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ABSTRACT 

 

 Degradation of the natural environment has resulted from the destruction by 

bark-beetles at various geographic locations around Earth. Presently, widespread tree 

mortality is occurring in the San Juan Mountains of southwestern Colorado. Methods of 

remote sensing for classifying mountain pine beetle-induced tree mortality have been 

developed, which will be applied to study the destruction of forest caused by the 

Douglas-fir beetle (Dendroctonus pseudotsugae), and fir-engraver beetles (Scolytus 

ventralis) that has been occurring in the Ouray, Colorado, area over the last several 

years. Infestations of bark-beetles result in wide-spread tree mortality, and the loss of 

vegetation can result in increased rates of surface runoff and slope erosion. This presents 

the problem identified: Does a causal relationship exist between the destruction of trees 

by bark-beetles and increased rates of surface runoff and erosion on the slopes in the 

Ouray, Colorado area? 

The question posed was answered by accomplishing the following three 

objectives: 1. Determine if a link exists between rate of tree mortality and rate of 

erosion. 2. Model the rate of tree mortality and rate of erosion in the study area. 3. 

Provide a first approximation of surface runoff and sediment production rate. 

Potential soil erosion, calculated by the model, ranged from ~0 Mg/ha/yr 

projected erosion in areas of low slope to a projected erosion value of ~2,300 Mg/ha/yr 

in areas with extremely steep slopes and areas of high drainage output conducive to 
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flowing water. The movement of materials down slope poses a potential hazard for the 

town of Ouray, CO, which is situated at the bottom of the valley. 

Calculated changes in the normalized difference vegetation index (NDVI) from 

2005 to 2016 showed a maximum negative change -0.53 and the maximum increase of 

0.57 with a mean change of 0.08 and standard deviation of 0.09. A chi-squared test 

yielded a p-value of 0.00, allowing me to reject the null hypothesis and accept the 

alternative hypothesis, HA, that NDVI changed over the course of this time series. 

This study also provided a preliminary method for predicting surface runoff 

using an NDVI time series as a classification threshold input. Areas above 0.38 NDVI 

had a range of surface runoff values between -390,000,000 mm to -0.2 mm per tree 

within each pixel with a mean value between -146,916,924 mm and -5.2 mm and 

standard deviation of 12.6 mm – 83,674,617 mm. Runoff in areas below 0.38 NDVI had 

a range between 0.05 to 8.53 mm of runoff per tree with a mean of 2.15 mm and a 

standard deviation of 1.66 mm within each 900 m2 pixel. Because of limitations, I was 

unable to conclude whether or not the null hypothesis can be rejected in that bark-beetle-

induced tree mortality does not lead to an increase in surface runoff.  
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CHAPTER I 

INTRODUCTION 

 

 Climate warming coupled with recent severe droughts have resulted in vegetation 

mortality in various geographic locations around the world (Garrity et al., 2013). Tree 

mortality, in the broad sense, can be linked to regional carbon-dynamic changes, which 

in turn, can feedback into future changes in global climate (Kurz et al., 2008). From the 

late 20th century through the present, extensive bark-beetle outbreaks have caused 

accelerated tree mortality from Alaska to the southwestern United States (Hart and 

Veblen et al. 2014). Historically, insect-beetle-infestation outbreaks are most often aided 

by a positive influence on the beetle population, such as periods of warmer temperatures 

correlated with climate change, or by an event that decreases defenses of a tree, such as 

drought or pathogens (Hart et al., 2014; Fassnacht et al., 2013; Hyde et al., 2016). 

Increasing evidence of human actions through management has altered the interactions 

between insects and forests, resulting in more widespread insect outbreaks (Senf et al. 

2015).  

Within the Rocky Mountains of North America, estimates of forest mortality 

from insects and disease range from six to eleven million hectares (Hyde et al., 2015). In 

conifer forests of western North America, outbreaks of bark-beetles can induce relatively 

rapid tree mortality and associated color change in foliage from green to red, lagged 

shedding of foliage, bark, and branches, and eventual tree fall (Meigs et al., 2011). 

Forest mortality begins as scattered pockets and spreads as a nonlinear increase. Patterns 
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of tree mortality can vary within stands as a result of mixed species composition, tree 

density, and proximity of stands to one another (Hyde et al., 2015). 

 Across the Southern Rocky Mountains, mountain pine beetle (Dendroctonus 

ponderosae) and the spruce beetle (Dendroctonus rufipennis) are the two species 

responsible for bark-beetle-related damage. For example, the area affected by spruce 

beetles in Colorado expanded from 460 km2 in 2009 to 1,960 km2 in 2014 (Hart and 

Veblen, 2015). According to the Colorado State Forest Service (2015), an epidemic-

level outbreak of bark-beetles near Ouray, Colorado, has been underway since 2013 and 

has continued to impact the susceptible trees in the area. The Douglas-fir beetle 

(Dendroctonus pseudotsugae), a close relative of the spruce and mountain pine beetles, 

and the fir engraver beetle (Scolytus ventralis) are destroying the forests in the region. 

Fir engraver beetles are estimated to have killed 85 percent of the White Fir (Abies 

concolor) in the Uncompahgre River Gorge around Ouray and in the Cow Creek 

drainage to the east (CSFS, 2016a). White fir and Douglas-fir continue to be killed by fir 

engraver and Douglas-fir beetles in several areas of the state in 2016, especially in Ouray 

county (CSFS, 2017). 

 

Problem Statement 

 Wright discussed the beetle outbreak, and suggested it began several years ago 

with drought-stressed White Fir trees (Abies concolor), which has developed into an 

epidemic within the last three years (2016). Trees help prevent soil erosion by 

intercepting precipitation, slowing runoff, and holding soil in place. Studies have shown 
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that soil stability on steep forested slopes depends partly on the reinforcement from tree 

roots (O’Loughlin and Ziemer, 1982). It is also believed that rates of erosion are lower 

under forests than under other vegetation covers and root reinforcement is often cited as 

the most important forest influence maintaining soil stability (O’Loughlin and Ziemer, 

1982). Tree death can trigger nonlinear increases in rate of erosion as bare soil patches 

become connected through coalescing networks that promote water runoff (Allen, 2007). 

As trees die and soil is exposed to natural erosional processes, the rate of erosion and 

volume of sediment transport could increase. The bark-beetle outbreak has been 

monitored through aerial-detection surveys conducted by the U.S. Forest Service and 

Colorado State Forest Service. These outbreak data will be analyzed to answer the 

problem statement for this research: Does a causal relationship exist between the 

destruction of trees by bark-beetles and increased erosion and surface runoff rates on the 

slopes in the Ouray, Colorado area? 

 

Hypothesis and Objectives 

 The goal of this study is to determine if the destruction of trees by bark-beetles 

increase rates of erosion on slopes of the Ouray, Colorado, area. This assessment will be 

accomplished by fulfilling the following objectives: 

1. Determine if a link exists between rates of tree-mortality and rates of erosion.  

2. Model the rate of tree mortality and erosion in the area. 

3. Provide a first approximation of surface runoff and sediment production rate. 
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These objectives are formulated as the following multiple-working hypotheses: 

Hypothesis 1: 

H0: Bark-beetle-induced tree mortality has no effect on the rate of soil erosion. 

HA: Bark-beetle-induced tree mortality has an effect on the rate of soil erosion. 

Hypothesis 2: 

H0: Bark-beetle-induced tree mortality does not lead to an increase in surface 

runoff. 

HA Bark-beetle-induced tree mortality can lead to an increase in surface runoff. 

The methodology has been established to specifically fulfill each objective. The 

approach facilitates an explanation of how each method will be used to address each 

objective and ultimately answer the posed question. A summary flow chart of the 

approach is shown in Figure 1. 
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Figure 1: Flowchart illustrating order of operations to model erosion within study 
area. 
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Study Area 

 The study area, located within the Ouray USGS quadrangle in the town of Ouray, 

Colorado, which is located west of the continental divide within the San Juan Mountains 

(Figure 2). 

Ouray, a small town in southwestern Colorado, encompasses 2.1 km2 at an 

elevation of ~2,375 m. The town is located 64 km south of Montrose and 16 km 

northeast of Telluride. U.S. Route 550, also known as the Million Dollar Highway, 

provides access to the area. Several small towns are also located within the area. The 

Ouray Perimeter Trail, which encompasses the town provided access to field sites. 

 

Geology and Geomorphology 

 Ouray, Colorado, is situated in a glaciated U-Shaped valley at an elevation of 

~2,375 m. The area, underlain by expansive varieties of sedimentary, metamorphic, and 

igneous rocks that range in age from Proterozoic to Tertiary (Paleogene and Neogene), is 

capped by Quaternary glacial and surficial deposits, and Holocene deposits (Burbank 

and Luedke, 1981; Burbank and Luedke, 2008; Dickinson 1988). The valley is a 

picturesque setting with forested areas covering the lower slopes of the valley continuing 

up slope to the tree line.  

Geologic and geomorphic processes that have sculpted the area range from 

glacial erosional and depositional processes, fluvial incision, volcanism, to active mass 

movement processes. Geologic features of the area include unconformities, incised 

valleys, blowouts, landslide deposits, and floodplains. 
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Figure 2: Extent of study area. 
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The Ouray Perimeter trail, a 6.75 km hiking trail that encompasses Ouray, 

provides scenic views of the town and the surrounding peaks (Ouray Trail Group). 

Several field plots were established along the Ouray Perimeter Trail. The field plots are 

underlain by the Uncompahgre Formation, isolated masses of glacial drift, and talus 

deposits, respectively (Figure 3). 

