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ABSTRACT 

 

The purpose of hydraulic fracturing in low permeability shales is to maximize 

surface contact area with the reservoir and create conductive flow paths for the 

hydrocarbons to be economically produced through.  Fracture conductivity is defined as 

the product of fracture permeability (kf) and the width of the fracture aperture (wf).  This 

parameter is vital, as it limits the capacity of the flow path between the stimulated reservoir 

rock and the wellbore for a given drawdown pressure.  The resulting fracture conductivity 

is dependent on a plethora of rock and proppant properties.  Realistic prediction of 

conductivity and further understanding of its relationship with rock properties would 

prove incredibly valuable, especially in new and developing shale plays where there is a 

steep initial learning curve in economic production.  In this study, multiple linear 

regression is applied to a large database of shale conductivity experiments, and a robust 

correlation for predicting conductivity is presented. In addition, the properties of Young’s 

modulus, Poisson’s ratio, compressive strength, and Brinell hardness are isolated and their 

effects on fracture conductivity are analyzed. 

The shale plays included in the correlations are the Barnett, Fayetteville, 

Marcellus, and Eagle Ford shales.  Brinell hardness and compressive strength were found 

to be highly correlated with conductivity decline as closure stress increases.  Young’s 

modulus was also found to be a highly significant predictor of fracture conductivity in 

shales.  A higher modulus correlated to increased conductivity at each closure stress.  It 

was also concluded that closure stress and proppant loading conditions have a much 
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greater influence on fracture conductivity when compared to rock mechanical properties 

and fracture surface characteristics. The final correlation model presented can be used to 

estimate fracture conductivity in various shale plays.  It is important to keep in mind the 

distributions of the input data into the model, as well as the experimental conditions under 

which the conductivity was measured when applying this correlation for prediction 

purposes.     
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1.  INTRODUCTION 

 

1.1 Background 

 During the hydraulic fracturing process in low permeability shales, various types 

of proppant and fluid are pumped into the reservoir with the goal of generating an optimal 

fracture network with an optimal fracture conductivity distribution.  Fracture conductivity 

is defined as the product of permeability inside the fracture (kf) and the width of the 

fracture aperture (wf).  This parameter is vital as it limits the capacity of the flow path 

between the stimulated reservoir rock and the wellbore, for a given drawdown pressure.  

Each shale formation is unique with large variations in matrix/unpropped deliverability, 

mechanical properties, mineralogy, fluid sensitivities and closure stress, all of which affect 

the optimal stimulation treatment and resulting fracture conductivity.  Realistic prediction 

of conductivity and further understanding of its relationship with rock properties would 

prove incredibly valuable, especially in new and developing shale plays where there is a 

steep initial learning curve in economic production. 

 

1.2 Literature Review 

 The literature review is divided into three sections.  The first section discusses 

current methodologies of measuring fracture conductivity in the lab and key experimental 

conditions in each setup.  The second section discusses a majority of the mechanisms 

affecting conductivity inside the reservoir.  Lastly, previous research conducted at Texas 

A&M University concerning shale fracture conductivity is discussed. 
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1.2.1 Laboratory Measurement of Conductivity 

 Fracture conductivity measurements in the laboratory began with Cooke (1973), 

where the permeability of a ½ in. thick pack of varying proppant sizes was tested under 

increasing closure stresses with oil, brine, and gas fluids at reservoir temperatures.  

Cooke’s work served as a precursor to the development of the standard API RP 61 (1989) 

procedure for measuring conductivity.  Important conditions from the procedure include: 

 -2 lbm/ft2 proppant loading 

 -Steel pistons in contact with the proppant to apply load 

 -Room temperature 

 -2% KCL flowed at 2 ml/min  

The goal of this standard was to reliably test the performance of different types of 

proppant, but it neglected many factors found at reservoir conditions. More recently, the 

International Organization for Standardization released ISO 13503-5 (2006), which uses 

sandstone cores in contact with the proppant and maintains each stress for 50 hours at 150-

250°F.  Researchers have modified these procedures and used other methods to study the 

effects of different conditions on fracture conductivity.  These conditions are highlighted 

in the next section. 

 

1.2.2 Mechanisms Affecting Conductivity 

 According to the definition of fracture conductivity, a decrease in fracture width 

or permeability causes a decrease in conductivity.  Initial width is controlled by areal 

concentration and size of the proppant.  Effective closure stress on the fracture dominates 
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width reduction by exacerbating proppant crushing/rearrangement and proppant 

embedment into the fracture face (Terracina et al. 2010, Huitt and McGlothlin 1958).  

Alramahi and Sundberg (2012) investigated proppant embedment in shales, in the absence 

of fluids, and related it to the rocks mineral composition and mechanical properties.  They 

concluded that samples with high clay content and/or low static Young’s modulus resulted 

in higher embedment.  The authors were also able to derive a power law expression 

relating proppant embedment to Young’s modulus, more evident at closure stresses greater 

than 3,000 psi.  Cooke (1975) began studying the effects of fluids on conductivity, 

specifically viscous guar based treatment fluid and the reduction in permeability caused 

by the residue it leaves behind.  Others studied fluid effects on conductivity loss in shales 

primarily due to increased proppant embedment from water-rock interactions on the 

fracture face (Akrad et al. 2011; Das and Achalpurkar, 2013; Zhang et al. 2014; Guerra et 

al. 2017).  The consensus is that higher clay content leads to an increase in clay swelling 

and surface softening, causing proppant to embed further into the rock.  Ramurthy et al. 

(2011) suggested using the Brinell hardness test on wet and dry shale samples to quantify 

the degree of expected proppant embedment.  The Brinell hardness measurement is 

discussed further in the experimental methods section.  Mueller and Amro (2015) took the 

principle of surface hardness further and developed a numerical model in order to predict 

proppant embedment.  Primary inputs into the model were proppant size distribution, 

surface hardness, and stress on the proppant.   

Another important area of consideration is fracture surface effects, particularly in 

areas of low proppant concentration where surface interactions are likely.  Barton et al. 
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(1985) examined the mechanical behavior of rock joints and coupled this with 

conductivity.  Using data from tilt tests and Schmidt rebound tests, the authors concluded 

that weak rocks with smooth joints close the easiest, while rougher surfaces with high 

strength are harder to close under normal stress.  Makurat and Gutierrez (1996) expanded 

on this work and found that shear displacement of the fracture faces can significantly 

increase conductivity in weak rocks and is dependent on a surface roughness coefficient.  

Fredd et al. (2001) investigated very low proppant concentrations often found in 

slickwater fracs where mono to partial monolayers of proppant exist.  The authors 

concluded that conductivity can be either asperity dominated or proppant dominated, 

depending on the concentration, and “under asperity dominated conditions, the 

conductivity varies significantly and is difficult to predict.”.  Parker et al. (2005) showed 

that these high porosity, partial monolayer propped fractures can result in even higher 

conductivity than those with larger proppant concentrations. 

Conditions not accounted for in the standard procedures mentioned earlier for 

measuring conductivity include non-Darcy flow effects, multiphase flow, cyclic stress on 

the proppant, and fines migration, among other effects.  It is common to see reductions in 

conductivity of 95% compared to ISO 13503-5 when all of these conditions are taken into 

account (Palisch et al. 2007). Barree et al. (2003) also looked at the combined effects and 

concluded that actual reservoir conductivity based on laboratory results is much lower 

than believed or expected.   
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1.2.3 Previous Research at Texas A&M University  

 Over previous years, researchers from the petroleum engineering department at 

Texas A&M University have amassed a large database consisting of conductivity 

measurements and rock properties from major shale plays across the United States.  These 

are, in chronological order, the Barnett (Kamenov 2013; Zhang 2014), Fayetteville (Briggs 

2014; Jansen 2014), Marcellus (McGinley 2015; Perez Pena 2015), and Eagle Ford 

(Enriquez-Tenorio 2016; Knorr 2016).  The conductivity experiments were short-term 

tests, with nitrogen flowing through induced fractured samples at proppant concentrations 

usually less than .3 lb/ft2.  In addition, Zhang (2014) and Guerra (2017) studied the effects 

of water damage on the Barnett and Eagle Ford shales respectively, in which gas 

conductivities were compared before and after water flow through the fracture.  It is in 

consensus from these studies that conductivity behavior is controlled by a combination of 

proppant, rock, and fracture surface properties.  A higher Young’s modulus has in general 

correlated to higher values of both propped and unpropped conductivity.  More recently 

in the Eagle Ford dataset, an inverse relationship was found between Poisson’s ratio and 

conductivity, while rock brittleness calculated from mineralogy showed a direct 

relationship (Enriquez-Tenorio et al. 2016).  Fracture surface roughness has also shown to 

be a predictive parameter, especially in proppant monolayer conditions.  Brinell hardness 

has only been investigated in the Eagle Ford and no definitive conclusions regarding this 

parameter could be made.  Mineralogy was shown to be highly significant in predicting 

conductivity loss due to rock-water interactions. 
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1.3 Problem Description 

 A correlation for estimating shale fracture conductivity based on experimental data 

is lacking in the literature.  The only experimental correlation for predicting propped 

fracture conductivity was recently published by Barree et al. (2016) and is based on over 

1,000 conductivity experiments.  Tests were ran with 2% KCL brine under Darcy flow 

conditions.  Each stress and flow condition was maintained for 50 hours at a standard test 

temperature of 150°F.  Relatively high proppant concentrations above 1 lb/ft2 were used.  

