.81 0.94 48.91 11.59

Arthropod 1 9/25/2013 August 2012 Summer CN12 Hemiptera Heteroptera pentatomidae -25.9 0.56 49.19 12.09

Arthropod 1 11/2/2012 November 2012 Fall CN2 Hemiptera Heteroptera -26.41 2.01 49.22 12.04

Arthropod 1 5/16/2012 November 2012 Fall CN2 Hemiptera Heteroptera -25.58 2.94 51.49 11.15

Arthropod 1 5/16/2012 November 2012 Fall CN2 Hemiptera Auchenorrhyncha -27.33 5.77 52.8 9.56

Arthropod 1 11/2/2012 November 2012 Fall CN2 Hemiptera Heteroptera -27.46 3.15 51.03 10.92

Arthropod 1 5/16/2012 November 2012 Fall CN2 Hemiptera Heteroptera pentatomidae -12.74 2.14 49.48 12.16

Arthropod 1 5/16/2012 November 2012 Fall CN2 Hemiptera Heteroptera pentatomidae -12.18 0.96 51.39 10.87

Arthropod 1 7/24/2012 June 2012 Summer CN2 Hemiptera Heteroptera alydibae -26.6 2.09 49.64 11.71

Arthropod 1 11/2/2012 July 2012 Summer CN2 Hemiptera Heteroptera pentatomidae euchistus -25.6 3.26 50.68 11.89

Arthropod 5 11/2/2012 July 2012 Summer CN2 Hemiptera Heteroptera pentatomidae euchistus -25.36 2.3 50.99 11.58

Arthropod 1 11/2/2012 July 2012 Summer CN2 Hemiptera Heteroptera pentatomidae -27.56 1.84 49.74 11.66

Arthropod 1 4/23/2012 July 2012 Summer CN2 Hemiptera Heteroptera pentatomidae immature -26.83 0.59 49.47 12.36

Arthropod 1 11/2/2012 May 2012 Spring CN8 Hemiptera Auchenorrhyncha cicadidae -25.57 4.24 47.25 10.92

Arthropod 1 8/23/2012 May 2012 Spring CN8 Hemiptera Auchenorrhyncha cicadidae -27.7 0.65 50.96 8.97

Arthropod 6 7/17/2012 August 2012 Summer DN1 Hemiptera Heteroptera pentatomidae -27.07 3.45 53.11 10.29

Arthropod 1 7/17/2012 June 2012 Summer DN1 Hemiptera Heteroptera pentatomidae immature -26.66 1.81 47.29 10.7

Arthropod 1 7/17/2012 June 2012 Summer DN1 Hemiptera Auchenorrhyncha -27.5 1.5 50.35 10.05

Arthropod 2 6/26/2012 June 2012 Summer DNR Hemiptera Heteroptera lygaeidae -26.98 1.87

Arthropod 4 7/17/2012 June 2012 Summer DNR Hemiptera Auchenorrhyncha cicadellidae -13.43 1.63

Arthropod 1 7/17/2012 April 2012 Spring GAC Hemiptera Auchenorrhyncha membracidae -28.16 0.09 49.89 9.98

Arthropod 1 7/24/2012 April 2012 Spring GAC Hemiptera Heteroptera miridae -27.14 5.98 50.88 11.5
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Arthropod 1 4/23/2012 March 2012 Spring KN2 Hemiptera Auchenorrhyncha cicadellidae -26.93 -0.46 50.51 9.85

Arthropod 1 9/25/2013 November 2012 Fall KWR Hemiptera Heteroptera -13.67 1.63 53.97 9.21

Arthropod 1 11/2/2012 May 2012 Spring KWR Hemiptera Heteroptera pentatomidae oebalus -11.43 5.45 53.5 10.07

Arthropod 1 3/3/2012 May 2012 Spring RN3 Hemiptera Heteroptera pentatomidae -24.28 3.44 51.57 9.42

Arthropod 1 6/26/2012 May 2012 Spring RN3 Hemiptera Heteroptera miridae -25.78 6.97 60.7 12.61

Arthropod 1 6/26/2012 March 2012 Spring RN4 Hemiptera Heteroptera pentatomidae oebalus sp. -21.39 3.62 51.31 10.03

Arthropod 1 11/2/2012 November 2012 Fall RN7 Hemiptera Heteroptera pentatomidae -24.25 3.19 55.29 8.77

Arthropod 1 7/24/2012 November 2012 Fall RN7 Hemiptera Heteroptera coreidae -25.43 2.39 52.77 9.08

Arthropod 1 7/24/2012 November 2012 Fall RN7 Hemiptera Heteroptera -25.55 6.37 50.34 11.53

Arthropod 1 4/23/2012 November 2012 Fall RWR Hemiptera Heteroptera -25.27 2.53 49 11.34