 The Uncompahgre Formation is metasediments of Proterozoic age, named after 

the Uncompahgre River Gorge south of Ouray (1,720 Ma and 1,460 Ma) (Burbank and 

Luedke, 2008). The formation consists of interlayered units of quartzite and slate, each 

several hundred meters thick, with quartzite is the dominant rock type. The quartzites are 

thick-to thin- bedded, strongly jointed, and white to gray or locally red or black 

(Burbank and Luedke, 2008). Cross-bedding, graded-bedding, and ripple marks are 

common. Lower contacts of the quartzites with slates are generally even and sharp 

whereas upper contacts with slates are commonly gradational over several meters 

(Moore, 2004). The slate zones are dark green, brown, and grey to black, consisting of 

laminated thin to thick beds that grade either into argillite or phyllite in selected places 

(Burbank and Luedke, 2008). The upper contact is a profound angular unconformity 

marking a long period of erosion (Burbank and Luedke, 2008). 
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Figure 3: Field plots shown with geologic units
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 Pleistocene glacial drift of Wisconsin age, which is located within the 

Amphitheater, also underlies some of the field sites. The amphitheater is characterized 

by till, which is composed of unconsolidated to semi-consolidated, unsorted material 

ranging in size from clay to boulders and various mass movement deposits (Burbank and 

Luedke, 2008). The Amphitheater, which resembles a glacial cirque is interpreted to be 

the result of the convergence of two major glaciers where the town is now located. The 

mass of debris within the bowl is the result of the subsequent retreat of the glaciers, 

which was later subjected to slumping and sliding as well as other types of mass 

movements (Burbank and Luedke, 2008). 

 Debris flows, avalanche deposits, and talus are the most recent features, 

deposited in the Holocene time. This area is composed of angular rock fragments 

varying in size that are situated at or near the base of cliffs (Burbank and Luedke, 2008). 

At most locations, the talus grades into unsorted and unconsolidated colluvial deposits 

on flatter surfaces with increasing amounts of sand and silt (Burbank and Luedke, 2008). 

 

 Soils 

 The rich geologic history within the area is responsible for the development of 

complex soils within the area. The nine defined field plots along the Perimeter Trail are 

situated on various types of soils, which reflect the parent material, composition, slope, 

drainage, runoff, water table, and depth to the bedrock restrictive feature. Four soil 

associations are present in the area: Cryothents, Scout Family, Cryoboralfs, and 

riverwash (Figure 4). 
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 The Cryorthents-rock outcrop complex is an extremely stony soil composed of 

slope alluvium derived from tuff or colluvium derived from tuff (NRCS, 2017). This soil 

has slopes ranging between 50 to 120 degrees, with a depth ranging from 25.4 cm to 99 

cm to bedrock (NRCS, 2017). This complex is naturally well-drained with very high 

rates of runoff and depth to the water table greater than 203.2 cm (NRCS, 2017). 

 The second soil, the Scout family, is an extremely stony soil composed of slope 

alluvium derived from andesite, alluvium derived from andesite, or colluvium derived 

from andesite over till derived from andesite (NRCS, 2017). This soil has slopes ranging 

from 10 to 60 degrees, with more than 203.2 cm to bedrock (NRCS, 2017). This 

complex is naturally well-drained with high rates of runoff,  and depth to the water table 

at more than 203.2 cm (NRCS, 2017). 

 The third soil, the Cryoboralfs-rock outcrop complex, is an extremely stony soil 

located along mountain slopes with convex profiles, typically composed of unweathered 

bedrock mixed with colluvium derived from mixed slope alluvium that is derived from 

andesite (NRCS, 2017). This soil has slopes ranging between 45 to 75 degrees, with a 

range between 0 and 203.2 cm to bedrock (NRCS, 2017). This complex is naturally 

well-drained with medium to very high rates of runoff, and depth to the water table at 

more than 203.2 cm (NRCS, 2017). 

 The final type of soil is riverwash and is found at the lowest elevations within the 

town of Ouray. This type of soil is found along valley floors, at slopes ranging from 0 to 

4 degrees (NRCS, 2017). This complex is very poorly-drained, with runoff being 
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negligible (NRCS, 2017). Riverwash is frequently prone to flooding and has a depth to 

the water table between from 0 to 61 cm (NCRS, 2017). 

 

Climate and Vegetation 

The climate in the study area is a humid continental climate and is subject to a 

wide variation in temperature as the result of the topography within the region. The 

Ouray area experiences four distinct seasons, with short summers extending from mid-

May to late June and long, but rarely severe winters (Burbank and Luedke, 2008). Based 

on climatological data from 1948-2006, annual average temperatures range from -9.4 °C 

to 28.8°C for the Ouray station (WRCC, 2006). Total mean annual precipitation and 

snowfall is 582.2 mm and 3,479.8 mm, respectively (Western Regional Climate Center, 

2006). 

 The types of vegetation growth vary by location and elevation in the area and 

consists of scrub oak (Quercus ilicifolia), pinon (Pinus edulis), and juniper (Juniperus) 

on the lower slopes, whereas cottonwood (Populus fremontii) and willow (Salix) grow 

along the waterways, and aspen (Populus), pine (Pinus), fir (Abies), and spruce (Picea) 

grow on the higher mountain slopes (Burbank, W.S., and Luedke, R.G., 2008)
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Figure 4: Field plots shown with soil classification units
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CHAPTER II 

MODEL OF SOIL EROSION 

 

Introduction 

 Soil erosion is a major problem throughout the world that can develop into 

potential hazards through land degradation in mountainous environments (Das, 2016). 

Soil erosion is a complex natural process that depends mainly on rainfall erosivity, soil-

erodibility, Land-cover, human activity, and topography (Das, 2016). Soil erosion 

reduces soil depth and the capacity of soils to hold water as a result of sealing and 

depletes plant nutrients in the soil (Das, 2016). If soil erosion is occurring at increased 

rates, it can have a negative impact on economic and social aspects of the environment 

(Gunawan et al., 2013). High rates of soil erosion can greatly impact the environment by 

reducing the storage capacity of a lake or reservoir, lower water quality, and remove 

nutrients needed by plants (Gunawan, 2013). Scientific planning for soil conservation 

and water management requires knowledge of the relations among the factors that cause 

loss of soil and water to help reduce such losses (Renard et al. 1997). 

 Soil erosion occurs in three phases: detachment of soil particles, transport by 

erosive agents such as wind and water, and deposition when sufficient erosive energy is 

no longer available (Gossa, 2011). Potential for soil erosion varies between watershed 

topography, soil characteristics, climate, land use and management practices (Gossa, 

2011). Soil erosion driven by water occurs by splash erosion, sheet erosion, rill erosion, 

gully erosion, stream bank and river erosion, and/or mass movement. 
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 Splash erosion occurs as a result of the impact of precipitation droplets on a soil 

surface and is the most important detaching agent (Morgan, 2009). The impact of 

raindrops on bare soil can cause soil particles to be thrown through the air over distances 

of several centimeters (Morgan, 2009). The continued exposure of soil to intense 

rainstorms can weaken the integrity of the soil considerably, breaking up the soil by 

mechanical and chemical weathering (Morgan, 2009). 

As water continues to flow down slope, soil movement by sheet erosion can 

occur. This is the process of the removal of a uniform thin layer of soil by overland flow 

over sloping land. This type of erosion only removes a small amount of soil as water 

flows down slope, but its impact increases in size and severity to what is known as rill 

erosion (Morgan, 2009; Gossa, 2011). 

 Rill erosion is a coalescence of overland flow in an area with low rates of 

infiltration coupled with rainfall, which allows excess water to organize into a more 

channelized rill pattern. As water continues to move through this area with constant 

velocity and kinetic energy, the carrying capacity of the water increases facilitating the 

entrainment of soil particles, this transport results in rills further transitioning into a 

gully, a further concentrated and deeper form of rill erosion (Morgan, 2009; Gossa, 

2011). 

 Stream bank erosion occurs because water flowing on the sides of the stream 

from overland flow into the main channel scours the banks of rivers or streams. 

Movement of water within river systems can also cause river erosion as rivers move 

sediment within the catchment area downstream (Morgan, 2009; Gossa, 2011). Each of 
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these types of erosion are represented in Figure 5. Continued exposure to heavy rainfall 

can also lead to episodes of mass movement, such as creep, slides, falls, and avalanches 

(Morgan, 2009). 

 

 

Figure 5: Types of soil erosion. Reprinted from Broz et al., 2003. 
 

To calculate and model soil erosion, ArcGIS® and the Revised Universal Soil 

Loss Equation (RUSLE) equation will be utilized. This equation more accurately 

represents long-term averages of soil erosion compared to its predecessor, the Universal 

Soil Loss Equation (USLE) and is expressed as: 

 

    ! = #	×	&	×	'(	×	)	×	*     (1) 

where,  
A = Average annual soil loss in Mg/ha/yr,  
R = Rainfall-runoff erosivity in MJ*mm/hectare*hour,  
K = Soil-erodibility factor,  
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LS = Slope length and steepness factor,  
C = Land-cover management factor, and  
P = Conservation practice factor (Renard et al., 1997). 
 

Methods of Study 

 Data analysis was conducted using a guide from Kim, 2014 and a previous study 

from Gossa, 2011 as a model. ArcGIS® 10.3 was employed in conjunction with 

Microsoft Excel 2016® and information was downloaded from the USDA Natural 

Resources Conservation Service (NRCS) Data Gateway. Figure 6 depicts the overall 

workflow for determining each factor of the RUSLE equation to create an applicable soil 

model for the study area. 

 

Figure 6: Methodology for generating RUSLE factors. 
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R-Factor 

R-factor is the rainfall erosivity parameter, which is highly affected by storm 

intensity, duration, and potential (Kim, 2014). This study will utilize Cooper’s equation, 

which determines the relationship between rainfall erosivity and mean annual 

precipitation. This equation differs from other equations because the main type of 

precipitation in the area is snow, which causes high precipitation (P) values and low 

rainfall erosivity (R) values (Cooper, 2011). Cooper’s equation for the western United 

States is: 

    # = 9.17*/.0/, r2 = 0.0176                                           (2) 

where,  
 
R = Rainfall-runoff erosivity (hundred-foot-ton*inches/acre*hour), and  
P = Mean annual precipitation (inches) (Cooper, 2011). 
 

