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ABSTRACT

Smart devices have unique security challenges and are becoming increasingly com-

mon. They have been used in the past to launch cyber attacks such as the Mirai attack.

This work is focused on solving the threats posed to and by smart devices inside a network.

The size of the problem is quantified; the initial compromise is prevented where possible,

and compromised devices are identified.

To gain insight into the size of the problem, campus Domain Name System (DNS)

measurements were taken that allow for wireless traffic to be separated from wired traffic.

Two-thirds of the DNS traffic measured came from wireless hosts, implying that mobile

devices are playing a bigger role in networks. Also, port scans and service discovery

protocols were used to identify Internet of Things (IoT) devices on the campus network

and follow-up work was done to assess the state of the IoT devices.

Motivated by these findings, three solutions were developed. To handle the scenario

when compromised mobile devices are connected to the network, a new strategy for step-

pingstone detection was developed with both an application layer and a transport layer

solution. The proposed solution is effective even when the mobile device cellular con-

nection is used. Also, malicious or vulnerable applications make it through the mobile

app store vetting process. A user space tool was developed that identifies apps contacting

malicious domains in real time and collects data for research purposes. Malicious app

behavior can then be identified on the user’s device, catching malicious apps that were

overlooked by software vetting. Last, the variety of IoT device types and manufacturers

makes the job of keeping them secure difficult. A generic framework was developed to

lighten the management burden of securing IoT devices, serve as a middle box to secure

legacy devices, and also use DNS queries as a way to identify misbehaving devices.
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NOMENCLATURE

AIDL Android Interface Definition Language [1].

ANM App Network Monitor (see page 60).

API Application Program Interface.

ARPA Address and Routing Parameter Area [2].

CDF Cumulative distribution function.

CDN Content Delivery Network.

CPU Central Processing Unit.

C&C Command and Control.

DDoS Distributed Denial of Service.

DGA Domain Generation Algorithms.

DHCP Dynamic Host Configuration Protocol [3].

DNP3 Distributed Network Protocol Version 3.

DNS Domain Name System [4, 5].

DNS-SD Domain Name System Service Discovery [6].

DVR Digital Video Recorder.

ENUM E.164 to Uniform Resource Identifiers [7].

FTP File Transfer Protocol [8].

GPS Global Positioning System.

HTTP Hypertext transfer protocol [9].

HTTPS Hypertext transfer protocol over SSL or TLS.
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HTTP-RT Hypertext transfer protocol Response Time Method (see
subsection 4.2.2).

IMAP Internet Message Access Protocol [10].

IoT The Internet of Things.

IP Internet Protocol [11].

IPC Interprocess Communication.

IPP Internet Printing Protocol [12].

IPsec Internet Protocol Security [13].

JSD Jensen Shannon Divergence (see page 40).

KVM Keyboard Video and Mouse.

LAN Local Area Network.

LDAP Lightweight Directory Access Protocol [14].

Mbps Megabits per Second, 1,000,000 Bits per Second [15].

mDNS Multicast DNS [15].

MMD Mean Minimum Distance (see page 41).

MPGS Mean Pairwise Gaussian Similarity (see page 41).

MTU Maximum Transmission Unit.

NAT Network Address Translation [16].

NAS Network Attached Storage.

NFC Near Field Communication.

OS Operating System.

PBX Private Branch Exchange.

PDL Page Description Language.

POP2 Post Office Protocol Version 2 [17].
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POP3 Post Office Protocol Version 3 [18].

RFU Remote Firmware Update.

ROC Receiver Operating Characteristic.

RTT Round Trip Time.

SCADA Supervisory Control and Data Acquisition.

SDN Software-Defined Networking.

SIP Session Initiation Protocol [19].

SLD Second Level Domain.

SMTP Simple Mail Transfer Protocol [20, 21].

SOA Start of Authority.

SOAP Simple Object Access Protocol [22].

SOCKS Socket Secure [23].

SSDP Simple Service Discovery Protocol [24].

SSH Secure Shell [24].

SSL Secure Socket Layer.

TCP Transmission Control Protocol [25].

TCP-DD Transmission Control Protocol Delay Distribution
Method (see subsection 4.2.1).

TLD Top Level Domain.

TLS Transport Layer Security [26].

TTL Time to Live.

UID User Identification.

UPnP Universal Plug and Play.

UPS Uninterrupted Power Supply.
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URI Uniform Resource Identifier [27].

URL Uniform Resource Locator [28].

VoIP Voice Over IP.

VM Virtual Machine.

VNC Virtual Network Computing [29].

VPN Virtual Private Networking.

WAN Wide Area Network.

WPA Wi-Fi Protected Access.

WEP Wired Equivalent Privacy.

µ Mean, Average.

σ Standard Deviation.
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1. INTRODUCTION

The development of computers has had a profound and far reaching effect on society.

This development is ongoing, and with innovation comes many new challenges. While

the new technology has benefitted society, it has also created problems that need to be ad-

dressed. Though the Internet provides unprecedented opportunity for freedom of expres-

sion, learning, and trade, some would use it as a weapon or to take advantage of others.

Computer and network security deals with the protection of users from malicious attacks.

When dealing with security threats, two factors that can maximize the positive impact

are: (1) How widespread is the threat? (e.g. How many devices and people are affected?)

(2) How severe is the impact of the threat? (e.g. Is it life threatening? Could it cause a

company to go bankrupt?) Based on these factors, this work is focused on smartphones

and smart devices because they have widespread usage and can be found in safety critical

environments such as hospitals.

Mobile devices are gaining increased attention because laptops and mobile handsets

are ubiquitous. Three-quarters of the US population own one [30], and the global median

for adult smartphone ownership of a country is 43% [31]. These devices are brought

along with the user and come in contact with a variety of networks and devices such

as public Wi-Fi hotspots, bluetooth headsets, home networks, and office networks. Since

these devices are not tied down within a secure domain, they can carry infections and other

malware from outside into a protected network. When these devices are brought back into

the network, the network provider has more to worry about than just the vulnerabilities of

these mobile devices. They also need to protect the desktops, servers and other equipment

that remains within the protected domain. Thus, smartphones are attractive targets and

need appropriate protection.
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People store significant personal data on their phones. Some examples include contact

information, personal calendars, personal photos, and payment information. In addition,

smartphones can use services like GPS, the Cellular network, and Wi-Fi to locate and track

the device. This information is vulnerable when malicious applications are present on the

user’s smartphone. The major smartphone app stores police the apps they host as a mea-

sure to prevent the spread of malware. Android even can remove malicious apps installed

on user devices remotely. However, some malicious apps end up on user devices either

by being preinstalled, by using an exploit, or by masquerading as a benign application.

Malicious behavior may not be evident until long after an app was originally installed for

various reasons. Apps can download new instructions to execute at runtime, they can de-

tect when they are being observed, and they can have zero day vulnerabilities. Therefore,

monitoring can play a crucial role in identifying malicious activity on the end-user device.

In addition to smartphones, many other devices are being connected to networks and

are already widespread in medical, educational, and industrial facilities. While smart de-

vices offer new features and remote management capability, these conveniences come with

added complexity and management burden. Handling one device may not be that much

trouble; however, it becomes a challenge when scaled up to a variety of device types and

vendors. In addition these devices pose new challenges to providing protection from at-

tacks because most have no capability to run third party security applications. When these

devices are medical equipment or are used at medical facilities, they can become safety

critical.

These challenges justify research effort to identify and address potential security risks.

Ideally, solutions to important issues would be found and deployed before there is an

opportunity for known vulnerabilities to be exploited by attackers. First, mobile devices

provide attackers with a way to avoid detection at the network edge. Second, malicious

behavior needs to be detected on mobile devices even with policing at the app store. Third,
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monitoring and deploying patches to each device is difficult and motivates solutions that

require less effort and upkeep.

This dissertation addresses security issues related to mobile and non-compute devices

on the network, and has two main parts. The first two chapters are measurement stud-

ies that cover the security considerations and prevalence of non-compute devices such as

smartphones and IoT devices. The last three chapters cover solutions to inside network

threats posed by non-compute devices.

The first measurement study investigates wireless vs. wired DNS traffic and ana-

lyzes DNS traffic for suspicious traffic. The second measurement study investigates non-

compute devices that have open ports. Findings from these studies show that wireless

devices (such as smartphones) dominate the DNS traffic (chapter 2) and that IoT devices

outnumber the compute devices with open services (chapter 3). These results motivate the

study of potential security problems that can arise from these smart devices.

First, chapter 4 presents a solution to the problem of securing sensitive internal services

from compromised mobile devices. Second, solutions for detecting malicious smartphone

apps are covered in chapter 5. Third, chapter 6 details a solution for securing and managing

IoT devices.

Before developing a solution to a problem, it helps to understand the size of the prob-

lem as well as any previously unnoticed cravats. The first measurement study utilizes

Domain Name System (DNS) traffic. The Domain Name System (DNS) is fundamental to

the day-to-day operation of the Internet. As new uses for DNS are introduced and the ways

people use the Internet change, the impact on existing network utilities and services need

to be continuously studied and evaluated. We present a study of the DNS traffic on a large

campus network (chapter 2) that is based on an investigation of wireless and wired traffic

and the impact of new applications of DNS. We look into the differences in DNS traffic

from wired hosts and Wi-Fi hosts. In addition, we study various aspects of DNS traffic

3



including the network sources, application sources, and especially the various sources of

DNS nonexistent domain responses. Our results indicate that non-negligible fraction (10-

15%) of DNS queries result in nonexistent domain responses, many new applications have

come to rely on DNS as a side channel through network firewalls and that wireless DNS

traffic can exceed the wired DNS traffic.

DNS traffic is a sign of devices communicating with the Internet, but some devices

primarily have local communication. Smart devices such as printers, VoIP phones, and

IP cameras host services but typically generate few DNS queries or none. These devices

are still important from a security perspective. The infamous Mirai attack [32] which

hijacked nearly half a million Internet connected devices demonstrated the widespread

security vulnerabilities of the Internet-of-Things (IoT). In chapter 3 a set of active and

passive observation methods are employed to discover the security vulnerabilities of IoT

devices within a university campus. We show that (a) the number of non-compute devices

dominates the number of compute devices with open ports in a campus network; (b) 58.9%

or more devices do not keep up-to-date firmware and 51.3% or more do not have a user

defined password; and (c) the number of devices together with the diversity of device ages

and vendors make the protection of IoT devices a difficult problem.

Since mobile devices outnumbered wired devices in the DNS study, this work was

focused on attacks enabled by the unique properties of mobile devices. Smartphones can

connect over both Wi-Fi and Cellular interfaces allowing data to be funneled off of a

network without it passing through the network edge. When compromised they can be

used by attackers as steppingstones for accessing sensitive or protected information. We

propose a class of detection methods based on anomaly detection at the service and present

two lightweight methods of detecting proxies at the service: one for TCP and one for the

application layer. These methods can potentially be deployed to monitor connections in

real time so attackers may be stopped before accessing sensitive data. We evaluate these
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methods on local and wide area networks, with different proxy applications, and under

different load conditions to show that the proposed techniques can provide high detection

rates at low false positive rates. Our techniques are effective even when the client to proxy

connections are out of scope of surveillance and resilient to attacks even during training1.

In addition to detecting proxies, other strategies can be used for identifying malicious

activity on smartphones. Some malicious apps for smartphones have been already iden-

tified, and there is a need to have the capability to quickly identify attacks and respond

in ways that minimize the damage they cause. Mobile apps are checked for malicious

behavior before being published on app stores, but this does not catch all the malicious or

vulnerable apps. In addition to determining aspects of the future behavior of an app, mali-

cious activity can be detected on users’ devices in real time. Chapter 5 expounds methods

for creating a controlled test environment that runs untrusted Android apps for security

research. These methods were used to determine that 20 out of the top 100 most popular

apps on the Google play store access the Internet regardless of user activity. This makes

the presence of periodic network traffic a poor indicator of malicious apps. A platform was

constructed for using DNS traffic to identify malicious apps. This platform also enables

data collection to gain new insights into the domains accessed by different apps with a

goal of detecting previously unknown malicious activity.

Smartphones are not the only new growing area that needs to be addressed. Smart

devices such as printers, VoIP phones, IP cameras, and other network enabled devices also

can be compromised. Motivated by the findings in chapter 3 we developed the IoTAegis

framework, which offers device-level protection to automatically manage device config-

urations and security updates. With cloud-based device profile updates, the development

effort to use IoTAegis to handle one device can be shared by all other users of the frame-

1 c© 2016 IEEE. Reprinted, with permission, from Allen T. Webb and A. L. N. Reddy, Finding proxy users
at the service using anomaly detection, 2016 IEEE Conference on Communications and Network Security
(CNS), October, 2016.
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work. Our solution is shown to be effective, scalable, lightweight, and can be deployed

in different forms and network types. The above solutions together constitute solutions to

insider threats posed by smart devices.
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2. THE TWO FACES OF DNS TRAFFIC

2.1 Introduction

The availability of low cost and portable computers such as laptops, smart phones,

and tablets has introduced new variation into the way networks are used. One window

for observing changes in usage is the DNS requests made by different classes of devices.

The Domain Name System (DNS) [4, 5] provides a mapping from human readable names

into Internet Protocol addresses that can be routed to specific endpoints on the Internet (e.g.

www.domain.tld). It serves as a distributed database for records identified with a multi-part

name where DNS servers have authority over subsets of names delegated to them. In this

way the administrative burden of updating records is spread across organizations that have

authority over particular domains. DNS traffic is typically allowed through firewalls; thus,

many new services use DNS infrastructure as a means of communicating information.

DNS traffic has been widely studied to understand network traffic at large. It provides

a view into traffic patterns [33] and popular domains. DNS responses give a view into

the mechanisms of load balancing [34] [35] and how Content Delivery Networks (CDNs)

function [36]. DNS traffic has recently been used to provide a view into botnet behavior, by

distinguishing the botnet generated DNS query traffic from human generated query traffic

[37]. Collecting and analyzing DNS traffic is more scalable than carrying out similar

analysis on all the network traffic.

This study is motivated by two trends in network usage. First, usage of mobile and

wireless devices is the growing. Users have started replacing desktop computers with lap-

tops and other devices; the widespread adoption of smartphones with Wi-Fi capabilities is

changing the network usage patterns. The introduction of mobile devices brings several

aspects to the study of DNS traffic. The network traffic can be different because of differ-
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ences in application usage, network usage, and the different resources in the devices. The

application usage on mobile devices may include more frequent accesses to social net-

working and video sites. The wireless devices on a campus that has wide Wi-Fi coverage

allow for more continuous or longer usage of network resources compared to desktop de-

vices. Mobile devices with limited resources (and hence lower caching) may also generate

more traffic than desktop devices.

Second, DNS is now used as a side channel by many applications. Most campus and

enterprise networks are protected by firewalls at the edge. These firewalls restrict the flow

of traffic between the protected network and the outside world. However, most network

firewalls typically allow communication on a few designated ports. The ports for HTTP

and DNS are commonly open, and a number of applications rely on these open ports for

getting through the firewalls. This is significant because attackers may utilize DNS for

this same purpose. DNS is being used by a number of applications from spam checkers

to anti virus software as a side channel to contact outside servers to provide their service.

Other new services we observed are ENUM over DNS (section 2.4), and the ICANN name

collision block list. ENUM is an important part of the VoIP infrastructure that enables one

type of smart device, VoIP phones, to perform their intended function. New services that

make use of the Domain Name System (DNS) infrastructure change the nature of DNS

queries.

This chapter studies the DNS traffic to observe and understand the impact of these two

trends. We collect and analyze DNS traffic at an educational institution to understand any

differences in mobile device traffic over wired devices. A better understanding of spam

DNS traffic improves decision-making in the area of how much monitoring is warranted

to stop outbreaks of malicious software and detect intrusions while protecting individual

privacy. A better picture of DNS traffic will also help gain an understanding of scalability

and other issues. For example, DNS traffic has been recently used as a means to identify
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botnet C&C (command and control) [38, 39], and [40]. Specifically, these earlier studies

have used DNS nonexistent domain responses as a means of identifying potential botnet

traffic. Many new applications such as spam checkers and antivirus tools that use DNS as a

side channel generate a significant number of nonexistent domain responses as part of their

legitimate service. Understanding and separating this traffic is important for continuing to

provide security of the networks.

This chapter makes the following significant contributions: (1) Collects and analyzes

the DNS traffic over several days at a campus network, separating the traffic from wired

networks and wireless networks; (2) Shows that wireless networks are starting to dominate

the campus traffic, leading to implications on scalability and throughput of these networks;

(3) Shows that mobile devices have much less failed DNS queries than wired devices.

Some of this traffic is originating from new services exploiting DNS as a side channel.

These increased failure traffic increase the processing burden for separating legitimate

traffic from malicious traffic; (4) Shows that the application usage across wireless and

wired networks leads to different network accesses.