Smooth faced slabs of fine-grained Ohio sandstone, with a Young’s modulus of 5 X 106 

psi, applied stress to the proppant pack in all experiments.  This correlation may not be 

suitable for the more realistic proppant concentrations of less than 1 lb/ft2 or any varying 

rock properties, which have been shown to have significant effects on fracture 

conductivity under reduced proppant loadings, as discussed earlier. 

 Although significant conclusions could be made regarding the relationship of static 

Young’s modulus and Poisson’s ratio to fracture conductivity, their sole effects were 

unclear due to the multitude of other variables present.  This study also isolates the 

mechanical properties of Young’s modulus, Poisson’s ratio, compressive strength, and 

Brinell hardness.  This allows concrete description/quantification of their effects on 

conductivity inside the fracture as well as in the experimental setup, where only vertical 

stress is controlled and measured. 

 

1.4 Research Objectives and Significance 

 The primary objectives of this work are as follows: 



 

7 

 

(1) Develop a robust correlation which industry can use to more realistically 

estimate fracture conductivity in the new and existing shale plays, based on 

varying proppant types, proppant concentrations, and rock properties. 

(2) Gain further understanding of the effects that mechanical rock properties 

have on fracture conductivity.  Namely Young’s modulus, Poisson’s ratio, 

compressive strength, and Brinell hardness.  Accomplish this by eliminating 

variables in previous experiments used for the correlation and selecting rock 

samples with a large range of mechanical properties. 

(3) Perform conductivity, triaxial, and Brinell hardness tests on the selected 

rock samples.  

(4) Provide recommendations for future work in this area for more robust 

characterization of each rock sample, enabling more accurate prediction of fracture 

conductivity at reservoir conditions.    

The results of this study prove valuable, as there is usually a steep learning curve in 

achieving economic production due to uncertainties in fracture conductivity (Palisch et al. 

2007).  

 

1.5 Structure of Thesis 

 Following the introduction and experimental methodologies there are two main 

parts to this thesis.  The first is concerned with the analysis of historical data gathered by 

previous researchers at Texas A&M University and the generation of a shale conductivity 

correlation.  The second part is a set of conductivity and rock property experiments 
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designed to complement the correlations by examining the relationship/s between Young’s 

modulus, Poisson’s ratio, compressive strength, Brinell hardness, and fracture 

conductivity. 
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2.  EXPERIMENTAL DESIGN AND METHODOLOGY 

 

This section discusses experimental setups and laboratory procedures used to measure 

properties in the conductivity correlation as well as variables investigated in the 

mechanical effects study.  The multiple linear regression technique used to generate the 

correlations is also presented.  

 

2.1 Experimental Design   

 All experiments used for the shale conductivity correlations were conducted by 

previous researchers.  Experimental design for each shale formation is discussed in the 

results section.  However, new experiments were performed to fill gaps in the previous 

work and provide insight into better characterization of rock properties relating to fracture 

conductivity. Initial sample selection for the rock property study was explicitly based on 

achieving a broad range of mechanical properties for conductivity testing.  The four rock 

types selected were Austin chalk, Lueders limestone, Crab Orchard sandstone, and 

Castlegate sandstone.  The performed experimental design matrix is shown below in 

Table 1.  
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Table 1-Performed experiments on the selected rock types. 

 

 

The proppant of choice for conductivity testing was 30/50 mesh, high-density ceramic 

with a low API crush value of 2.6% at 5,500 psi.  This value means that 2.6% by weight 

of a 4 lb/ft2 proppant pack was crushed into smaller particles while undergoing 5,500 psi 

of vertical stress in a confined environment.  A strong proppant mitigates the fracture 

width reduction caused by proppant crushing/deformation and exacerbates the effects of 

proppant embedment on conductivity, which are controlled by closure stress and 

properties of the rock itself.  An areal proppant concentration of .3 lb/ft2 on the fracture 

face was used, resulting in a minimum of two proppant layers spread evenly across the 

fracture face.  This concentration avoided proppant monolayer conditions but still allowed 

rock properties to have a significant role in the resulting conductivity.  Milled fracture 

surfaces were used to keep roughness and surface asperity effects consistent between 

samples. Figure 1 shows a sample face loaded with .3 lb/ft2 of 30/50 mesh ceramic 

proppant, demonstrating full coverage of the fracture surface and approximately two 

layers of proppant. 

# of 

Samples

# of Successful 

Tests

# of 

Samples

# of Sucessful 

Tests

# of 

Samples

# of Successful 

Tests

Austin Chalk 3 2 3 2 1 6

Lueders 

Limestone 3 2 2 2 1 6

Crab Orchard 

Sandstone 3 2 3 3 1 6

Castlegate 

Sandstone 3 3 2 2 1 6

Fracture Conductivity Triaxial Brinell Hardness

Formation
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Figure 1-Sample loaded with .3 lb/ft2 proppant concentration. 

 

2.2 Fracture Conductivity   

 The fracture conductivity setup and procedure discussed here was used in the rock 

properties study as well as by the previous researchers during compilation of the shale 

conductivity database.  The key difference between the two arises in the sample 

preparation, with milled vs. induced fracture surfaces respectively.  Conductivity was 

measured using a modified API RP-61 procedure and experimental setup as detailed by 

many previous researchers (Kamenov 2013; Briggs 2014; Guzek 2014; Zhang 2014; 

McGinley 2015; Enriquez-Tenorio 2016).  Because the setup and procedure are so well 

documented, only an overall summary and key characteristics are mentioned.  The samples 

have dimensions of 1.5” wide, 7” long, and an ideal thickness of 6”.  Variations in 

thickness result from the fragility of the shale samples during cutting, in which case 

sandstone inserts are used to make up the entire 6”.  The samples are placed in a confined 

Zoomed in Side View 

Top View 
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conductivity cell with a hydraulic load frame providing vertical stress to the pistons.  Tests 

begin at a low closure stress of 500 to 1,000 psi and are ramped up in 500 to 1,000 psi 

increments until a maximum desired stress level is reached, or the sample fails.  Nitrogen 

is used as the test fluid to simulate natural gas flowing through the fracture.  Nitrogen also 

does not damage the precious samples and allows them to be reused in consecutive tests.  

The experimental setup is detailed in Figure 2. 

 

  

Figure 2-Fracture conductivity experimental setup (modified from Zhang 2014). 

            

Pressure drop across the sample is measured using a differential pressure transducer and 

the Darcy’s law concept, represented by Eq. 1, is applied to calculate the conductivity.  At 

each closure stress level, four pressure drops and their corresponding flow rates are 

recorded under steady state conditions to reduce measurement error.     

𝑷𝟏 𝑷𝒄𝒆𝒍𝒍 𝑷𝟐 
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−
𝑑𝑝

𝑑𝐿
=

µ𝑣

𝑘𝑓
……………………….………………………………………….…...……. (1) 

 

In instances where non-Darcy/turbulent flow conditions exist due to higher flow rates 

required to achieve a pressure drop, Forchheimer’s equation is used.  This equation, shown 

in Eq. 2, adds a pressure drop term due to inertial effects caused by turbulence. 