This r2 value is extremely low, and suggests that no identifiable relationship 

exists between R and P (Cooper, 2011).  

Precipitation information was downloaded as a shapefile containing average 

rainfall from 1981 – 2010 from the NRCS Data Gateway. The R-factor was then 

calculated by adding a new empty field of double value and using the Field Calculator 

tool to compute the data. Next, equation 2 was inputted into the Field Calculator along 

with a unit conversion factor of 0.05876 to convert English units to the metric system. 

The Feature to Raster tool was used isolating the calculated R-values into a raster format 

for continued use later in the equation. 
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K-Factor 

The K-factor is the soil-erodibility parameter that is based on soil texture, 

structure, organic matter, and permeability (Kim, 2014). This data was downloaded as 

GIS shapefiles from the NRCS as part of the soil survey and through the ESRI online 

database showing Griddled Soil Survey Geographic Database (gSSURGO) survey data. 

These surveys included K-factors for each type of soil. Because of limitations and 

unreleased erodibility data in the area, however, certain areas of soils had to be 

interpolated using information regarding slope, soil composition, and surrounding soil-

erodibility factors. The USDA will address this in at a later date when the entire soil area 

is fully available after being approved by USDA correlators and final review. These K-

factors were then converted into raster data using the feature to raster function within 

GIS (Kim, 2014).  

 

L & S-Factors 

The L and S factors represent the effects of slope length (L) and slope steepness 

(S) on the erosion of a slope. This value was calculated using the Unit Stream Power 

Erosion and Deposition (USPED) method, which differs from RUSLE in that it 

incorporates a spatial component (Kim, 2014). A Digital Elevation Model (DEM) was 

downloaded from the National Elevation Dataset. This model with a 10m resolution is 

the basis for this factor (USGS, 2009).  

The LS factor in the Revised Universal Soil Loss Equation is: 

   '( =
1234

00.5
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where, 
 
Area = area of upland flow (orientation of maximum downhill slope),  
22.1 is the unit plot length;  
m = slope angle variable, 0.5 for slope angles greater than 2.86° (Hickey, 2000),  
t = slope in degrees,  
0.09 is the slope gradient constant, and  
n = flow type-dependent variable, 1.0 for areas with high spatial variability (Oliveira, et 
al., 2013). 
 

The L and S factors were determined in ArcGIS® following Kim (2014): 

1. Calculate flow direction from the clipped watershed DEM using the Flow 

Direction Tool. 

2. Calculate flow accumulation with the Flow Accumulation Tool using the 

flow direction output data as the input raster. 

3. Calculate slope of the watershed in degrees using the Slope Tool with the 

input being the clipped watershed DEM as the input layer. 

4. Using the Raster Calculator using the LS-factor formula, given in Kim (2014) 

as: 

*BCDE(“GHBC	IJJK?KHILMBN” ∗ [EIQLDE	JDHH	EDQBHKLMBN]/22.1,0.5) ∗

*BCDE((MN(“QHBXD	BG	YDZEDD” ∗ 0.01745))/0.09, 1.0) ∗ 1.5  

 

C-Factor 

The C-factor of RUSLE is the land-cover management factor. This is a ratio 

comparing the soil loss from a specific type of vegetation cover and is used to determine 

the effectiveness a vegetation management system has on preventing soil loss (Kim, 

2014). Land-cover data were downloaded from the USDA Geospatial Data Gateway 
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(GDG) as a shapefile, which was modified by adding standardized C-values for each 

Land-cover, as seen in Table 1 (Kim, 2014). Using the C-values within the shapefile, a 

conversion to raster was performed using the feature to raster function of ArcGIS® 

(Kim, 2014). 

 

P-Factor 

 The P-factor represents the ratio of support practices that prevent soil loss. This 

factor is generally applied to disturbed lands and represents how surface practices such 

as contouring, terracing, and strip cropping are used to reduce erosion (Gossa, 2011). For 

areas where no support practice exists, the factor is set to 1.0 (Simms, A.D., 2003). At 

the time of writing, no support practice was found within the study area, so the default 

value of 1.0 was used. 

 

Results  

 Once each of the five independent factors were calculated from the data 

downloaded, a simple raster calculator function within ArcGIS® was used, which 

provided a 10m x 10m raster of modeled output, representative of the RUSLE equation.  

 

Average Annual Soil Loss 

The resultant model, calculated from equation 1, showed most potential average 

annual soil loss occurring in the areas of steep slopes with ~2,300 Mg/ha/yr in potential 

soil erosion, which is equivalent to ~2,300 tons/ha/year, as seen in Figure 7. 
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Table 1: C-values for each land-cover classification (Kim, 2014). 

Value C C-description 

11 0 Open Water 

21 0.003 Developed, Open Space 

22 0.013 Developed, Low Intensity 

23 0.2 Developed. Medium Intensity 

24 0.45 Developed, High Intensity 

31 1 Barren Land 

41 0.003 Deciduous Forest 

42 0.003 Evergreen Forest 

43 0.003 Mixed Forest 

52 0.009 Shrub/Scrub 

71 0.013 Grassland/Herbaceous 

81 0.003 Pasture/Hay 

82 0.003 Cultivated Crops 

90 0.001 Woody Wetlands 

95 0.003 Emergent Herbaceous Wetlands 
 

The least amount of potential soil loss occurs in areas of low slope, such as the 

bottom of the U-shaped valley where the previous reach of the Uncompahgre glacier 

occurred and has an average value of ~0 Mg/ha/year. This model had a mean of 7.72 

Mg/ha/yr and a standard deviation of 29.42. 
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Rainfall and Runoff Erosivity (R) Factor 

 Rainfall and runoff, calculated using precipitation data obtained from the NRCS, 

were used within ArcGIS® (equation 2) as the Raster Calculator function input. This 

resulted in the average rainfall and runoff factor, which ranged in values from 16.16 - 

19.63 hundred-foot-ton*inches/acre*hour. Using a metric unit conversion factor of 

0.05876, given by Cooper, these values range from 0.95 – 1.15 MJ*mm/hectare*hour, 

with a mean of 1.04 and standard deviation of 0.04 (2011). 

 

Soil-erodibility (K) Factor 

 Soil-erodibility was obtained through a number of resources including the NRCS 

soils report data online, gSSURGO data, as well as independent interpolation of any 

missing factors not yet released by the USDA NRCS. Input values for this parameter 

varied immensely with values from 0.01 to 1.0. 

 

Slope Length and Steepness (LS) Factor 

 Slope length and angle were calculated using a series of methods within 

ArcGIS®. The LS factor was calculated using the modified version of equation 3 used in 

the Raster Calculator function in ArcGIS®, as given by Kim, 2014. The factor was 

calculated with a range between 0m - 6,654.91m with a mean of 55.95 m and standard 

deviation of 124.89. 
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Figure 7: RUSLE model output showing average annual soil loss within the Ouray 
Quadrangle. 
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Land-cover and Support Practice (C & P) Factors 

 A Land-cover classification shapefile was downloaded from the USDA GDG 

online and was modified to include C-factors found within Kim by using the “add field” 

option within the attribute table (2014). This was done by adding a field and manually 

inputting the C-factors directly. Once this was completed, a feature to raster function 

was utilized in ArcGIS®, producing a raster output of solely C-factors. Each land-cover 

classification, represented in Table 1, are present in the study area. Literature 

establishing support practice factor (P-factor) were unavailable, so a default value of 1.0 

was the input for the study area, which was recommended by Simms et al. (2003).  

 

Discussion 

Limitations and Improvements 

 The high value of ~2,300 Mg/ha/yr in potential erosion is a large calculation for 

the study area. This may have been caused by individual model factors or a combination 

of several input factors. Possibilities of questioning regarding the model can range from 

the DEM used to calculate slope length and angle for the L and S factors to 

discrepancies regarding K- and P-factors.  

Weakness in the K-factor stem from the lack of complete and published 

information on erodibility factors within soil surveys, leading me to interpolate and 

assign values from the survey, which may or may not be representative of the study area 

as precisely as the completed survey. This weakness in soil-erodibility K-factors will be 
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addressed once the soil survey is completed and published for the area, which is 

expected at the end of 2017. 

An unexpected lack of published data as well as conflicting values regarding m 

and n values within the LS-factor calculation can limit the application of this model. 

Further investigative studies regarding these values areas such as these is needed in the 

future, with a definitive answer to negate any doubts in this output calculation. 

P-factor weakness stems from a lack of published research on support practices 

for the area, which would require further investigation and continued research. This area 

is a natural mountainous ecosystem, however, because much of the environment remains 

untouched by human planning interactions, which could be why no literature exists on 

the subject in the area. 

The RUSLE model was developed to simulate soil loss at the plot level and 

represents maximum potential soil loss that can occur, which does not equate to 

sediment delivery (Simms et al., 2003). This means that this model highlights the areas 

of greatest susceptibility to soil loss, but actual values within the area will vary and not 

necessarily agree with the model. An improvement upon this model would be to couple 

this information with long term field soil accumulation measurements to gain a greater 

understanding of the overall susceptibility of soil erosion in this area. 

 

Conclusions 

 This paper has shown that the RUSLE model can effectively represent the 

estimation of maximum possible soil loss because of erosion within the Ouray 
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quadrangle. R-factor was calculated to be between 0.95 – 1.15 MJ*mm/hectare*hour, 

and LS-Factor ranging from 0 m - 6,654.91 m. Other factors within this calculation 

varied spatially, with K- and C- factors between 0.01 – 1.0 and 0.00 – 1.0, respectively, 

depending on soil and land survey datasets. 

Potential soil erosion range from ~0 Mg/ha/yr projected erosion in areas of low 

slope to a projected erosion value of ~2,300 Mg/ha/yr in areas with extremely steep 

slopes and areas of high drainage output conducive to flowing water. The movement of 

materials down slope poses a potential hazard for the town of Ouray, CO, which is 

situated at the bottom of the valley. 

