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ABSTRACT 

 Mate-choice related behaviors are highly variable and sensitive to a wide array of 

environmental and social factors. Therefore, the stability of a given behavior can largely 

depend on the level of environmental variability within a population. My research aims 

to understand the mechanisms whereby behaviors are influenced by social conditions 

and other environmental factors. I first describe the level of preference variation within a 

population of swordtail fish across time and small-scale space. Over three years, I found 

marked, but highly variable differences in female mating preferences between sampling 

sites. These results highlight the importance of accounting for small-scale heterogeneity 

when modelling and measuring the evolution of mating preferences and display traits, 

and may help explain why empirical measures of sexual selection via mate choice are 

often very weak. Next, I take advantage of the socially-sensitive olfactory mating 

preferences of female Xiphophorus birchmanni to elucidate the neurogenetic 

mechanisms by which these preferences are learned. I compare whole brain and 

olfactory epithelial gene expression profiles of females that were socially isolated from 

adults, or exposed to either adult conspecifics or members of the closely related X. 

malinche. I found that conspecific-exposed females experienced an upregulation of 

genes with functional roles in immune response and the detection of visual and olfactory 

cues. Meanwhile, heterospecific-exposed females showed upregulation of genes 

involved in neurogenesis and synaptic transmission, suggesting a prioritization of 

processing sensory cues. Lastly, I used this same system to determine the role of cultural 

transmission - the intergenerational transfer of information - in shaping male and female 
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personalities. I found that both males and females learn to develop boldness behaviors 

similar to those of their exposure models. These culturally-sensitive personalities are 

likely to have important mate choice and evolutionary implications. Together, these 

studies describe the complex direct and indirect relationships between the environment 

and female mate choice.   
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CHAPTER I 

INTRODUCTION 

 

 A major goal in evolutionary biology is to determine the behavioral and genetic 

mechanisms that drive reproductive isolation and the maintenance of species. In many 

closely related species, reproductive isolation occurs due to the evolution of behavioral 

barriers, which often develop long before postmating isolation can evolve (Grant and 

Grant 1997). Premating isolation via mate choice depends on divergent behavioral 

phenotypes between species. Various evolutionary models suggest a set of possible 

explanations for the formation of premating barriers. For example, ecological 

heterogeneity could result in divergent mating preferences for ecologically-relevant traits 

(Schluter 2001, Reynolds and Fitzpatrick 2007), or the development of divergent 

personalities that are locally adaptive (Ingley and Johnson 2014). Alternatively, a 

premating barrier could arise from the co-evolution of divergent mating signals and mate 

preferences from signal-receiving individuals, irrespective of ecological function 

(Verzijden, Lachlan et al. 2005). Mating preference functions and personalities- 

consistent differences in behavior over time and across contexts (Ingley and Johnson 

2014)- are often environmentally shaped and can be maintained through indirect genetic 

effects such as learning (Servedio, Sæther et al. 2009). Therefore, the stability of a given 

behavior can largely depend on the level of environmental variability within a 

population. My research aims to understand the mechanisms whereby behaviors are 

coupled to fluctuating environmental factors, or context-dependent. 
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Context-dependent mating preferences can change an individual’s relative fitness 

by altering mate choice dynamics in response to its environment or physiological state. 

For example, in the lesser wax moth, Achroia grisella, females prefer to mate with males 

that produce calls with higher pulse rates. However, gene × environment (G × E) 

interactions result in different pulse rate thresholds females can detect relative to 

temperature, which could result in differential male reproductive success across 

environments (Rodríguez and Greenfield 2003). These G × E interactions in response to 

fluctuating environments can therefore maintain genetic variance in receiver preferences 

and signaler traits, providing a resolution to the paradox of the lek, the observation that 

choosers continue to choose courters based on additive genetic benefits for the offspring, 

despite the fact that directional mate choice depletes additive genetic variation in courter 

traits, thus preventing female choice from resulting in any genetic benefit (Kirkpatrick 

and Ryan 1991).  