2.2 Datasets / Methods

Our measurements were taken from a campus of about 60,000 users. We collected

all the DNS traffic from three time periods: the summer of 2014, the fall semester of

2014, and the spring semester of 2015. Our data includes requests for which the campus

DNS servers are the start of authority (SOA) and also local queries which were recursively

resolved. The size of the datasets and some basic statistics about their constituents can be

found in Table 2.1.

To collect our data we tapped DNS traffic directed to the campus DNS resolvers. We

excluded traffic involved in the process of recursive DNS resolution. Thus, each dataset

contains those DNS requests made to the local campus resolvers, as well as the correspond-
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Dataset 1 Dataset 2 Dataset 3 Dataset 4

Time Period Summer Fall Semester
Spring Sem.

Weekend
Spring Sem.

Week
Start Date June 19, 2014 Sep. 9, 2014 Jan. 16, 2015 Jan. 22, 2015

Duration (days) 13.07 10.26 2.26 7.02

Requests
Total 2.02E+09 2.57E+09 2.36E+08 1.82E+09

% No Error 70.11% 92.02% 86.35% 91.10%
% Error 29.89% 7.43% 13.00% 7.99%

Unique
Domains

Total 9.22E+06 9.08E+06 1.08E+06 4.81E+06
% Resolved 47.10% 57.72% 76.67% 76.66%
% Not Res. 52.90% 42.28% 23.33% 23.34%

Unique IPs
Total 1.77E+05 1.66E+05 9.65E+04 1.78E+05

% Wired 42.96% 29.63% 24.74% 26.59%
% Wi-Fi 57.04% 70.37% 75.26% 73.41%

Table 2.1: Volume of traffic present in each dataset. It should be noted that for Dataset 1,
which was during the summer, and Dataset 3, which was during a weekend, there are fewer
students on campus than the other datasets. This provides a variety of different conditions
to observe the unique and common features across the datasets.

ing responses from the resolver back to the requester. These traces were then processed

afterward. DNS names longer than the 255 byte limit are included in the count as an empty

domain, “”. These made up 0.05% to 0.18% of the total requests.

It is notable that in Table 2.1 between 7.43% and 29.89% of the DNS requests failed

across the datasets. The DNS failure rates were higher during the summer and weekends.

The hosts that filter out Spam emails generate a higher ratio of failed to successful DNS

responses than typical users. When there are more typical users such as the university stu-

dents during the semester or week, the relative contribution of the Spam filter traffic is less.

In dataset 1 the hosts that accessed Spam blacklists had a 50.7% DNS error rate and were

responsible for 37.5% of the total DNS responses. We found that four forwarding name-

servers were responsible for the much larger nonexistent domain percentage in dataset 1.

For datasets 2 and 4 the error rates of hosts accessing Spam blacklists were between 16.4%

and 19.0%, while for dataset 3 the error rate was 29.4%. The higher error rate for dataset
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3 is due to the volume of DNS errors remaining relatively flat across the week while the

successful traffic is more dependent on the time of day and day of the week, see Figure 2.3.

Also of note, is the difference in percentages of domains that resolved versus domains

that did not resolve. Domains that resolved had at least one successful DNS response while

domains that didn’t resolve had no successful DNS responses. There were a higher per-

centage, 70.11% to 92.02%, of successful DNS responses than resolved domains, 47.10%

to 76.66%. This means there was a higher proportion of non-existent domains than re-

quests of non-existent domains. This can be attributed to Spam and URL blacklists as well

as the fact that a few domains account for a large percentage of the total requests (see 2.2).

The unique IPs in Table 2.1 show the change in relative percentage of IP addresses

between the wired and Wi-Fi networks during the summer when students were away versus

during the semesters when students were present. Between datasets 1 and 2 this difference

was 13.33%.

2.3 Wired vs. Wi-Fi DNS Traffic

By observing how DNS traffic from wired vs Wi-Fi hosts differ, the top potential se-

curity issues facing mobile devices in particular can be found. Along with the DNS traces

we identified the IP addresses that had server related ports including FTP, SSH, Telnet,

SMTP, DNS, DHCP, HTTP, Kerberos, POP2, POP3, IMAP, LDAP, and secure versions

of these protocols. This set of hosts represents 2.52% of the total hosts and 9.46% of

the wired hosts. These hosts received 15.28% of all the successful DNS responses and

46.39% of the successful DNS responses to wired hosts. This suggests that server traffic is

a significant fraction of the wired network even though they constitute a small fraction of

the number of machines. More and more, the wired and wireless networks are becoming

“server” networks and “client” networks.
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Figure 2.1: CDF of DNS Address Record TTL Values
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Figure 2.2: Volume of DNS Requests for Each Domain

Four second level domains were responsible for 21.93% of all the successful DNS

requests, and of these 83.30% of the requests originated from Wi-Fi IP addresses. This

shows that a small subset of domains are responsible for a significant bias in the amount

of successful DNS queries between wired and Wi-Fi devices. In Table 2.2 the top 25 most

requested second level domains are listed. Only successful requests are counted in this

table. The % All column is the percentage of all successful DNS requests that match the
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specified second level domain. The Wi-Fi % column is the fraction of successful DNS

requests for the specified second level domain that originate from Wi-Fi IP addresses.

The Time to Live (TTL) value of a DNS record conveys how long the record should

be cached before expiring. More information can be inferred from the TTL values as

they reflect a trade off between DNS server load and update response time. A record

with a higher TTL is cached longer and is requested less frequently as a result. Web

services that depend heavily on load balancing to provide better quality-of-service such

as video streaming use small TTLs to allow for faster control over which servers receive

new clients. Fast-fluxing DNS botnets use small TTL values to make it more difficult to

blacklist all their IP addresses and domain names. The TTL CDF plots for are shown in

Figure 2.1. More than 80% of the domains ranked 51st through 500th had TTL values of

60 seconds or fewer. For the top 25 domains almost half of the requests had TTL values

between 60 seconds and 5 minutes. The remaining domains had more of a spread over the

different TTL values with about half having TTL values 60 seconds or fewer. Figure 2.1

shows the CDF of the TTL values of address records for Wi-Fi and wired devices. We saw

that more of the TTL values of DNS address records requested by Wi-Fi devices were sixty

seconds or fewer than 5 minutes. Other common TTL values include three hours and one

day. This suggests that users of Wi-Fi devices requested more CDN hosted content such

as online videos than users of wired devices. Table 2.2 confirms that several well-known

CDN domains (akadns.net, akamai.net, akamaihd.net, amazonaws.com,

etc.) were requested more often by Wi-Fi hosts.

Figure 2.2 shows that the volume of requests of domains is nearly linear on a log-log

plot. This resembles a distribution following a power law [41]. However, there is a slight

curve that suggests that it is actually a power law with exponential cutoff or a log-normal

distribution. The distribution of requests from wired devices is more linear on the log-log

plot than from Wi-Fi devices. Wired devices made more requests to domains with less than
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SLD Wi-Fi % % All µTTL
apple.com 92.44% 8.61% 5495.2
<local #1> 9.41% 8.34% 14719.4
google.com 73.27% 7.67% 31188.1
akadns.net 86.10% 6.12% 90.5

facebook.com 85.36% 3.52% 1255.7
groupme.com 96.32% 2.48% 31.6

amazonaws.com 77.87% 2.14% 455.7
akamaihd.net 79.19% 2.06% 179.4

flurry.com 94.92% 1.99% 31.5
instagram.com 94.56% 1.90% 108.1

akamai.net 61.62% 1.74% 37
akamaiedge.net 67.12% 1.45% 37.2

in-addr.arpa 16.89% 1.40% 15423.3

SLD Wi-Fi % % All µTTL
yahoo.com 74.98% 1.32% 756.2
icloud.com 89.83% 1.23% 37210.6
twitter.com 77.10% 1.16% 50.7

yahooapis.com 92.52% 1.01% 194.8
gstatic.com 65.12% 0.99% 175.7

doubleclick.net 71.63% 0.97% 20786.8
googleapis.com 82.27% 0.76% 6167
microsoft.com 48.95% 0.74% 1819.8

bing.com 86.50% 0.64% 1493.3
yahoodns.net 76.79% 0.60% 148.9
cloudfront.net 66.25% 0.55% 64.6

google-analytics 81.85% 0.55% 49556.4.com

Table 2.2: 25 Second-level Domains (SLD) with the Most Error-free Responses. The
Wi-Fi % column shows what percentage of these requests came from Wi-Fi IP addresses.
The % All column shows the percentage of total valid requests were for this domain. The
average TTL values are shown in the µTTL column.

100 requests each and significantly more to domains with only 2 requests. This shows the

wired network accesses were more diverse than the wireless network accesses.

From Table 2.2 the top three SLDs, apple.com, <local #1> and google.com, make

up a very large percentage of the successful DNS responses, about one quarter. This can

be explained by synchronization or other mobile device features on devices running iOS

and Android, as well as local services such as authentication servers. Contributing factors

to the results include cache misses due to smaller TTL values and unique subdomains.

The more unique subdomains a SLD has, the more requests and cache entries will be. In

Table 2.2 only <local #1> and in-addr.arpa, have more DNS requests from wired hosts

than Wi-Fi hosts.

Figure 2.3 shows the number of DNS responses with and without errors per five minute

interval. The data showed a different diurnal cycle for wired versus wireless hosts espe-

cially for DNS error responses. This difference is likely due to the Wi-Fi devices being
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Figure 2.3: Wired vs. Wi-Fi DNS Response Volume

used after work hours for personal use, but the wired devices mostly being used during

work hours. Typically, the wired hosts see a drop-off in activity after 5-6PM and the

wireless hosts were active until 10-11PM.

The volume of DNS errors for Wi-Fi hosts more closely follows the volume of DNS

successes. The relatively flat error response volume for wired hosts in Figure 2.3 is due

to the requests from Spam filters which are related to the volume of email traffic. The

Wi-Fi hosts are responsible for more successful DNS responses than the wired hosts, but

the Wi-Fi hosts produce less failed responses than the wired hosts. The spikes in Wi-Fi

error responses on Figure 2.3 result from anomalous traffic.

One interesting feature in Figure 2.3 is centered 4.5 days after the start of the trace.

There was a football game during this time that resulted in less than half the Wi-Fi DNS

responses on each side of the valley. The DNS responses from wired hosts did not have a

noticeable change in the volume.
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Figure 2.4: Percent of Total DNS Requests from Wi-Fi Hosts for Software Specific Do-
main Names (Dataset 4)

It is possible to predict when students are between classes by changes in the volume of

traffic. There are regular peaks on the Wi-Fi DNS responses without errors in Figure 2.3

during the breaks between classes.

Figure 2.4 shows the percentages of DNS requests made for software specific domain

names. The particular domains chosen were those used for software updates and account

synchronization. An example software specific domain is android.clients.google.com,

which is used by android to download application updates and to access the Google Play

API. As expected Android and iOS DNS requests predominantly originated from Wi-Fi IP

addresses. Rogue access points are one source of mobile specific domains being accessed

from wired IP addresses. There is a strong bias toward mobile traffic originating from Wi-

Fi IPs, so by observing the Wi-Fi tendencies we can infer mobile usage trends. Windows

was split about evenly between the Wi-Fi and wired IP addresses; however, Mac OS had

a higher number of requests from Wi-Fi IP addresses. Safari is closely tied to iOS and

Mac OS so its percentage lied between the two operating systems. Requests from Firefox

were more common from wired hosts; requests from Chrome was more common on Wi-Fi

hosts. These percentages are from the raw total number of requests.
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Dataset 1 2 3 4

api.*
RF 2.46% 3.63% 4.68% 5.71%
W 0.61% 1.19% 0.64% 1.02%

m.*
RF 0.42% 0.38% 0.34% 0.30%
W 0.26% 0.29% 0.18% 0.24%

mobile.*
RF 0.12% 0.18% 0.22% 0.21%
W 0.03% 0.06% 0.03% 0.05%

*.mobi
RF 0.11% 0.18% 0.17% 0.18%
W 0.01% 0.03% 0.01% 0.02%

Table 2.3: Mobile Domain Responses Wired (W) and Wi-Fi (RF) IPs
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Figure 2.5: Distribution of Average Delay Between DNS Requests

Mobile devices such as smart-phones and tablets are increasingly common. These de-

vices typically connect to local networks through Wi-Fi. Separate web sites are provided

for these devices because they have touch screens instead of a mouse and keyboard. Also,

their screens may be much smaller so that a different layout is preferable than for desk-

tops or laptops. Domains of the following formats are associated with mobile devices: (1)

*.mobi is a TLD dedicated to mobile websites. (2) api.* are for web and mobile applica-

tion programming interfaces. (3) m.*, and mobile.* are for websites formatted for mobile

devices.
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The api.* subdomains made up the largest percentage of the responses with no error

with between 0.61% and 1.19% for wired hosts and between 2.46% and 5.71% for Wi-Fi

hosts. Although we did observe requests made to other mobile related domains (mini.*,

palm.*, pda.*, wap.*, wireless.*, and xhtml.*), these made up less than 0.005% of the

total requests. Table 2.3 shows that the mobile handsets are not necessarily always visiting

mobile domains. The api.* domain group is commonly used with mobile applications

instead of websites in a browser. Not all mobile websites use mobile domains; some

share the same domain as the website formatted for desktops. Also, many websites are

designed using a “responsive design” [42] which is shared across different devices and

screen formats. Although there are still hits for older style mobile domains such as palm.*,

pda.*, wap.*, and xhtml.*, these domains make up a very small percentage of the total

responses.

Besides differences in the domains being queried, there were also rate differences be-

tween wired and Wi-Fi hosts. We observed higher DNS packet rates on wired hosts vs

Wi-Fi hosts based sessions defined by a 15-minute separation between packets for a given

IP address shown in Figure 2.5. To exclude the bias introduced by the edge of the session

window we calculated the mean time between packets to be the time of the last packet

minus the time to the first packet divided by the total number of packets minus one. Wi-Fi

IP addresses had a higher likelihood of long periods of time between DNS requests than

wired IP addresses. Wi-Fi devices may be used more intermittently than wired devices.

Wired IP addresses with multiple simultaneous hosts through NAT, and higher demand

from DNS dependent services such as Spam filtering contribute to the higher rate on wired

IP addresses.

We found that across all four datasets 16.53% of all the DNS responses had the error

flag set, while only 28.55% of these came from Wi-Fi hosts. Furthermore, 23.00% of all

the error responses were for the ARPA TLD, and only 1.69% of these were from Wi-Fi

18



Dataset 1 2 3 4
Number of blocked domains 1 772 45 427

Number of blocked TLDs 0 24 7 39
TLDs with any DNS record 420 354 132 335

Table 2.4: ICANN Name Collision Block List Stats

hosts. We attributed 13.42% of the error responses to local domains either the campus

domain or domains with the local, and localdomain TLDs. Wi-Fi hosts were recipients of

20.11% of this traffic. DNS Service Discovery made up 8.43% of the DNS error responses

18.08% of which went to Wi-Fi hosts. Lastly, anti-virus and spam blacklists made up

7.90% of the total error responses, but only 4.79% were for Wi-Fi hosts.

2.4 Other Observations

In investigating top level domains that were coming back as having IP addresses we

found some with records to 127.0.53.53. Since, August 2014 this address has been pur-

posed for ICANN name collision management. Table 2.4 shows the number of unique

domains returning 127.0.53.53 versus the total number of requests for a domain name

with only a top level that returned an IP address.

Several malicious and compromised machines were detected through the analysis of

failed DNS queries. However, this analysis is increasingly becoming difficult with several

applications generating nonexistent domain responses as part of their operation. We did

observe fast fluxing DNS responses, and suspicious DNS traffic likely related to botnets.

Some suspicious traffic appeared to be aggregated either by NAT or a DNS forwarder. Of

the domains with DNS failures 89.11% to 99.53% of them had an edit distance greater than

two to the nearest valid domain. The remaining percentage includes those typos where in

one or two instances a letter is omitted, different, or inserted.
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Examples of domains we identified that indicate the presence of malware include:

bvkaymxoioe.www.game499.com.2014-12-30.pw

bvkcrzkdcsb.www.gannme499.com

loooplollokp80.com

With each example the bold part of the domain name was constant while the rest of the

domain had variation. The last example was accompanied by several requests to the same

prefix with different numbers at the end. This is an attempt to lower the edit distance

between requests and avoid detection.

One source of a large volume of nonexistent domains was the nrenum.net second level

domain. Nrenum provides an ENUM database over DNS for participating universities.

ENUM provides a way for E.164 numbers to be converted to a URI [7]. Protocols such

as SIP and H.323 then provide a way of initiating the voice communication. 99.98% of

the nonexistent ENUM domain responses were for a single host. In Dataset 4 for every

successful lookup this host had 9.67 failures, but the next most common requester had

more than 350 successful lookups for every failure. This appears to be a brute force search

of the entire ENUM database. The results of this kind of search could be used to asso-

ciate IP addresses with VoIP phone numbers, or determine what numbers are active for

purposes like robo-callers, etc. One technique to mitigate this kind of attack is to impose

rate limiting per IP by the number of unique ENUMs requested with a higher penalty for

non-existent numbers. Heavy offenders could be blacklisted, and legitimate services that

require higher rates could be white-listed.