Caution is needed when interpreting these results because of the assumptions 

made to create certain parts of the model, including interpolation of soil-erodibility, K, 

factors. Other factors that could have affected the modeled outcome include the lack of 

published support practice factors for the area as well as any systemic errors within the 

DEM that could have attributed to errors in calculating both L and S factors, including 

the resampling of pixels for this calculation. With these limitations in mind and the 

parameter values being reassessed, this model can be used to predict the future soil 

erosion within the area, which is pertinent when addressing the current beetle outbreak 

and subsequent erosion caused by runoff from lack of tree interception. 

The results of this study have provided a first approximation and a better 

understanding of the quantitative changes in erosion for the Ouray quadrangle using the 

RUSLE equation as a model. This model offers the option to quickly identify areas of 

high or rates of low erosion as opposed to only utilizing rates of sediment accumulation 
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and allows for the greater chance of determining the sources of erosion (Simms et al., 

2003). This will assist in planning for any future hazards and land management within 

the town of Ouray and surrounding San Juan Mountains. 
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CHAPTER III 

CHANGES IN VEGETATION AND RUNOFF CALCULATION WITHIN THE 

OURAY, COLORADO QUADRANGLE USING A TIME SERIES 

 

Introduction 

Drought 

Droughts brought on by warmer temperatures have shown to be one of the most 

important global climate changes in the world. Tree mortality always accompanies 

warmer temperatures triggered by increasingly severe drought (Zhang et al., 2017). 

Warming and drought, sometimes co-occurring with insect outbreaks, have been linked 

to tree mortality in many regions and future changes in climate are expected to drive 

more extensive, severe, or frequent events of tree mortality (Anderegg et al., 2015). 

Droughts have recently occurred in North America, Africa, Europe, Amazonia, and 

Australia, with major effects on carbon sequestration, biological conservation and 

diversity, ecosystem function and services, climate change feedbacks, and water 

regulation (Anderegg et al., 2015; Zhang et al., 2017).  

Insect outbreaks are often driven by drought, which stresses host trees, but also 

depend on many other factors including characterizations of tree stands, such as 

abundance, density, size, physiography, and spatial patterns across landscapes, as well as 

temperature and climate (Anderegg et al., 2015). This complex interaction of drought 

and insects may lead to increased insect populations in a forest (Anderegg et al., 2015). 
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Douglas-fir Beetle 

 The Douglas-fir beetle (Dendroctonus pseudotsugae) is the most destructive 

bark-beetle of mature Douglas-fir (Pseudotsuga menziesii) forests in western North 

America. It is a native insect found throughout the range of its only host tree, Douglas-

fir, which has a range from southern Canada to northern Mexico (CSFS 2016b). These 

beetles have a 1-year life cycle and usually emerge mid to late spring, when the 

temperature is 60º F with a smaller portion emerging later in midsummer (Allen et al., 

2010). Adults that attack early in the spring have the ability to reemerge for a second 

attack from late June to August (Allen et al., 2010). Outbreaks are usually associated 

with mature stands of Douglas-fir forests coupled with extended periods of below-

normal precipitation (CSFS, 2016b). Female beetles construct egg galleries in the 

phloem layer of the tree in a distinctive vertical fashion with eggs laid in groups on 

alternating sides of the gallery. These eggs hatch within 1-3 weeks with new larvae 

mining out at right angles from the gallery (Allen et al., 2010). Once these larvae are 

more mature, they construct a pupal chamber at the end of the mines where they mature 

until emerging as adults (Allen et al., 2010). An outbreak of Douglas-fir beetles is 

identified by small groups of dead or dying Douglas-fir trees. Infected trees have fading 

needles that have changed from green to red-brown in color before starting to drop off, 

which occurs roughly one year after the tree has been attacked (CSFS, 2016b). Other 

signs include reddish-brown boring dust around the base of trees, with cracks and 

crevices in the bark, streaming resin along the main trunk that is white or clear in color, 

vertical oriented galleries underneath the bark with associated larval galleries, 
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woodpecker damage with bark accumulations at the base of the tree, and exit holes 

where adult beetles emerge from infested trees (CSFS, 2016b). Healthy Douglas-fir trees 

have a natural resistance to bark-beetle outbreaks; however, stresses such as wildfire, 

drought, and defoliation of the tops of the trees leave these trees susceptible to attack 

(CSFS, 2016b) (Figure 8). 

 

Figure 8: Tree killed by Douglas-fir beetle taken 27 July, 2016. 
 

Fir Engraver Beetle 

Fir engraver beetles (Scolytus ventralis) are bark-beetles specialized to attack and 

kill true fir tree species (Abies spp.) and are considered the most significant bark-beetle 

pest of true fir forests in western North America (CSFS, 2016b). This beetle is found 



 

 32 

from southern British Columbia, Canada south to Baja California Norte, Mexico and as 

far east as Montana, New Mexico, and Colorado (CSFS, 2016b). Epidemics of these 

beetles are associated with periods of drought (Allen et al., 2010). This species has a 1-

year life cycle, with one new generation per year, except in the cooler areas of its range, 

where development takes two years (Allen et al., 2010). Fir engravers spend their lives 

within the bark and wood of host trees by feeding and developing on the inner layer of 

the vascular tissues of the tree (phloem) (CSFS, 2016b). An outbreak is easily spotted by 

the occurrence of dead or dying trees. White fir foliage usually fades from a typical blue-

green color to a light orange (CSFS, 2016b). Trees infected with root disease or 

defoliated by Douglas-fir tussock moth or western spruce budworm are especially 

subject to attack (Allen et al., 2010). Infestation severity ranges from top-kill, branch 

dieback or the death of the entire tree (Figure 9). 

 

Figure 9: White fir (Abies concolor) trees killed by fir engraver beetle. Reprinted 
from CSFS, 2017. 
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Beetle Mitigation 

 In an effort to prevent further expansion of the bark-beetle epidemic and reduce 

tree loss in the area, several management practices have been implemented by the 

Colorado State Forest Service (CSFS). These include thinning dense stands of trees to 

curb competition between trees, removing trees no later than May the year following a 

bark-beetle attack, using trap trees, removing wind-thrown trees, trees infected by other 

insects or diseases, and excess older trees, which are usually attacked first (CSFS, 

2016b). Each of these practices is modified for host and pathogen. 

 A common cost-effective deterrent, specifically for Douglas-fir beetle 

management, is the use of pheromones. Pheromones are chemicals used in 

communication between beetles that regulate behavior of the attacking Douglas-fir 

beetles (CSFS, 2016b). Trees can be protected using a synthetically produced anti-

aggression pheromone methylcyclohexanone (MCH), which disrupts the aggressive 

behavior of the beetle towards the tree (Allen et al., 2010; CSFS, 2016b). Utilizing MCH 

on infested trees has proven to be successful at reducing mortality, but has also failed in 

intense or long-lived outbreaks (Allen et al., 2010). In the case of the fir engraver beetle, 

no evidence exists of aggregation pheromones (Bell-Randall, 2006). The fir engraver 

attack dynamic is best explained by its sensitive primary attraction to its host (Bell-

Randall, 2006) (Figure 10). 
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Figure 10: An MCH pheromone packet nailed to an uninfected Douglas-fir tree to 
deter beetle attack. Reprinted from CSFS, 2016b. 
 

 Sprays have also shown promise in deterring attacks, but have little effect on 

trees that have already fallen victim to bark-beetle attacks (CSFS, 2016a). Common 

sprays used in preventing beetle attacks include permethrin and carbaryl. Permethrin 

attack the neurological systems of insects, which paralyze them upon ingestion. Risk 

factors associated with Permethrin are low in terrestrial environmental impacts because 

it breaks down quickly when exposed to ultraviolet (UV) light, but is highly toxic to 

bees and extremely toxic to aquatic life (CSFS, 2016b). Carbaryl is a neurotoxin that 

kills insects on contact or by ingestion and persists in the environment longer than 

permethrin because of its higher resistance to UV light (CSFS, 2016b). This chemical 

carries the same risks towards bees and aquatic life, so careful and sparse utilization 
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must be considered when near water sources, blooming plants, and forecasted 

precipitation within 24 hours (CSFS 2016b).  

 Other various mechanical treatments include chipping wood of fallen trees and 

subsequently burning the slash piles, submerging cut logs in water for at least six weeks, 

burying logs in at least 20 cm of soil, as well as debarking the trees. These treatments are 

highly labor-intensive, expensive, and extremely hazardous to proceed with on the steep, 

remote terrain of the Colorado forest (CSFS, 2016b; Ferrell, 1996). 

 

Beetle Impacts 

The Douglas-fir and fir engraver beetles are native insects to North America and 

play vital parts within the ecosystem dynamics, but large outbreaks of both beetles can 

have intense adverse effects on the forest, which has been observed in recent times 

(CSFS, 2016b; CSFS, 2016b). These adverse effects include interfering with life-

processes of trees, changes in nitrogen and carbon cycling in the area, changes in 

wildfire dynamics, and changes to hydrologic processes (CSFS, 2017; CSFS, 2016b; 

CSFS, 2016c; Hyde et al., 2015). 

 Bark-beetles disrupt two basic life-sustaining processes of the trees they infest. 

These two disruptions include consuming phloem tissue to build egg galleries and 

consuming phloem tissue as food for larvae until maturity (Hubbard et al., 2003). These 

two beetle interactions contribute to the disruption of photosynthate transport from the 

canopy to other tissues within the tree and introduce fungal spores, which germinate and 
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spread, preventing water conducting xylem to move water from the soil to the canopy 

(Hubbard et al., 2003).  

 According to Edburg et al., some model simulations showed strong increases in 

available nitrogen (N) locally because of beetle-caused tree mortality, but is unclear how 

the surplus moved through the larger ecosystem (2011). N concentration initially 

increases in the early stages of beetle infestation through detritus from falling leaves, 

however concentrations in N showed no change in the watersheds of Colorado impacted 

by bark-beetles (Griffin, J.M., et al., 2011; Rhoades et al., 2013). Findings in research 

show that vegetation within the watershed was utilizing this excess N available from 

increased litter inputs and decreased uptake by the dominant forest canopy rather than 

being transported out of the system downstream (Rhoades et al., 2013). 