Arthropod 7 6/4/2012 April 2012 Spring ZIG Hemiptera Heteroptera miridae -28.38 7.41

Arthropod 1 4/23/2012 April 2012 Spring ZIG Hemiptera Heteroptera cydnidae -30.84 5.14 55.96 8.76

Arthropod 10+ 6/4/2012 April 2012 Spring ZIG Hemiptera Auchenorrhyncha membracidae -28.06 -1.36 50.29 9.75

Arthropod 5 6/4/2012 April 2012 Spring ZIG Hemiptera Heteroptera pentatomidae immature -26.06 2.31 49.54 11.15

Arthropod 1 7/17/2012 July 2012 Summer CN1 Hymenoptera chalcididae -26.22 7.2 49.2 13.14

Arthropod 1 11/2/2012 July 2012 Summer CN2 Hymenoptera vespidae polistes sp. -23.94 7.26 48.77 12.52

Arthropod 1 11/2/2012 July 2012 Summer CN2 Hymenoptera apidae apis melifera -24.04 1.95 49 11.84

Arthropod 3 8/16/2012 July 2012 Summer CN2 Hymenoptera braconidae -29.79 9.27 49.46 12.79

Arthropod 5 8/16/2012 July 2012 Summer CN2 Hymenoptera mutilliade -23.34 13.5 49.13 13.43

Arthropod 2 8/16/2012 July 2012 Summer CN2 Hymenoptera mutilliade -12.73 9.19 49.05 13.71

Arthropod 10 8/16/2012 July 2012 Summer CN2 Hymenoptera mutilliade -25.25 9.47 49.41 12.53

Arthropod 1 8/16/2012 July 2012 Summer CN2 Hymenoptera megachilidae megachile sp. -25.8 3.09 49.71 13.23

Arthropod 1 6/26/2012 May 2012 Spring KN4 Hymenoptera -27.13 3.26 48.03 12.35

Arthropod 1 7/24/2012 July 2012 Summer RN7 Hymenoptera halictidae -24.43 2.1 49.3 12.59

Arthropod 1 7/24/2012 July 2012 Summer RN7 Hymenoptera sphecoidea -25.75 8.92 46.81 8.88

Arthropod 28 5/16/2012 June 2012 Summer AM150 Lepidoptera immature -17.14 2.86 44.67 7.98

Arthropod 2 7/17/2012 July 2012 Summer CN1 Lepidoptera pieridae -27.56 1.7 48.06 13.84

Arthropod 1 7/24/2012 July 2012 Summer CN1 Lepidoptera pieridae -27.84 2.26 47.89 13.83

Arthropod 7 11/2/2012 July 2012 Summer CN1 Lepidoptera nymphcelidae -13.57 4.66 49.1 13.24

Arthropod 2 4/23/2012 July 2012 Summer CN1 Lepidoptera pieridae -27.21 5.19 48.34 13.03

Arthropod 3 8/16/2012 July 2012 Summer CN1 Lepidoptera nymphcelidae -29.07 7.67

Arthropod 1 11/2/2012 July 2012 Summer CN1 Lepidoptera arctiidae -23.24 6.41 51.34 11.77

Arthropod 1 8/16/2012 July 2012 Summer CN1 Lepidoptera immature -20.62 1.27 45.81 7.09

Arthropod 1 5/16/2012 November 2012 Fall CN2 Lepidoptera -27.96 10.34 54.18 9.58

Arthropod 2 7/17/2012 June 2012 Summer DNR Lepidoptera immature -30.07 0 51.32 9.47

Arthropod 1 6/4/2012 May 2012 Spring KWR Lepidoptera moths-poor quality -28.91 5.17 51.98 11.03

Arthropod 1 5/16/2012 August 2012 Summer RN1 Lepidoptera -28.48 5.16 50.59 11.19

Arthropod 1 5/16/2012 May 2012 Spring RN2 Lepidoptera -29.92 9.04 41.74 11.79
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Arthropod 1 5/16/2012 May 2012 Spring RN2 Lepidoptera -30.05 8.99 44.4 10.84

Arthropod 5 11/2/2012 November 2012 Fall RN7 Lepidoptera -22.63 4.47 50.06 11.8

Arthropod 1 3/3/2012 November 2012 Fall RN7 Lepidoptera -28.22 5.8 49.65 11.46

Arthropod 15 8/23/2012 April 2012 Spring ZIG Lepidoptera immature -30.8 4.29 53.31 9.03

Arthropod 4 5/31/2012 April 2012 Spring ZIG Lepidoptera moths-poor quality -29.12 6.85 48.14 5.16