Context-dependent mate preferences have been shown to occur in response to 

several environmental variables [transmission spectra: (Seehausen and van Alphen 1998, 

Maan, Seehausen et al. 2010); seasonal effects: (Chaine and Lyon 2008); and social 

environment: (Alonzo and Sinervo 2001, Verzijden and Rosenthal 2011)], highlighting 

the ubiquity and advantages of plastic mate preferences in response to social and 

ecological changes in nature. However, the evolution of secondary sexual traits through 

female mate choice requires homogeneity in preference functions within populations and 

consistency in this function throughout time (O'Donald 1983, Mead and Arnold 2004). 

Therefore, plasticity in mating preferences could affect the strength of sexual selection 
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and evolution for elaborate traits (Janetos 1980, Gibson and Langen 1996, Cotton, Small 

et al. 2006, Rodríguez, Boughman et al. 2013).  

In order to understand the role of sexual selection via mate choice on a given trait 

within a population, it is necessary to determine the level of heterogeneity, in space and 

time, of a given preference for that trait. However, few studies have ever measured the 

standing temporal and spatial variation in mating preferences within a natural 

population. In Chapter II, I take advantage of a unique system to decouple temporal, 

spatial, and genetic effects on preferences in the wild. Hybrid swordtails (Xiphophorus 

birchmanni x X. malinche) at the Calnali-mid locality in Calnali, Hidalgo, Mexico fall 

into two assortatively-mating genetic clusters distributed between two adjacent pools 

separated by a small natural barrier less than 2 meters high. This distance is small 

enough that individuals from each pool are genetically indistinguishable (Culumber, 

Fisher et al. 2011, Schumer, Powell et al. 2017). Over three successive years, I measured 

pool-level differences in a previously established female olfactory preference for male 

nutritional condition (Fisher and Rosenthal 2006a, Fisher and Rosenthal 2006b), as well 

as differences in male phenotypic distributions and female reproductive allotment and 

condition. The results from this study join previous work suggesting that heterogeneity 

in expressed preferences could weaken sexual selection. Population structure and 

environmental heterogeneity are ubiquitous in nature. These results highlight the 

importance of replicating mate choice studies across both time and even small spatial 

scales in order to gain a better understanding of the contribution a mating preference for 

a given trait has on sexual selection. 
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 Despite the large behavioral literature on context-dependent female mate choice, 

there is relatively little research focusing on the neurogenetic mechanisms that link the 

environment to a given mating preference. Mating preferences are often developed 

through learning processes, and can thereby be influenced by an individual’s social 

environment throughout life (ten Cate 1987, ten Cate, Verzijden et al. 2006, Verzijden 

and Rosenthal 2011). An individual’s exposure to different social cues can elicit 

preferences either for or against a familiar trait, which can have important evolutionary 

consequences by promoting assortative mating through sexual imprinting or the 

breakdown of reproductive barriers through developed antipathy. Therefore, determining 

the proximate mechanisms underlying learned mating preferences is of vital importance 

to understanding their evolutionary implications.  

There are two main neural mechanisms through which the social environment 

could affect female mate choice. First, a social stimulus could result in increased 

sensitivity to the signaler cues at the sensory periphery, making the individual more 

sensitive to the familiar phenotype (Nevitt, Dittman et al. 1994, Harden, Newton et al. 