 Beetle impacts on the carbon (C) cycle in conifer systems have the potential to 

alter the forest carbon balance, including the rate of C exchange between ecosystem and 

atmosphere (Hyde et al., 2015). During outbreaks, resulting widespread tree mortality 

reduces forest carbon uptake and increases future emissions from the decay of killed 

trees (Kurz et al., 2008). Contrary to this, Brown et al. reported stands with high levels 

or mortality became net carbon sinks within 5 years (2012). It has also been found that 

carbon uptake did not change as tree basal area mortality increased from 30% to 78% 

over three years of beetle disturbance (Reed et al., 2014). This may suggest that new and 

remaining vegetation plays a crucial role in the carbon cycle (Hyde et al., 2015; Reed et 

al., 2014). Because of these contrary studies, it could be suggested that beetle-caused 



 

 37 

impacts to the carbon cycle are dependent upon the specific ecosystem affected (Hyde et 

al., 2015). 

 Large numbers of bark-beetle-killed trees increase the volume of fuel and the 

potential intensity and characteristics of wildfires (CSFS 2016b; CSFS 2016b; Hicke et 

al., 2012). The possibility of more extreme crown fires in beetle-killed stands will 

impact firefighting operations and could affect public safety (Hicke et al., 2012). 

Wildfires cause rapid and commonly spatially continuous change to the forest structure 

and in severe cases can consume all biomass and destroy soil structure (Hyde et al., 

2015). Evidence is mixed, however, on the relationship between beetle-related mortality 

and wildfire risk (Hicke et al., 2012). The town of Ouray has implemented fuels 

mitigation because a wildfire could consume stabilizing vegetation and cause landslides 

and rock slides within its canyon walls, thereby endangering people and infrastructure of 

the town (CSFS, 2017). 

 Tree mortality results in loss of canopy cover, which directly alters evaporation, 

transpiration, and canopy interception and indirectly alters other watershed hydrologic 

processes, including infiltration, runoff, groundwater recharge, and streamflow (Adams 

et al., 2012). These large expanses of dead trees cannot intercept or absorb precipitation, 

protect the soil from erosion, and reduce soil stability, which may affect the timing of 

water yields and water quality (CSFS, 2016b; CSFS, 2016c). Water yields can be 

expected to increase following substantial loss of tree cover by die-off (Adams et al., 

2012). Eroded sediment produced by the increased water yield may impair water quality 

and threaten aquatic habitat and human uses (Hyde et al., 2015). 
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Remote Sensing 

 Remote sensing images from satellite and aerial platforms have been valuable 

tools to assess extent and patterns of insect caused tree mortality (Hart and Veblen, 

2015; Meddens and Hicke, 2014). With the aid of remote sensing, trees affected by bark-

beetle outbreaks can be identified by the color presented when analyzing imagery. Trees 

that have only been infested are still green, but foliar moisture content declines in 

affected trees.  This loss of moisture content leads to a decreased reflection in near 

infrared radiation (NIR) and increased reflection in shortwave infrared wavelengths 

(SWIR) (Hart and Veblen, 2015). As the outbreak progresses, the affected foliation of 

the tree turns a reddish-brown coloring, which indicates the beetles have already left the 

host. Remote sensing has been successfully employed to assess mortality in the red stage 

(Franklin et al., 2003; Coops et al., 2006; White et al., 2007), and more recently the grey 

stage (Meddens et al., 2011). 

 Previous remote studies have utilized a variety of approaches to map insect 

disturbances, including Moderate Resolution Imaging Spectroadiometer (MODIS), time-

series data, aerial sketch mapping and photography, Hyperion, Quickbird, GeoEye-1, 

ASTER, SPOT, Ikonos, Rapid Eye, HyMAP, and Landsat (Lausch et al. 2013; Meigs et 

al. 2011). Medium- and coarse-resolution imagery, such as Landsat and MODIS, detect 

tree mortality at the stand/landscape scale and have wider spatial coverage (Meddens 

and Hicke, 2014). Landsat data can also be utilized for prediction of continuous tree 

mortality within a pixel as opposed to a categorical classification, which provides a more 

sensitive characterization of outbreak dynamics (Meigs et al., 2011). 
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 Bark-beetle infestations have been occurring for long periods of time; however, 

many studies show the outbreak stages as relatively abrupt or slower processes 

(Kennedy et al. 2010; Meigs et al. 2011). Therefore, a multi-temporal change must be 

considered to establish the rate and severity of a bark-beetle outbreak. To provide a 

reliable analysis of bark-beetle-related effects in forests, this project will integrate a 

Landsat image time series (LITS) using the normalized difference vegetation index 

(NDVI). Previous work by Hart and Veblen identified NDVI as a useful vegetation 

index for distinguish between gray-stage spruce beetle outbreak and non-forest in 

mountain pine beetle infested areas (2015). This will be applied to study the two beetles 

in this study area, which are close relatives of previously studied beetles. 

 

Methods of Study 

Field Work 

 Before visiting the study area, extensive research was conducted on the area, 

including the extent of bark-beetle outbreaks within the actual town of Ouray (Figure 

11). The infestation was found to span much of the town. Because of the topographic 

relief within the town, the Ouray Perimeter Trail was chosen as a medium to explore the 

affected area. 

The town of Ouray, Colorado was visited for field work in July, 2016. The extent 

of the bark-beetle epidemic was easily seen throughout the drive through the town. Upon 

starting field methods, the Ouray Perimeter Trail was chosen because it provided access 

to study sites. The first day in Ouray consisted of traversing the entirety of the trail, a 
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total of 6.75 km, marking periods of extensive bark-beetle infestation on a Global 

Positioning System (GPS) unit for later assessment. During the assessment, an anchor 

point tree was chosen along the trail and 100m x 100m plots were measured from the 

anchor tree. At the corner of each plot, penetrometer measurements, Munsell soil colors, 

and types of soil were recorded. Within each plot, the amount of affected versus 

unaffected trees were tallied to assess the spread of the beetle within each plot. This 

process was repeated throughout the perimeter trail for a total of nine plots over the 

course of the six-day visit. 

 

Landsat Acquisition 

 Following field work, remote sensing was utilized to quantitatively assess the 

spread of the bark-beetles over the last ten years. Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) corrected Landsat 5 Thematic Mapper (TM) 

and Landsat 8 Operational Land Imager (OLI) imagery data from 2005 to 2016 was 

downloaded from the USGS EarthExplorer website (accessed 21 February, 2017). These 

scenes were chosen along the Landsat World Reference System II that contain the study 

area (Path 35/Row 34). The chosen images were acquired close to the middle of growing 

season from early July through late August with minimal cloud cover, as described by 

Meddens et al. (2013). The downloaded imagery was then clipped to the study extent of 

the Ouray USGS quadrangle, which would further expedite the process when repeated 

through the time series.
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Figure 11: Extent of beetle infestation within Ouray, CO. Modified from Wright, 
2016.
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NDVI 

NDVI is a useful vegetation index for distinguishing between gray-stage spruce 

beetle outbreak and non-forest in mountain pine beetle infested areas (Hart and Veblen, 

2015). NDVI is a spectral index obtained from remotely sensed images in the red and 

near infrared portions of the spectrum (Marchetti et al., 2016). Generally, healthy 

vegetation will absorb most of the visible light and reflect more near-infrared light. The 

opposite applies of unhealthy or dying vegetation, whereas bare soils reflect in the 

moderate range between the two bands (Holme et al., 1987). NDVI is calculated on a 

per-pixel basis as the difference between near infrared and red bands, which depend on 

the satellite imagery being used. Band designations are summarized below along with 

the equation for NDVI:  

 

Table 2: NDVI band designations by sensor with associated wavelengths. 

Band Landsat 5 (TM+) Landsat 8 (OLI) 

Red Band Band 3 (0.63-0.69 µm) Band 4 (0.64-0.67 µm) 

Near Infrared (NIR) Band Band 4 (0.76-0.90 µm) Band 5 (0.85-0.88 µm) 

 

      \]^_	 = `342a=b2423cdefghi3cdefg

`342a=b2423cdefgji3cdefg
    (4) 

NDVI values range from -1 to 1, with open water correlating to negative values, 

and green vegetation corresponding to positive values (Marchetti et al., 2016). 

Contributions from the atmosphere to NDVI are significant and can amount to 

50% or more over thin or broken vegetation cover (Song et al., 2001). Because of the 
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different conditions through Landsat acquisition years, radiometric normalization was 

necessary to compare reflectances across images. This was taken into account for by 

utilizing the LEDAPS-corrected imagery, which processes using correction routines 

developed for the Terra MODIS instrument (Vermote et al, 1997). NDVI was calculated 

using surface reflectance (SR) bands, which is the true reflectance of Earth unaffected by 

clouds and other atmospheric components. This type of measurement is derived from 

calibrated radiance images corrected for atmospheric conditions, and allows for true 

interpretation of the vegetation on the surface of Earth (Shippert, 2013).  

To correct for clouds and water in each scene, a mask was applied to every image 

in order to solely assess vegetation indices throughout the imagery. The NDVI in each 

image was found to be bimodal, a feature not common in vegetative NDVI values. To 

correct for this, clouds, bare rock, and water were identified and masked to a value of -5, 

well out of the scope of vegetative values. This allows for these values to be filtered out 

during statistical analysis to focus on flora. NDVI was calculated for each calendar year 

of imagery acquired before creating a time series map using the ENVI remote sensing 

geospatial program. 