Arthropod 1 5/16/2012 June 2012 Summer AM150 Mantodea -19.38 6.26 47.8 12.39

Arthropod 1 5/16/2012 June 2012 Summer AM150 Neuroptera -21.29 3.96 48.35 7.54

Arthropod 1 6/26/2012 November 2012 Fall CN2 Neuroptera -25.49 4.05 50.03 10.45

Arthropod 1 4/23/2012 June 2012 Summer AM150 Orthoptera acrididae -16.76 1.61 46.85 11.61

Arthropod 7 4/23/2012 May 2012 Spring AM250 Orthoptera -23.12 7.77 51.71 8.85

Arthropod 5 4/23/2012 May 2012 Spring AM50 Orthoptera -25.74 4.93 51.2 10.27

Arthropod 3 4/23/2012 June 2012 Summer AM50 Orthoptera -25.62 2.37 46.89 9.59

Arthropod 2 4/23/2012 June 2012 Summer AM50 Orthoptera -24.56 2.37 47.19 10.38

Arthropod 1 6/26/2012 August 2012 Summer CER Orthoptera -26.66 3.77 50.23 10.57

Arthropod 1 6/26/2012 June 2012 Summer CE-R Orthoptera -25.77 3.4 46.62 9.66

Arthropod 2 6/26/2012 June 2012 Summer CE-R Orthoptera -25.75 3.49 49.92 10.88

Arthropod 1 11/2/2012 July 2012 Summer CN1 Orthoptera acrididae -15.58 2.33 47.64 12.04

Arthropod 20 8/16/2012 July 2012 Summer CN1 Orthoptera acrididae -26.66 3.48 45.7 9.34

Arthropod 2 8/16/2012 July 2012 Summer CN1 Orthoptera tettigoniidae -23.25 3.67 46.95 10.57

Arthropod 15 7/18/2013 August 2012 Summer CN12 Orthoptera -23.91 1.09 46.37 10.78

Arthropod 2 9/25/2013 August 2012 Summer CN12 Orthoptera -22.62 2.1 50.44 10.42

Arthropod 1 6/26/2012 November 2012 Fall CN2 Orthoptera -21.88 4.57 50.96 11

Arthropod 1 6/26/2012 November 2012 Fall CN2 Orthoptera -16.54 2.51 50.78 10.45

Arthropod 11 6/26/2012 November 2012 Fall CN2 Orthoptera -27.48 9.76 47.49 11.26

Arthropod 1 7/24/2012 June 2012 Summer CN2 Orthoptera acrididae -27.06 1.8 59.19 12.67

Arthropod 1 7/24/2012 June 2012 Summer CN2 Orthoptera acrididae -19.72 5.42 43.93 11.81

Arthropod 1 4/23/2012 July 2012 Summer CN2 Orthoptera tettigoniidae -15.47 5.55 59.24 9.39

Arthropod 2 4/23/2012 May 2012 Spring CN8 Orthoptera acrididae -27.44 4.15 44.27 10.67

Arthropod 1 4/5/2013 May 2012 Spring CN8 Orthoptera acrididae -28.25 4.44 50.34 11.73

Arthropod 2 7/18/2013 May 2012 Spring CN8 Orthoptera -25.35 4.15 48.06 10.85

Arthropod 1 7/17/2012 June 2012 Summer DN1 Orthoptera tettigoniidae -26.81 4.82 57.09 11.92

Arthropod 1 5/29/2012 June 2012 Summer DN1 Orthoptera acrididae -27.56 3.96 47.13 10.99

Arthropod 1 11/2/2012 June 2012 Summer DN1 Orthoptera acrididae -28.61 4.44 55.25 11.47

Arthropod 1 5/16/2012 June 2012 Summer DN1 Orthoptera -28.31 4.24 46.79 10.83

Arthropod 1 5/16/2012 March 2012 Spring DN4 Orthoptera acrididae immature -26.81 1.91 49.65 10.46

Arthropod 2 6/26/2012 May 2012 Spring DN5 Orthoptera -28.64 8.96 45.09 9.74

Arthropod 3 7/24/2012 April 2012 Spring GAC Orthoptera tettigoniidae immature -25.45 3.17 46.93 10.67

Arthropod 1 11/2/2012 April 2012 Spring GAC Orthoptera gryllidae immature -26.99 4.52 46.86 9.37
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Arthropod 1 11/2/2012 April 2012 Spring GAC Orthoptera acrididae immature -23.17 2.48 45.69 10.37

Arthropod 1 8/16/2012 April 2012 Spring GAC Orthoptera tettigoniidae immature -26.16 3.42 45.62 10.93

Arthropod 2 4/23/2012 April 2012 Spring GAC Orthoptera tettigoniidae immature -25.8 3.73 47.54 10.86

Arthropod 1 9/25/2013 March 2012 Spring KN2 Orthoptera tettigoniidae immature -24.15 4.54 50.09 9.85