 

−
𝑑𝑝

𝑑𝐿
=

µ𝑣

𝑘𝑓
+ 𝛽𝜌𝑓𝜈2……………..............……………………………...……………(2) 

 

As applied to this experimental setup, −
𝑑𝑝

𝑑𝐿
 is the pressure drop across the fracture per unit 

length between the differential pressure ports, µ is the viscosity of nitrogen, 𝜈 is the flow 

velocity, 𝑘𝑓 is the permeability inside the fracture, 𝜌𝑓 is the density of nitrogen, and 𝛽 is 

the inertia resistance factor.  Actual values recorded in this setup are nitrogen volumetric 

flow rate (𝑄), the pressure at the center of the fracture (𝑃𝑐𝑒𝑙𝑙), and the pressure drop 

between the two outer pressure ports (𝛥𝑃).  Integrating Eqs. 1 and 2 and applying the ideal 

gas law along with conservation of mass, Tek et al. (1962) derived the general forms of 

the Darcy and Forchheimer equations.  By assuming Eq. 3 and Eq. 4 hold true, Eq. 1 and 

Eq. 2, from their general forms, can be expressed as Eq. 5 and Eq. 6, 

 

𝑃1 = 𝑃𝑐𝑒𝑙𝑙 + .5𝛥𝑃……………………………………………………………………….(3) 

 

𝑃2 = 𝑃𝑐𝑒𝑙𝑙 − .5𝛥𝑃 …………………………...………………………...………………..(4) 
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2𝑃𝑐𝑒𝑙𝑙𝛥𝑃𝑀𝑔

2𝑍𝑅𝑇𝐿
=

µ𝜌𝑄

ℎ𝑓

1

𝐶𝑓
……………...…...………………………………………………(5) 

 

2𝑃𝑐𝑒𝑙𝑙𝛥𝑃𝑀𝑔ℎ𝑓

2𝑍𝑅𝑇𝐿µ𝜌𝑄
=

𝜌𝑄

µℎ𝑓

𝛽

𝑤𝑓
2 +

1

𝐶𝑓
………………….………………………………….…...(6) 

 

where 𝐶𝑓 is fracture conductivity, 𝑀𝑔 is the molar mass of nitrogen, ℎ𝑓 is the sample width, 

𝑍 is the gas compressibility factor, 𝑅 is the universal gas constant, 𝑇 is temperature, and 

𝑤𝑓 is the fracture width.  Therefore, in Darcy flow (Eq. 5), the inverse of the slope of the 

line representing  
2𝑃𝑐𝑒𝑙𝑙𝛥𝑃𝑀𝑔

2𝑍𝑅𝑇𝐿
 vs. 

µ𝜌𝑄

ℎ𝑓
 is equal to fracture conductivity.  For turbulent flow 

(Eq. 6), the inverse of the y-intercept while plotting 
2𝑃𝑐𝑒𝑙𝑙𝛥𝑃𝑀𝑔ℎ𝑓

2𝑍𝑅𝑇𝐿µ𝜌𝑄
 vs. 

𝜌𝑄

µℎ𝑓
 is equal to the 

conductivity of the fracture.  These are the two governing methods used to calculate 

fracture conductivity, with outputs from the experimental setup and nitrogen fluid 

characteristics.  The volumetric flow rates when each equation is applicable is highly 

dependent upon proppant concentration, which controls the fracture area open to flow and 

in turn, the gas velocity.  McGinley (2015) found that Darcy’s law provided a good fit for 

concentrations below .1 lb/ft2 with flow rates below 2 L/min.  For the rock properties 

study, all flow rates were kept within the Darcy flow regime. 
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2.3 Mechanical Properties 

The static Young’s modulus and Poisson’s ratio along with compressive strength 

were measured by means of a triaxial compression test. This test was conducted according 

to the American Society for Testing and Materials (ASTM) standard test methods for 

compressive strength and moduli of intact rock core specimens under varying states of 

stress and temperature, known as ASTM D7012-14.  Sample specimens were cut in the 

shape of cylinders with a diameter of one inch and a length of two inches.  All samples 

are tested using a confining stress of 2 MPa (≈290 psi) to ensure sample stability.  Multiple 

loading and unloading cycles were applied to rid the sample of any initial inelastic 

deformation.  The axial compressive stress was increased until sample failure in most 

instances.  The procedure and experimental setup has been thoroughly discussed by Jansen 

(2014), Perez-Pena (2015), and Knorr (2016).  Two linear variable differential 

transformers (LVDT) are used to measure axial deformation of the sample.  A chain gauge 

containing another LVDT measures a change in chord length, which is then converted to 

the circumferential deformation of the sample.  The LVDTs are sensitive to .0001 

millimeters of displacement. Figure 3 shows a fully prepared sample ready to be placed 

into the triaxial cell.   
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Figure 3-Fully prepared Austin Chalk sample with LVDTs and chain gauge to 

measure axial and radial strains. 

 

The sample is then placed inside the triaxial cell, where confining pressure is applied by 

hydraulic oil and a hydraulic piston provides the axial load.  Figure 4 shows the sample 

inside the cell, ready for the first loading cycle to be applied. 

 

 

Axial LVDTs 

Radial LVDT 

with chain gauge 

Shrink wrapped 

cylindrical sample 
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Figure 4-Sample inside the triaxial cell awaiting the first load cycle. 

 

It is vital to ensure the LVDTs are communicating with the GCTS software, have enough 

range to capture the expected deformation, and remain located within their optimal 

operating range of +/- 1.5 mm during the test.  Axial and radial strain values are then 

plotted from the results, with axial stress on the y-axis.  Average slope of the straight-line 

portion from each stress-strain curve is determined and the elastic moduli are calculated 

using Eq. 7 and Eq. 8 below, 

 

𝛦 = 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑐𝑢𝑟𝑣𝑒…………………….……………………………..……(7) 

 

𝜈 = −
𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑐𝑢𝑟𝑣𝑒

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑎𝑙 𝑐𝑢𝑟𝑣𝑒
= −

𝛦

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑎𝑙 𝑐𝑢𝑟𝑣𝑒
…………………..…………..(8) 
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where 𝛦 is Young’s modulus in psi-1 and 𝜈 is Poisson’s ratio.  𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 

is found from the straight-line portion on the plot of Axial Stress vs. Axial Strain while 

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 is found from the straight-line portion on the plot of Axial 

Stress vs. Radial Strain.  For consistency, the same stress ranges were used to determine 

both Young’s modulus and Poisson’s ratio for the same sample.  An example 

interpretation for a castlegate sandstone sample is shown in Figure 5 and Figure 6.   

 

 

Figure 5-Example Axial Stress vs. Axial Strain curve used to determine Young's 

modulus. 
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Figure 6-Example Axial Stress vs. Radial Strain curve used in the determination of 

Poisson's ratio. 

 

Notice the straight-line portion of the third loading stage is used, where all inelastic 

deformation has been removed from the rock sample.  Axial stress during the last loading 

stage was increased until sample failure to obtain a value for compressive strength. 

 

2.4 Brinell Hardness 

Brinell hardness is an indentation hardness test and its value is dependent on the 

diameter of an indentation on the rock’s surface caused by a spherical indenter of known 

diameter, under a controlled vertical force.  The test was conducted according to the 

Standard Test Method for Brinell Hardness of Metallic Materials, known as ASTM E10-
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14. Each sample was tested using a tungsten carbide indenter of 1/8” diameter.  Given that 

a ball indenter of this diameter was not listed in the standard, the two force/diameter ratios 

of 10 and 5 for a ball indenter with a diameter of 2.5 mm were used. Consequently, a force 

of 0.5 kN and 1 kN were applied in three separate locations along the sample surface. The 

indentation diameters were measured in two directions perpendicular to each other and 

subsequently averaged. The Brinell hardness value for each indentation was calculated 

and an average of all six indentations were used as the final value for each sample.  Knorr 

(2016) presents a systematic procedure for conducting the test using the GCTS PLT-100 

setup, pictured in Figure 7. 

 

 

Figure 7-Apparatus for conducting the Brinell hardness test with zoomed in view 

of the spherical indenter. 
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The device used to measure the diameters of the induced indentations was the Newage® 

5620 Series “HiLight” Brinell scope.  Once the indentation diameters are measured, Eq. 

9 is used to calculate the actual Brinell hardness number, HBW. 

 

𝐻𝐵𝑊 =
2𝐹𝑘𝑔𝑓

𝜋𝐷(𝐷−√𝐷2−𝑑2)
…………………………………………………………………..(9) 

 

𝐹𝑘𝑔𝑓 is the test force in kgf, 𝐷 is the diameter of the indenter ball in mm, and 𝑑 is the 

measured mean diameter of the indentation in mm.  

 

2.5 Mineralogy and Brittleness 

 Mineralogy of each shale outcrop was determined using X-ray powder diffraction 

(XRD) analysis.  Samples were crushed into powder using an agate mortar and pestle set 

and required to pass through a 200-µm sieve.  To compare mineralogy between 

formations, a brittleness index (Eq. 10) was used, defined simply as a volume fraction 

ratio of brittle minerals to the entire rock matrix. 

 

𝐵𝐼 =
𝑉𝐵𝑟𝑖𝑡𝑡𝑙𝑒

𝑉𝐵𝑟𝑖𝑡𝑡𝑙𝑒+𝑉𝑁𝑜𝑛−𝐵𝑟𝑖𝑡𝑡𝑙𝑒
…………………………………………………...……….(10) 

 

Quartz, dolomite, and pyrite were considered as the primary minerals that significantly 

contributed to the shale’s brittleness. 
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2.6 Fracture Face Surface Characterization 

 Fracture surfaces of each shale conductivity sample were distinguished based on 

their surface roughness, measured using a laser profilometer.  The profilometer apparatus 

along with a sample interpretation of results are shown in Figure 8.   