2.5 Related Work

DNS traffic has been widely studied to understand network traffic at large. It provides

a view into traffic patterns [33], popular domains and through responses a view into the
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mechanisms of load balancing [34] [35] and the functioning of Content Delivery Networks

(CDNs) [36].

DNS traffic in cellular networks has been recently studied [36]. They investigate the

impact on CDN load balancing performance from using a single DNS server for a geo-

graphically diverse set of mobile devices. DNS has been widely used for load balancing

and reducing delays over wide area networks through redirection [34] and [35]. It has also

been used as a way to measure delays across the internet [43]. DNS measurement studies

have been conducted in the past from the point of view of a root DNS server [33]. This

study identified violations of the DNS standard, reflection attacks, and divided up DNS

failure responses by the reasons they failed.

Domain registration has been studied for the possibility of identifying spammers early

in [44]. DNS behavior has been studied from several vantages to understand the global

DNS query patterns that can be used to detect malicious domain groups [45].

DNS traffic has recently been used to provide a view into botnet behavior, by distin-

guishing the botnet generated DNS query traffic from human generated query traffic. In

[46, 38, 39], and [40] non-existent domain queries are used to identify botnets that use

domain generation algorithms (DGA) for locating the C&C channel. The query rates for

bots were observed to be high, occurring over a short period, and generating nonexis-

tent domain responses in [46]. DNS error responses were classified using the type of error,

query entropy over the number of requests per local resolver and authoritative name server,

and query content in [47]. They found a string of malicious domains copying strings from

common social network domains. In [48] and [37] rather than focusing on DGA, a classifi-

cation scheme is developed for malicious domains. [37] makes use of timing information,

address record IP related information, reverse record information, TTL statistics, and do-

main name features to perform the classification.
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The possibility of information being leaked through DNS is investigated in [49]. Sev-

eral services now use DNS for purposes beyond looking up the address record of a server

by name. In addition to intentional leakage of information, the architecture of a network

can be inferred through DNS traffic. The problem of remotely identifying the type of DNS

client infrastructure is addressed in [50]. They perform this classification by probing for

DNS servers by issuing requests to an authoritative name server they control.

DNS traffic can be analyzed to identify the operating systems of hosts. DNS query

traffic has been employed to carry out passive OS fingerprinting in [51] using OS-specific

DNS queries and timing of DNS queries. They also estimated the number of devices

generating the queries.

Work has been done to evaluate the performance of DNS caches in [41]. In their study

DNS traffic was collected along with TCP SYN, FIN, and RST packets. They investigated

the relationship between TTL and DNS cache hit rate and found that most of the DNS

cache hits occur within minutes of the initial miss.

Other work has investigated the difference in usage patterns between traditional com-

puters such as desktops and mobile devices [52]. This work makes no mention of DNS but

instead relies on other measurements. Our work seeks to gain insights into mobile device

usage with only a subset of the network traffic.

2.6 Summary

We collected DNS traffic from a campus over several days distinguishing wireless

from wired traffic. We compared DNS usage between wired and Wi-Fi hosts. The wire-

less hosts were responsible for close to two-thirds of the DNS traffic. Most of the popular

domains received more DNS requests from wireless devices. The traffic could loosely

be categorized into traffic from server machines and traffic from users. The Wi-Fi hosts

generated the bulk of the traffic and servers contributing half the traffic from wired IP ad-
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dresses. More and more, the wired and wireless networks are becoming “server” networks

and “client” networks. Also, we have investigated network sources, application sources,

and sources of nonexistent domain responses that account for a significant percent of the

traffic (10-15%). Many of these were from applications that use DNS as a side channel

through network firewalls. This increase in failures makes it more difficult to identify ma-

licious traffic. DNS traffic analysis has proved useful in identifying several anomalies and

infected machines on the network. This investigation of the contributing sources of DNS

traffic provides insight into DNS and its relationship to the Internet as well as how new

technologies influence this relationship.
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3. IOT MEASUREMENT STUDY

The infamous Mirai attack which hijacked nearly half a million Internet connected de-

vices demonstrated the widespread security vulnerabilities of the Internet-of-Things (IoT).

This study employs a set of active and passive observation methods to discover the security

vulnerabilities of IoT devices within a university campus. We show that (a) the number

of non-compute devices dominates the number of compute devices with open ports in a

campus network; (b) 58.9% or more devices do not keep up-to-date firmware and 51.3%

or more do not have a user defined password; and (c) the number of devices together with

the diversity of device ages and vendors make the protection of IoT devices a difficult

problem.

3.1 Introduction

Network connected sensors and devices are being used in several application domains

from inventory tracking to smart automation of buildings and other applications. Con-

nected printers, smart lightbulbs, VoIP phones, web cameras, and smart appliances (televi-

sions, refrigerators, washers, etc) are commonly seen IoT devices. Other common exam-

ples include smart meters, gas pumps, medical equipment, and industrial devices. These

devices employ different types of technologies such as Bluetooth [53], Wi-Fi, Near Field

Communication (NFC) [54], or Ethernet to improve their functionality and performance.

However, the lack of adequate security awareness in IoT deployment has led to

widespread cybersecurity vulnerabilities that threaten to undermine individuals, compa-

nies, and national infrastructures. In recent years, the IoT has become a ripe target of hack-

ers. For example, lightbulbs have been shown to be hackable via a drone [55], smart TVs

could be eavesdropping people’s conversations [56], and vulnerable Internet-connected

printers can leak sensitive documents from print jobs [57]. In addition, IoT devices could
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be leveraged to launch disreputable attacks against other infrastructures. The recent DDoS

attack against DynDNS [58] was launched from nearly half a million Mirai-powered IoT

devices (mostly IP cameras and DVRs).

While computer security has received significant attention, the security of non-compute

devices or IoT devices is only beginning to receive a similar level of attention. A num-

ber of studies disclose the security vulnerabilities of individual IoT devices. In [59] static

analysis is performed and the permission granularity is exploited to craft a number of

proof-of-concept attacks against smart home components. They were able to secretly plant

door lock codes, extract the current door lock codes, disable the home’s “vacation mode,”

and set off the fire alarm. Vulnerabilities were disclosed for a home sensor monitor plat-

form and smart meter in [60]. The insecurity of baby monitors was demonstrated in [61].

Authors in [62] employ SHODAN [63] to reveal the scale of vulnerable IoT devices and

identify ones with default passwords. Another work [64] provides details of an IoT honey-

pot and sandbox to analyze Telnet-based attacks against various IoT devices. These studies

focus on narrow domains of IoT devices with limited services, but a complete vulnerability

disclosure of IoT devices is still unknown.

This chapter discovers security vulnerabilities of various IoT device types. In con-

trast to previous study [62] that uses SHODAN search engine [63] to identify Internet-

connected IoT devices, we employ a set of active and passive observation methods to dis-

cover a complete-as-possible list of IoT devices within a university campus. Our datasets

include not only IoT devices that can be directly visited by external hosts, but also devices

that are only visible to hosts within their subnet. Next, we evaluate the security of these

devices where we mainly focus on default/weak credentials and unpatched firmware or

software.
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3.2 Survey

In order to understand the scope of the IoT security problem, we carried out a mea-

surement study of a campus network. This study is expected to provide an understanding

of the relative number of computers versus other non-compute devices on a typical cam-

pus network. Second, we expect this study to reveal the status of the IoT devices in a well

managed network. Third, we expect this study to point to potential security problems from

IoT devices since the security practices for them may be different from the computers e.g.,

the operating system software (or the firmware) may not be automatically updated on these

devices and they may not be protected by anti-virus software.

The section below covers the methodology used and our findings on the security issues

of IoT devices.

3.2.1 Methodology

We employed two primary strategies for device discovery: port scanning and use of

service discovery protocols.

Devices that advertise through service discovery protocols are only visible within a

subnet. Thus, we walked through the campus to collect data across a random sample of

the subnets in a university campus. Our dataset includes computing devices, IP phones,

printers, NAS, network infrastructure, cameras and surveillance equipment, industrial con-

trol devices used in electrical grid and water distribution facilities, scientific measurement

equipment, and other less common equipment.

Port scanning. Nmap [65] and Zmap [66] are both open source utilities for network

discovery and security auditing. In our study, Nmap was used to identify non-SCADA

devices with TCP ports 80 and 443 open, as well as SCADA devices with open TCP port

502 (Modbus protocol), TCP port 20,000 (DNP3 protocol) and UDP port 47,808 (BACnet

protocol). This data can be combined with external scripts [67] to retrieve additional
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device information such as firmware version, device ID and operating status. Both DNS

resolution and host discovery were disabled to minimize the impact on the network. The

landing pages for devices with a service running on port 80 or 443 were downloaded using

curl. The resulting pages were clustered using unique strings and each group was manually

identified. Figure 3.1 shows the distribution of IoT devices across the different categories.

Service discovery protocols. DNS-SD (DNS Service Discovery) and UPnP (Univer-

sal Plug and Play) SSDP (Simple Service Discovery Protocol) are two different technolo-

gies both designed to allow devices to easily discover and browse other devices on the

local network so that the average user does not have to deal with the complexities of IP

addresses, ports, and protocols. DNS-SD [6] uses multicast [15] instead of broadcast for

cross communication and leverages the DNS protocol to advertise services available on

each host as part of zeroconf (Zero Configuration Networking). UPnP’s SSDP uses HTTP

and SOAP (Simple Object Access Protocol) for host and service discovery instead of DNS.

3.2.2 Findings

We found 1828 index pages from unique hosts with port scan and 584 unique hosts

from the service discovery technique. There were 13 hosts that were common to both

datasets, so the total number of unique hosts from both datasets is 2399. One dataset was

a port scan of a random sample of the hosts on all the subnets on the campus network.

The other dataset was a random sample of subnets on the campus that were scanned using

service discovery protocols. The port scan data revealed that IoT devices with open ser-

vices are about three times more common than compute devices such as servers, desktops,

laptops and smartphones. The results of the classified data from the port scan are shown

in Figure 3.1. 34 different manufacturers were represented in the sample, some spanning

more than one device category. Among all hosts from both datasets, we grouped all the

computing devices into one category that had 692 devices making up 28.8% of the total.
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Figure 3.1: Categorized Sample of Devices from the Port Scan.

The non-compute or IoT devices are represented as separate categories. IP phones com-

prised the largest group with 1001 unique devices and 41.7% of the total. The next largest

category was printers with 194 devices followed by AV (Audio/Video) equipment with 41

devices. Uninterrupted power supplies (UPS), network infrastructure such as router and

wireless access points, network attached storage (NAS), server remote management cards,

private branch exchanges (PBX), keyboard video and mouse (KVM) switches, a piece of

science equipment and a digital sign each had less than 30 devices.

While some of these devices are less critical such as KVM switches, others such as

NAS, UPS and network infrastructure could lead to serious problems if compromised.

Critical data could be leaked or lost, critical systems could be powered off on demand, or

parts of the network could be cut off. Each brand has one or more unique administration

pages for their devices, so the variety of IoT devices increases the difficulty of managing

them all.
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Figure 3.2: Top Ten Identified Services

The service discovery based dataset included 78 different services. Fig. 3.2 shows the

top ten identified services. The most common service was _http._tcp or web services

that account for 16.00% of the unique devices identified. These web services have a wide

variety of uses ranging from public web sites to administration interfaces for IoT devices

such as printers, cameras, network attached storage, and more. Therefore, the presence or

absence of the HTTP service is not enough to classify a device. Page description language

(PDL) printers, workstations, and UNIX printers each account for about 9% of the devices;

VNC, Internet printers, FTP services were identified in about 7% of the unique devices.

Of these services workstation and virtual network computing (VNC) are associated with

compute devices. For this dataset compute devices represent 36.1% of the included hosts.

Printers. We identified printers from 11 different manufacturers. The presence of

custom passwords and the firmware dates for printers were obtained using web scraping

scripts. Of all the printers identified, we confirmed 51.3% had no password ever specified
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by the user (see Figure 3.3b). The no data percentage is different between the two plots

because for some printers with a password set the firmware version is inaccessible.

Out-of-date
58.9%

Up-to-date

6.0%

No data
35.1%

(a) Printer Firmware

No Password 51.3%

Password
37.0%

No data

11.7%

(b) Printer Passwords

Figure 3.3: Security Readiness of Printer Sample
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Figure 3.4: Printer Firmware (FW) Release Dates

Figure 3.3a shows the percentage of printers identified known to have out-of-date

firmware 58.9% as well as the 6.0% that were known to have up-to-date firmware. The

30



devices in the no data category timed out while trying to access the HTTP index page or

had a password preventing access to the firmware date. Figure 3.4 is a histogram of the

dates of the firmwares installed on printers we observed along with the dates of the latest

firmwares available for those printers. There is a cluster of printers with firmwares made

in 2010 and the first half of 2011. The newest firmware available for 12.5% of the printers

was from 2014 or before. This data points to the fact that the firmware on these devices

is both not being updated by the manufacturers and not being updated by the users even

when new version of firmware is available. This shows that even on a well managed net-

work IoT devices like printers may be overlooked, receive minimal initial configuration,

and fall behind in updates. We did observe newer devices that automatically update their

firmware.

Default Password 45.3%

Custom Password

34.0%

No login

20.7%

Figure 3.5: Authentication for VoIP Phone Administration

VoIP Phones. VoIP (Voice over Internet Protocol) telephones can be connected to a

Private branch exchange (PBX) through a local area network (LAN). Given an VoIP phone

with minimal custom configuration, the default admin password will be known [68]. Using

this access the SIP configuration can be changed to launch a man in the middle attack. This
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enables attackers to record calls, and keep track of call log information. If the attacker

manages to steal the SIP authentication data, they can place calls from the victim’s phone

number.

The VOIP phones dominated the sample of devices scanned on port 80 prompting us

to conduct a more in-depth scan of the VOIP subnet. We found a total of 6999 VoIP

phones from the focused port scan. Only about a third of the VoIP phones were pro-

tected with a custom admin password (see: Figure 3.5) None of the VoIP phones had the

newest firmware. One brand of VoIP phone had no password authentication for the HTTP

management page and represented 20.7% of the VoIP phones. This data strengthens the

point that some IoT devices do not receive the same attention to configuration and security

updates as compute devices.

SCADA devices. We have identified a total of 415 SCADA devices that are used

across building automation networks, water metering system and electrical grid. This

includes 197 BACnet field panels and workstations, 188 water system meters and 30 DNP3

devices. Security vulnerabilities have been identified among these devices. However,

due to security reasons, we are not allowed to further discuss these vulnerabilities in this

chapter.

We also identified a piece of scientific measurement equipment that could be tampered

with over the network interface. Adjusting the default configuration of the device with

awareness of the potential problems could go a long way toward securing the scientific

measurements. Ideally, the network access to the device would be restricted through a

VPN to only authorized individuals.

3.3 Summary

The infamous Mirai attack has shown that many IoT devices do not have adequate se-

curity protections and can be leveraged to cause significant damage. In this chapter, an IoT
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security disclosure is provided that shows that about 58.9% devices do not keep up-to-date

firmware and 51.3% or more do not have a user defined password. Our measurements

also indicate that the number of non-compute devices may dominate the number of com-

pute devices in a typical campus network. This work motivates the solution proposed in

chapter 6.
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4. FINDING PROXY USERS AT THE SERVICE USING ANOMALY DETECTION

4.1 Introduction

A proxy server is a software that forwards network traffic. HTTP and SOCKS proxies

[23] are used to hide the identity of the source by relaying data through the server. A typi-

cal configuration of how a proxy may be used by an attacker is shown in Figure 4.1. The

three hosts shown are a sensitive service, a proxy server (a compromised machine), and a

proxy client. The sensitive server provides some service the attacker has interest in. Some

examples are internal databases, online banking websites, or corporate file servers. The

proxy server acts as a middle man and initiates a connection to the sensitive service on a

request from the proxy client. The proxy client connects to the proxy server to communi-

cate with the sensitive service anonymously. From the point of view of a service, the IP

address of the requester and TCP parameters may be identical between direct traffic and

tunneled traffic. Although proxy servers have legitimate uses, they can also be utilized by

those with malicious intent.

Figure 4.1: Direct Traffic vs. Socket Proxy Backdoor

c© 2016 IEEE. Reprinted, with permission, from Allen T. Webb and A. L. N. Reddy, Finding proxy users
at the service using anomaly detection, 2016 IEEE Conference on Communications and Network Security
(CNS), October, 2016.
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Trojans and backdoors provide attackers a foothold on the network. Even with anti-

virus software, firewalls, and intrusion detection, new threats emerge that have been tai-

lored to disable the protection and/or evade detection. Once a machine is compromised, it

can be used for detrimental purposes. For example, the machine could be used as an in-

side proxy, a steppingstone, that allows an attacker access to sensitive internal network re-

sources. The trusted machine may even connect to the sensitive network remotely through

VPN. It then operates in the role of the proxy server in Figure 4.1 and may still issue le-

gitimate direct requests along with proxy requests. The attackers can then create a covert

channel from which they can probe the network, steal private information, compromise

other systems, and cause service outages. Preventing the systems from being compro-

mised is preferable, but expecting attacks never to succeed is unreasonable. Thus, we

focus on identifying and stopping unauthorized access to services.