Arthropod 1 11/2/2012 May 2012 Spring KWR Orthoptera tettigoniidae -25.43 4.69 55.09 11.7

Arthropod 2 5/23/2012 May 2012 Spring KWR Orthoptera tettigoniidae -25.86 4.24 51.11 9.97

Arthropod 1 5/16/2012 May 2012 Spring PWR Orthoptera tettigoniidae -25.26 2.96 60.02 14.32

Arthropod 1 5/16/2012 May 2012 Spring PWR Orthoptera -24.77 2.41 46.3 11.88

Arthropod 1 5/16/2012 May 2012 Spring RN3 Orthoptera tettigoniidae -24.94 4.03 62.57 13.23

Arthropod 1 6/26/2012 May 2012 Spring RN3 Orthoptera tettigoniidae -25.62 4.13 46.53 11.08

Arthropod 1 6/26/2012 May 2012 Spring RN3 Orthoptera acrididae -28.67 11.29 44.93 10.54

Arthropod 10 11/2/2012 May 2012 Spring RN3 Orthoptera -28.42 1.98 52.2 9.17

Arthropod 1 6/26/2012 May 2012 Spring RN3 Orthoptera acrididae -28.53 3.47 45.49 12.15

Arthropod 1 6/26/2012 May 2012 Spring RN3 Orthoptera -27.01 3.67 48.2 9.51

Arthropod 1 4/23/2012 July 2012 Summer RN7 Orthoptera acrididae -26.9 2.95 31.84 7.36

Arthropod 1 4/23/2012 November 2012 Fall RWR Orthoptera -15.82 3.19 49.6 11.9

Arthropod 4 8/16/2012 August 2012 Summer RWR Orthoptera -26.55 2.46 48.49 10.67

Arthropod 6 4/5/2013 April 2012 Spring ZIG Orthoptera acrididae -29.01 7.57 84.75 23.05

Arthropod 1 4/5/2013 April 2012 Spring ZIG Orthoptera acrididae immature -29.15 3.14 65.36 15.74

Arthropod 9 9/25/2013 April 2012 Spring ZIG Orthoptera gryllidae immature -26.29 4.95 46.62 8.28

Arthropod 5 9/25/2013 April 2012 Spring ZIG Orthoptera tettigoniidae immature -28.33 3.57 47.84 9.55

Arthropod 7 9/25/2013 April 2012 Spring ZIG Orthoptera acrididae immature -28.87 5.2 44.76 10.37

Arthropod 7 7/18/2013 April 2012 Spring ZIG Orthoptera gryllidae immature -25.78 4.94 48.36 8.83

Arthropod 2 7/18/2013 April 2012 Spring ZIG Orthoptera tettigoniidae immature -26.97 3.74 47.57 9.88

Arthropod 4 6/26/2012 April 2012 Spring ZIG Orthoptera acrididae immature -28.37 5.31 47.38 10.88

Arthropod 2 7/24/2012 April 2012 Spring ZIG Orthoptera gryllidae immature -28.09 5.38 47.07 10.05

Arthropod 5 4/23/2012 July 2012 Summer CN1 Phasmida -26.59 3.55 46.23 10.2

Arthropod 1 7/17/2012 June 2012 Summer DN1 Phasmida -27.85 7.44 49.17 11.89

Arthropod 34 4/23/2014 April 2012 Spring ZIG Sternorrhyncha aphididae -28.93 -0.49 51.72 6.82

Arthropod 1 3/3/2012 July 2013 Summer AM150 Araneae -20.08 5.84 48.12 11.69

Arthropod 1 7/17/2012 September 2013 Fall CN2 Araneae -18.45 6.2 47.56 12.24

Arthropod 1 6/26/2012 September 2013 Fall CN1 Coleoptera -25.38 2.81 51.54 9.85

Arthropod 1 7/24/2012 September 2013 Fall CN1 Coleoptera -18.36 2.67 53.77 8.11

Arthropod 5 7/24/2012 September 2013 Fall CN1 Coleoptera -25.63 0.11 53.17 9.64

Arthropod 2 4/23/2012 July 2013 Summer CN2 Coleoptera -28.91 5.47 51.89 10.34

Arthropod 1 7/24/2012 July 2013 Summer RN7 Coleoptera -27.85 6.22 51.27 10.32

Arthropod 4 5/16/2012 July 2013 Summer AM150 Hemiptera Auchenorrhyncha -27.61 0.74 51.96 9.84

Arthropod 1 3/3/2012 April 2013 Spring CN6 Hemiptera -23.8 10.31 47.51 12.11
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Appendix D Continued 

 

Material n Collection Date Month Year Season Collection Site Order Suborder Family Species Adult/ Immature δ
13

C δ
15

N %C %N

Arthropod 1 4/23/2012 July 2013 Summer RWR Hemiptera Heteroptera -18.28 6.62 51.08 10.79