 

 

Figure 8-Surface laser profilometer apparatus and roughness results (reprinted 

from Enriquez-Tenorio et al. 2016). 

 

Roughness (ε) was calculated with Eq. 11, following the root mean square method. 

 

𝜀 = √
1

𝑛
∑ (𝑍𝑖 − 𝑍̅)2𝑛

𝑖=1 ……………………….………………………………..……....(11) 

 

𝑍̅ represents the average of all height readings across the fracture surface, whereas 𝑍 is 

the height reading at one of the 𝑛 points.  The device has a recordable height range of 1 

inch, precise to 0.000001 inches.  A grid size of 0.05 inches was used to sufficiently 

characterize the surface roughness.  
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2.7 Multiple Linear Regression 

 Multiple linear regression, also called ordinary least squares regression, is a 

statistical process which models a response (dependent) variable as a linear combination 

of a set of predictor (independent) variables.  This process was chosen to examine the 

relationship between fracture conductivity and multiple experimental variables because of 

its ability to handle nonlinear relationships and the ease of interpretability when compared 

to other methods.  Nonlinearity is handled by applying mathematical operations, such as 

the logarithm or square root, to transform the initial relationship between two variables 

into linearity.  It is assumed in this regression technique that: 

1. The response and predictor variables with transformations are linearly related. 

2. The errors are independent of each other (e.g. random samples or randomized 

experiments) and normally distributed, with a mean of zero. 

3. There is a constant variance among the residuals.   

Assumptions are checked by plotting the residuals (the difference between the predicted 

and the measured values) against all variables and verifying error normality.  All 

assumptions must be met to result in a valid model.  It is also vital that two or more 

predictor variables not be highly correlated with each other (no collinearity).  This is 

accomplished by mitigating the variance inflation factor of each predictor, which is a 

measure of how well that predictor is correlated with all other independent variables.  The 

variance inflation factor (VIF) for each predictor is represented by Eq. 12.  
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𝑉𝐼𝐹 =
1

1−𝑅2……………………………………………………………………….……(12) 

 

𝑅2 in this case is the correlation coefficient when that particular predictor is regressed with 

all other independent variables.  A variance inflation factor of less than five was 

considered acceptable in this study.  To evaluate parameter significance, each independent 

variable is ranked based on the P-values from the hypothesis test. When a predictor 

variable does not correlate to the response variable, the slope of the plot of response versus 

predictor, 𝛽, is zero.  This represents the null hypothesis.  On the other hand, the alternative 

hypothesis is 𝛽 is not equal to 0, meaning a significant relationship exists between the 

response and predictor variable. A P-value is essentially the probability that the null 

hypothesis is mistakenly rejected for the alternative.  Therefore, a low P-value is a strong 

indication of correlation between two variables.  A significance cutoff of .05 for the P-

value is used in this study.  It is important to mention that if the P-value is higher for one 

variable than another, it does not necessarily mean that variable has a higher association 

with the response.  This is because P-values depend on correlation between predictors, the 

slope of the regression line, and sample size.  For a response variable with multiple 

predictor parameters, a multiple linear regression prediction model has the general format 

of Eq. 13, 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 … 𝛽𝑘𝑋𝑘𝑖…………………………………………………..…(13) 
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where Yi is the response variable, Xki are multiple predictor variables, and 𝛽𝑖 are the slopes 

representing the relationship between that specific predictor and response.  

Transformation and interaction terms are added to make the linear relationship presented 

by Eq. 13.  It is important to mention an interaction between two input variables exists 

when the effect of one input (𝑋1) on the response variable (𝑌) is different for different 

values of the other input (𝑋2).  For example, injecting one more pound of sand (𝑋1) into a 

hydraulically fractured well has a larger effect on production (𝑌) when the well is shorter 

(𝑋2).  An interaction would be represented by 𝛽3𝑋1𝑖𝑋2𝑖 in Eq. 13. 
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3.  SHALE FRACTURE CONDUCTIVITY CORRELATION 

 

This section presents the generation of shale fracture conductivity correlations utilizing 

past experimental data.  The purpose of this robust statistical analysis is to predict shale 

fracture conductivity for various proppant loadings and rock properties under a range of 

closure stresses.  A plethora of rock properties were measured throughout these 

experiments, therefore, it is advantageous to first divide the sample size into smaller 

subsets to identify key drivers in the overall model.  With this in mind, the results are 

systematically presented in four subsets separated by the different formations.  Variable 

distributions are shown for each set along with an ordinary least squares regression 

analysis and parameter significance ranking specific to that subset.  Lastly, all data is 

combined for the overall correlation.  The parameters that were varied in each set of 

experiments are summarized in Table 2.  For example in the Barnett dataset, rock 

mechanical properties along with mineralogy and surface roughness were relatively 

constant between experiments while the effects of proppant size, concentration, and 

closure stress were analyzed. 

  

 

 

                                                 

 Reprinted with permission from “A Comparative Analysis of Rock Properties and Fracture Conductivity 

in Shale Plays” by Cody Kainer, Dante Guerra, Ding Zhu, and Alfred D. Hill, 2017.  Copyright 2017 by 

Society of Petroleum Engineers. 
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Table 2-The parameters varied in each set of experiments for the different shale 

formations. 

Formation 
Closure 
Stress 

Young's 
Modulus 

Poisson's 
Ratio 

Brinell 
Hardness 

Mineralogy 
Proppant 

Size 
Proppant 

Concentration 
Surface 

Roughness 

Barnett 
•         • •   

Fayetteville 
• • •   • • •   

Marcellus 
• • •   •   • • 

Eagle Ford 
• • • • • •   • 

 

All specimens used for testing were collected from outcrops of their respective formation.  

In every instance, care was taken to acquire samples deep within the face of the outcrop, 

less affected by weathering and humidity. 

 

3.1 Barnett Shale 

 The Barnett Shale formation is located in the Fort Worth Basin and tends to thin 

out moving south towards the Llano Uplift.  A rock quarry located in this general area 

near the southwest tip of the formation is where the Barnett outcrop samples were 

collected for this study.  The Barnett dataset focused primarily on the effects of varying 

proppant size and proppant concentration.  All samples were fractured along the bedding 

plane, which resulted in relatively flat faces with little asperity.  Differences in elastic 

moduli, Brinell hardness, and mineralogy between specimens were also deemed negligible 

as all rocks were collected in the same location and fractured in the same orientation.  

These parameters were examined in the study; proppant size, concentration, and closure 

stress.  55 individual conductivity tests are included.  The distributions of the three 

experimental variables for the Barnett shale samples are shown in Figure 9.  In this figure 
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and subsequent figures, “Count” refers to the number of data points included in the model 

at each condition. 

Figure 9-Distribution of Barnett experimental conductivity data. 

 

All conductivity tests experienced closure stresses ranging from 500 to 4,000 psi.  A broad 

range of proppant concentrations and mesh sizes were tested with a statistically significant 

amount of observations at each condition.  The proppant sizes used were 30/50, 40/70, 

and 100 mesh.  The proppant concentration varied from 0.03 to 0.15 lbm/ft2 of “Northern 

White” sand from Wisconsin.  The distribution of measured fracture conductivity as an 

overall response to the independent variables is displayed in Figure 10.  Barnett 

conductivity ranged from 5 to 1700 md-ft with a log normal distribution.  The majority of 

the values were in the 5 md-ft to 50 md-ft range. 
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Figure 10-Barnett fracture conductivity distribution. 

 

The ordinary least squares regression technique was applied to the sample set to obtain a 

best-fit equation (Eq. 14) as: 

 

ln(𝐶𝑓) = 5.97 − .00065𝜎𝑐 + 9.90𝐶𝑝 + 𝛽3,        𝛽3 = {

−1.07 𝑓𝑜𝑟 100 𝑚𝑒𝑠ℎ

0.008 𝑓𝑜𝑟
40

70
 𝑚𝑒𝑠ℎ

1.06 𝑓𝑜𝑟
30

50
𝑚𝑒𝑠ℎ

    …....(14) 

 

The equation-predicted conductivity is plotted against the measured conductivity, as 

displayed in Figure 11.  A perfect prediction would show actual and predicted values 

overlaying each other, with a slope of one.  The logarithm transformation was applied to 

conductivity because the conductivity declines exponentially with closure stress. 
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Figure 11-Barnett conductivity model results showing actual vs. predicted values. 

 

Displayed on Figure 11, the red and green lines represent 95% confidence and prediction 

intervals respectively.  For a given set of predictors, the confidence interval essentially 

says there is a 95% probability the mean of the predicted response values from the model 

would fall between the red lines.  The prediction interval is concerned with predicting 

individual responses as opposed to the mean.  Therefore, it is inherently always wider than 

the confidence interval.  This procedure also provides insight into which parameters are 

dominating conductivity behavior.  Figure 12 ranks the most statistically significant 

parameters based on their P-values.  The definition of a P-value was explained in the 

“Multiple Linear Regression” section. 
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Figure 12-Influential parameters on conductivity for the Barnett sample set. 