2006). Second, social exposure to a specific stimulus could affect the downstream 

processing of signaler cues in the brain itself (Corotto, Henegar et al. 1994, Yamaguchi 

and Mori 2005, Okuyama, Yokoi et al. 2014). In Chapter III, I examine the behavioral 

and neurogenomic effects of the social environment on Xiphophorus birchmanni 

females. Specifically, I assess how exposure to adult conspecifics, exposure to the sister 

species X. malinche, and social isolation from adults affect female olfactory preferences 

for conspecific vs. heterospecific males. I then conduct RNA-sequencing analyses on 
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dissected whole brain and olfactory epithelial tissues to identify groups of genes that are 

differentially expressed among exposure groups. The results from this study are among 

the first of its kind, as they describe the transcriptomic imprint that social exposure has 

on the sensory periphery and brain. This study also identifies avenues for future research 

aiming to elucidate the neurogenetic framework of learned mating preferences. 

Whereas a large portion of studies stressing the importance of behavior in 

speciation focuses on the importance of mating preferences and their sensitivity to 

genetic and environmental effects, other behaviors can indirectly have important 

consequences that influence mate choice dynamics and, ultimately, speciation. Recent 

studies on individual and population-level personality have highlighted its importance in 

mate choice dynamics and evolutionary biology (Sih, Bell et al. 2004, Sih, Cote et al. 

2012, Wolf and Weissing 2012) and its potential to affect speciation processes. For 

example, boldness correlates with reproductive success, along with other fitness-related 

traits (Dingemanse and de Goede 2004, Brown, Jones et al. 2005, Bell and Sih 2007, 

Ariyomo, Carter et al. 2013, Boulton, Grimmer et al. 2014). Furthermore, bold and 

aggressive individuals can be more likely to disperse from native habitats and invade 

novel habitats than shy individuals (Cote, Clobert et al. 2010, Sih, Cote et al. 2012). 

Repeated bottleneck dispersions from bolder individuals can eventually result in 

differential selection pressures acting on these populations relative to the source 

population.  

Furthermore, divergent personalities could drive assortative mating within 

populations, as in the case of the great tit Parus major, a bird for which it has been 
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shown that individuals mate assortatively according to boldness behavior (Both, 

Dingemanse et al. 2005). Personalities could also covary with courtship or mating 

preferences and ultimately play a direct role in sexual selection via mate choice. 

Whereas individual personalities are often assumed to be fixed in time and context 

(Beekman and Jordan 2017), this is not necessary (Galhardo, Vitorino et al. 2012): 

plasticity in personalities, like plasticity in mating preferences, can be adaptive in 

fluctuating environments that alter the reproductive success of specific behavioral 

phenotypes. In Chapter IV, I examine how social environment affects personality in both 

X. birchmanni males and females. Specifically, I assess the role of cultural transmission 

- the intergenerational transfer of social information - in shaping boldness behaviors, 

such as the time spent in open versus sheltered zones, in both X. birchmanni males and 

females. I then test for correlations between these measures of personality and male 

morphology and female mating preferences, respectively, in order to determine whether 

personality may play a significant role in shaping mate choice dynamics. The results 

from this study highlight the sensitivity of developed boldness behaviors to the social 

environment, providing strong evidence for the context-dependence of personalities. 

Furthermore, this is among the first studies to show that individuals can learn 

personality-related traits from heterospecific exposure models. I discuss the potential 

these plastic personalities have in the maintenance of reproductive isolation between 

species, as well as fruitful avenues of future research directly testing the role of 

personality in speciation. 
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CHAPTER II 

HETEROGENEITY IN MATING PREFERENCES ACROSS TIME AND 

MICROHABITAT: A HARD LIMIT ON MEASURES OF MATE CHOICE? 

 

Introduction 

Phenotypic evolution is fastest if selection is consistent and directional over 

space and time. In particular, sexual display traits should evolve most readily if these are 

consistently favored by mating preferences (Mead and Arnold 2004). Nevertheless, 

empirical research amply shows that preferences in natural populations are highly 

variable over time (Chaine and Lyon 2008, Johnson, Stanis et al. 2013), and that mating 

preferences can vary according to changes in the environment or individual 

physiological state (Qvarnström 2001). Such labile preferences can result in dampened 

selection on a given secondary sexual trait, and may serve as a potential resolution to the 

paradox of the lek (Kirkpatrick and Ryan 1991). Small-scale habitat heterogeneity could 

play a particularly powerful role in maintaining behavioral variation within populations, 

since an individual’s environment has been shown to shape individual preferences over 

very short timescales (Johnson, Stanis et al. 2013). Furthermore, previous studies have 

linked habitat heterogeneity to variation in morphology (Grether, Millie et al. 2001, 