Arthropod 15 8/16/2012 September 2013 Fall RN7 Lepidoptera -27.17 4.91 50.8 11.86

Arthropod 11 7/18/2013 September 2013 Fall CN1 Mantodea -17.38 4.69 51.71 10.79

Arthropod 4 5/16/2012 July 2013 Summer AM150 Orthoptera -16.75 0.95 47.87 11.93

Arthropod 1 5/16/2012 April 2013 Spring CN1 Orthoptera -28.18 1.53 46.84 11.49

Arthropod 1 5/16/2012 September 2013 Fall CN1 Orthoptera -19.91 0.99 48.72 11.62

Arthropod 1 5/16/2012 September 2013 Fall CN1 Orthoptera -14.97 0.56 51.76 10.37

Arthropod 1 6/26/2012 July 2013 Summer CN2 Orthoptera -26.78 0.87 50 10.26

Arthropod 3 5/16/2012 September 2013 Fall DN4 Orthoptera -25.09 -1.4 51.4 10.01

Arthropod 1 5/16/2012 April 2013 Spring RER Orthoptera -25.86 1.79 46.47 11.44
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Appendix E 

All information for Attwater’s prairie-chicken blood, feather, and fecal samples 

collected. 
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Material n Year Month Season Location Sex 

Age at time 

of collection 

(Months) δ
13

C δ
15

N 

Historic/  

Contemporary 

Blood 1 2011 November Fall APCNWR F 6 -24.87 5.99 

 Blood 1 2011 August Summer APCNWR F 15 -27.42 3.78 

 Blood 1 2011 November Fall APCNWR F 17 -18.35 6.68 

 Blood 1 2011 November Fall APCNWR M 17 -22.58 6.14 

 Blood 1 2011 November Fall APCNWR M 17 -20.21 6.15 

 Blood 1 2011 November Fall APCNWR M 17 -19.56 6.62 

 Blood 1 2011 November Fall APCNWR M 18 -24.55 6.13 

 Blood 1 2011 November Fall APCNWR M 18 -24.83 5.66 

 Blood 1 2012 June Summer Goliad - Papaloti F 1 -25.03 7.14 

 Blood 1 2012 October Fall APCNWR F 5 -24.13 6.9 

 Blood 1 2012 January Winter APCNWR F 7 -28.35 7.07 

 Blood 1 2012 January Winter APCNWR F 7 -28.41 6.48 

 Blood 1 2012 January Winter APCNWR F 7 -24.22 6.9 

 Blood 1 2012 January Winter APCNWR F 7 -24.66 6.54 

 Blood 1 2012 January Winter APCNWR F 7 -23.02 7 

 Blood 1 2012 January Winter APCNWR F 7 -28.09 6.04 

 Blood 1 2012 January Winter APCNWR F 7 -27.75 6.65 

 Blood 1 2012 January Winter APCNWR F 7 -24.53 6.58 

 Blood 1 2012 January Winter APCNWR F 8 -27.96 6.41 

 Blood 1 2012 January Winter APCNWR F 8 -28.3 6.98 

 Blood 1 2012 January Winter APCNWR F 8 -28.42 7.05 

 Blood 1 2012 January Winter APCNWR F 8 -24.99 6.49 

 Blood 1 2012 January Winter APCNWR F 8 -22.15 6.98   
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Appendix E Continued 

Material n Year Month Season Location Sex 

Age at time 

of collection 

(Months) δ
13

C δ
15

N 

Historic/  

Contemporary 

Blood 1 2012 January Winter APCNWR F 8 -25.72 6.58 

 Blood 1 2012 October Fall APCNWR F 16 -23.39 6.65 

 Blood 1 2012 November Fall APCNWR F 17 -18.59 6.83 

 Blood 1 2012 November Fall APCNWR F 17 -20.99 6.8 

 Blood 1 2012 January Winter APCNWR F 19 -25.13 7.25 

 Blood 1 2012 January Winter APCNWR F 19 -28.24 6.32 

 Blood 1 2012 January Winter APCNWR F 20 -25.81 6.42 

 Blood 1 2012 January Winter APCNWR F 20 -23.96 7.01 

 Blood 1 2012 November Fall APCNWR F 30 -19.3 6.98 

 Blood 1 2012 June Summer Goliad - Papaloti M 1 -24.37 8.66 

 Blood 1 2012 July Summer APCNWR M 2 -23.93 7.36 

 Blood 1 2012 October Fall APCNWR M 5 -19.96 6.77 

 Blood 1 2012 January Winter APCNWR M 7 -23.9 6.79 

 Blood 1 2012 January Winter APCNWR M 7 -24.54 6.47 

 Blood 1 2012 January Winter APCNWR M 8 -24.07 6.81 

 Blood 1 2012 January Winter APCNWR M 8 -26.87 6.74 

 Blood 1 2012 January Winter APCNWR M 8 -25.56 6.67 

 Blood 1 2012 January Winter APCNWR M 8 -26.59 6.7 

 Blood 1 2012 July Summer APCNWR M 14 -25.49 8.59 

 Blood 1 2012 July Summer APCNWR M 14 -24.58 7.32 

 Blood 1 2012 January Winter APCNWR M 19 -26.9 6.23 

 Blood 1 2012 January Winter APCNWR M 19 -23.97 6.85   

 