 

The red dashed line indicates the 0.05 cutoff for the minimum P-value required for 

significance.  As expected, closure stress dominates conductivity behavior followed by 

proppant mesh size and concentration.  Because no rock properties were varied, the only 

variables that showed to be influential were related to the proppant and sample loading 

conditions.  𝛽 values indicate that conductivity decreases with closure stress (negative 

slope), and increases with proppant mesh size and concentration (positive slope).  The 

Barnett Shale test data was excellent proof of a valid experimental set up and procedure, 

but was not robust enough to examine the effects of rock and fracture properties on 

conductivity. 

3.2 Fayetteville Shale 

 The Fayetteville shale is divided into three primary zones deemed the Upper, 

Middle, and Lower Fayetteville.  The Lower Fayetteville can further be divided in the 

LFAY, FL2, and FL3, as discussed by Harpel et al. (2012).  The Fayetteville outcrop 
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samples used in the study were taken from both the FL2 and FL3 layers, which are 

normally targeted for completion.  The Fayetteville tests involved varying proppant 

conditions, and in addition, different mechanical properties and mineralogy between the 

FL2 and FL3 layers.  Values of Young’s modulus and Poisson’s ratio were attributed to 

each of the two layers from triaxial tests.  Mineralogy was determined for each 

conductivity set in the original data from which specific values of brittleness index could 

be calculated for each test.  Distributions for all experimental variables are shown in 

Figure 13, containing 23 individual tests. Three different proppant sizes of 100, 30/70, 

and 40/70 mesh of Arkansas River sand were used at concentrations of 0.03 to 0.5 lbm/ft2.  

Only a few data points were obtained at 4,000 psi closure stress due to the rock’s fragility 

and brittleness under load.  Surface roughness of each layer was also measured on selected 

samples only.  Figure 14 shows the distribution of conductivity values for the Fayetteville 

samples.  The range was similar to the Barnett samples with a maximum value around 

2200 md-ft and most of the measurements between 8 md-ft to 50 md-ft.  A correlation 

equation (Eq. 15) was obtained analogous to that of the Barnett presented earlier (Eq. 14).  

Figure 15 shows the results from the correlation for the Fayetteville samples. 
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Figure 13-Distributions of Fayetteville experimental conductivity data. 
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Figure 14-Fayetteville fracture conductivity distribution. 

 

ln(𝐶𝑓) = −15.80 − .00075𝜎𝑐 + 2.92𝐶𝑝 + 38.61𝐵𝐼 + 𝛽4, 𝛽4 = {

−1.37 𝑓𝑜𝑟 100 𝑚𝑒𝑠ℎ

0.849 𝑓𝑜𝑟
30

70
 𝑚𝑒𝑠ℎ

. 518 𝑓𝑜𝑟
40

70
𝑚𝑒𝑠ℎ

….(15) 

 

 

Figure 15-Fayetteville conductivity model results showing actual vs. predicted 

values from the model. 
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An excellent match was obtained once again by applying the logarithm transformation to 

conductivity.  The confidence interval is slightly larger when compared to the Barnett 

sample results due to the smaller sample size for this data set.  Proppant mesh size, 

concentration, closure stress, and brittleness index were all shown to have significant 

relationships with conductivity (Figure 16). 

 

Figure 16-Influential parameters on conductivity for the Fayetteville sample set. 

 

Young’s modulus, Poisson’s ratio, and surface roughness did not appear to be significant 

simply due to the limited variability in measurements.  Only two values for each of these 

parameters were available to be inputted into the model.  Therefore, any one of these three 

parameters could have explained the same behavior in conductivity, and the solution 

would not have been unique.  Figure 16 shows proppant mesh size as the strongest 

predictor, but this should be observed with caution.  The small number of data points 

associated with the 40/70 mesh proppant is the reason why this P-value is so high.  

Nevertheless, it is still a strong predictor of conductivity.  According to the 𝛽 values, 
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conductivity decreases with increasing closure stress and increases with larger proppant 

mesh size, increased proppant concentration, and a higher brittleness index. 

3.3 Marcellus Shale 

 Marcellus samples were collected in two different locations in Elimsport and 

Allenwood, Pennsylvania, separated by approximately ten miles.  X-Ray Diffraction 

results showed similar mineralogy between the two locations and agreed with values found 

in the literature for the Marcellus.  The Elimsport samples were more weathered than the 

Allenwood samples.  The Marcellus data set was much more comprehensive in terms of 

rock mechanical properties and fracture surface characterization when compared to the 

Barnett and Fayetteville data and includes 40 individual conductivity tests.  The same 

mesh size was used for all tests and the conductivity sets were taken to much higher 

closure stresses up to 6,000 psi, where the effects of mechanical properties become more 

evident.  The varying values of Young’s modulus and Poisson’s ratio are due to the 

mechanical anisotropy present in the Marcellus shale.  Conductivity and triaxial tests were 

run at two different orientations, one parallel and the other perpendicular to the primary 

bedding plane.  This was done to account for the anisotropy and acquire a better range of 

properties.  Figure 17 shows the distributions of all dependent variables for the Marcellus 

sample set. 
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Figure 17-Distributions of Marcellus experimental conductivity data. 

 

Young’s modulus and Poisson’s ratio ranged from 1.10x106 to 4.41x106 psi and .16 to .28 

respectively.  Proppant concentration was varied from 0.01 to 0.1 lbm/ft2 at a mesh size 
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of 40/70.  Proppant type was the same “Northern White” sand used in the Barnett 

conductivity tests.  Fracture surfaces were relatively flat with roughnesses primarily 

between 0.06 and 0.18 inches.  Figure 18 plots the distribution of fracture conductivity 

measurements for the Marcellus experiments.  Values were log-normally distributed with 

a broad range from 5 md-ft to nearly 6,000 md-ft. 

 

 

Figure 18-Marcellus fracture conductivity distribution 

 

The results of the predicted conductivity using multiple linear regression (Eq. 16) against 

measured conductivity are displayed in Figure 19.  In this case, the prediction interval is 

relatively wider due to the higher variations in the data, but the model still provides 

valuable insight on which parameters are affecting fracture conductivity. 

 

ln(𝐶𝑓) = 3.99 − .000705𝜎𝑐 + 8.76 × 10−7𝐸 + 30.76𝐶𝑝 − 4.55𝜀 …………………(16) 
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Figure 19-Marcellus conductivity model results showing actual vs. predicted values. 

 

Variable significance is ranked based on their respective P-values and summarized in 

Figure 20, along with values for each 𝛽.  Proppant mesh size does not appear significant 

in this case because as mentioned earlier, a single mesh size of 40/70 was used throughout 

all experiments. 

 

Figure 20-Influential parameters on conductivity for the Marcellus sample set. 
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Similar results are obtained as we observed in the other shale samples that closure stress 

and proppant concentration are the key drivers in the conductivity behavior.  However, 

Young’s modulus and surface roughness were also found to be influential.  According to 

the positive 𝛽 coefficient, a higher modulus resulted in higher conductivity values overall.  

Surface roughness was significant in this case due to the lower proppant concentrations of 

0.01 lb/ft2.  These values are within the proppant monolayer range where surface asperities 

can create pinch points in the fracture as well as tortuous flow paths, which inhibit 

conductivity.  This agrees well with a 𝛽 value of -4.55 for surface roughness, exhibiting 

an inverse relationship with conductivity.  Poisson’s ratio was found to have no 

statistically valid effect on fracture flow performance.  Interaction terms between Young’s 

modulus, surface roughness, and proppant concentration were also investigated but none 

were found to be statistically significant.   

3.4 Eagle Ford Shale  

 The Eagle Ford shale has five facies, A, B, C, D, and E.  Some of the facies are 

further divided into sub facies as defined by Donovan et al. (2012).  The Eagle Ford rock 

samples for this study were collected in Lozier canyon and Antonio creek, located in 

southwest Texas near the city of Langtry.  All facies of the Eagle Ford shale (A, B, C, D, 

and E) were procured with emphasis placed on the high total organic content layer B.  This 

dataset was the most robust compared to the other three shale formations.  Each of the five 

sub facies of the Eagle Ford Shale had different mineralogical compositions as well as 

mechanical properties.  As in the Marcellus data set, varying fracture orientations were 

also investigated, adding even more variability in the rock properties.  Proppant 
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concentration was held constant at 0.1 lb/ft2 throughout the experiments and mesh size 

was varied between 30/50 and 100 mesh of brown “Brady” sand.  All distributions of the 

independent variables are displayed in Figure 21-Distributions of Eagle Ford 

experimental conductivity data..  Conductivity data for the 35 conductivity tests is shown 

in Figure 22, with a log normal distribution up to 12,000 md-ft. 