Hoffmann and Shirriffs 2002, Gray, Dill et al. 2008) and behaviors relevant to mate 

choice (Zuk, Rotenberry et al. 2001). However, in many of these cases habitats were still 

separated by large enough distances that would limit migration, and the degree to which 

spatial heterogeneity in preference patterns exists in nature has not been examined. 
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Ultimately, the maintenance of many parapatric or sympatric species can often be 

attributed to behavioral differences that correlate with microhabitat use (Seehausen, 

Terai et al. 2008). However, in many of these cases genetic effects cannot be decoupled 

from environmental ones, as speciation has already occurred. Therefore, it is important 

to examine the role of microhabitat on behavior within genetic populations in order to 

understand its potential evolutionary implications. 

I studied a population of hybrid swordtails (X. birchmanni x X. malinche) in two 

adjacent pools (UP and DOWN) that comprise the Calnali-mid locality in Calnali, 

Mexico over three successive summers (2013-2015). These pools are adjacent and 

isolated by < 2 m elevation by a small spillway, allowing for moderate levels of 

migration between the pools (Culumber, Ochoa et al. 2014). Despite their proximity, 

differences between the two pools in light availability and substrate drive differences in 

the availability of periphyton- a direct and indirect food source for swordtails 

(Arthington 1989, Maddern, Gill et al. 2011)- which could potentially lead to pool-level 

differences in nutritional condition. Therefore, I used a two-choice assay to measure 

natural yearly and microspatial variation in a previously established diet-dependent 

female preference for chemical cues of males differing in nutritional history (Fisher and 

Rosenthal 2006a). Previous literature suggests that females in better condition show 

stronger mating preferences (Cotton, Small et al. 2006). However, the opposite result has 

been found in female swordtails (Fisher and Rosenthal 2006a). This olfactory preference 

for well-fed males may be driven by differences in protein content of male diet, as seen 

in other poeciliids (Ward, Herbert-Read et al. 2011). I tested this by measuring female 
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olfactory preferences for males fed either a high or low protein diet, and I assessed how 

this preference varies according to sampling site and year. 

Local adaptation can result in morphological differences between nearby 

populations (Houde and Endler 1990, Grether, Millie et al. 2001) that may drive 

observed differences in mating preference patterns. Behavioral differences at small 

spatial and temporal scales can be influenced by a myriad of extrinsic and intrinsic 

factors. Female condition (Fisher and Rosenthal 2006a) and social environment 

(Verzijden and Rosenthal 2011, Verzijden, Culumber et al. 2012) play particularly 

important roles in shaping female swordtail mating preferences.  Therefore, I collected 

males and females from both pools between 2013-2015 to assess phenotypic differences 

between pools and across years to determine whether observed mating preference 

patterns were correlated with population-level male or female phenotypes. 

Although the two pools do not differ in genetic composition (Culumber, Fisher et 

al. 2011), in 2015, parallel population-genomic analyses revealed that swordtails at both 

pools in Calnali-mid include distinct, reproductively isolated subpopulations of 

genetically birchmanni-like and malinche-like hybrids (Schumer, Powell et al. 2017). 

Therefore, in 2015 I genotyped females to determine whether preference differences 

could be attributed to genetic differences among females.  