 

126 

 

Appendix E Continued 

Material n Year Month Season Location Sex 

Age at time 

of collection 

(Months) δ
13

C δ
15

N 

Historic/  

Contemporary 

Blood 1 2012 January Winter APCNWR M 20 -25.22 7.26 

 Blood 1 2012 January Winter APCNWR M 20 -28.6 6.83 

 Blood 1 2012 July Summer APCNWR M 26 -25.23 7.44 

 Blood 1 2012 October Fall APCNWR M 29 -23.91 7.54 

 Blood 1 2012 January Winter APCNWR M 31 -25.49 6.43 

 Blood 1 2012 July Summer APCNWR M 38 -25.52 8.43 

 Blood 1 2012 January Winter APCNWR M 43 -27.92 6.21 

 Blood 1 2013 January Winter APCNWR F 7 -24.01 6.01 

 Blood 1 2013 January Winter APCNWR F 7 -24.74 5.74 

 Blood 1 2013 January Winter APCNWR F 7 -23.51 5.78 

 Blood 1 2013 January Winter APCNWR F 7 -23.85 5.8 

 Blood 1 2013 January Winter APCNWR F 7 -22.44 5.79 

 Blood 1 2013 January Winter APCNWR F 8 -22.98 6.03 

 Blood 1 2013 January Winter APCNWR F 8 -22.9 6.35 

 Blood 1 2013 January Winter APCNWR F 8 -23.28 5.64 

 Blood 1 2013 January Winter APCNWR F 8 -22.63 5.87 

 Blood 1 2013 January Winter APCNWR F 8 -27.6 8.2 

 Blood 1 2013 January Winter APCNWR F 8 -22.56 5.88 

 Blood 1 2013 January Winter APCNWR F 8 -24.81 5.93 

 Blood 1 2013 January Winter APCNWR F 8 -24 7.22 

 Blood 1 2013 January Winter APCNWR F 8 -22.85 5.66 

 Blood 1 2013 January Winter APCNWR F 8 -22.78 6.12 

 Blood 1 2013 January Winter APCNWR F 8 -23.55 5.69   
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Appendix E Continued 

Material n Year Month Season Location Sex 

Age at time 

of collection 

(Months) δ
13

C δ
15

N 

Historic/  

Contemporary 

Blood 1 2013 January Winter APCNWR F 8 -24.64 5.63 

 Blood 1 2013 January Winter APCNWR F 19 -24.83 6.92 

 Blood 1 2013 January Winter APCNWR F 19 -23.02 5.75 

 Blood 1 2013 January Winter APCNWR F 20 -22.02 6.21 

 Blood 1 2013 January Winter APCNWR F 20 -24.38 6.67 

 Blood 1 2013 January Winter APCNWR F 20 -23.8 5.59 

 Blood 1 2013 January Winter APCNWR F 32 -23.33 5.94 

 Blood 1 2013 January Winter APCNWR F 32 -23.11 5.68 

 Blood 1 2013 January Winter APCNWR F 32 -22.39 6.23 

 Blood 1 2013 January Winter APCNWR F 32 -22 7.32 

 Blood 1 2013 January Winter APCNWR F 44 -24.38 5.97 

 Blood 1 2013 January Winter APCNWR M 7 -23.59 6.63 

 Blood 1 2013 January Winter APCNWR M 7 -24.08 6.22 

 Blood 1 2013 January Winter APCNWR M 7 -24.19 6.09 

 Blood 1 2013 January Winter APCNWR M 8 -24.01 6.08 

 Blood 1 2013 January Winter APCNWR M 19 -24.09 5.17 

 Blood 1 2013 January Winter APCNWR M 19 -21.66 6.87 

 Blood 1 2013 January Winter APCNWR M 56 -23.52 5.95 

 Feather 1 1894 May Spring Placedo, Tx F 

 

-21.7 9.04 Historic 

Feather 1 1894 April Spring Placedo, Tx M 

 

-21.02 7.79 Historic 

Feather 1 1894 April Spring Placedo, Tx M 

 

-20.2 8.85 Historic 

Feather 1 1894 May Spring Placedo, Tx M 

 

-23.16 8.22 Historic 

Feather 1 1910 October Fall Victoria, Tx F   -22.72 9.24 Historic 
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Appendix E Continued 