Open proxy servers are available on the Internet, and blacklists of their IP addresses

are also available [69]. Information from logs of VPN servers and proxy servers can be

useful in tracing abusers back to their original IP address. However, when the proxy server

is hosted by the attackers themselves on a compromised machine, the attackers are free to

implement the proxy servers as they choose. Proxy logs will likely not exist in this case,

so there is a need for additional measures to identify attackers in these cases. All this is

done after the fact. Would it not be better to prevent leaking information first?

Whenever information systems are managed by a third party such as a cloud provider,

the cloud user may have limited ability to enhance the security of their services beyond

what is already provided by the third party. Attacks can be detected without collaboration

with the service provider by developing methods that operate at the service rather than

the network infrastructure. The level of difficulty required for an attacker to compromise

a service can be increased by writing security-aware services that have built in detection

strategies requiring only a small amount of data. These detection schemes would aim to
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detect or deter attackers with minimal impact on performance and with minimal increase

to the attack surface of the service.

Although there are methods to detect the channels by which an attacker can funnel

information outside the network, most rely on having access to more than one flow of that

traffic [70] and [71]. In cases where a virtual private network (VPN) is used, the attacker

could funnel the data through a side channel without passing it back through the VPN.

Examples of channels which an attacker might use to avoid monitoring include Bluetooth,

cellular data, air-gap techniques, and third party infrastructure. In other words the attacker

could create a proxy to services using a compromised host’s VPN and connect to that

proxy through a side channel such as cellular data. This scenario is of interest because it

bypasses typical intrusion detection systems, which typically need to have access to the

proxy-to-client traffic. Our work specifically investigates techniques for identifying covert

proxy traffic at the sensitive server or network resource. Although the proposed detection

methods do not provide the originating IP address of the attacker, they do point out that

a particular machine is being used as a proxy. Once a compromised machine is detected,

attention can be focused on that machine’s traffic to identify the attacker and clean off any

malicious software or additional security checks can be required.

Our approach employs timing information, specifically delays at the transport layer

and application layer measured at the sensitive server to distinguish direct traffic from

proxy traffic. The chapter makes the following significant contributions: (1) Proposes a

new class of steppingstone detection methods based on anomaly detection. Two examples

are provided, one at the TCP layer and another at the application layer. These anomaly

detection based methods have the following properties: (1a) Only the traffic at the server is

required. (1b) The traffic may or may not be interactive (1c) Detection can be performed

near real-time allowing for intervention. (1d) Training is per endpoint and detection is

per flow thus reducing the computational complexity of network traffic analysis. (2) Pro-
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poses a technique for hardening the training process against manipulation by attackers. (3)

Shows that the proposed techniques are lightweight and can be effective with a very small

number of samples enabling them to detect attacks in real-time.

4.2 Detection Methods at the Service

Previous work, [72] and [73], has made progress in detecting abuse of privileges. We

consider the scenario in which the attacker is stealing data from a service. Our methods

can identify tunnels and proxies at the sensitive service providing a way to log, limit, or

deny access after detection.

Our approach relies on network delay measurements. Rather than depending on the

contents of the traffic, which may be controlled by the attacker, this method relies on

properties of the network path and timing of the traffic. Our hypothesis is that the RTT

measurements of traffic when the service is accessed by the attacker through the proxy

will be different from the RTT measurements when the service is accessed by the proxy

machine directly.

Let dsp denote the variable RTTs observed between the server and the proxy, dspa the

variable RTTs observed when the service is accessed by the attacker through the proxy,

{du} a set of unlabeled measurements (one that may contain either dsp or dspa), and {dtr}

a collection of training measurements of dsp. Our hypothesis is that dsp and dspa will have

different distributions and will be distinguishable.

Several techniques and measurements can be employed to distinguish dsp and dspa.

Our goal is that given training data, {dtr}, we can identify and assign an accurate label

to {du}. In addition, the delays themselves can be measured at different levels to provide

different levels of protection.

In this chapter, we consider two types of delay measurements, one at the transport layer

and the second at the application layer. The transport layer approach has the advantage of
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not having to modify or enhance the applications whereas the application layer approach

can leverage application semantics to enable the design of a better tool.

We present two detection methods: the TCP Delay Distribution (TCP-DD) method,

which relies on timing information from TCP packets; and the Application Layer Re-

sponse Time (AL-RT) method, which leverages data dependencies in the application layer.

Many machine learning algorithms require training data for each label. Our detection

methods fall into the category of anomaly detection because we only have access to train-

ing data for one label, direct traffic. Direct traffic from trusted machines can be observed

before an attack. Prior measurements for tunneled traffic can only be obtained after an

attack has been carried out and identified. Our goal is to identify an attack as it is being

carried out to prevent it from being successful. Requests classified as proxy traffic can

be required to go through additional security checks or can be denied access to sensitive

network services. This method has the flexibility of being deployed as part of an intrusion

detection system or as part of a service.

4.2.1 TCP Delay Distribution Method

We measure TCP delays at the transport layer. A set of training samples are employed

to indicate the characteristics of direct traffic. TCP delays are constantly measured and

compared against the training set to see if proxy traffic is originating from the machine.

This method does not require modifications to the server or client software. Because it

does not require access to the client machine, the detection does not require changes to

the application layer software, and it supports the commonly used protocol, TCP. If the

intrusion detection system controls a dynamic firewall, unwanted TCP flows could be

interrupted or blocked. If this is integrated into a service, the service could limit, or block

access to TCP flows or SSL sessions that are not classified as direct traffic. Note that once
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Figure 4.2: TCP Delay Distribution Measurements

a session is classified initially, it still may be monitored because sessions can be hijacked

[74].

Here is an examination of how this method works (see Figure 4.2): Consider the in-

stantaneous delay between the server resource and the proxy server for direct traffic, dsp,

and the instantaneous delay between the proxy and the client, dpa. Although the round trip

time for acknowledgments will follow dsp for the most part, the timing of acknowledg-

ments is typically also affected by techniques to reduce the number of acknowledgments

sent such as Nagle’s algorithm and TCP large segment offload. As long as these techniques

are dependent on whether there is new data to send, there will be information leakage from

dpa to the server resource.

Although TCP timestamps could be used instead of measuring the delay, the TCP

timestamp fields could be forged by the attacker; the attacker could send a future times-

tamp. It is conceivable that the attacker could use a custom implementation of TCP to

have more control over the distribution of delays between packets and their correspond-

ing acknowledgments. For the attacker to successfully launch an attack, they would need

to know the characteristics of direct traffic observed from the service and have a way to

replicate them.
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The mean values of dsp and dspa could appear to be the same. However, functions other

than the mean could reveal differences between dsp and dspa. TCP-DD has the following

procedure: Record the delays between a TCP ACK and the most recent TCP segment it

acknowledges to obtain an unlabeled set of measurements, du, for the RTT. Compute a

function on the timings, du, such as a binned distribution estimate, a density estimate, the

variance, etc. Compare the result with training data for dsp and classify the connection as

normal or anomalous.

One category of statistical measures we used provided a comparison of empirical dis-

tributions or densities. A simple way to obtain an empirical distribution is binning, the

technique used to generate histograms. After binning, the probability mass function is

obtained by dividing the value of each bin by the sum of the values of all the bins. Also, a

smoothing function such as the Gaussian function (see Equation 4.2) can be applied to the

histogram to obtain a density estimate from sparse data. An expected distribution can be

constructed by aggregating all the training data into one distribution.

Raw JSD: The similarity of distributions can be measured using the Jensen–Shannon

divergence (JSD) [75]. The JSD is shown in Equation 4.1 where p1 and p2 are the dis-

tributions, and X is the set of bins. This allows for the measurements of one trial to be

compared to the expected distribution. To identify when a measurement is anomalous it

is necessary to have some notion of what range of values the data should have. This can

be obtained by using the JSD to calculate a distance between the distribution estimates for

each trial and the distribution estimates for the aggregate of the training data. The JSD

becomes undefined whenever there is at least one bin with a zero value, the solution we

used was to initialize the bins to a very small positive number before performing binning.

JSπ(p1, p2) =
∑
x∈X

[
p1(x)

2
log

p1(x)

p2(x)
+
p2(x)

2
log

p2(x)

p1(x)

]
(4.1)
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For simple binning and JSD there is an order O(n +m) computation cost that scales

with the number of samples, n, and the number of bins, m.

Smooth JSD: If a Gaussian (see Equation 4.2) smoothing filter is applied to the binned

results to obtain a different density estimate before using the JSD, it has an order O(n +

m × l) computation cost that scales with the number of samples, n, and the number of

bins, m, times the number of filter taps, l.

G(x) =
1

σ
√
2π
e

−(x−µ)2

2σ2 (4.2)

Variance: Another statistic measure that we found to distinguish dsp from dspa is the

variance. Although the mean between dsp and dspa could be too similar to distinguish

them, the variance may not be. Training data isn’t needed to show the separability of the

variances calculated for the direct traffic trials from the variances calculated for the tun-

neled traffic, but it is necessary for anomaly detection. This is an order O(n) computation

cost that scales with the number of samples, n.

MPGS: The mean pairwise Gaussian similarity (MPGS) also can be used. The Gaus-

sian similarity [76] can be described as a measure of closeness and could be compared

with the inverted squared Euclidean distance. The mathematical formulation for this mea-

sure is shown in Equation 4.3. This is calculated for each pair of a training sample with

an unlabeled data sample. The results are averaged to obtain the MPGS that is compared

against the MPGS values for the trials in the training data. The computational cost for

calculating the MPGS is O(n × k) where n is the number of samples in du, and k is the

number of training samples.

MPGS(du) =
1

|du||dtr|
∑

x∈du,y∈dtr

1

σ
√
2π
e

−(x−y)2

2σ2 (4.3)
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Mean distance measures are another way to distinguish the direct and tunneled traffic.

The mean minimum distance (MMD) from the inter-arrival times, du, in an unlabeled set

to the times in the training data can also be used. The L1 norm was used for the distance.

It is the absolute value of the difference between the values being compared, |a − b|. We

took the mean of the lower quartile of the distance values. The computation cost depends

on the implementation but costs of O(n log k), and O(n log n+ k) can be achieved where

n is the number of samples in du, and k is the number of training samples. This was

chosen because it uses the k-distance measure, which is part of the formulation for the

Local Outlier Factor [77].

4.2.2 Application Layer Response Time Method

This method estimates the round-trip-time by measuring the end-to-end delay at the

application layer. Socket proxies may hide the RTT at the transport layer, but they forward

the unmodified application layer data. One potential way of identifying tunneled traffic is

to measure the RTT at the application layer. Ideally, this would be done without requiring

changes to the application layer protocol. Many applications have data dependencies be-

tween served content and requests. The time delay between a message being sent and the

receipt of the first dependent message can be used to bound the round trip time between

the server and client applications. For this to be an effective way of detecting a tunnel, the

attacker should not be able to send the dependent message early. This challenge can be

solved by requiring a sufficiently hard to guess random token in the dependent message.

In this chapter we use HTTP to validate the concept of the Application Layer Re-

sponse Time Method. HTTP serves pages typically containing references to additional

content such as images, scripts, styles, or frames with other pages. The HTTP example for

determining if a visitor to a website is using a proxy or not is as follows: Create a chain of

iframes such that a browser will not cache the iframes (they will be loaded every time), and
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the delay between HTTP requests is logged. Nonces are used to ensure that each iframe

in the chain must be loaded one after the other. This establishes a data dependency which

is used to measure the delay from the browser to the web server. We can then compare a

function of the delays between requests for the iframes to training data to determine if they

are anomalous. Although we focus on HTTP in this chapter here, it is possible to extract

delays at the application layer similarly with other protocols.

Iframes were chosen because they allow for chaining multiple measurements one after

the other even when JavaScript is disabled. Figure 4.3 shows how embedded iframes

can be used to create data dependencies for measuring the end-to-end RTT. If only one

measurement is needed, an image or style file could be used instead.

An attacker may employ an application-layer proxy server. This would potentially

defeat TCP-DD; however, without prefetching the proxy server would still leak the end-

to-end time to HTTP-RT. Prefetching proxy servers neglect images by default because of

the cost of prefetching all the images on all related pages, so images could be incorporated

into the HTTP-RT method to prevent prefetching of certain resources. The access times

of these non-prefetched resources would then be used in the HTTP-RT measurements.

Figure 4.3: HTTP Response Time Method
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For HTTP-RT the absolute minimum round trip time between the service resource and

the proxy server is a lower bound; attackers cannot cross except in highly improbable

situations: Assume a set of nonces is chosen randomly from a set such that the chance of

guessing each nonce is much smaller than the number of times the valid user connects. A

nonce is sent as part of a URL for the destination of a resource such as an iframe. Each

resource loads another resource at a URL including the next nonce. The first nonce isn’t

known until after the first page loads, the second until after the first resource loads, the

third until after the second resource loads, and so on. For the attacker to request the next

resource they must know (or guess) the nonce. An incorrect guess identifies an attack.

The probability of the attacker correctly guessing all the nonces in a chain of dependent

resources quickly drops off to zero. The chain provides more data points to reduce the

effects of noise. If the attacker receives the nonce through the proxy server, the delay will

be greater than the delay between the proxy server and the requested service.

4.2.3 Identifying proxies during training

Adaptive methods or retraining open up the possibility of the attacker manipulating the

results of the training data. Any classification method that uses training data is sensitive to

the quality or truthfulness of that data. When these methods are put into a situation with

adversaries, one might ask whether an adversary has the ability to taint the training data

to thwart the classification method. We propose a solution to prevent attackers from being

able to manipulate the training data. Training data from similar network paths can be cross

checked to notify the administrator when retraining falls outside the acceptable limits. An

example definition of a similar network path is one that is only different in at most the first

and last links of the path. Using this definition we tested the similarity of the distributions

of training data across similar paths as well as with the proxy data. We collected additional

data from Planetlab for groups of nodes which are hosted by the same organization. The
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Figure 4.4: Jensen Shannon Divergence Between Training Data from Similar Paths. Note
that the proxy data, SSH and Socat, are included to show where an attacker’s distribution
would fall, but these would not be available as training data.

results for HTTP-RT are shown in Figure 4.4. We include the proxy traffic represented

by socat and SSH on the plot to show how the attacker’s distributions compare with the

direct traffic. Ideally the direct traffic would be clustered together, and the proxy traffic

would not overlap with the direct traffic. In most cases the direct traffic has a lower Jensen-

Shannon Divergence with the similar paths than the proxy traffic. For TCP-DD the results

are much less spread, but the direct and proxy traffic were completely separable for 77%

of the groups of similar paths. This cross-check method for verifying the training data

increases the difficulty the attacker faces. Either they will have to compromise more hosts

to launch a successful attack, or they will be limited in how much their attack traffic can

vary from hosts on similar paths.

4.3 Experimental Evaluation

We evaluated our approach in three settings. The first setting employed PlanetLab

[78] with the sensitive server, proxy and the attacker location distributed across the globe.
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The second setting considered attacks within a local area network where all three parties,

sensitive server, proxy and attacker, all reside on the same network. The two settings

provide different vantage points with wide-delay measurements and tight-delay measure-

ments. Third we tested the sensitivity of the results to various parameters such as CPU

load.

As part of our evaluation we compared the accuracy of different statistical measures for

the function computed on du. On one hand, this shows that using the RTT measurements

has some flexibility. On the other hand, the comparison shows which measures might be

best in deploying TCP-DD.

We considered different download intensive communication models that the attacker

could employ. With socat the traffic is passed unencrypted to the proxy client, whereas

with ssh the traffic is encrypted between the proxy and the proxy client. Transparent

proxies that work by network address translation (NAT) will not hide the end-to-end RTT

so they were not tested because the end-to-end RTT should be enough to distinguish direct

and tunneled traffic.

4.3.1 Wide Area Network Measurements

PlanetLab offers a network testbed spanning diverse geographic locations. Our slice

provided 80 active nodes covering different continents with which we conducted our mea-

surements. Figure 4.1 shows the basic setup we used for each trial. One node functions as

the service. It hosts the web server and records access times and packet traces. Another

node functions as the proxy server. It hosts proxies both through socat [79] and SSH [24].

It also makes a direct request to the web server. The last node functions as the proxy client

and makes requests to the web server both through the socat and ssh proxies.