 

 

 

 

 

 

 

 

Figure 21-Distributions of Eagle Ford experimental conductivity data. 
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Figure 22-Eagle Ford fracture conductivity distribution. 

 

The logarithm transformation was applied to conductivity and ordinary least squares 

regression was conducted (Eq. 17).  The results of actual conductivity versus predicted 

Figure 21 Continued-Distributions of Eagle Ford experimental 

conductivity data. 
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conductivity are shown in Figure 23.  A relatively strong correlation was obtained, with 

constant variance from the regression line across all values of the response variable. 

 

ln(𝐶𝑓) = 8.51 − .00061𝜎𝑐 + .024𝐵𝐻𝑁 − 1.76𝐵𝐼 − 10.48𝜈 + 𝛽5,        𝛽5 = {
−.331 𝑓𝑜𝑟 100 𝑚𝑒𝑠ℎ

. 331 𝑓𝑜𝑟 
30

50
 𝑚𝑒𝑠ℎ

 (17) 

 

 

Figure 23-Eagle Ford conductivity model results showing actual vs. predicted 

values. 

 

Parameters were then ranked based on their P-values from the model and summarized in 

Figure 24.  Closure stress was the primary driver behind the change in conductivity 

followed by proppant mesh size, Poisson’s ratio, Brinell hardness number, and the 

brittleness index.  Proppant concentration is not shown here because this value was not 

varied in this set of experiments, as stated earlier. 
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Figure 24-Influential parameters on conductivity for the Eagle Ford sample set. 

  

The effect of proppant mesh size agreed well with what was observed in the other 

formations as conductivity increases with larger proppant.  However, Poisson’s ratio 

showed a significant impact with a negative relationship to conductivity, opposite to what 

was observed on Young’s modulus in the Marcellus sample set.  This could be attributed 

to the fact that collinearity existed within the data between Young’s modulus, Poisson’s 

ratio and Brinell hardness.  Nevertheless, even with the linearly related predictors removed 

from the model, Poisson’s ratio still proved to be a much more significant predictor of 

conductivity than Young’s modulus.  Brinell hardness was found to have a positive 

relationship with conductivity.  A rock with higher Brinell hardness is generally less 

susceptible to proppant embedment as closure stress increases, which leads to a smaller 

reduction in fracture aperture, and ultimately conductivity.  Even though it has been shown 

a power law relationship exists between embedment depth and Brinell hardness, the log 

transformation was not applied in this case. This was because the hardness values were 



 

45 

 

relatively high and covered such a small range, therefore, the relationship with 

conductivity appeared linear and resulted in a better fit. 

 

3.5 Overall Prediction Correlation 

 Data from the Fayetteville, Marcellus, and Eagle Ford conductivity tests were 

combined to generate a correlation of fracture conductivity to various proppant conditions 

and rock mechanical properties.  This was accomplished using the same linear regression 

technique but on combined data sets of the three formations.  The Barnett sample set was 

essentially a study on proppant effects and did not include any rock properties.  Therefore, 

it was excluded from contributing to this correlation.  Proppant bulk density and initial 

proppant pack permeability instead of proppant type and mesh size were used as drivers 

for the model in an effort to make the correlation more encompassing to other proppant 

types.  Proppant permeability at zero stress was estimated using the correlation presented 

in Barree et al. (2016).  The correlation equation (Eq. 18) based on all valid data is: 

 

ln(𝐶𝑓) = 6.82 − .000686𝜎𝑐 + 1.258 ln(𝐸) + .01 𝐾0 − .191𝜌𝑏𝑢𝑙𝑘 + 7.45𝐶𝑝……….(18) 

 

This correlation of fracture conductivity, 𝐶𝑓, includes as variables, the effective fracture 

closure stress, 𝜎𝑐, Young’s modulus, 𝐸, proppant permeability at zero stress, 𝑘0, proppant 

bulk density, 𝜌𝑏𝑢𝑙𝑘, and proppant concentration, 𝐶𝑝.  The predicted conductivity is plotted 

against the measured conductivity, shown in Figure 25, with a satisfactory fit.  Figure 26 

shows the variable significance ranking. 
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 The correlation presented here is based on an extensive experimental study and 

careful statistical regression analysis.  The independent variables’ impacts on conductivity 

are confirmed with physical explanations.  The correlation also ranks the importance of 

major parameters on conductivity behavior.  This can be used as a reference to design 

proppant conditions based on formation properties and to estimate the resultant 

conductivity of a fracture job. 

 

Figure 25-Combined data set model results showing actual vs. predicted values. 
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Figure 26-Influential parameters on conductivity for the combined data set. 

 

The log transformation applied to Young’s modulus in the final model resulted in a better 

fit because a broader range of values was available and the power law relationship between 

modulus and conductivity loss was more evident.  This relationship is likely due to 

Young’s modulus being correlated with another mechanical property concerned with 

inelastic stress-strain behavior.  Poisson’s ratio and Young’s modulus were the only two 

mechanical properties available across the three shale formations to include in the model.        
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4.  EXPERIMENTAL RESULTS AND DISCUSSION OF ROCK MECHANICS 

EFFECTS ON FRACTURE CONDUCTIVITY  

 

Even though mechanical properties were varied in the shale conductivity experiments, 

many other variables were present which made it difficult to pinpoint the effects each 

property was having on conductivity.  In addition, there were significant gaps in the data 

where important mechanical properties were not measured for certain formations.  For 

example, Brinell hardness was only measured for the Eagle Ford dataset and compressive 

strength only for the Marcellus samples.  This section presents results from a new rock 

mechanics study, which isolated the properties of Brinell hardness, Young’s Modulus, 

Poisson’s ratio, and compressive strength.  The relationship between these parameters and 

fracture conductivity is discussed along with validation for how these properties should 

be handled in the conductivity correlations.  The four formations investigated were Austin 

chalk, Lueders limestone, Crab Orchard sandstone, and Castlegate sandstone.  These rocks 

were readily available and offered a wide range of mechanical properties, which were the 

primary concerns in sample selection. 

 

4.1 Fracture Conductivity Results 

 Three conductivity samples from each formation were initially obtained for 

testing.  Due to difficulties with hydraulic pump failures and premature sample failure, 9 

of the 12 tests were ran successfully and are presented here.  Each conductivity curve is 

shown on a semi-log graph, with closure stress on the x-axis ranging from 0 to 8,000 psi.  
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Exponential fits are applied to each curve (straight-line on semi-log) and the R-squared 

values are shown.  As a reminder, all tests used the same 30/50 mesh ceramic proppant at 

a concentration of .3 lb/ft2 on milled fracture surfaces.  Results for individual conductivity 

tests are shown in Figures 27-30, with respect to formation type. 

 

 

Figure 27-Austin chalk conductivity results. 
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Figure 28-Castlegate sandstone conductivity results. 

 

 

 

Figure 29-Lueders limestone conductivity results. 
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Figure 30-Crab Orchard sandstone conductivity results. 

 

Overall, results were highly repeatable between tests for the same rock type.  Small 

variations in initial conductivity values at lower closure stresses were likely due to slight 

differences in the initial proppant distribution inside the fracture.  However, the decline of 

conductivity from this initial value was mostly consistent for the same rock type.  Figure 

31 summarizes these results on the same plot for easier cross comparison, with average 

conductivity values at each closure stress presented. 
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Figure 31-Average conductivity values at each closure stress for the four different 

rock types. 

 

Initial average conductivity values at 500 psi closure stress were essentially the same for 

the Crab Orchard, Lueders, and Castlegate samples.  This was expected due to the same 

proppant loading conditions and very little proppant embedment taking place at a lower 

closure stress.  However, the Austin chalk samples already showed signs of initial fracture 

width reduction at 500 psi and experienced the steepest decline of conductivity as closure 

stress was gradually increased.  Crab Orchard and Lueders samples experienced similar 

conductivity behaviors with the shallowest declines.   The change in displacement of the 

hydraulic piston from its initial position as closure stress is increased confirms the 

behavior seen in the conductivity curves.  Figure 32 shows the average change in piston 

displacement for each of the four rock types during conductivity testing.  
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Figure 32-Average change in piston displacement showing the steepest change of 

movement in the Austin chalk samples. 

 

The Austin chalk samples showed the most dramatic change of approximately 4.5 mm at 

4,000 psi closure stress, followed by the Castlegate sandstone samples.  Lueders and Crab 

Orchard showed the least amount of displacement and followed similar trends with each 

other. These curves were generated by monitoring the position of the hydraulic piston used 

to apply vertical stress to the fracture, at a precision of 0.0001 mm.  Included in this 

displacement value is axial contraction of the rock matrix, compaction of the proppant 

pack, and embedment of the proppant grains into the fracture face.  Therefore, these 

displacement curves cannot be directly attributed to a reduction in fracture width, but still 

give valuable insight helping to explain differences in conductivity behavior.  