 

Materials and Methods 

Preference trials 

Wild-caught hybrid females were collected in May of 2013-2015 from each of 
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the two pools, UP and DOWN, described above and then acclimated to the lab 

environment in 40-liter tanks (n=8-11 per tank) for two weeks before being marked with 

colored elastomer on the dorsal and ventral sides of the caudal peduncle. In 2015, fin 

clips were used to prepare multiplexed shotgun genotyping (MSG) libraries to assign 

females to one of two genotype clusters [malinche-like or birchmanni-like (Schumer, 

Cui et al. 2014)]. Following tagging and fin clipping, females were allowed to recover 

for at least two weeks before testing. I tested 51, 45 and 45 UP females in 2013, 2014 

and 2015, respectively (38, 32 and 29 responsive), and I tested 17, 18 and 40 DOWN 

females in 2013, 2014 and 2015, respectively (16, 16 and 26 responsive). Genotypic 

cluster identities were not known prior to conducting preference trials. 

To create diet-dependent cue models, 10 male X. birchmanni from the Río 

Garces locality (Culumber, Fisher et al. 2011) were divided into two 40-liter aquaria and 

fed a Repashy gel premix diet containing either 55% (HP) or 35% (LP) proteinaceous 

content for one month. Female swordtails and other poeciliids have been previously 

shown to differentiate between male olfactory cues according to diet (Fisher and 

Rosenthal 2006a, Ward, Herbert-Read et al. 2011). 

I used a well-established protocol to test female preference for male odors 

(McLennan and Ryan 1999, Fisher, Wong et al. 2006b, Verzijden and Rosenthal 2011). 

Association times with a given stimulus have been shown to be predictive of mate 

choice outcomes in swordtails (Walling, Royle et al. 2010). Briefly, to produce the 

olfactory cues, groups of 5 males were divided according to stimulus group and 

separately placed in 20 liters of carbon-filtered water. These males were visually 
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exposed to 5 females from their own population in adjacent tanks for 4 hours. The water 

from each of these tanks was then used as a stimulus cue. Female swordtails have 

previously been shown to respond to male olfactory cues using this design (Crapon de 

Caprona and Ryan 1990, Fisher and Rosenthal 2006b, Verzijden and Rosenthal 2011). 

During preference trials, females were individually placed in a trial lane 

(75x19x20 cm) and allowed to acclimate for 20 minutes. Stimulus water was then 

dripped into each of the far ends of the tank until the end of the trial (600 s). Trial tanks 

were virtually divided into three zones of equal length. Once a female visited all three 

zones, the time in each zone was recorded for 300 s. Association time in each zone was 

used as a proxy for female preference, and has been shown to be predictive of female 

mate choice (Walling, Royle et al. 2010). If a female failed to visit both preference zones 

within 300 s, she was defined as unresponsive and excluded from analysis, as done in 

previous studies (Fisher and Rosenthal 2006a, Verzijden, Culumber et al. 2012). To 

account for potential side bias, each female was tested twice, back-to-back, with the 

sides from which cues were presented switched. I summed the association time in the 

two trials for analysis. 

Within each given pool/year sample, I used Wilcoxon signed-rank tests to assess 

significance of mean differences in association time between two stimuli. A two-way 

ANOVA on net preference was used to test whether year, pool of origin, or their 

interaction significantly affected female preference. For the 2015 data, I also separately 

tested whether genotype, pool of origin, or their interaction affected mating preferences. 

All analyses were conducted in R. 
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To account for unequal sample sizes between groups, I used a resampling 

approach to compare net preferences between pools within a given year (Keselman, 

Wilcox et al. 2002) using the coin package in R. Briefly, 10,000 null datasets were 

generated to compare to the observed data. For each null dataset, site labels (UP or 

DOWN) were randomly assigned to the observed net preferences according to the 

observed sample size. The p-value reported signifies the proportion of scenarios where 

the difference in mean net preference between UP and DOWN was equal to or greater 

than the observed difference. 