Combinations of three nodes were randomly selected. For each combination all per-

mutations were tested. 1727 working configurations were tested for the 80 PlanetLab
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Figure 4.5: Path Pings of Each Set of Selected PlanetLab Nodes

nodes. Groups of nearby nodes were also selected to allow for measuring the accuracy

when network distances were smaller. Figure 4.5 shows the delays between nodes in each

working configuration tested. Notice there is a good spread; in some cases the attacker is

closer to the proxy than the proxy is to the server and vice versa. The measurements were

taken once every thirty minutes over a 24-hour period.

The separability between the proxy traffic and the direct traffic can be seen in the ROC

(Receiver operating characteristic) area plots in Figure 4.6 and Figure 4.7. ROC plots are

typically used to show how well a communication channel operates. In our case we are

plotting the percentage of true positives achievable by selecting a specific threshold for a

percentage of false positives. An ROC area of 1.0 is ideal where all the true positives can

be included by a threshold without including any false positives.

Figure 4.6 and Figure 4.7 show the results of our experiments using both TCP-DD and

HTTP-RT methods and different measures in the PlanetLab setting. Figure 4.6 shows the
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Figure 4.6: Performance Comparison of Implementation Options: ROC Area of Each
TCP-DD Trial Using Smoothed JSD Listed in Descending Order

TCP-DD measure with the highest accuracy, smoothed JSD. A maximum of forty-eight

training points were used when training data was needed in the TCP-DD measures. After

analyzing how many training points are needed for smoothed JSD, we found that with

five trials most of the separation between the direct traffic and proxy traffic was already

achieved. Different training points (dsp) are needed for each pair of a service host with a

proxy host because they represent different possible paths. The true positives of the ROC

plot are min({dsp}) for each trial and the false positives are min({dspa}) for each trial.

Figure 4.7 shows the HTTP-RT measure with the highest accuracy, the minimum RTT.

The results between the unencrypted and encrypted socket tunnel implementations,

socat and ssh, are almost the same with ssh having a few more measurement failures

resulting in fewer trials. The majority of trials had a close to ideal separation. In each of

these cases a threshold could be chosen for TCP-DD using smoothed JSD in those trials

to distinguish the direct traffic from the tunneled traffic.

In Figure 4.8 the separability of different functions are used over the samples collected

for each trial for TCP-DD. These functions are discussed in more detail earlier in subsec-
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Figure 4.7: Performance Comparison of Implementation Options: ROC Area of Each
HTTP-RT Trial For Three Samples Using Minimum Listed in Descending Order

tion 4.2.1. “MMD.” represents mean minimum distance for the highest quartile. “Raw

JSD” represents binning the inter-arrival times to obtain a distribution estimate and us-

ing the Jensen–Shannon Divergence (JSD). “MPGS” represents using the Mean Pairwise

Gaussian Similarity (MPGS). Bins of 25 milliseconds were used, but further optimization

could be done for this parameter. “Variance” represents taking the variance of the mea-

surements within a trial. The variance values were then compared across trials to test for

separability. “Smooth JSD” represents first binning to obtain a density estimate. The result

is smoothed using a Gaussian smoothing filter that is truncated to 4 standard deviations of

1250 µ-seconds. Lastly, then the JSD is used to compare the smoothed density of the

training data with the one for the unlabeled data.

The results show that both TCP-DD and HTTP-RT can separate the direct traffic from

proxy traffic. Figure 4.8 and Figure 4.9 show the percentage of trials that had ROC areas

above 0.9, 0.99, and 0.999. From these figures it is clear that HTTP-RT outperforms TCP-

DD for the configurations tested. An ROC area of 0.90 can be likened to a 90% true

positive detection rate for 0% false positives. It does not correspond directly because an
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Figure 4.8: Performance Comparison of Implementation Options: TCP-DD Processing
Method Comparison with Socat and SSH Combined

ROC area of 0.90 may have different shapes. For the rightmost bar of HTTP-RT using the

minimum of the measurements, an ROC area of 0.999 and above was achieved for more

than 80% of the trials.

For Figure 4.9 the measured round trip times differ between the direct and proxy traffic,

but there is noise present. Three samples of round trip times were used for the HTTP-

RT classification. “Mean” represents taking the average of the samples in a trial, “Prod”

represents multiplying the samples, and “Min.” represents taking the minimum of the

samples. All these functions have O(n) complexity over the n samples per trial. Out of all

the methods, the minimum function resulted in the greatest separability.
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Figure 4.9: Performance Comparison of Implementation Options: HTTP-RT Processing
Method Comparison with Socat and SSH Combined

From Figure 4.8 and Figure 4.9 it is clear that HTTP-RT outperforms TCP-DD in the

tested configurations. Tests were also run for more than one proxy node to confirm that

adding more nodes increases the detection accuracy for both methods.

4.3.2 Local Area Network Measurements

In a local setting the distances are much shorter, the links are more reliable, and the

bandwidth limitations are less. We expected to have a more difficult time detecting the tun-

nels when the proxy server and client were on the same local network. A single host was

used to provide the service. Two different proxy servers were used in different locations.

Four different proxy client locations were used with both a Wi-Fi and wired host each. The

measurements were recorded every five minutes for at least two and a half hours yielding

30 or more data points for each trial. In this experiment the packets were processed in real
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Figure 4.10: True positives of Direct Traffic Over Time After Initial Training Averaged
Across Trials

time to obtain the TCP ACK delays and iframe delays. In this dataset about twelve TCP

ACK delays were recorded per measurement

A good separability was achieved in all the trials. The direct traffic was completely

separable from the tunneled traffic in more than half of the trials. For the local measure-

ments TCP-DD outperformed HTTP-RT.

4.3.3 Sensitivity

Planetlab measurements were taken over a 34-day period to determine how often re-

training is needed. The measurements were taken every 30 minutes, and only the first 24

were used as training data. Figure 4.10 shows the fraction of true positives out of direct

measurements averaged across trials plotted over time. HTTP-RT Min. had over a 97%

true positive rate after a month. The true positive accuracy of TCP-DD degraded after 20

days. The decision to retrain can be made on a per host basis once the false positive rate is

high enough.
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Figure 4.11: Percent of HTTP-RT Trials with ROC Area Above 0.999

How many measurements are warranted for HTTP-RT? Figure 4.11 shows the rela-

tionship between separability and the number of measurements used. A higher percentage

corresponds to better separation between the direct traffic and the tunneled traffic. At three

measurements three iframes are loaded after the initial page load. It is observed that most

of the separability is achieved within 3 measurements. Since the cost in terms of delay

to the user increases linearly with the number of measurements, three is probably the best

number of measurements to take based on our results.

Figure 4.12 shows the classification accuracy using separate training data and direct

measurements from the PlanetLab data. In these experiments, the measured data contains

both direct traffic and proxy traffic. These experiments are designed to see if presence

of proxy traffic can be detected when the compromised machine is being used both for

direct and proxy communications. Up to 48 training points were used to find the mean

and standard deviation of each measure. The accepted range was defined as µ± 2σ for the

training data. Separate direct measurements and proxy measurements for both socat and

ssh were tested to determine the experimental true positive and true negative rates. Note

that the performance of TCP-DD using the variance is poor in this case even though it has
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Figure 4.12: Classifiers Using µ± 2σ

a high separability in Figure 4.8. We then used the true positive percentage times the true

negative percentage as the ROC area in the plot. Again HTTP-RT outperforms TCP-DD.

It is observed that the proposed techniques provide very high detection rates with very low

false positive rates across the many experiments.

To investigate the effects of CPU load on TCP-DD we conducted an experiment using

iperf3 [80] under different load conditions. We used the tool in download mode because

the traffic from the server to the proxy is what generates the TCP acknowledgments used

in TCP-DD. These tests were done with three machines connected through a single switch

to eliminate uncontrolled network factors. This allowed us to observe the difference in the

steady state delay distribution for different amounts of CPU load. We tested the effects of

CPU load at both the server and the proxy. The results are shown in Figure 4.13.

Varying the load on the proxy case does introduce variance into the detection rates as

shown in Figure 4.13a. There is a noticeable degradation of performance in the server
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case Figure 4.13b. The loss is about 2% less true positives for every 10% point increase of

Server CPU usage. Since, the CPU load on the server can be measured training could be

done across different CPU load regions to increase detection performance if needed. It is

noted that even when tested against different loads from the training loads, the proposed

methods provide reasonable detection rates.

4.4 Related Work

A body of work exists for detecting steppingstones. Recently proxy detection at the

service has started to get attention. In [81] motivated by Nagle’s algorithm the size of

segments and inter arrival times were used to identify proxies. They rely on a steady

stream of small segments to detect proxies, while TCP-DD works for download intensive

streams which may have segments at the MTU. They achieved a 94.0% true positive rate

with a false positive rate ranging from 0.8% to 85.4% averaging 10.2% across all their

trials. This corresponds to an ROC area of 0.844. Machine learning is used for proxy

detection in [82]. Their method works well for the proxy server configurations they tested

(squid) with a 94.1% true positive rate and a 7.9% false positive rate for distinguishing

proxy traffic from direct traffic. This corresponds to an ROC area of 0.867. Using a µ±2σ

classifier, HTTP-RT using the minimum has a greater ROC area in 67.4% of our trials, and

TCP-DD using smooth JSD in 56.8% of our trials. While they employ timing features for

classification, they do not contrast delay distributions as employed in our approach. We

chose to use anomaly detection to avoid requiring labeled proxy data which targets the

classification on particular proxy implementations and behaviors.

Prior steppingstone detection techniques fall into one of three categories: (1) content

based methods, which require clear text or the same content across the observed flows[83]

and [84]; (2) passive time based methods, which rely on the assumption of a maximum

tolerable delay [84], [85], [86], and [87]; and (3) active time based methods often called
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(a) Effect of Proxy Loading

(b) Effect of Server Loading

Figure 4.13: Identification of Direct Traffic Across Load Using TCP-DD Smooth JSD. For
each plot a µ ± 2σ classifier was trained using the data for 0% load. Measurements were
conducted using 10 second iperf3 traces at 100Mbps for each load level. The traces were
partitioned into sets of 100 measurements for the classification. Each trace had about 50
partitions.

watermarking [88] and [89]. The typical threat model used by the above steppingstone

detection papers assume all the traffic on the network is being monitored and that the

attackers do not have access to an alternative unmonitored Internet connection. Our work
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does not make these assumptions. Instead of tracing the attack back to an IP address at

the edge of the network, we identify connections that have steppingstones. These methods

rely on correlating two or more connections to identify steppingstones and thus cannot

detect a steppingstone that has only one visible connection. For this reason we argue

steppingstone detection at the service can be applied in addition to the previous methods

to detect steppingstones that would not be detected otherwise.

Timing of packets has already been shown to betray information in the past such as

keystrokes over SSH in [90]. TCP jitter has been used as a means of identifying rogue

Wi-Fi access points on a network [91]. It has also been used to defeat location spoofing

VPNs in [92].

Work has been done to identify the destination of encrypted HTTP traffic (over WPA

and WEP) by using statistical analysis, lengths of the packets, and the distribution of in-

terarrival times [93]. Statistical measures of packet lengths [94] and information theoretic

measures [95] have been employed to classify TCP flows and to detect anomalous traffic.

Detection of middleboxes such as NATs has been explored through observation of

instant messaging traffic [96]. Tracetcp, [97], uses TCP SYN packets and TTL values to

perform a traceroute over TCP ports. It can identify transparent TCP tunnels and proxies,

but is designed for the client side. It is also dependent on the proxy forwarding the TTL

values, which is up to the proxy implementation. Our methods handle proxies at the server

side and are not dependent on TTL values.

Work has been done to identify tunnels through application layer protocols such as

HTTP [70] and [71]. These are aimed at detecting information leakage from a network,

whereas we are addressing the problem of whether trusted clients are compromised and

are serving as a proxy.

In [98] HTTP proxy traffic is detected to find attempts to circumvent firewalls, and

spyware back channels. This work focuses on detecting anomalies using a variety of
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different techniques such as the HTTP header fields, request sizes, request rates, bandwidth

usage, and request interarrival times. Our goal is to find proxies on trusted nodes rather

than find trusted nodes that are accessing proxies. A key difference in our work is that

instead of using interarrival times to look for periodic traffic, we are estimating the end-

to-end RTT or comparing interarrival time distributions.

There are existing methods for HTTP client fingerprinting that can serve to distinguish

proxy clients. Client side Javascript is used for detection in [99]. SSL handshakes are used

to fingerprint clients in [100]. A survey of these methods is provided in [101]. If a machine

is compromised, metrics used in fingerprinting such as screen resolution, browser plugins,

etc. may be determined and spoofed by the attacker. Even the IP address of the machine

can be used by the attacker through proxies. Our work seeks to address this issue.

4.5 Summary

This chapter proposed using anomaly detection as a new class of steppingstone de-

tecting methods by monitoring traffic at the server. These methods handle the case when

an attacker has access to unmonitored communication channels, which thwart previous

detection techniques. Although compromised machines may be used as proxies, we have

presented techniques that can be used to identify such proxies at the service. We have

shown two working examples of these methods work on actual networks both on a global

scale and a local scale. Our results show that the proposed techniques can provide very

high detection rates of up to 99% with very low false positive rates. In addition, we show

that comparing training data from similar paths can be used to harden the method against

manipulation of the training data. The methods we present may also be combined with

other features as part of a machine learning system for proxy detection, or used as an early

detection system to supplement more computationally expensive post processing methods.
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5. IDENTIFYING MALICIOUS ACTIVITY FROM ANDROID APPS

5.1 Introduction

Smartphones are widely used and have become an attractive target to cyber thieves.

These devices often contain sensitive information such as the owner’s location, contacts,

emails and login credentials. They can be tied to payment methods such as credit cards

and may have apps related to banking. Examples of malicious apps for smartphones have

already been discovered. Thus, there is a need to develop the tools necessary to identify

attacks as quickly as possible and to minimize the damage they cause. We present methods

for creating a controlled test environment that runs untrusted Android apps for security

research.

Four main approaches are used to analyze applications to find malicious behavior.

First, static analysis is performed on the compiled code of an app to determine as much

as possible. However, this doesn’t always capture dynamically loaded code, which may

be downloaded or decrypted at runtime. Second, dynamic analysis involves executing all

or part of the app and using predefined rules. By running the app in a test environment,

malicious behavior can be observed rather than inferred. Third, manual inspection is per-

formed when static and dynamic methods fail since attackers change their techniques to

avoid detection. Lastly, data about application behavior can be collected from devices in

the field. This has the potential for providing the best picture about the behavior of mali-

cious apps because it uses the same environment the attacker is targeting. However, it also

is the most difficult because the data collection must not noticeably impact performance,

and a large enough user-base is needed to collect meaningful data.

When an app is in use, user actions can trigger network traffic. During startup apps may

check for updated resource files. As the user navigates a web based app, web pages will be
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accessed and downloaded. Other examples of network activity from user actions include

taking sending an email or taking a photograph which is backed up online. Network

traffic outside of user activity results from background services such as email apps polling

for new emails, messaging apps checking for messages, or the system checking for app

updates.

In a test environment, we captured traffic from 100 of the most downloaded apps from

the Google Play Store as well as samples of known malicious applications. From these

traces we were able to identify what domains each app was contacting, when they were

contacting them, and how often the app was sending traffic. Although we expected that

most activity from benign applications would coincide with user activity, we found that ad

networks commonly generate network traffic during times when the user is not interacting

with that particular app or the device.

We also used the test environment to determine if the malicious apps were trying to

make use of the Bluetooth on the device by monitoring Interprocess Communication (IPC).

This method could also be used to catch malicious activity that involves IPC such as ex-

ploiting flaws in other apps or using other communication methods that interact with apps

through IPC.

Finally, we developed a method for collecting the domain names requested by each

app without requiring root access on Android devices. We built an Android app, App

Network Monitor (ANM), using this method and deployed it on the Google Play Store.

Three malicious domains were identified from the data collected. Two of them could be

traced back to the original app. This work is ongoing.

5.2 Dynamic Analysis Test Platform

One challenge faced in providing tools for monitoring the behavior of potentially mali-

cious applications is the time required for setup and execution. While ARM emulators are
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available, they have a higher performance overhead than running a virtual machine (VM).

Android ARM code can be executed on x86 architecture using helper libraries [102]. An-

other challenge is to make the environment as authentic as possible. Attackers can avoid

detection when they are able to distinguish a test environment from a real phone (e.g. by

relying on user input). To make this as difficult as possible, the test environment should

not have any differences that are detectable by the app being tested.

Finally, the test environment should be setup to prevent harm that results from execut-

ing malicious apps. This is difficult to achieve because Internet access may be needed in

order for an app to function properly; however, unrestricted Internet access could allow a

malicious app to communicate with its author. Also, the app would be free to carry out

any instructions it was given such as participating in denial of service attacks. We present

a method for isolating the test environment while giving the phone the illusion of Internet

connectivity. This method can also allow for connectivity to authorized sites.

Our goal is to determine if there are network features we can identify that distinguish

known malware samples from the top 100 Android apps on the Google play store. We also

wanted to obtain the interprocess communication (IPC) from malicious apps to search for

interesting features. Ideally, these features would help find malicious apps that had not

been classified as malicious.