Displacement curves would be useful in comparing before and after the fracture has been 

exposed to a liquid, as differences between the two would be directly related to increased 

proppant embedment from surface interactions with the liquid. 
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4.2 Brinell Hardness Results 

 Average values of Brinell hardness from six tests on each rock type are shown in 

Table 3.  For each sample, two different ratios of applied force to the diameter of the 

indenter were used to ensure accuracy of the measurements. 

Table 3-Average Brinell hardness values for each rock type. 

 

 
 

Hardness values across the four rock types had a wide range from 8 to 275 kgf/mm2, with 

Crab Orchard as the hardest surface followed by Lueders, Castlegate, and Austin chalk as 

the softest.  Indentation depths are also shown for the .5 kN tests, calculated using Eq. 19 

below,    

ℎ =
𝐷−√𝐷2−𝑑2

2
………………………………………………………………………….(19) 

where 𝐷 is the diameter of the indenter ball in mm, and 𝑑 is the measured mean diameter 

of the indentation in mm.  

4.3 Triaxial Test Results 

 Triaxial compressive tests were performed on at least two cylindrical one inch 

diameter by two inches tall core plugs from each rock type.  A 2-Mpa (≈290 psi) confining 

pressure was applied to each sample during testing to aid in maintaining sample integrity.  

Multiple loading cycles were used to remove any inelastic behavior from the rock matrix 

Formation Average HBW, kgf/mm2

Indentation depth 

at .5 kN, mm

Crab Orchard Sandstone 272.72 0.02

Lueders Limestone 47.41 0.11

Castlegate Sandstone 13.83 0.37

Austin Chalk 8.40 0.61



 

55 

 

before determining the elastic moduli.  Once sufficient stress-strain curves were obtained, 

it was attempted to make the sample undergo compressive failure and obtain the strength 

of the rock.  All raw stress-strain data for each sample along with interpretations of the 

curves can be found in the Appendix.  Figures 33-35 show the results for average Young’s 

modulus, Poisson’s ratio, and compressive strength respectively across the four different 

rock types, with error bars representing the standard deviation between multiple 

measurements.      

 

 

Figure 33-Young's modulus average results with standard deviations. 
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Figure 34-Poisson's ratio average results with standard deviations. 

 

 

 

Figure 35-Compressive strength average results with standard deviations 
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Once again, a broad range in properties were obtained across the four different rock 

types.  Variability between individual tests was low due to using all homogeneous rocks 

and carefulness taken during sample preparation.  It is important to note that the Crab 

Orchard samples were never brought to the point of compressive failure due to fear of 

damaging the testing equipment.  However, the highest stress experienced by these 

samples while remaining intact was 23,200 psi.  The mechanical properties results for 

individual samples are summarized in the Appendix. 

 

4.4 Effects of Rock Mechanical Properties on Fracture Conductivity 

 This section discusses each individual mechanical property’s role in affecting 

fracture conductivity based on these experimental results and previous works.  Validation 

for how each are incorporated into the correlation models is also provided. 

 

4.4.1 Young’s Modulus 

 Young’s modulus, commonly referred to as the elastic modulus, is a measure of 

how stiff a material behaves.  It is the ratio between the amount of axial stress applied and 

the resulting strain/deformation the material experiences in the axial direction.  This 

parameter only explains the stress-strain relationship during elastic behavior of the 

material.  For a rock to behave elastically, it must return to its original shape and position 

once the applied axial stress is removed.  As stresses increase, the rock may undergo 

inelastic/plastic deformation in which case Young’s modulus is no longer meaningful.  

Alramahi and Sundberg (2012) studied the relationship between Young’s modulus and the 
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degree of proppant embedment in shales, and were able to derive the power law 

relationship shown in Figure 36.      

 

Figure 36-Power law relationship between proppant embedment and static Young's 

modulus at 5,000 psi closure stress (reprinted from Alramahi and Sundberg 2012). 

  

However, these results are counter intuitive as proppant embedment is a result of inelastic 

deformation at the fracture face, at which point Young’s modulus no longer applies (Perez-

Pena 2015).  Embedment should be more closely associated with the yield point or 

compressive strength of the rock matrix, both of which are properties associated with the 

inelastic portion of the stress-strain curve.  This power law relationship is likely the result 

of collinearity between Young’s modulus and another mechanical property, none of which 
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were reported in the paper.  The authors were also able to relate their embedment tests to 

fracture conductivity experiments.  Rocks with severe proppant embedment (low 

modulus) experienced steep declines and high losses of conductivity with increased 

closure stress.  Figure 37 compares the average exponential decline rate from the 

conductivity experiments with average values of Young’s modulus. 

 

 

Figure 37-Conductivity decline rate vs. Young's modulus with Austin Chalk as 

outlier. 

 

The Austin chalk is an important outlier in this plot, which had nearly twice the rate in 

conductivity decline as the Castlegate sandstone, but also approximately double the value 

of static Young’s modulus.  Therefore, confirming the false relationship between elastic 

modulus and conductivity decline due to proppant embedment.  In order to properly 

understand the effect of Young’s modulus, we must first be able to visualize what is 
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occurring inside the fracture as closure stress is increased.  Figure 38 represents a typical 

induced fracture with surface asperities and a low proppant concentration.   

 

 

Figure 38-Typical proppant distribution at low proppant concentrations in an 

induced fracture (reprinted from Kamenov 2013). 

 

Due to the presence of surface asperities and a low number of proppant layers, there exists 

regions inside the fracture of rock-rock interactions.  In these areas, fracture aperture 

reduction is due to an axial strain of the rock matrix, which could best be 

explained/quantified by the elastic modulus of the rock.  The magnitude and presence of 

this effect is highly dependent on the number of proppant layers, and hence the proppant 

concentration inside the fracture.  At high concentrations, rock-rock interactions between 

the fracture faces may be non-existent and the dominant cause of aperture reduction with 

respect to the rock properties becomes proppant embedment.  Because the magnitude of 

the effect of Young’s modulus is dependent on proppant concentration, the presence of an 

interaction term between these two parameters should be investigated in the predictive 

models for conductivity.     
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4.4.2 Brinell Hardness   

 As stated earlier, Brinell hardness is a surface indentation test quantifying how 

resistive the rock’s surface is to embedment of a spherical indenter.  Since Brinell hardness 

is being used to help explain fracture conductivity reduction due to proppant embedment, 

it is important to understand the relationship between the Brinell hardness number and the 

actual depth of the indentation.  Figure 39 shows the indentation depth of the 1/8” 

spherical indenter used in the test under 0.5 kN of applied force versus the actual Brinell 

hardness number.  These calculations were made using Eqs. 7 and 13 presented previously 

and neither values were directly measured.   

 

 

Figure 39-Indentations Depth vs. Brinell Hardness displaying the inherent power 

law relationship. 
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Due to the inherent relationship between indentation depth and Brinell hardness, a perfect 

power law relationship exists between these two values.  Obviously, indentation depth 

varies for the same Brinell hardness value based on indenter size and applied force, 

however, the power law relationship always holds true.  This is important to clarify as it 

determines the expected response in conductivity behavior and how the Brinell hardness 

parameter should be treated in any statistical model.  Figure 40 displays the relationship 

between Brinell hardness and the rate of decline in conductivity from this study. 

 

 

Figure 40-Conductivity decline rate vs. Brinell hardness showing a much better 

relationship than Young’s modulus, with Austin chalk no longer an outlier. 

 

Analogous to Figure 37, which compares the elastic modulus, Figure 40 shows an 

improved relationship between Brinell hardness and conductivity decline.  This is 

expected due to Brinell hardness better quantifying plastic deformation at the fracture 

surface and its underlying power law relation with indentation depth.  Therefore, the 
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natural log transformation should be applied to both fracture conductivity and Brinell 

hardness to linearize their relationship in the regression model.    

 

4.4.3 Compressive Strength 

 Compressive strength is the point at which a rock undergoes either ductile or brittle 

failure under increasing compressive stresses.  Compressive strength in this study was 

taken at the point where the slope of the stress-strain curve was approximately zero.  As 

mentioned previously, this parameter is associated with inelastic deformation of a material 

as opposed to Young’s modulus, which is concerned with the elastic behavior region.  

Compressive strength can vary significantly with the amount of confining pressure a 

material is experiencing.  2-MPa confining pressure on the samples was used throughout 

the triaxial tests.  Figure 41 shows the relationship between compressive strength and the 

exponential decline rate of the fracture conductivity.  As a reminder, the Crab Orchard 

samples were not taken all the way to failure and the value displayed here is the highest 

stress the samples underwent. 
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Figure 41-Conductivity decline rate vs. Compressive strength of the rock matrix. 