Material n Year Month Season Location Sex 

Age at time 

of collection 

(Months) δ
13

C δ
15

N 

Historic/  

Contemporary 

Feather 1 1910 October Fall Victoria, Tx F 

 

-19.62 9.5 Historic 

Feather 1 1911 January Winter Victoria, Tx F 

 

-22.63 8.9 Historic 

Feather 1 1911 January Winter Victoria, Tx F 

 

-21.66 9.88 Historic 

Feather 1 1911 January Winter Victoria, Tx M 

 

-23.34 7.67 Historic 

Feather 1 1911 January Winter Victoria, Tx M 

 

-21.06 9.77 Historic 

Feather 1 1936 September Fall Eagle Lake, Tx F 

 

-19.83 11.62 Historic 

Feather 1 1936 September Fall Eagle Lake, Tx  M 

 

-18.65 9.26 Historic 

Feather 1 1937 July Summer Callahan Ranch  M 

 

-22.06 8.15 Historic 

Feather 1 1937 October Fall Colorado, Co Tx M 

 

-21.02 10.18 Historic 

Feather 1 1937 September Fall Eagle Lake, Tx M 

 

-19.56 9.12 Historic 

Feather 1 1938 February Winter Hallahan Ranch F 

 

-21.9 8.88 Historic 

Feather 1 1938 January Winter Colorado, Co Tx F 

 

-21.71 10.37 Historic 

Feather 1 1938 April Spring Sealy, Tx M 

 

-21.98 10.27 Historic 

Feather 1 1938 July Summer Eagle Lake, Tx  M 

 

-18.95 8.87 Historic 

Feather 1 1938 March Spring Colorado, Co Tx M 

 

-20.92 10.15 Historic 

Feather 1 1939 July Summer Eagle Lake, Tx  M 

 

-20.61 8.91 Historic 

Feather 1 1940 March Spring Tivoli, Tx  F 

 

-21.85 9.28 Historic 

Feather 1 1941 April Spring Eagle Lake, Tx M 

 

-20.11 8.21 Historic 

Feather 1 1951 August Summer Eagle Lake, Tx  M   -21.07 9.97 Historic 
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Appendix E Continued 

Material n Year Month Season Location Sex 

Age at time 

of collection 

(Months) δ
13

C δ
15

N 

Historic/  

Contemporary 

Feather 1 1953 April Spring  Eagle Lake, Tx  M 

 

-22.3 10.58 Historic 

Feather 1 1954 May Spring Refugio, Tx  M 

 

-21.08 9.98 Historic 

Feather 1 1956 December Winter  Lissie, Tx  F 

 

-20.61 11.37 Historic 

Feather 1 1965 March Spring Houston, Tx  M 

 

-23.49 8.66 Historic 

Feather 1 1965 March Spring Houston, Tx  M 

 

-22.96 8.07 Historic 

Feather 1 1965 March Spring Houston, Tx  M 

 

-23.8 8.91 Historic 

Feather 1 2004 August Summer APCNWR M 27 -23.3 9.48 Contemporary 

Feather 1 2005 September Fall TNC F 28 -26.05 6.95 Contemporary 

Feather 1 2005 September Fall TNC M 27 -24.23 7.22 Contemporary 

Feather 1 2006 January Winter APCNWR F 33 -17.38 8.17 Contemporary 

Feather 1 2006 June Summer TNC F 37 -22.77 7 Contemporary 

Feather 1 2006 March Spring TNC F 34 -25.24 7.89 Contemporary 

Feather 1 2006 February Winter APCNWR M 32 -24.8 7.31 Contemporary 

Feather 1 2006 February Winter APCNWR M 32 -21.75 7.53 Contemporary 

Feather 1 2006 June Summer APCNWR M 25 -26.41 5.28 Contemporary 

Feather 1 2007 September Fall APCNWR F 39 -22.7 8.24 Contemporary 

Feather 1 2007 March Spring TNC M 46 -26.01 7.22 Contemporary 

Feather 1 2007 March Spring TNC M 46 -25.97 8.49 Contemporary 

Feather 1 2008 August Summer APCNWR F 27 -22.61 10.85 Contemporary 

Feather 1 2008 October Fall APCNWR F 29 -15.48 9.03 Contemporary 

Feather 1 2008 November Fall APCNWR M 53 -14.25 8.24 Contemporary 

Feather 1 2008 October Fall APCNWR M 41 -14.62 8.46 Contemporary 
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Appendix E Continued 