5.2.1 Methods

Mobile devices favor maximizing efficiency over performance because they rely on

batteries for power. The x86_64 architecture provides low-cost high-performance hard-

ware, hypervisors, and virtual machines. This gap leads to interesting opportunities and

challenges when executing Android apps on x86_64. To retrieve the domains accessed by

Android apps in a scalable way, the amount of human intervention should be minimized.

Malicious apps are sometimes used to launch attacks on remote computers and networks,
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Figure 5.1: Basic Architecture of the Experimental Setup

so the testbed setup should prevent this from taking place. There are trade-offs to allowing

some Internet traffic, but for the purpose of this work, the testbed did not have access to

the Internet during the testing.

A general view of the testbed setup is shown in Figure 5.1. Each Android x86 VM

is created as a clone of a preconfigured VM with Android x86 [103] installed along with

the base Android Google apps. Any high popularity app with access to personal accounts,

data, or sensitive permissions would be an attractive target for IPC attacks. With this in

mind, we preloaded the base Google apps that are commonly included on most Android

phones.

The base Android x86 kernel was modified to add logging to Binder IPC transactions

(see Source Code A.1). If the transactions were intercepted at another layer (e.g. by

modifying the Java Binder implementation), it would be tricky to guarantee that all the

transactions were being logged since Android has a mix of Java and native code. Later

versions of the kernel used by Android have a hook that can be used by kernel modules

to audit or log Binder IPC. These IPC transaction logs include the time, the sending and

receiving process id, a transaction code, and a data field (that has the interface name and

optional arguments). For these logs to be useful, the process IDs need to be converted

to the package name strings that identify the apps; the Binder interface name needs to
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be extracted from the data field; and the code needs to be converted to the corresponding

function for the particular Binder interface. Additionally, the remaining data could be

parsed into the transaction arguments in the form of a Parcel, but that was left for future

work. To convert the process ID to package name of the application, the process name can

be used since Android uses the package name as the process name. It is recommended to

double check the user ID of the process and its associated package name to make sure they

match. A mismatch would be suspicious.

Converting a Binder transaction code from a log entry is an involved process. Code

was written to scrape the android source code for AIDL files (Android Interface Defini-

tion Language [1]) as well as Java and C/C++ files that inherit from IBinder (Source

Code B.3). These files need to be parsed to infer the association between transaction codes

and interface function calls. This association is then used to translate an (interface, code)

pair into an (interface, function) pair.

Auditd was configured to log SYS_LISTEN and SYS_CONNECT socketcalls using the

script in Source Code 5.1. While tcp, tcp6, udp, and udp6 can be monitored without

requiring root privileges in /proc/net/, they must be polled whereas auditd provides

event driven results. Unfortunately, the logged arguments for socket call include a pointer

that would need to be dereferenced during runtime to determine what was being connected

to or which port was being opened.

1 #!/system/xbin/sh
2 auditctl -e 0 # Disable auditing
3 # Close the auditd service
4 kill ‘cat /data/local/tmp/auditd.pid‘
5 auditctl -D # Clear all rules
6 auditctl -b 320
7 # Log socketcalls for SYS_LISTEN
8 auditctl -a exit,always -S socketcall -F a0=4
9 # Log socketcalls for SYS_CONNECT
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10 auditctl -a exit,always -S socketcall -F a0=3
11 auditctl -e 1 # Enable auditing
12 # Start the auditd service
13 auditd
14 auditctl -l # List all rules

Source Code 5.1: “start_auditd.sh”

It is possible to use a single virtual machine for multiple Android apps and still at-

tribute all the traffic back to each app in the following way. The following commands

can be executed to add iptables rules that log new TCP connections along with their user

identification (UID).

1 iptables -I OUTPUT 1 -j LOG -m state --state NEW --
log-prefix "[IPT_LOG] " --log-level 4 --log-uid

2 iptables -I INPUT 1 -j LOG -m state --state NEW --log
-prefix "[IPT_LOG] " --log-level 4 --log-uid

On Android each UID usually corresponds to a single application. The option:

-m state -state NEW

can be replaced to monitor individual packets instead of new connections if needed.

The sinkhole server is configured to be the default gateway for the virtualized network

so that all traffic from the Android x86 VMs is routed through it. It also fills the roles

of the DHCP server and DNS recursive resolver. As the DHCP server, it supplies the

default DNS server and gateway addresses. As the DNS server, it has a wildcard record

that directs all domain names to itself. A network address translation (NAT) firewall rule

is set up to redirect all non-local IP addresses to the sinkhole server.

The HTTP server (with HTTPS too) is configured to accept requests from any domain

name, and the private key of the webserver can be imported into Wireshark to decrypt SSL

sessions. This allows the hostname, the path, any custom headers, GET the parameters,

POST the data, and the uploaded files to be recorded for requests initiated by the client

application. This configuration could be modified to create a more sophisticated setup that

64



Po
pu

lar
 Ap

ps
AD

RD

An
ser

ve
rB
ot

Ba
seB

rid
ge

Dr
oid

Ku
ng

Fu

Ge
mini

Pja
pp

s
Ot
he
r

Un
cla

ssi
fie

d
0

10

20

30

40

50

Pe
rc

en
t o

f s
am

pl
es

Internet Use at First Run Periodic Internet Use

Figure 5.2: Internet Usage Timing

would allow partial connections to the Internet. Another option would be to serve cached

copies of pages with the goal of getting apps to expose more of their behavior.

5.2.2 Results

The network usage measurements are summarized in Figure 5.2. The data was col-

lected over 4-hour time windows, so periods larger than 4 hours would not show up in the

results. Almost 20% of the top 100 Android apps on the Google Play store periodically

accessed the Internet in the background after simply installing the app and running it once.

Three of the six malware families did not show periodic background Internet usage during

the 4-hour monitoring period. This suggests that identifying malware based on Internet

usage when the user isn’t actively using the device is not feasible.

Figure 5.3 shows an example Binder IPC graph from a clean Android system. Though

we did not find any evidence of Bluetooth usage by the malicious applications in our
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dataset, we were able to collect the IPC data from the various apps that could be further

investigated.

5.3 App Network Monitor: A DNS Based Device Hygiene Solution

Aside from a data usage chart, Android does not have features to help a user police how

apps use the Internet Users can decide whether to remove an app if it uses too much data,

but nothing is provided to indicate what is being sent or received. Similarly, if the user

wants to limit network access on the device, they have fairly coarse-grained control. They

can turn the Wi-Fi or Cellular data on or off, but that affects the entire device. Android 6.0

and newer OS versions allow permissions to be granted or denied to apps, but this feature

does not include the network access permission. When a user installs an app that requests

Internet or network access, they grant it permission simply by installing the app.

The Linux kernel that Android is based on has support for iptables, but modifying

the firewall rules requires root access. However, Android does provide an API (application

program interface) for setting up virtual private network (VPN) client applications. This

API provides a way to read and write the packets that normally would travel over the

device’s network interfaces. We developed ANM using the Android VPN API.

5.3.1 Implementation

Figure 5.4 shows an overview of how ANM is able to collect statistics on the domains

accessed by each app to determine which apps are malicious. At a high level, the DNS

traffic is handled by the Pseudo VPN service while the rest of the network traffic isn’t

touched by the VPN service. The mapping of IP address to UID for open sockets is

recorded from entries in the path /proc/net/. These entries are linked with the DNS

responses and the mapping of each UID to a package name to determine the domains

accessed by each app. This information is aggregated at a statistics server to establish the
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Figure 5.4: App Network Monitor Overview

domain access patterns of apps regardless of variations in user behavior so that malicious

apps can be identified.

The VPN API allows for specification of custom routes to filter which traffic is selected

to pass through the VPN. Routes were added for the DNS server IP addresses so that do-

main name resolution requests and responses could be captured by ANM. These packets

include information about what domains are being accessed and can be checked against a

list of known malicious domains such as Google Safe Browsing [105]. ANM uses much

less system resources than solutions that monitor all the network traffic. This is true be-

cause DNS traffic makes up a small percentage of the total number of network packets.

The downside of this is that contents of connections such as HTTP request headers cannot

be checked.

Implementing this technique required (1) parsing the IP and UDP headers of the DNS

requests; (2) sending them over datagram sockets to each DNS server; and (3) generating

new IP and UDP headers for the DNS responses. This functionality replaces the VPN

client, tunnel, and server with network address translation performed by the application.

DNS requests are sent to the virtual DNS server IP address provided by the pseudo VPN
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service. These requests are forwarded to the actual DNS server. The responses are then

forwarded back as if they were sent from the virtual DNS server IP address.

The DNS packets do not indicate which app initiated the request. To obtain this in-

formation the pseudo files tcp, udp, tcp6, and udp6 from /proc/net/ are polled at

least once per minute to record the UID to destination address information for each socket

connection. The destination addresses are then checked to find the most recent matching

DNS record from the answer section of a response. This circumstantially implies the do-

main that was requested to initiate the socket connection and thus the UID associated with

the domain.

There are some challenges faced by this method. First, DNS records are cached for a

period specified by a TTL value, so not every socket connection will have a DNS request.

Second, multiple domain names can be associated with a single IP address so it is possible

to have multiple answer records pointing to the same domain name. HTTP requests can be

sent for both domains to the same IP address causing a possible confusion of the domain

that was being accessed by an app. Third, when an domain request results in an error, there

is no way to associate the original request with a UID. This makes it difficult to attribute

the original request to the app that initiated it.

While it is possible to create a scenario where multiple domain name requests are

answered with records to the same IP address, the risks of this scenario can be mitigated in

a variety of ways depending on the goal. If the goal is to identify suspicious apps, all the

matching domains could be attributed to all the matching apps making the requests. This

data could then be checked across devices to eliminate the false positives.

DNS errors are useful in detecting the presence of malware that uses DGAs (domain

generation algorithms). While it isn’t possible to directly attribute requests to non-existent

domains to the app which made the request, it is possible to monitor these requests to
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establish patterns across devices. It is also possible to guess the format of the DGA, check

for domain requests that succeeded, and match the same pattern.

The UID to app relationship is strong on Android. Apps are assigned a unique UID

when they are installed. A notable exception occurs when the app writer specifies a shared

UID to use for a group of applications. Apps can also be assigned to a group belonging

to system apps, which are part of the original software on the system partition. In this

case, the malicious behavior could be traced to the shared UID, which would point to the

publisher responsible for the app. There is the possibility of malicious apps trying to hide

their behavior by using an Android intent to open a malicious URI from whichever app

is configured to accept that specific content type. However, the malicious app would still

need to be able to access the data that was retrieved in order to use this for a C&C channel.

For the user interface, we chose to warn the user when an app accesses a known mali-

cious domain. This gives the user an opportunity to decide if they want to navigate away

from that page, avoid clicking on a malicious ad, or uninstall an app that frequently ac-

cesses malicious domains. The user is also given access to the complete list of domains

accessed by each app on their device.

5.3.2 Results

We deployed ANM on the Google play store and had 550 unique installs over a six-

month period. Only about a fifth of those opted in to the study and provided meaningful

data. The summary statistics of the dataset are shown in Table 5.1. The dataset includes

4885.6 device hours of network activity that was calculated by merging the overlapping

connection intervals so that the time shared over several connections is only counted once

per device. There were 10963 unique domains resolved in the dataset and 1443 domain

requests that resulted in errors.
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Total Mean Std.
Unique Packages Installed 7542 293.1 111.0

Unique Domains Successfully Resolved 10963 183.6 406.1
Unique Domains with Error Responses 1443 23.6 39.8

Device×Hours of Network Activity 4885.6 hours 44.4 hours 141.4 hours

Table 5.1: ANM Data Set Statistics

We found three different malicious domains that were each accessed on a different

device. Google Safe Browsing classified two of the domains as hosting malware and one

of the domains as being a social engineering platform. We were able to trace two of the

domains back to the apps which accessed them. One was a text messaging app, and the

other was confirmed to be a malicious app by AVG.

In one case we found domain errors for IP version 6 records that appeared to be from a

DGA. However, matching records were received for the IP version 4 addresses. We traced

back the IP version 4 address to a Internet security company and suspect they are using

the DNS for checking signatures against a cloud-based threat database.

We plan to continue the development of ANM and expand its user base to get further

insight into the behavior of malicious apps.

5.4 Related Work

There is already work which was concurrently developed in [106] that also uses a

user-space solution for monitoring network traffic. Their work focuses on privacy and

loss of personal information. They also monitor all the network traffic and even intercept

encrypted TLS streams adding significant overhead. This imposes a latency overhead that

has trade-offs with CPU usage. During active network usage they see a 9% increase in

CPU overhead. ANM avoids this problem by only monitoring the DNS traffic. Thus,
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ANM only has added latency to the DNS lookup, and other traffic has no performance

penalty.

5.5 Summary

We found that network activity during the times a device isn’t being used does not give

a good indication of whether an app is malicious.

However, we developed a lightweight method for identifying malicious activity with-

out requiring root access on Android devices. We deployed this method and were able

to identify malicious activity through an analysis of DNS requests of Apps. This work is

ongoing and will be continued by other students.
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6. IOTAEGIS: A SCALABLE FRAMEWORK TO SECURE THE INTERNET OF

THINGS

Motivated by the findings in chapter 3 we developed the IoTAegis framework, which

offers device-level protection to automatically manage device configurations and security

updates. It also acts as a middle-box to protect legacy devices that no longer receive

updates and leverages DNS to identify when a device has been compromised With cloud-

based device profile updates, the development effort to use IoTAegis to handle one device

can be shared by all other users of the framework. Our solution is shown to be effective,

scalable, lightweight, and can be deployed in different forms and network types.

6.1 Introduction

The protection of IoT devices is a challenging research topic because of the diversity of

IoT device types, communication media, protocols, and network topologies. A number of

solutions [107, 108, 109, 110, 111] already exist for securing IoT devices, but the expertise

and management burden of applying these fixes has led to this problem of IoT devices left

insecure. These solutions can be classified into two categories: device level and network

level. At the network level, the Norton Core [112] identifies unpatched or unsecured IoT

devices in a home network. In [110], an SDN platform is applied to identify suspicious

network behavior and dynamic security rules are enforced on IoT devices. At device

level, authors in [111] propose a secure authentication algorithm to verify the identities of

clients and servers in a CoAP-based IoT environment. Studies in [107] and [108] focus

on the security of IoT apps. We developed a framework to effectively secure IoT devices

from the device level: it checks the unsecured IoT devices in the network and updates

their firmwares, passwords, and configurations. It also includes a network based option

to provide extra security for devices which are no longer supported, and a DNS based
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option to identify when devices are behaving strangely. Norton Core focuses on securing

IoT devices at the network level leaving firmware and configuration vulnerabilities on the

end devices. By focusing on the problem at the device level, we aim to have an approach

that works for any size network ranging from small home networks to large campus or

enterprise networks. The framework is applicable to different types of IoT devices and

easy-to-scale. It can be deployed on a dedicated device, integrated with network routers, or

as a standalone application. We developed a prototype and showed that our framework can

automatically update firmwares for HP printers as well as apply a non-default password.

Traditional Anti-Virus or Internet Security solutions on compute devices rely on being

able to run as third party applications. However, you cannot load third party applications

onto an IoT device. In the case of IoT devices, the solution must accomplish the same

goals by interacting with the device specific management interfaces. This problem is com-

pounded by the wide variety of management interfaces. Our approach can be seen as a

“device hygiene” approach, and our solution is implemented centrally within an adminis-

trative network (campus or home). While the current solution works as a software running

on a workstation within a campus network, a future version of this software can run as an

app within a home network or as a service on a consumer router.

6.2 Attacker Model

In this chapter we try to prevent the compromise of IoT device in the first place instead

of focusing on solutions to prevent various network-level attacks. We are interested in

developing a solution to prevent attackers from gaining unauthorized control of the devices

of interest. Thus, we consider two different attacks in the exploitation stage: configuration

attacks and firmware attacks, see Figure 6.1.

Assumptions. Without loss of generality, we focus on IoT devices that communicate

through a wired or wireless network connection. Media such as Bluetooth [53], Zig-

74



(a) Configuration Attacks (b) Firmware Attacks

Figure 6.1: Exploitation Attacks Considered in the Chapter

Bee [113], Z-Wave [114], 6LowPAN [115] are not considered in this chapter. However,

they could easily be addressed when the device supports these protocols in addition to an

IP-based network connection. We assume attackers do not have physical access to IoT

devices, but can access the devices over the local network within any firewalls.

Configuration Attacks. Attackers may launch password attacks that take advantage

of IoT devices with weak or no password protection, e.g. brute force attacks and dictionary

attacks. Once they have access, attackers may further modify the devices’ configuration

to prevent authorized users from accessing or controlling the devices. IoT devices provide

some services without authentication by default, providing opportunities to the attackers.