Power to detect a significant effect in behavioral trials 

 To determine the number of individuals needed to attain 90% power to detect 

strong mating preferences in Calnali-mid females, I performed power simulations 

(Schumer, Powell et al. 2017). Since these are the first behavioral data on these 

hybridizing females, I based my simulations on the results of a previous study 

quantifying preferences for diet-dependent male chemical cues in well-fed X. 

birchmanni females (Fisher and Rosenthal 2006a). This study found that, during a 300 s 

trial, well-fed females associated with well-fed male X. birchmanni chemical cues for 

148 s on average (standard deviation = 62) and hungry male chemical cues for 65 s 

(standard deviation = 49). Female association times were simulated via random draws 

from normal distributions with these means and standard deviations truncated at 0 using 

the truncnorm package in R. Since preference measures are paired and the maximum 

association time with both stimuli in an individual trial is 300 s, I excluded all draws 

where the sum exceeded 300. For each replicate simulation, I drew paired simulated 
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association times until I had the number of measures equal to a given sample size n. I 

then tested whether these distributions were significantly different (p < 0.05) using a 

paired Wilcoxon test, and repeated this simulation for 1,000 replicates. The proportion of 

replicates with p-values less than 0.05 is the power at a given sample size n. 

 Based on this analysis, I determined that I have greater than 90% power to detect 

strong preferences for well-fed male chemical cues with a sample size of 14 or more 

females. I therefore aimed to sample at least this many individuals from each site. 

However, I recognize that this approach assumes parental levels of mating preferences, 

and that actual power may be lower if hybridizing females from Calnali-mid have 

weaker preferences than parentals. 

Measurements of male morphology and female physiology 

Over three successive years, I measured pool-level means of female and male 

phenotypes pertaining to 1) female physiological status and 2) the pool-level distribution 

of sexually selected male morphological traits, respectively, in order to assess whether 

either trait correlated with the observed preference patterns. In swordtails, the strength of 

female olfactory preferences for better-fed males is dependent on recent diet (Fisher and 

Rosenthal 2006a). Furthermore, reproductive status has also been shown to affect mating 

preferences in poeciliids (Gabor and Page 2003). Female swordtail preferences are also 

particularly sensitive to social cues, and can change the magnitude and direction of their 

preferences following changes in the social environment (Verzijden, Culumber et al. 

2012). Therefore, for the purpose of this study, I focused on testing whether these two 

pool-level traits- male morphology and female physiology- were correlated with pool-
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level variation in preferences across time. However, preference functions are sensitive to 

a myriad of other environmental cues beyond the scope of this study, such as light 

availability (Gamble, Lindholm et al. 2003), water transparency (Maan, Seehausen et al. 

2010) and pH (Heuschele and Candolin 2007), and it is possible that these cues interact 

in a complex manner to shape mating preferences. One goal of this study was to assess 

the level of temporal and spatial variation in preference patterns within a genetic 

population and determine whether these patterns followed similar morphological or 

physiological variation within swordtails. 

Male morphometric data 

 Wild-caught males (N=10-40 per pool per season) were lightly anesthetized with 

tricaine methanesulfonate and photographed for traditional morphometrics 

measurements using the ImageJ program (Abràmoff, Magalhães et al. 2004). Average 

measurements were taken for standard length, dorsal fin length, gonopodium length and 

sword extension length in mm. In addition, males were weighed to the nearest 0.01 g. 

Principal components analysis (PCA) was conducted on log + 1 transformed 

measurements using the rda function in the vegan package of R (center and scale = 

TRUE). Approximately 64.6% of total variance was explained in the first principal 

component, corresponding largely to male size, and this was used as an estimate of male 

phenotype in subsequent analyses (see Table A-1 for loading scores).  

Female reproductive allotment and fat content analysis 

Females (N=10 females per pool, UP or DOWN, per season) were collected in 

June 2013-2014 and October 2015, and preserved in 10% formalin. Reproductive tissue 
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was removed and weighed to determine reproductive allotment (RA), and a previously 

established petroleum-ether based method was used to determine fat content of the rest 

of the body as a proxy for body condition (Reznick and Braun 1987, Tobler 2008). 