Material n Year Month Season Location Sex 

Age at time 

of collection 

(Months) δ
13

C δ
15

N 

Historic/  

Contemporary 

Feather 1 2009 August Summer APCNWR F 39 -16.13 8.05 Contemporary 

Feather 1 2009 July Summer APCNWR F 97 -21.03 4.37 Contemporary 

Feather 1 2009 November Fall APCNWR F 30 -17.2 10.42 Contemporary 

Feather 1 2009 November Fall APCNWR F 30 -17.57 10.53 Contemporary 

Feather 1 2009 September Fall APCNWR F 28 -21.67 10.94 Contemporary 

Feather 1 2009 January Winter APCNWR M 104 -18.63 7.1 Contemporary 

Feather 1 2009 November Fall APCNWR M 66 -20.09 7.6 Contemporary 

Feather 1 2009 September Fall APCNWR M 28 -20.51 9.8 Contemporary 

Feather 1 2010 September Fall APCNWR M 28 -13.37 9.15 Contemporary 

Feather 1 2010 September Fall APCNWR M 40 -23.75 8.39 Contemporary 

Feather 1 2011 August Summer APCNWR F 27 -18.2 7.57 Contemporary 

Feather 1 2011 August Summer APCNWR F 27 -17.36 8.2 Contemporary 

Feather 1 2011 January Winter Goliad M 32 -22.11 9.95 Contemporary 

Feather 1 2011 July Summer APCNWR M 25 -23.98 7.23 Contemporary 

Feather 1 2011 July Summer APCNWR M 25 -23.99 7.26 Contemporary 

Feather 1 2012 July Summer APCNWR F 26 -23.27 8.22 Contemporary 

Feather 1 2012 January Winter APCNWR M 44 -15.13 7.44 Contemporary 

Feather 1 2012 July Summer APCNWR M 26 -23.52 8.19 Contemporary 

Feather 1 2012 March Spring APCNWR M 34 -17.29 7.37 Contemporary 

Feather 1 2013 January Winter APCNWR F 44 -21.41 8.01 Contemporary 

Feather 1 2013 January Winter APCNWR F 128 -19.23 7.02 Contemporary 

Feather 1 2013 May Spring APCNWR F 36 -19.44 7.61 Contemporary 

Feather 1 2013 January Winter APCNWR M 56 -21.3 9.43 Contemporary 
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Appendix E Continued 

Material n Year Month Season Location Sex 

Age at time 

of collection 

(Months) δ
13

C δ
15

N 

Historic/  

Contemporary 

Feather 1 2013 March Spring APCNWR M 58 -20.04 7.77 Contemporary 

Feces 1 2012 January Winter APCNWR F 8 -29.32 3.93 

 Feces 1 2012 January Winter APCNWR F 19 -30.33 3.8 

 Feces 1 2012 January Winter APCNWR F 20 -29.67 4.21 

 Feces 1 2012 January Winter APCNWR F 7 -30.43 3.07 

 Feces 1 2012 January Winter APCNWR F 7 -30.56 2.63 

 Feces 1 2012 January Winter APCNWR F 8 -30.19 4.46 

 Feces 1 2012 January Winter APCNWR F 19 -30.33 6.4 

 Feces 1 2012 January Winter APCNWR F 7 -30.15 4.36 

 Feces 1 2012 January Winter APCNWR M 20 -30.58 3.28 

 Feces 1 2012 January Winter APCNWR M 43 -30.4 3.14 

 Feces 1 2012 January Winter APCNWR M 8 -30.18 3.72 

 Feces 1 2012 January Winter APCNWR M 20 -30.06 5.99 

 Feces 1 2012 January Winter APCNWR M 20 -30.29 3.76 

 Feces 1 2012 January Winter APCNWR M 8 -29.19 2.38   
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Appendix F 

Results using proxy trophic discrimination values (TDF) from Caut et al. (2009), 

Hobson and Clark (1992), and Healy et al. (2017), and using diet sources from model 

three (C3 and C4 vegetation, spiders, Insects, and Rice) 
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Caut et al. TDF values - (Blood: δ
13

C= 1.26 ±1.1, δ
15

N= 2.37±0.6; Feathers: δ
13

C= 2.16±1.53, δ
15

N= 3.84±1.14). Combined 

blood (A), summer blood (B), fall blood (C), and historic (D) and contemporary (E) feathers 
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135 

 

Hobson and Clark TDF values - (Blood: δ
13

C= 1.2 ±0.6, δ
15

N= 2.2±0.2; Feathers: δ
13

C= 1.4±0.6, δ
15

N= 1.6±0.1). Combined 

blood (A), summer blood (B), fall blood (C), and historic (D) and contemporary (E) feathers 
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Healy et al. (2017) TDF values - (Blood: δ
13

C= 0.61 ±1.33, δ
15

N= 1.99±1.44; Feathers: δ
13

C= 1.77±1.37, δ
15

N= 2.75±1.43). 

Combined blood (A), summer blood (B), fall blood (C), and historic (D) and contemporary (E) feathers 
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