Firmware Attacks. Attackers may launch firmware attacks to infect IoT devices by

exploiting outdated firmware with design or implementation flaws. We assume patches al-

ready exist in the newest firmware version and attackers cannot exploit the latest firmware

with 0-day attacks. In addition, some devices (such as HP printers before 2011) support

remote firmware update without checking the signature of the firmware to be installed

[116]. Attackers who have network access to the target devices may infect the devices by
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uploading a malicious firmware. Exploitation may also result from unsecured protocols

such as Telnet or SNMP and from flawed parsers for data like postscript print jobs.

Once the IoT devices have been exploited, attackers may launch (a) actuation attacks:

change the state of an IoT device with malicious intent, e.g. false command injection

attacks; (b) data acquisition attacks: obtain a user’s sensitive data such as print jobs or

phone calls; (c) data integrity attacks: send false sensor data or status information to a

server or other IoT device; and (d) Botnet attacks: leverage the infected IoT devices to

attack other hosts, e.g. Mirai attacks.

6.3 Solution

From the results of our measurement study outlined in chapter 3, it is clear that the

number of IoT devices could be more than that of compute devices. While compute

devices are generally protected by Antivirus and security patches are regularly updated,

many IoT devices are not adequately protected. Specifically, while firmware updates may

be available, 58.9% or more of the devices were not kept up-to-date. In addition, 51.3% or

more devices did not have a user defined password. This problem has been recognized by

others [62, 117]. The solution is made difficult by the number of devices on the network,

their age range, and the number of vendors supplying these devices. Thus, we developed

IoTAegis to address these identified problems directly while simultaneously reducing the

management burden. The IoTAegis provides a central tool for keeping firmware up-to-date

and device configurations secure.

An overview of IoTAegis is shown in Figure 6.2. The framework discovers hosts,

identifies device types and supported services. Then, it can perform tasks needed to update

the devices to the newest firmware and address security holes in the device configuration.

In this way an application or system service uses the framework to manage the network

devices and handle security issues as they are detected. Ideally, checks will be performed
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Figure 6.2: An Overview of Our Solution—IoTAegis

as soon as a new IoT device is connected to the network. Rather than introducing another

network protocol to handle these attacks, we propose a methodology that could be drafted

into a standardized API. Our proposed methodology consists of two types of profiles: one

for handling network protocols and the other for handling devices. These profiles could be

likened to device drivers used by an operating system. Device and protocol profiles can be

downloaded and updated from a cloud-based provider, so the solution would accommodate

new devices. Writing a profile for one device or manufacturer would apply to other devices

of the same model or manufacturer. Large networks with a variety of devices reduce to a

configuration for each device type because the profiles abstract a configuration task.

Each network protocol profile fulfills two primary roles. First, it defines “requests”

that are abstracted from the underlying protocol and can be used by device profiles. An

example of a request would be downloading an index page over HTTP. Second, the net-

work protocol profile defines events. These events are tied to activity at the protocol level

which should be handled by listeners defined in device profiles. An example of an event
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would be the discovery of a new device and its services over mDNS. The DNS-SD profile

includes the logic needed to discover devices using mDNS and generate events whenever

a service advertisement is received.

Each device profile depends on network protocol requests or events to provide the logic

required to perform a set of standard tasks. Some tasks are device specific, but here are a

few key examples: discovering the device, identifying the device model and state, defin-

ing the password, checking what the latest available firmware is, checking the firmware

version on the device, applying a secure set of configuration options, recommending re-

strictive firewall rules. Not all tasks will apply to every device.

IoTAegis uses an event driven architecture where protocols such as DNS-SD over

mDNS produce events. These events are multiplexed by their service discovery data to

the appropriate handlers. For example an IoT printer may advertise the _http._tcp,

and _printer._tcp services. The _printer._tcp service includes a TXT record

with information about the printer that aids in the identification of the printer manufacturer

and model number. At this point the appropriate device profile can be notified through its

registered event listener. Based on these events, follow-up requests are made to query the

firmware version of the new printer and check if the new printer has a custom password

set. Further execution on that event tree can be halted, and the tasks registered for that

device would then be made available to the application or system service. These tasks

could be executed once on demand, periodically, or as updates are released for the device.

A device-centric solution requires the following key functions (a) host discovery, (b)

device identification, (c) configuration management, and (d) firmware updates.

Host Discovery. Several well-known techniques can be leveraged for host discovery,

as discussed in Section 2. IoTAegis uses the Avahi-client library [118] in our framework

to construct a DNS-SD profile. When new devices are services are discovered events are
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generated by the framework. Next, we aggregate the list of services advertised by each

host.

Device Identification. IoTAegis matches service strings with different types of de-

vices and automatically identifies IoT device types. Specifically, _printer._tcp cor-

responds to a Unix printer, _pdl-datastream._tcp to a Page Description Language

(PDL) printer, _ipp._tcp to an Internet Printing Protocol (IPP) printer, _ipps._tcp

and _ipp-tls._tcp to IPP printers using HTTPS. Within the DNS-SD TXT records

are key-value-pairs, one of which describes the product by including the brand and model

number.

Devices with insufficient identifying information or no DNS-SD advertisement may

require a request to be made through a protocol profile. For example, a check could be

performed on their HTTP index page to match against signatures. Additional protocol

profiles can be provided to expand the capabilities of the framework as necessary, and

new device profiles would provide the logic required to identify more devices. Ideally, a

standard API could be drafted and the device manufacturer would provide its own device

profiles, but third parties could develop them as well.

Configuration Management. Some printers for example do not have an administra-

tive password set by default or have a default password that is easy to look up. When

devices use simple HTTP authentication, IoTAegis sets a header with the default authen-

tication information. If a page requiring authentication can be accessed with the default

username and password, it is clear the device needs to have a custom password set. The

user can be prompted or an automatic password can be generated, set, and stored in a pass-

word manager where both the security framework and the user can access it as needed.

In addition to problems with the default password configuration, tasks defined in the

device profile can address extraneous services enabled by default or device specific secu-

rity considerations. Thus, a device profile for IoTAegis can serve as a replacement for the
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vendor specific device configuration software that is shipped with IoT devices. This pro-

vides the end user with a common place and interface to manage a wide variety of devices

connected to their home or business network in contrast to needing to use each device’s

individual management interface.

Firmware Updates. While newer devices may include automatic firmware updates,

our survey demonstrates there are plenty of devices running old firmware versions. To

update the firmware of an HP printer IoTAegis downloads the appropriate remote firmware

update (RFU) file and transmits it using TCP to the raw print port of the printer (9100).

The latest update can be found by querying an FTP site for a matching RFU file with

the greatest version number of date code. Some logic may be required to update very

old firmware to intermediate versions prior to updating to the latest version. This logic

can be included in the device profile, but in general the devices should be at most one

version behind. In this case, the latest supported firmware version will install without

requiring intermediate updates. Once the firmware is downloaded and transmitted, the

printer executes the update commands contained in the RFU file that perform the update

using the self-contained data without user intervention. Thus, the devices on the network

can be kept up-to-date with the latest firmware versions available to prevent attackers from

exploiting known vulnerabilities that have already been patched.

Middle-box Solution for Vulnerable Devices. Some devices are old enough that they

no longer receive updates from the manufacturer. Any vulnerabilities on these devices will

remain and may be exploited by attackers. A solution to this scenario requires preventing

exploits from reaching the vulnerable device. This is achieved by (1) using a managed

switch or user access control to prevent direct access to the vulnerable service on the de-

vice; and (2) implementing a transparent proxy with signature detection to block exploits.

The signatures are included in the device profile.
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This feature is more costly in terms of performance because it requires funneling all

the traffic to the affected devices through the middle box. As long as the usage of these

devices doesn’t saturate the network link and the cost of running the signature checks

doesn’t saturate the CPU, the cost of this feature will be negligible. If these limits are

reached, one option would be to run additional middle boxes and another option would

be to replace the legacy hardware with newer hardware that doesn’t need the middle box

feature.

DNS-based Compromise Detection. IoT devices have a very limited set of behaviors

compared to compute devices. Thus, it is easier to establish a pattern of network access

behavior such as DNS lookups. These DNS lookups can provide insight into whether

the devices are properly configured and detect malicious behavior when the devices have

abnormal accesses.

For example, VoIP phones connect through a PBX which is configured on the device.

If the VoIP phones only access the domains for the proper PBX server, it demonstrates the

phone is configured correctly. If the phone accesses other domains or doesn’t look up the

proper PBX server, its configuration should be reset.

Printers were observed accessing vendor specific domains and performing reverse

lookups for local IP addresses. Any other DNS accesses would be suspicious and sug-

gest a printer was compromised.

IoTAegis can be integrated with the local DNS server to check the domain lookups

against the expected behavior defined in the device profile. This provides a way to know

when devices have been compromised, so proper action can be taken.

6.4 Evaluation

We tested the features of IoTAegis on an HP 2055x printer. We first verified that the

firmware files downloaded by IoTAegis matched the ones downloaded through a browser.
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Then, we successfully updated the firmware twice by applying the next newest update

and an update to the newest version. The initial firmware datecode was 20120615, the

intermediate datecode was 20131112, and the final datecode was 20141201. The before

and after screenshots of the device configuration administration page hosted by the printer

for the last update are displayed in Figure 6.3. We hid most of the identifying information,

but the last few digits of the serial number and hardware address are shown to validate that

the screenshots were taken from the same device.

Figure 6.3: Printer Configuration Page Before (Left) and After (Right) IoTAegis Down-
loaded and Updated the Firmware.

IoTAegis also successfully configured the printer to use custom password. Figure 6.4

shows the authentication prompt when attempting to access a sensitive part of the printer’s

administration page. We envision IoTAegis being integrated with a password manager of

the user’s choice. This gives the user easy access to the passwords in a secure place, and
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IoTAegis can retrieve the passwords when future configuration or firmware updates are

needed.

Figure 6.4: Authentication Prompt When Accessing a Sensitive Page After IoTAegis Set
a Password.

These demonstrations show that IoTAegis is able to solve the two primary channels of

attack motivated by our survey data. Attackers will not be able to exploit known vulnera-

bilities in out-of-date firmware or gain control of devices through insecure configurations

such as default passwords.

Solution Costs We implemented a proof-of-concept framework and demonstrated that

we are able to automatically check passwords on IoT devices and update firmware on HP

printers. We tested the proof-of-concept on an Intel Core i5-3330 CPU at 3.00GHz run-

ning Ubuntu 16.10 and recorded the CPU time as well was the network usage for the first

60 seconds of operation. The test subnet had 67 compute devices and 25 printers. The

network usage by protocol is shown in Figure 6.5, where the mDNS traffic was gener-

ated by the avahi library for service discovery and the HTTP traffic was used to obtain
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the firmware and password state information from the detected printers. Also, the peak

network usage was about 350kBps (2.8Mbps), and most of the traffic occurred in the first

20 seconds of operation.
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Figure 6.5: Network Usage During the First 60 Seconds of Operation

During the 60-second test interval the service avahi-daemon used 1.34 seconds of CPU

time in user mode and 0.32 seconds in kernel mode. The proof-of-concept app used 0.51

seconds of CPU in user mode and 0.08 seconds in kernel mode. This amounts to a uti-

lization of 3.75% of one core during the 60-second test period. The utilization would be

11.25% if we assume all the activity took place in the first 20 seconds. The peak mem-

ory usage of the proof-of-concept app was 99.6MB, but with rate limits on the DNS-SD

queries and optimization this number could be brought down to a number that would be

practical for consumer grade routers.

Our password update demonstration only requires a single HTTP request. This should

apply in most cases unless an initial request is required to obtain a nonce to use the sub-

mission form. Verification that the update succeeded requires an additional request. One
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limitation of the firmware updates is the printer being updated must be in the “ready” state

for the update to complete—there can be no paper jams or active print jobs.

Scalability and Scope. While our proof-of-concept is limited in scope because of the

limited protocol and device profiles it contains, the general principles behind its design can

be applied to a wide variety of IoT devices. The primary requirement for IoTAegis to work

with an IoT device is it must have the appropriate device profile network protocol profile

and the network profile dependencies. Protocol profiles can be created for Bluetooth and

near field communications to support non-IP-based devices.

IoTAegis can be easily deployed in different forms such as a phone app, a browser

extension, or as a feature of a network device or home router. It is already suitable for both

wired and wireless Ethernet interfaces. The development of a standardized API would

make it easier for device manufacturers and third parties to develop profiles supporting

more IoT devices. This also enables alternative, but compatible, framework implementa-

tions to be developed that can use the same profiles.

6.5 Related Work

IoT Defense Solutions. A number of solutions have been proposed to secure IoT

devices through a security framework [109], SDN (software-defined networking) [110],

and authentication [111].

ZENworks [119] is an effective security and configuration management solution for

compute devices. Symantec Norton Core Router [112] aims to protect IoT devices in a

home network from network-level perspective. It detects suspicious activities within a

home network, and quarantines infected connected devices, but does not handle updates to

the device firmware or changes to the device configuration. IoTAegis solves the problem

from device level and provides a general framework that can be applied to different IoT de-

vices regardless of their type, manufacturers, and network interfaces (wired and wireless).
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Our solution also provides password checks and automatic firmware updates to prevent

potential exploits.

Jia et. al [107] provide a taxonomic IoT attack app dataset based on reported IoT at-

tacks and constructing new IoT attacks. They also propose a context-based access control

system for IoT devices. This system supports fine-grained context identification and run-

time prompts with rich context information to help users authenticate sensitive actions and

perform access control.

Fernandes et al. [108] propose the FlowFence framework that enforces the declared

data flow patterns within IoT apps for sensitive data and prevent all other flows. The

solution can be incorporated with existing IoT apps with small overhead.

6.6 Summary

The infamous Mirai attack has shown that many IoT devices do not have adequate se-

curity protections and can be leveraged to cause significant damage. To solve the problems

uncovered in chapter 3, we developed IoTAegis to offer device-level security protection

for various IoT devices. Having one management interface for all IoT devices and device

profile updates via the cloud, significantly decrease the management burden for securing

the IoT. By incorporating a middle box feature, older IoT devices that no longer receive

updates are secured. The DNS traffic from IoT devices is used to verify that they are be-

having as expected. Our framework is effective, scalable, easy-to-deploy with low compu-

tational cost. It enables the development of a single management platform for configuring

and securing the IoT.
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7. CONCLUSIONS

In order to identify and solve internal network threats related to non-compute devices,

this work includes quantitative studies of the number of devices and their condition. It

also includes three solutions to handle security issues present in non-compute devices in

particular smartphones and the IoT.

In chapter 2 we found that two-thirds of the DNS traffic came from wireless hosts.

This shows that mobile devices are playing a bigger role in networks. Also, DNS was

being used as a side channel to access data even through firewalls, and anomalous requests

that pointed to infected machines on the network were found. While these results apply

to both mobile and non-mobile devices, they show that DNS traffic can provide enough

information to identify malicious activity.

After performing measurements to estimate the impact of IoT devices on the network

in chapter 3, we found that 58.9% of printers had out-of-date firmware and 51.3% did

not have a user-defined password. The discovered VoIP phones composed the largest

category of IoT devices, and 45.3% of them had default passwords. At least 34 different

manufacturers were represented in the data, which included at least 12 different device

types. Each manufacturer had unique management interfaces, and some even had several

for each device type. This poses a significant challenge in securing and configuring all

these devices.

Mobile devices often have multiple connectivity options, which leads to novel security

challenges. While previous steppingstone detection techniques rely on correlating multi-

ple network flows, mobile devices can be steppingstones with only one observable flow.

Solutions were developed to this problem and are presented in chapter 4. One solution uses
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timing measurements at the transport layer and the other at the application layer. These

solutions provide very high detection rates and low false positive rates.

Two different solutions for identifying malicious apps were tried in chapter 5. First, we

expected to see most of the harmful network activity happen regardless of whether a user

was interacting with the device; however, we did not expect to see a significant percentage

of benign apps actively using the Internet during this time. We found that contrary to

expectation, 20% of the 100 most popular Android apps exhibited periodic background

network activity when neither that app nor the device were in use. The second solution

was App Network Monitor, an Android app that monitors which domains are accessed

by each app and warns the user when malicious domains are accessed. This also allows

the malicious activity to be attributed to the app responsible. From the preliminary data

collected, we identified three malicious domains and one malicious app. This work will

be continued by other students.

Finally, the IoTAegis framework is presented in chapter 6. It addresses the challenge

of securing and configuring the wide variety of non-compute devices in a scalable way.

A proof of concept app was used to demonstrate the IoTAegis framework by updating the

firmware of a printer and setting a non-default password.

The aforementioned work contributes to the well-being of society by addressing insider

attacks that are enabled by the rise of non-compute devices such as smartphones and the

Internet of Things.

7.1 Future Work

7.1.1 Proxy Detection

The proxy detection methods worked well, but there are some additional improvements

which can be investigated. For example, other features could be investigated to determine

if the classification accuracy may be improved. Along with new features, methods that
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perform anomaly detection across a combination of features can be evaluated. Investiga-

tion could be done to find a method for preventing the case when an attacker does not use

a tunnel but instead funnels the information first to the compromised machine and later

extracts it. IPsec [120] could be investigated to see if similar results could be achieved at

the network layer. Also instead of group of similar paths merely to detect compromised

hosts during training, training could be performed for each of these groups. This would

reduce the amount of training needed. Lastly, this method could be tested on a service

with fewer controls to see how it performs and to solve any challenges that did not come

up in the previous measurements.