Analysis of NDVI over the time interval involved using the Raster Calculator 

function in ArcGIS® to calculate the mean value of each pixel. Each raster, from the 

years 2005 thru 2016 were used, with the exceptions of 2012 and 2015, which created a 

raster of mean NDVI values. The exception in 2012 was because SLC-off issues with 

Landsat 7 data, which caused banding of missing imagery data. After careful 

consideration, it was decided against using software to interpolate data because the 
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values would not accurately show the true environmental conditions in the area. 2015 

Landsat 8 OLI imagery data contained over 90% cloud coverage within the area of 

interest, leaving the year unusable for analysis. This raster was then converted to points 

using the appropriate ArcGIS® tool and then exported as an ASCII text file, which was 

then imported into Microsoft Excel for further manipulation. 

Once the entire time series was calculated, a final raster calculation between the 

first and final year within the time series was calculated to quantify the change in NDVI 

values from beginning to most recent. 

 

Surface Runoff 

To determine if a link exists between rates of tree mortality and rates of erosion, 

a classification scheme must be applied to the Landsat time series. This was done by 

using an unsupervised classification of NDVI values into appropriate surficial features 

such as exposed rock, water bodies, or vegetation. Unsupervised classification is a 

means by which pixels in an image are assigned to spectral classes without the user 

interacting with the data (Richards and Jia, 2006). This method is performed most often 

using clustering methods and can determine the spectral class of each pixel (Richards 

and Jia, 2006). Doing this gives the number of pixels that will be classified below a 

certain threshold of NDVI values, which can then be used to calculate surface runoff in 

the area and can be used to establish changes in surface compaction, which can result in 

increased overland flow and surface-wash erosion for different aspects and different 
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elevations. In this case, the unsupervised classification yielded a cutoff of 0.38 NDVI as 

the classification break for what will be presumed alive and dead forest vegetation. 

The method formulated to quantify free water available as surface erosion is 

based on several assumptions because of the limitations of this project in technology and 

available information given. Assumptions devised include each NDVI pixel in the 

unsupervised classification contains full Douglas-fir and White fir tree coverage, each 

pixel contains only Douglas-fir and White Fir trees, water uptake is assumed to be the 

same for every pixel above the 0.38 NDVI threshold, which is assumed to be an alive 

tree, canopy reach would be the same for every tree, and each pixel has the same number 

of trees. This evaluation is a preliminary method for predicting surface erosional runoff. 

To quantify the number of trees within the area of a pixel, individual pixel size 

must be divided by the canopy reach of each tree in question. White Fir and Douglas-fir 

trees have canopy reaches ranging from 4.6 to 6.1 meters and 6.1 to 9.1 meters, 

respectively (Arbor Day Foundation; Ohio State University; SelecTree). This gives an 

average of 6.86 meters of canopy reach per tree. The total number of trees per pixel can 

then be calculated by dividing pixel size by canopy reach, as seen in equation 5. 

   k= =
lm

	no
     (5) 

where,  
 
Tn = Total number of trees per pixel,  
Ps = Pixel size based on raster, and  
Cc = Average canopy cover reach. 
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Values of average stand transpiration for a similar species to the White Fir, 

Pacific Silver Fir (Abies amabilis) ranged from 0.01 to 3.52 mm/day, with a stand 

density of 1,941 trees (Martin et al., 1997). This equates to 19.4 to 6,832,30 mm/day for 

an individual tree. This number is dwarfed by the transpiration rate of 2-m and 80-m for 

a Douglas-fir tree over a 170-day period, which was found to be 4,300,000 to 

390,000,000 mm respectively (Waring and Running, 1976). These two studies were 

conducted in the Cascade Mountains of Washington and Oregon state, respectively 

(Martin et al., 1997; Waring and Running, 1976). By knowing these values for water 

storage for individual trees, the amount of water available as surface flow can be 

calculated. The amount of water available as surface flow will be calculated using 

equation 6 for trees with NDVI values greater-than or equal-to 0.38, as devised by the 

unsupervised classification. These values can be used to model the temporal and spatial 

rates of surface erosion based on drought and infestation spread.  

   SR = Σ
(s	 lth 	uvw )

	uv
     (6) 

where,  
 
SR = Surface runoff,  
K = Soil-erodibility factor derived from RUSLE equation, 
PA = Average precipitation,  
Tn = Total number of trees per pixel calculated to be 131, and 
U = Average amount of water used per tree. 
 

 For areas of pixels classified below the 0.38 NDVI threshold, the assumption 

would be that a tree would be classified as fully dead and no longer taking up water, 
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leaving any precipitation within its catchment zone as runoff and can be quantified as 

equation 7. 

 (R = Σ
(s)	 lt

	uv
     (7) 

where,  
 
SR = Surface runoff,  
K = Soil-erodibility factor derived from RUSLE equation, and  
PA = Average precipitation. 
 

 To accomplish these tasks, Raster Calculations will be done to calculate outputs 

for equations 6 and 7 in conjunction with the Spatial Analyst Con Tool will be used 

within ArcGIS®. This tool uses previously calculated unsupervised NDVI vectors in 

order to verify whether to apply either equation 6 to alive trees above or equal to the 

0.38 NDVI threshold, or apply equation 7 to areas under the threshold.  

 

Results 

NDVI Time Series 

 Figure 12 shows the time series of Landsat NDVI images for the years of 2005 to 

2016. This time series shows the progression of lower NDVI values through the years of 

study, especially between the years of 2011 – 2013. Figure 14 shows percentage of 

distribution of values within each range and the average value of NDVI for each pixel 

through the time series. This average shows a normally distributed bell curve for NDVI 

values, with the largest percentage of NDVI values falling within the 0.30 to 0.40 NDVI 

range with a mean value of 0.36 and standard deviation of 0.14. 
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 The calculated difference between NDVI values from 2005 to 2016 were 

calculated by the Image Analysis tool using the difference button. The output raster, as 

seen in Figure 13 shows the maximum negative change in NDVI over the course of the 

time series was -0.53 and the maximum increase being 0.57 with a mean change of 0.08 

and standard deviation of 0.09. 

 

Surface Runoff 

 The application of equation 6 to the areas above or equal to the 0.38 NDVI 

threshold was calculated four times using the range of water uptake values found in 

Martin et al., 1997 Waring and Running, 1976 and applied using the Con tool in 

ArcGIS®. The range of values of surface runoff ranged between -390,000,000 mm to -

0.2 mm per tree within each pixel with a mean value between -146,916,924 mm and -5.2 

mm and standard deviation of 12.6 mm – 83,674,617 mm. This is equivalent to total 

precipitation available for surface runoff between -51,090,000,000 mm and -26.2 mm of 

within each stand in the 900 m2 pixel. 

Equation 7 was applied to calculate surface runoff in areas below the 0.38 NDVI 

threshold devised by the unsupervised classification using the Con tool in ArcGIS®. The 

resulting calculation yielded values of surface runoff ranging between 0.05 to 8.53 mm 

of runoff per tree classified below the threshold with a mean of 2.15 mm and a standard 

deviation of 1.66 mm within each 30 m x 30 m pixel (Figure 15). This equates to 6.55 - 

1,117.43 mm of precipitation as surface runoff within each pixel when the individual 

number of trees is taken out of the equation. 
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Figure 12: Time series showing change in NDVI from 2005 - 2016. Exceptions include 2012 and 2015 because of 
environmental and imagery limitations.
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Figure 13: Calculated change in NDVI from 2005 to 2016 showing overall negative 
change within Ouray quadrangle.



 

 51 

 

 

 

Figure 14: (A) Pie chart showing average percentage of NDVI values by category. 
(B) Histogram showing resemblance of bell-curve normal distribution of average 
time-series NDVI values. 
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Figure 15: Time series showing surface runoff based off NDVI threshold calculated by unsupervised classification from 
2005 - 2016. 
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Discussion 

NDVI Time Series 

Vegetation is extremely dynamic and can vary immensely over time and can also 

be affected by the time at which the Landsat image was taken, the angle of the sun on the 

surface, any shadows cast by clouds, NDVI values that were unable to be masked, 

among a number of other factors. Studies such as this can be performed at a wide variety 

of temporal scales to fully assess the beetle outbreak. 

This study was limited by the amount and quality and quantity of remotely 

sensed imagery. This includes the gaps in data in the years of 2012 and 2015 because of 

atmospheric conditions and sensor malfunctions on Landsat 7 ETM+ as well as using 

different sensors as technology progressed through the time scale in this study. These 

factors were attempted to be mitigated by using only daytime imagery of the area during 

peak growing seasons. Analyzing a positively identifying change within NDVI values 

through the time series, and knowing through field work confirmation that forest cover 

has been affected by bark-beetle infestations, however, it may be supported that bark-

beetle vectors grew in the time of this study, with the biggest negative change occurring 

from 2011 – 2013. 

 

Statistical Analysis of NDVI Time Series 

 To quantify whether NDVI changed over the time series, statistical analysis had 

to be conducted. A chi-squared goodness of fit test was chosen to compare a normal 

distribution to what was observed in the imagery. The chi-squared shows how well the 
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distribution of sample values conforms to a normal distribution using the test procedure 

known as a goodness-of-fit test (Davis, 2002). My assumption with this data is that the 

same number of standardized values will occur in each of the normal curve intervals. 

The number of observation pixels actually falling into each NDVI interval is calculated, 

subtracted by the number I expected to find and squared, which is then divided by the 

expected values for each group. These values are then summed, as seen in the equation 

below. 

Chi-Squared Goodness-of-fit test (Davis, 2002): 

    !" = 	Σ&'() (+,-	.,)0
.,

      (8) 

where,  
 
!" = chi-squared statistic,  
Oj = number of observations withi the jth class,  
Ej = number of observations expected in the jth class, and 
k = number of groups. 
 

 The total number of pixel value groups was 9, giving 8 degrees of freedom for 

our c2 test. The given p-value calculated from this test equaled an unexpected value of 

0.00, meaning that the data completely follows a normal distribution and the null 

hypothesis can be rejected, accepting the alternative hypothesis, HA, that NDVI changed 

over the course of the time series. This extremely low p-value can be attributed to the 

extremely large number of pixels in the scene. This, coupled with the small degree of 

freedom, leads to the assumption that the level of significance is extremely small for this 

index.  
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Surface Runoff 

 The surface runoff calculation provided a first approximation on how to utilize 

NDVI to spatially classify and quantify surface runoff caused by bark-beetle-induced 

tree mortality. The extreme negative values of surface erosion are caused by the high 

transpiration values by Douglas-fir and Pacific Silver Fir trees. No information was 

available for White Fir, which led to widening the scope of research to a study on the 

Pacific Silver Fir (Abies amabilis), a type of fir within the same genus as the White Fir. 