 

Once again, a power law relationship exists with compressive strength explaining the rate 

of decline in conductivity.  Similar trends with both Brinell hardness and compressive 

strength is a strong indication that these two parameters could be linearly related.  Figure 

42 displays the relationship between Brinell hardness and compressive strength.   
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Figure 42-Displays linearity between Brinell hardness and Compressive strength. 

 

As can be seen in Figure 42, a strong linear relationship exists between these two variables.  

Therefore, both of these parameters have the ability to explain the same behavior in 

fracture conductivity and only one should be included in the regression model to avoid 

collinearity between predictors.  Brinell hardness is given priority since it focuses on the 

behavior at the fracture face itself, as opposed to the entire matrix of the rock.  Brinell 

hardness should be more sensitive to proppant embedment as well as any fluid effects 

occurring on the fracture surface.  Compressive strength is still valuable in instances where 

Brinell hardness is highly uncertain and because of its ability to be estimated from 

downhole sonic logs.   
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4.4.4 Poisson’s Ratio   

 Poisson’s ratio quantifies a materials tendency to elastically deform 

perpendicularly to an applied axial stress. It is calculated as the ratio of axial strain to 

lateral strain.  In the field, Poisson’s ratio is important as it determines the magnitude of 

closure stress on a vertical fracture transferred from the overburden stress.  Figure 43 

represents a typical underground stress state where the overburden stress from overlying 

rock layers is the maximum principal stress. 

 

 

Figure 43-Typical in the field stress state resulting in a vertical fracture. 

 

Fractures open in the direction of and propagate perpendicular to the minimum principal 

stress.  In this case of a vertical fracture and the assumption of plane strain, the minimum 

horizontal/closure stress can be estimated with Eq. 20, 

 

𝜎2 = 𝜎𝑚𝑖𝑛 ≅
𝜈

1−𝜈
(𝜎1 − 𝛼𝑝𝑝) + 𝛼𝑝𝑝 + 𝜎𝑒𝑥𝑡   …………....……………...…………….(20) 



 

67 

 

where 𝜎𝑚𝑖𝑛 is the minimum horizontal stress, 𝜈 is Poisson’s ratio, 𝜎1 is overburden stress, 

𝛼 is Biot’s constant, 𝑝𝑝 is pore pressure inside the fracture, and 𝜎𝑒𝑥𝑡 are any tectonic 

stresses present.  The main takeaway from this equation is that Poisson’s ratio is used to 

transform the vertical overburden stress into an effective horizontal stress acting on the 

fracture.  However, during the conductivity experiments, principal stresses and their 

magnitudes relative to the fracture are as shown in Figure 44. 

 

 

Figure 44-Experimental stress state for a pre-existing horizontal fracture. 

 

In the experimental case, a horizontal fracture is already present before any stresses are 

applied. 𝜎1, the closure and max principal stress on the fracture, is manually controlled by 

the hydraulic piston applying a distributed force to the sample.  Because the sample is 

confined in all directions by the conductivity cell, plane strain could be assumed and the 

horizontal stresses become a function of 𝜎1 and Poisson’s ratio, as in Eq. 20.  However, 

the assumption of plane strain may not be entirely valid as the epoxy surrounding the 
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sample can deform into any void spaces where the flow inlet/outlet and pressure ports 

exist.  Nonetheless, using the principle behind Eq. 20 and assuming plane strain, an 

induced horizontal stress on the sample from the vertical force applied by the piston can 

be estimated.  Results are shown in Figure 45 for a range of Poisson’s ratios at a closure 

stress of 5,000 psi.    

 

 

Figure 45-Estimated horizontal stresses experienced by the sample with respect to a 

range of Poisson's ratio at 5,000 psi closure stress. 

 

It is well known that rock mechanical properties can change drastically based on the 

amount of horizontal confining pressure the rock is experiencing (Blanton 1981).  Due to 

the large range and relatively high values of induced horizontal stress inside the 

experimental setup, Poisson’s ratio could be playing a significant role by altering the 

mechanical properties at the fracture face.  However, no meaningful correlations between 

fracture conductivity and Poisson’s ratio were found in this study.       
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5.  CONCLUSIONS AND RECOMMENDATIONS 

  

5.1 Conclusions 

 This work presents the generation of a shale fracture conductivity correlation based 

on a large database of experimental data from previous researchers at Texas A&M 

University.  A comprehensive study of the effects that different mechanical rock properties 

have on fracture conductivity was performed.  Previous experimental variables were 

eliminated and the properties of Young’s modulus, Poisson’s ratio, compressive strength, 

and Brinell hardness were isolated during conductivity testing.  The resulting relationships 

between these parameters were analyzed to improve prediction of conductivity and future 

characterization of rock mechanical properties.  The main conclusions of this work are 

summarized below: 

(1)   Brinell hardness and compressive strength are highly correlated with 

 fracture conductivity decline caused by inelastic deformation of the fracture face,

 resulting in proppant embedment and consequently a reduction in aperture. 

(2)   Closure stress and proppant loading conditions have a much greater influence on 

 fracture conductivity when compared to rock mechanical properties and fracture 

 surface characteristics.    

(3)  Young’s modulus is a highly significant predictor of fracture conductivity in 

 shales.  A higher modulus correlated to increased conductivity at each closure 

 stress.   
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(4) Brinell hardness was found to have a power law relationship with fracture 

 conductivity decline in the rock properties study, as well as a direct correlation 

 with conductivity in the Eagle Ford data set. 

(5) The final correlation model presented can be used to estimate fracture 

 conductivity in various shale plays.  It is important to keep in mind the 

 distributions of the input data into the model, as well as the experimental 

 conditions under which the conductivity was measured when applying this 

 correlation for prediction purposes.  

  

5.2 Recommendations and Limitations 

This work can be improved upon and expanded in many ways.  The following 

contains limitations to this study and recommendations for future work in this area: 

(1) Brinell hardness and compressive strength should be standard mechanical 

properties measured on conductivity samples to better explain trends in 

conductivity decline. 

(2) A correction for water damage should be added to the conductivity correlation.  

 This could be accomplished by combining previous and future conductivity 

 experiments on shales tailored towards quantifying the recovery of conductivity 

 after water exposure and relating this quantity to mineralogy of the rock or other 

 properties. 
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(3) Brinell hardness could be measured with and without exposure to water in order 

 to quantify the effect of water damage on many different shales, as opposed to 

 running full conductivity tests with water.  

(4) Gaps in the historical shale conductivity data such as Brinell hardness and 

compressive strength could be filled to better refine the correlation and make it 

applicable to a broader range of conditions. 

(5) Empirical correlations are just the first step in attempting to model these 

 processes physically and should provide an insightful foundation for future 

 theoretical work in this area.  
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APPENDIX 

 Lueders Limestone 

 

Young's 
Modulus, 

psi 
Poisson's 

Ratio 

Ultimate 
Compressive 
Strength, psi 

Sample 1 3.42E+06 0.185 8190 

Sample 2 3.30E+06 0.226 9260 

Sample 3 - - - 

Average 3.36E+06 0.206 8725 

Standard Deviation 8.53E+04 0.029 757 

Percent Standard Deviation 2.54% 14.27% 8.67% 

 

 Crab Orchard Sandstone 

 

Young's 
Modulus, 

psi 
Poisson's 

Ratio 

*Ultimate 
Compressive 
Strength, psi 

Sample 1 4.91E+06 0.348 >15500 

Sample 2 5.28E+06 0.374 >18850 

Sample 3 5.44E+06 0.390 >23200 

Average 5.21E+06 0.371 - 

Standard Deviation 2.68E+05 0.021 - 

Percent Standard Deviation 5.15% 5.78% - 

 

 

 Castlegate Sandstone 

 

Young's 
Modulus, 

psi 
Poisson's 

Ratio 

Ultimate 
Compressive 
Strength, psi 

Sample 1 1.15E+06 0.293 4495 

Sample 2 1.06E+06 0.279 4358 

Sample 3 - - - 

Average 1.10E+06 0.286 4427 

Standard Deviation 6.26E+04 0.010 97 

Percent Standard Deviation 5.67% 3.40% 2.19% 

 

*Samples never brought to failure 
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 Austin Chalk 

 

Young's 
Modulus, 

psi 
Poisson's 

Ratio 

Ultimate 
Compressive 
Strength, psi 

Sample 1 1.74E+06 0.157 2703 

Sample 2 2.21E+06 0.193 2130 

Sample 3 - - - 

Average 1.98E+06 0.175 2417 

Standard Deviation 3.31E+05 0.025 405 

Percent Standard Deviation 16.74% 14.52% 16.77% 
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