7.1.2 App Network Monitor

There are two main tasks that would increase the benefit of the App Network Moni-

tor. First, work needs to be done to expand the userbase of the app to collect more data.

More data will provide the opportunity to establish patterns of app behavior across de-

vices. Second, changes can be made to the app so it can notify users of malicious domains

without having to wait for updated domain lists. This would simultaneously reduce the

effort required to upkeep the app and make the app more useful.

7.1.3 IoTAegis

IoTAegis would be even more beneficial with the following future contributions. First,

the IoTAegis framework can be extended to include additional network based protection

(firewall rules), support other IoT devices. Firewall rules can be used to add additional

protection to devices which do not include access control features. Second, the middle box

functionality could be further developed to allow for reprocessing of application specific

data such as print jobs to strip out common attack vectors. This would act as a more

proactive preventative measure then blocking data sent to IoT devices based on signatures.

Signatures require analysis on known malware samples while the reprocessing task will
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validate and translate the input into a trusted format. Lastly, a flexible API can be extracted

from IoTAegis to aid in the development of third party protocol and device profiles that

may serve as the basis of a standardized API.
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APPENDIX A

ANDROID LINUX KERNEL MODIFICATIONS FOR BINDER IPC LOGGING

The patch below contains a change that adds kernel logging of Binder IPC transactions.

The log lines are appending to a ring buffer which is accessible at the path /proc/kmsg.

1 diff --git a/drivers/staging/android/binder.c b/
drivers/staging/android/binder.c

2 index e13b4c48340..b94502d3f2e 100644
3 --- a/drivers/staging/android/binder.c
4 +++ b/drivers/staging/android/binder.c
5 @@ -357,6 +357,89 @@ struct binder_transaction {
6 uid_t sender_euid;
7 };
8
9 +char lookup_table[] =

{’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’A’,’B’,’
C’,’D’,’E’,’F’};

10 +
11 +void append_to_logfile(struct binder_transaction* t)

{
12 + if (t->buffer == NULL) {
13 + printk(KERN_WARNING
14 + "%d: %p from %d:%d to %d:%d code %x

flags %x pri %ld r%d buffer free\n",
15 + t->debug_id, t,
16 + t->from ? t->from->proc->pid : 0,
17 + t->from ? t->from->pid : 0,
18 + t->to_proc ? t->to_proc->pid : 0,
19 + t->to_thread ? t->to_thread->pid : 0,
20 + t->code, t->flags, t->priority, t->

need_reply);
21 + } else{
22 +// const int len=t->buffer->data_size<65?t->

buffer->data_size+1:65;
23 +// int x, x2, val;
24 +// char data_str[len];
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25 +// x=0;
26 +// for(x2=0; x2<len-1; x2+=2){
27 +// data_str[x+1]=lookup_table[0x000f & t

->buffer->data[x]];
28 +// data_str[x]=lookup_table[0x000f & (t->

buffer->data[x] >> 4)];
29 +// x++;
30 +// }
31 +// data_str[len-1]=0;
32 + int str_len = t->buffer->data_size >= t->

buffer->offsets_size+12?*((const uint32_t*)(t->
buffer->data+4)):0;

33 + const uint16_t *unicode = (const uint16_t*)(
t->buffer->data+t->buffer->offsets_size+8);

34 + int num_unicode=0, x, ind;
35 + if(str_len){
36 + int offset = ((str_len+1) << 1)+t->

buffer->offsets_size+8;
37 + if(t->buffer->data_size<(offset) || t->

buffer->data[offset-1]!=0 ||
38 + t->buffer->data[offset-2]!=0){
39 + str_len=0;
40 + }
41 + for (x = 0; x < str_len; x++) {
42 + if(unicode[x]>(uint16_t)0x00ff){
43 + num_unicode++;
44 + }
45 + }
46 + }
47 + const int len = str_len+1+num_unicode*5;
48 + char data_str[len];
49 + ind=0;
50 + for(x = 0; x < str_len; x++) {
51 + if(unicode[x]>(uint16_t)0x00ff){
52 + data_str[ind ]=’\\’;
53 + data_str[ind+1]=’u’;
54 + data_str[ind+2]=lookup_table[0x000f

& (unicode[x] >> 12)];
55 + data_str[ind+3]=lookup_table[0x000f

& (unicode[x] >> 8)];
56 + data_str[ind+4]=lookup_table[0x000f

& (unicode[x] >> 4)];
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57 + data_str[ind+5]=lookup_table[0x000f
& (unicode[x])];

58 + ind+=6;
59 + } else {
60 + data_str[ind] = (char)(unicode[x]);
61 + ind++;
62 + }
63 + }
64 + data_str[len-1] = 0;
65 + if (t->buffer->target_node){
66 + printk(KERN_WARNING
67 + "%d: %p from %d:%d to %d:%d code %x

flags %x pri %ld r%d node %d size %zd:%zd data (%s
)\n",

68 + t->debug_id, t,
69 + t->from ? t->from->proc->pid : 0,
70 + t->from ? t->from->pid : 0,
71 + t->to_proc ? t->to_proc->pid : 0,
72 + t->to_thread ? t->to_thread->pid :

0,
73 + t->code, t->flags, t->priority, t->

need_reply,
74 + t->buffer->target_node->debug_id,
75 + t->buffer->data_size, t->buffer->

offsets_size,
76 + data_str/*t->buffer->data*/);
77 + } else {
78 + printk(KERN_WARNING
79 + "%d: %p from %d:%d to %d:%d code %x

flags %x pri %ld r%d size %zd:%zd data (%s)\n",
80 + t->debug_id, t,
81 + t->from ? t->from->proc->pid : 0,
82 + t->from ? t->from->pid : 0,
83 + t->to_proc ? t->to_proc->pid : 0,
84 + t->to_thread ? t->to_thread->pid :

0,
85 + t->code, t->flags, t->priority, t->

need_reply,
86 + t->buffer->data_size, t->buffer->

offsets_size,
87 + data_str/*t->buffer->data*/);
88 + }
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89 + }
90 +}
91 +
92 static void
93 binder_defer_work(struct binder_proc *proc, enum

binder_deferred_state defer);
94
95 @@ -1736,6 +1819,9 @@ static void binder_transaction(

struct binder_proc *proc,
96 list_add_tail(&t->work.entry, target_list);
97 tcomplete->type =

BINDER_WORK_TRANSACTION_COMPLETE;
98 list_add_tail(&tcomplete->entry, &thread->todo);
99 +

100 + append_to_logfile(t);
101 +
102 if (target_wait)
103 wake_up_interruptible(target_wait);
104 return;
105 @@ -1763,7 +1849,8 @@ err_bad_call_stack:
106 err_empty_call_stack:
107 err_dead_binder:
108 err_invalid_target_handle:
109 -err_no_context_mgr_node:
110 +err_no_context_mgr_node:
111 + append_to_logfile(t);
112 binder_debug(BINDER_DEBUG_FAILED_TRANSACTION,
113 "binder: %d:%d transaction failed %d,

size %zd-%zd\n",
114 proc->pid, thread->pid, return_error,

Source Code A.1: “android-x86-ics-kernel.patch”
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APPENDIX B

CODE FOR CREATING A DATABASE OF BINDER TRANSACTION CODES

The first two source files are perquisites and the third source file does the work if

populating a database with the Android binder transaction codes.

1 #!/usr/bin/python
2 #sudo pip install --upgrade sqlalchemy sqlalchemy-ext
3
4 import os
5
6 from sqlalchemy import create_engine, MetaData,

Column, ForeignKey, Integer, String
7 from sqlalchemy.ext.declarative import

declarative_base
8 from sqlalchemy.orm import backref, relationship,

sessionmaker
9

10 from xml.sax.saxutils import escape
11
12 android=’ics’
13 android_src_path=’../android-x86-ics’
14
15
16 aidl_filename_list=os.path.join(os.path.dirname(

__file__),android,’aidl-list.txt’)
17 cpp_filename_list=os.path.join(os.path.dirname(

__file__),android,’aidl-cpp-list.txt’)
18 java_filename_list=os.path.join(os.path.dirname(

__file__),android,’aidl-java-list.txt’)
19
20 # engine = create_engine(’sqlite:///:memory:’, echo=

False)
21
22 engine = create_engine(’sqlite:///%s/aidl.db’ % (os.

path.join(os.path.dirname(__file__),android)))
23 Base = declarative_base()

111



24
25 class AndroidInterface(Base):
26 __tablename__ = ’aidl_files’
27
28 id = Column(Integer, primary_key=True)
29 name = Column(String)
30 filepath = Column(String)
31 functions = relationship("InterfaceFunction",

order_by=’InterfaceFunction.code’,
32 backref=’function’)
33
34 def __repr__(self):
35 contents = ["<AndroidInterface id=’%s’ name=’%s’

filepath=’%s’>" % (
36 str(self.id), escape(self.name), escape(self.

filepath))]
37 for function in self.functions:
38 contents.append(’ ’+function.__repr__())
39 contents.append("</AndroidInterface>")
40 return ’\n’.join(contents)
41
42 class InterfaceFunction(Base):
43 __tablename__ = ’function’
44
45 id = Column(Integer, primary_key=True)
46 code = Column(Integer)
47 name = Column(String)
48
49 interface_id = Column(Integer, ForeignKey(’

aidl_files.id’))
50 interface = relationship("AndroidInterface",

backref=backref(’function’, order_by=code))
51
52 def __repr__(self):
53 return "<InterfaceFunction id=’%s’ code=’%x’ name

=’%s’ interface=’%s’ />" % (
54 str(self.id), self.code, escape(self.name), str

(self.interface_id) )
55
56 def reset_database():
57 meta = MetaData(engine)
58 meta.reflect()
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59 for tbl in reversed(meta.sorted_tables):
60 engine.execute(tbl.delete())
61 Base.metadata.create_all(engine)
62
63 Session = sessionmaker(bind=engine)

Source Code B.1: “common.py”

1 #!/usr/bin/python
2 #sudo pip install --upgrade sqlalchemy
3
4 import os, subprocess, sys
5
6 import common
7
8 output = sys.stdout
9

10 if not os.path.isdir(common.android_src_path):
11 raise ValueError(’android_src_path, "%s", is not a

directory!’ % (common.android_src_path))
12
13 if not os.path.exists(common.android):
14 output.write(’Creating "%s"\n’ % (common.android))
15 os.mkdir(common.android)
16
17 if not os.path.isdir(common.android):
18 raise ValueError(’destination path, "%s", is not a

directory!’ % (common.android))
19
20 init_filename = os.path.join(common.android,’__init__

.py’)
21
22 if not os.path.exists(init_filename):
23 with file(init_filename,’w’):
24 None
25
26 out_path = os.path.abspath(common.android)
27 subprocess.call([’bash’,’-c’,’cd %s; find . -iname

"*.aidl" > %s/aidl-list.txt’
28 % (common.android_src_path,out_path)])
29
30 out_file = ’%s/aidl-cpp-list.txt’ % (out_path)
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31 if os.path.isfile(out_file):
32 os.unlink(out_file)
33 subprocess.call([’bash’,’-c’,’cd %s; find . -iname

"*.cpp" -print0 | xargs -0 -n1 -P8 grep -l "
IBinder::FIRST_CALL_TRANSACTION" >> %s’

34 % (common.android_src_path,out_file)])
35
36 out_file = ’%s/aidl-java-list.txt’ % (out_path)
37 if os.path.isfile(out_file):
38 os.unlink(out_file)
39 subprocess.call([’bash’,’-c’,’cd %s; find . -iname

"*.java" -not -path "./out/*" -print0 | xargs -0 -
n1 -P8 grep -l "IBinder.FIRST_CALL_TRANSACTION" >>
%s’

40 % (common.android_src_path,out_file)])
41
42 import generate_add_custom_file
43 with open(os.path.join(out_path,’custom.py’),’w’) as

out_file:
44 generate_add_custom_file.output = out_file
45 generate_add_custom_file.generate_add_custom_file()

Source Code B.2: “do_setup.py”

1 #!/usr/bin/python
2 #sudo pip install --upgrade sqlalchemy
3
4 import importlib, os, re, sys
5
6 import common
7 custom = importlib.import_module(’%s.custom’ % (

common.android))
8
9 #setup filename lists

10 aidl_filenames=[]
11
12 with open(common.aidl_filename_list) as f:
13 aidl_filenames = f.readlines()
14
15 #regular expressions
16 whitespace = re.compile(’\\s+’,re.MULTILINE)
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17 comments = re.compile(’(?:/\\*(?:[^*]|(?:\\*+[^*/]))

*\\*+/)|(?://.*$)’,re.MULTILINE)
18
19 package_name = re.compile(’package\\s+([a-zA-Z_]{1}[a

-zA-Z0-9_]*(?:\\.[a-zA-Z_]{1}[a-zA-Z0-9_]*)*)\\s*;
’,re.MULTILINE)

20 interface_spec = re.compile(’interface\\s+([a-zA-Z_
]{1}[a-zA-Z0-9_]*)\\s*(?:\\{([^}]*)\\})?’,re.
MULTILINE)

21 parcel_name = re.compile(’parcelable\\s+([a-zA-Z_
]{1}[a-zA-Z0-9_]*(?:\\.[a-zA-Z_]{1}[a-zA-Z0-9_]*)

*)\\s*;’,re.MULTILINE)
22
23 function_def = re.compile(’([a-zA-Z_]{1}[a-zA-Z0-9_

]*(?:\\.[a-zA-Z_]{1}[a-zA-Z0-9_]*)*(?:\\s*<(?:[a-
zA-Z_]{1}[a-zA-Z0-9_]*\\.)*[a-zA-Z0-9_<>\\[\\]]*>)
?(?:\\s*\\[\\])?)\\s+([a-zA-Z_]{1}[a-zA-Z0-9_]*)\\
s*\\(([^)]*)\\)\\s*;’,re.MULTILINE)

24
25 #parser functions
26 def parse_aidl_file(filepath):
27 interfaces=[]
28 abs_path = os.path.abspath(os.path.join(common.

android_src_path,filepath))
29 if not os.path.isfile(abs_path):
30 raise ValueError("expecting a path to a valid

file!")
31 with open(abs_path) as aidl_file:
32 contents = aidl_file.read()
33 contents = re.sub(comments, ’’, contents)
34 # print "<<%s>>" % (abs_path)
35 # print contents
36 # raw_input("<<press enter to continue>>")
37 results = re.search(package_name,contents)
38 if results is None:
39 raise ValueError("cannot find package name in

aidl file!")
40 package = results.group(1)
41 results = re.finditer(interface_spec,contents)
42 count=0
43 if not results is None:
44 count+=1

115



45 for result in results:
46 name = result.group(1)
47 interface_dbo = common.AndroidInterface(name=

"%s.%s" % (package,name),filepath=filepath
)

48 num_sresults=0
49 if not result.group(2) is None:
50 sub_results = re.finditer(function_def,

result.group(2))
51 if not sub_results is None:
52 for sub_result in sub_results:
53 num_sresults+=1
54 interface_dbo.functions.append(common.

InterfaceFunction(name=re.sub(
whitespace,’ ’,sub_result.group(0)),
code=num_sresults))

55 # print " %s" % (sub_result.group(0))
56 num_scolon=result.group(2).count(’;’)
57 if num_sresults!=num_scolon:
58 print "Warning: %d functions found, but %

d semicolons in interface definition."
% (num_sresults,num_scolon)

59 print " in: %s interface %s" % (
abs_path,name)

60 # print result.group(2)
61 else:
62 print "Warning interface %s.%s empty!" % (

package, name)
63 print "%s.%s (%d)" % (package, name,

num_sresults)
64 # print "<<%s>>" % (abs_path)
65 # print result.group(2)
66 # raw_input("<<press enter to continue>>")
67 interfaces.append(interface_dbo)
68 results = re.finditer(parcel_name,contents)
69 if not results is None:
70 count+=1
71 for result in results:
72 name = result.group(1)
73 print "%s.%s (parcelable)" % (package, name)
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74 interfaces.append(common.AndroidInterface(
name="%s.%s" % (package,name),filepath=
filepath))

75 if count==0:
76 print "Warning didn’t find any interfaces in: "

+ abs_path
77 return interfaces
78
79 common.reset_database()
80 custom.addCustom(common)
81 for aidl_file in aidl_filenames:
82 try:
83 session = common.Session()
84 interfaces = parse_aidl_file(aidl_file.strip())
85 for interface in interfaces:
86 session.add(interface)
87 # print interface
88 session.commit()
89 except ValueError as ve:
90 print "%s: %s" % (aidl_file.strip(),ve.message)

Source Code B.3: “populate_database.py”
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