This calculation was limited by the amount of literature available on Douglas-fir and 

White Fir trees, and no definitive consensus on rates of transpiration. This lack of 

consensus was to be expected, because so many different variables exist in studies 

ranging from the environmental conditions to the size of trees. Literature referenced was 

conducted in areas of extremely high annual precipitation within the Cascade Mountains 

of Washington and Oregon. This area is subject to the rain shadow effect, attributing to 

the extremely high precipitation in the area and may be an explanation as to why these 

studies found such high values of water uptake for both types of trees within this study 

(Martin et al., 1997; Waring and Running, 1976). 

 Future areas of improvement to this model of surface runoff include a long-term 

study on the types of trees within this study to establish a clear rate of transpiration that 

is associated with each tree in this area of Colorado coupled with field pans to measure 

actual surface runoff. Assumptions made during this investigation would need to be 

addressed, including finding higher resolution imagery to identify pixels that do not have 
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forest cover. This would allow for better analysis and applying this model exclusively to 

areas where the flora being studied is. Another possibility is using a more sophisticated 

method for classification. This was attempted using a parallel pipet supervised 

classification, but limitations in software analysis using this method resulted in large 

portions of the images to remain unclassified, hampering analysis. 

This evaluation is a preliminary method for predicting surface erosional runoff 

and further study would need to be completed to diversify this model and remove these 

assumptions. This would make this model more representative of the true surface runoff 

in this study area and allow for broader application in similar environments.  

 

Conclusions 

 This paper has demonstrated an accurate way to depict bark-beetle vectors 

through changes in NDVI using long-term remotely sensed imagery. Calculations 

showed maximum negative change in NDVI over the course of the time series was -0.53 

and the maximum increase being 0.57 with a mean change of 0.08 and standard 

deviation of 0.09. The calculated p-value of the performed chi-squared test was 0.00. 

This means that the data completely follow a normal distribution, allowing the rejection 

of the null hypothesis and accept the alternative hypothesis, HA, that NDVI changed over 

the course of this time series. This identified negative change in NDVI through time 

coupled with confirmation of trees affected by bark-beetles through field work, it may be 

supported that bark-beetle vectors grew in the time of this study, with the biggest 

negative change occurring from 2011 – 2013.  
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This study also provided a preliminary method for predicting surface runoff 

using an NDVI time series as a classification input to determine whether a tree was 

considered to be actively intercepting water and holding soil in place or whether the tree 

was no longer alive, meaning no active interception of precipitation or anchoring of soil.  

 Areas above the 0.38 NDVI threshold was calculated four times using the range 

of water uptake values giving a range of surface runoff values between -390,000,000 

mm to -0.2 mm per tree within each pixel with a mean value between -146,916,924 mm 

and -5.2 mm and standard deviation of 12.6 mm – 83,674,617 mm. This is equivalent to 

total precipitation available for surface runoff between -51,090,000,000 mm and -26.2 

mm of within each stand in the 900 m2 pixel.  

Surface runoff in areas below the 0.38 NDVI threshold calculated by an 

unsupervised classification has values of runoff ranging between 0.05 to 8.53 mm of 

runoff per tree with a mean of 2.15 mm and a standard deviation of 1.66 mm within each 

900 m2 pixel.  

This study provides a first approximation into calculating surface runoff, which 

required many assumptions to be made. These extremely negative values for tree 

interception could be attributed to studies conducted in the Cascade Mountains, where 

annual precipitation is much higher than the study area in Colorado. Further study would 

need to be completed to diversify this surface runoff model and remove assumptions 

made for this preliminary study, including tree studies within this area as well as field 

work measuring surface runoff as a to compare model data to real world situations. This 

would make this model more representative of the true surface runoff in this study area 
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and allow for broader application in similar environments around the world. Because of 

these limitations, I am unable to conclude whether or not the null hypothesis can be 

rejected in that bark-beetle-induced tree mortality does not lead to an increase in surface 

runoff. Future study will allow for broader application and the ability to determine 

whether bark-beetle induced tree mortality leads to increased rates in surface runoff. 
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CHAPTER IV 

DISCUSSION 

Broader Impacts 

 Subalpine areas with trees have a high potential risk of soil erosion because of 

the associated extreme climatic and topographic conditions with high uncertainties in 

rates of erosion from spatial heterogeneity of erosion risk (Meusburger et al., 2010). This 

study highlights how susceptible areas such as these are to soil erosion and surface 

runoff and allows for these communities to plan future land use, mark areas of hazard, 

and devise insect mitigation tactics. 

 The ability to easily adjust the erosion model data to add new and updated 

information within GIS allows for RUSLE and surface runoff models to be used in the 

future using readily available data from future studies. This allows future planning 

within the town of Ouray, Colorado, with the ability to map areas of high soil erosion 

risk and hazards. 

 For studies involving tree and soil dynamics, this study provided a preliminary 

investigation for modeling soil erosion and determining surface runoff using remotely 

sensed data and vegetation indices. This allows subalpine areas that are susceptible to 

erosion and runoff the ability to analyze areas known to have higher susceptibility to 

mass movement as well as other environmental hazards associated with these 

environments. 
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Limitations 

 Studies such as this can be performed at a wide variety of temporal scales to fully 

assess the beetle outbreak. This study was limited by the amount and quality and 

quantity of remotely sensed imagery. This includes the gaps in data in the years of 2012 

and 2015 because of atmospheric conditions and sensor malfunctions on Landsat 7 

ETM+ as well as using different sensors as technology progressed through the time scale 

in this study.  

This study was also severely limited by the amount of data readily available for 

consumption, including soil-erodibility and support practices for the entire study area. 

This limitation could be eliminated once published data exists for the entire study area 

regarding these factors, which would make the model more precise and eliminate 

uncertainties within these presented findings. This model was also limited in 

determining how much water Douglas-fir and White Fir trees intercept in precipitation, 

which can be addressed by further studying these trees within a long-term study. 

In calculating surface runoff, a preliminary method was devised in which many 

assumptions were made, limiting the applicability of the model presented. Assumptions 

presented included limiting vegetation to Douglas-fir and White Fir trees throughout the 

study area, water uptake for a tree in a pixel above the threshold was assumed to be the 

same for every tree, which is assumed to be an alive tree, canopy reach would be the 

same for every tree, and each pixel has the same number of trees. Further study would 

need to be completed to diversify this model and remove these assumptions, which 

would make this model more representative of the true surface runoff in this study area.  
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Future Recommendations 

 The largest difficulty in the field work performed was how much information 

was actually needed. The study area was only visited one summer for seven days, and 

because this study was temporally based, it would be beneficial to have multi-temporal 

images of areas at the same time in the growing season to compare beetle propagation 

through time, including the regeneration of forest and its effect on erosion and runoff. 

This study was limited to 2D imagery and interpretation. Future studies could 

include introducing updated DEM using a smaller scale or LIDAR and use advanced 3D 

imaging software to show this model on 3D surface.  

Soil erosion and runoff calculations are also theoretical and predicted. A long-

term study that would also be beneficial would be setting up markers or catchment zones 

for soil movement to accurately measure soil erosion and surface runoff through the 

duration of a beetle outbreak to further understand the beetle’s role in environments such 

as these. This would allow the model to be adjusted to more accurately calculate the 

amount of erosion and runoff occurring in the area. 

NDVI was the basis of this study, however, many other vegetation indices could 

be employed for further study and manipulation of this model, introducing further 

complexities for this model, bolstering its use and application. Possible indices include 

Greenness Above Bare Soil, Moisture Stress Index, Leaf Water Content Index, and Soil-

Adjusted Vegetation Index. Further investigation into which indices is needed, but 

would open the door for soil, tree, and infestation dynamic modeling. 



 

 62 

Another possibility for both models is to introduce aspect as another factor in the 

RUSLE calculation as well as the surface runoff calculation. This would allow analysis 

based on slopes facing certain directions and whether this has an effect on the slope 

being susceptible to soil erosion or surface runoff. 
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CHAPTER V 

CONCLUSIONS 

Introduction 

Changes in forest dynamics from the recent bark-beetle infestation within Ouray, 

Colorado, have had a direct impact on soil erosion and subsequent runoff. Difficulties 

arise when coming to conclusions as to what is the dominant influence in these changing 

dynamics, but two main conclusions can be drawn from the data. This includes accepting 

the first stated alternative hypothesis, HA, that NDVI changed over the course of the time 

series. Because of limitations within this study, however, I was unable to conclude 

whether or not the second stated null hypothesis can be rejected in that bark-beetle-

induced tree mortality does not lead to an increase in surface runoff. Future study will 

allow for broader application and the ability to determine whether bark-beetle induced 

tree mortality leads to increased rates in surface runoff. 

 

Problem Statement 

This research sought to answer one main question: does a causal relationship 

exist between the destruction of trees by bark-beetles and increased erosion and surface 

runoff rates on the slopes in the Ouray, Colorado, area? After analysis of the entire area 

within the Ouray quadrangle within the San Juan Mountains, it is apparent that bark-

beetles have had an effect on soil erosion and surface runoff. This study has shown that 

the change in vegetation associated during this period of bark-beetle outbreak coincide 

with increased values of surface runoff and soil erosion.  
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Objectives 

Tree mortality from bark-beetles has shown to have a direct impact on slope 

erosion and runoff. Through this research, the following objectives were accomplished: 

1. Model the rate of tree mortality and rate of erosion in the area. 2. Determine if a link 

exists between rate of tree mortality and rate of erosion. 3. Provide a first approximation 

of surface runoff and sediment production rate. These objectives were accomplished by 

utilizing the RUSLE equation to model rates of soil erosion, using a time series of 

Landsat imagery to determine the spread of tree death using NDVI, and devising a 

preliminary method for calculating surface runoff and applying it to areas of NDVI 

values below a calculated threshold. 

Using various inputs in both models, including soil-erodibility, precipitation, 

land-cover, slope, and conservation practices, it is apparent that each of these serve a 

role in soil erosion and surface runoff. The question remains: does a causal relationship 

exists between the destruction of trees by bark-beetles and increased erosion and surface 

runoff rates on the slopes in the Ouray, Colorado area? Based on the analysis of data it 

can be concluded that NDVI was affected negatively, meaning there was a loss of 

vegetation cover occurred over the course of the time series study from tree mortality 

caused by drought-induced stress coupled with the bark-beetle infestation. 

 For studies involving tree and soil dynamics, this study provided a preliminary 

investigation for modeling soil erosion and determining surface runoff using remotely 

sensed data and vegetation indices. This allows subalpine areas that are susceptible to 

erosion and runoff the ability to analyze areas known to have higher susceptibility to 
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mass movement as well as other environmental hazards associated with these 

environments. 

 

Summary 

Soil Erosion Model 

 This paper has shown that the RUSLE model can effectively represent the 

estimation of maximum possible soil loss because of erosion within the Ouray 

quadrangle. R-factor was calculated to be between 0.95 – 1.15 MJ*mm/hectare*hour, 

and LS-Factor ranging from 0 m - 6,654.91 m. Other factors within this calculation 

varied spatially, with K- and C- factors between 0.01 – 1.0 and 0.00 – 1.0, respectively, 

depending on soil and land survey datasets. 

Potential soil erosion ranges from ~0 Mg/ha/yr projected erosion in areas of low 

slope to a projected erosion value of ~2,3000 Mg/ha/yr in areas with extremely steep 

slopes and areas of high drainage output conducive to flowing water. The movement of 

materials down slope poses a potential hazard for the town of Ouray, Colorado, which is 

situated at the bottom of the valley. 

Caution is needed when interpreting these results because of assumptions made 

to create certain parts of the model, including interpolation of soil-erodibility, K, factors. 

Other factors that could have affected the modeled outcome include the lack of 

published support practice factors for the area as well as any systemic errors within the 

DEM that could have attributed to errors in calculating the L and S factors, including the 

resampling of pixels for this calculation. With these limitations in mind and the 
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parameter values being reassessed, this model can be used to predict the future soil 

erosion within the area, which is pertinent when addressing the current beetle outbreak 

and subsequent erosion caused by runoff from lack of tree interception. 

The results of this study have provided a first approximation and a better 

understanding of the quantitative changes in erosion for the Ouray quadrangle using the 

RUSLE equation as a model. This model offers the option to quickly identify areas of 

high or low rates of erosion as opposed to only utilizing rates of sediment accumulation 

and allows for the greater chance of determining the sources of erosion (Simms et al., 

2003). This will assist in planning for any future hazards and land management within 

the town of Ouray and surrounding San Juan Mountains. 

 

NDVI Time Series and Surface Runoff 

 This paper has demonstrated an accurate way to depict bark-beetle vectors 

through changes in NDVI using long-term remotely sensed imagery. Calculations 

showed maximum negative change in NDVI over the course of the time series was -0.53 

and the maximum increase being 0.57 with a mean change of 0.08 and standard 

deviation of 0.09. The calculated p-value the performed chi-squared test was 0.00. This 

means that the data completely follows a normal distribution, allowing me to reject the 

null hypothesis and accept the alternative hypothesis, HA, that NDVI changed over the 

course of this time series. This identified negative change in NDVI through time coupled 

with confirmation of trees affected by bark-beetles through field work, it may be 
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supported that bark-beetle vectors grew in the time of this study, with the biggest 

negative change occurring from 2011 – 2013.  

This study also provided a preliminary method for predicting surface runoff 

using an NDVI time series as a classification input to determine whether a tree was 

considered to be actively intercepting water and holding soil in place or whether the tree 

was no longer alive, meaning no active interception of precipitation or anchoring of soil.  

 Areas above the 0.38 NDVI threshold was calculated four times using the range 

of water uptake values giving a range of surface runoff values between -390,000,000 

mm to -0.2 mm per tree within each pixel with a mean value between -146,916,924 mm 

and -5.2 mm and standard deviation of 12.6 mm – 83,674,617 mm. This is equivalent to 

total precipitation available for surface runoff between -51,090,000,000 mm and -26.2 

mm of within each stand in the 900 m2 pixel.  

Surface runoff in areas below the 0.38 NDVI threshold calculated by an 

unsupervised classification has values of runoff ranging between 0.05 to 8.53 mm of 

runoff per tree with a mean of 2.15 mm and a standard deviation of 1.66 mm within each 

900 m2 pixel. This is a first approximation into calculating surface runoff, which 

required many assumptions to be made.  

These extremely negative values for tree interception could be attributed to 

studies conducted in the Cascade Mountains, where annual precipitation is much higher 

than the study area in Colorado. Further study would need to be completed in order to 

diversify this surface runoff model and remove assumptions made for this first 

approximation, including tree studies within this area as well as field work measuring 
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surface runoff as a to compare model data to real world situations. This would make this 

model more representative of the true surface runoff in this study area and allow for 

broader application in similar environments around the world.  
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APPENDIX 

 

 

Figure A-1: Photo taken on southeastern side of Ouray Perimeter trail showing 
mixed conifer forest with affected trees in orange-brown color. 
 

 

Figure A-2: Photo taken on eastern side of Ouray Perimeter trail near 
Amphitheater showing affected trees in orange-brown color. 
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Figure A-3: Photo taken on south side of Ouray showing western portion of town 
with infested trees in orange-brown color. 
 



 

 80 

 

Figure A-4: Photo taken on west side of Ouray Perimeter trail facing west showing 
mixed conifer forest with affected trees in orange-brown color. 
 

 

Figure A-5: Photo taken on near “Look Out Point” showing mixed conifer forest in 
the distance with affected trees in orange-brown color. 
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Figure A-6: Photo taken on eastern portion of the Ouray Perimeter Trail showing 
two affected trees side-by-side. 
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Figure A-7: Photo taken on west side of Ouray Perimeter trail in a residential area 
showing White Fir tree infested by beetles near a residential roofline.
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Table A-1 Field notes for plots 1-5.
 Point	 Easting	(m)	 Northing	(m)	 Dead	 Alive	 Soil	Penetrom.	 Munsell	 Soil	1	 Soil	2	
Plot	1	 1	 265610.63	 4212457.74	 47	 61	 4.25	 Gray	5/1	 Cryorthents	 Rock	Outcr	
	 2	 265632.18	 4212358.39	 27	 39	 4.25	 Gray	5/1	 Cryorthents	 Rock	Outcr	
	 3	 265536.00	 4212357.03	 	      

 4	 265536.00	 4212447.00	 	      

Plot	2	 1	 266072.00	 4211380.00	 50	 43	 2.95	 Gray	3/1	 Scout	 Typic	
cryochr.	

	 2	 266095.00	 4211478.00	 23	 34	 3.5	 2.5	Y	3/2	 Scout	 	
 3	 266004.00	 4211496.00	 	      

 4	 265983.00	 4211405.00	 	      

Plot	3	 1	 266088.71	 4210234.90	 26	 41	 4.05	 	 Rock	Outcr	 Cryboralfs	
	 2	 266037.45	 4210149.98	 12	 20	 3.3	 	 Rock	Outcr	 Cryboralfs	
	 3	 266020.68	 4210246.10	 	  4.2	 	 Rock	Outcr	 Cryboralfs	

	 4	 266091.54	 4210333.55	 	  4.0	 	 Cryorthents	 Rock	Outcr	
Plot	4	 1	 265918.18	 4210332.35	 	  3.2	 	 Cryorthents	 Rock	Outcr	
	 2	 265826.65	 4210375.08	 	  3.8	 	   

 3	 265772.00	 4210291.00	 	      

 4	 265856.00	 4210253.00	 	      

Plot	5	 1	 265059.55	 4211711.50	 33	 42	 2.15	 	 Cryorthents	 Rock	Outcr	
	 2	 265044.52	 4211613.20	 	    Cryorthents	 Rock	Outcr	
	 3	 264943.00	 4211619.00	 	      

 4	 264964.00	 4211717.00	 	      
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Table A-2 Field notes for plots 6-9.
	 Point	 Easting	(m)	 Northing	(m)	 Dead	 Alive	 Soil	Penetrom.	 Munsell	 Soil	1	 Soil	2	
Plot	6	 1	 265509.73	 4210729.74	 32	 41	 1.8	 5YR	5/1	 Cryorthents	 Rock	Outcr	
	 2	 265420.72	 4210775.49	 	  4.5	 5YR	5/1	 Cryorthents	 Rock	Outcr	
	 3	 265369.00	 4210690.00	 	      

 4	 265446.00	 4210652.00	 	      

Plot	7	 1	 265051.87	 4211020.59	 51	 35	 4	 5YR	5/1	 Cryorthents	 Rock	
Outcrop	

	 2	 264968.19	 4211081.63	 	  3.55	 5YR	5/1	 Cryorthents	 Rock	
Outcrop	

	 3	 265017.00	 4211170.00	 	      

 4	 265110.00	 4211102.00	 	      

Plot	8	 1	 265150.35	 4212745.58	 66	 86	 4.15	 2.5YR	N	
5/1	

Riverwash	 Cryohemists	

	 2	 265118.96	 4212842.13	 	      

 3	 265017.00	 4212835.00	 	      

 4	 265050.00	 4212746.00	 	      

Plot	9	 1	 265950.11	 4211871.03	 38	 41	 4.4	 2.5Y	4/2	 N/A	 N/A	
	 2	 265942.40	 4211772.51	 	      

 3	 265843.00	 4211768.00	 	      

 4	 265851.00	 4211867.00	 	      