Briefly, reproductive tissue was removed from females, and whole carcasses and 

reproductive tissue were placed in a drying oven at 65 °C for 5 days and separately 

weighed. The ratio of reproductive tissue mass to total mass was used to assess RA. Fish 

carcasses were then rinsed 4 times over 24 hrs with petroleum ether, and dried again at 

65 °C for 24 hours and weighed. The difference in dry mass between the first and second 

measurements was divided by the mass of the first measurement to determine fat 

content. PCA was conducted on log + 1 transformed measurements as previously 

mentioned. Approximately 81% of total variance was explained in the first principal 

component, and this was used as an estimate of female phenotype in subsequent analyses 

(see Table A-2 for loading scores).  

Assessing yearly and microspatial differences in male and female morphology 

 To determine the effects of year and pool on male morphology and female 

physiological state, I conducted Type III sum of squares ANOVA’s on PC1 of each sex 

phenotype in R. Year, pool and their interaction were included as fixed effects. I then 

calculated Tukey’s Honest Significant Difference (HSD) to report p-values for between-

group comparisons. 

Testing for phenotypic effects on female preference 

 To determine whether pool-level means of male morphology or female 

physiology predict observed preference patterns observed, I tested whether female 
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preference was correlated with either mean female physiological state or the mean male 

phenotype at each site within a given year. Specifically, I conducted a two-way ANOVA 

on net preference, with mean PC1 values of female and male phenotypes at each 

site/year combination included as fixed effects. 

 

Results 

Yearly and microspatial mating preference patterns 

I found a significant interaction effect between pool and year on net preference 

(F(2,157) = 4.56, p = 0.012, Figure 1). While UP females failed to show a significant 

preference in any year (all p > 0.05), DOWN females first showed a net preference for 

males fed a high-protein diet in 2013 (Wilcoxon signed-rank, Z = -2.54, p = 0.015), 

followed by a strong change in the magnitude and direction of preference in 2014, with 

DOWN females preferring males fed a low-protein diet (Z = -3.21, p = 0.0013). Finally, 

in 2015, DOWN females showed, on average, no significant preference for either male 

cue (p > 0.05). DOWN females had significantly stronger preferences for males fed a 

high-protein diet than UP females in 2013, and stronger preferences for males fed a low-

protein diet than UP females in 2014 (2013: Z = 2.1032, p = 0.032; 2014: Z = -3.05, p = 

0.0022). In 2015, UP and DOWN female preferences did not significantly differ (Z = -

0.298, p = 0.771, Figure 2).  

Phenotypic comparisons 

Approximately 64.6% of the total variance in male morphology was modeled by 

principal component 1 (PC1, Figure 3a). This component was largely influenced by 
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Figure 1 - Net female olfactory preference for males fed a high-protein diet, 2013-2015. 

UP: Calnali-mid upstream pool, DOWN: Calnali-mid downstream pool. Bar height 

represents mean association time with water containing pheromones of X. birchmanni 

males fed a high-protein diet ± S.E.M. * p < 0.05, ** p < 0.01 (Wilcoxon signed-rank 

test). Background image shows the adjacent pools on the Río Calnali, separated by less 

than 20 meters by a small spillway. 
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Figure 2 – Distribution of differences in net olfactory preference for males fed a high-protein diet between DOWN and UP 

pools. Positive values indicate relatively stronger preferences for males fed a high-protein diet in DOWN compared to UP. 

Dashed red lines indicate 95% confidence intervals of 10,000 resampled differences in net preference between pools (blue 

bars), and blue lines indicate the observed differences in net preference between DOWN and UP pools.
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standard length, gonopodium and dorsal fin length, and body mass. I found a strong 

interaction effect of pool and year on this component (ANOVA: F(2,154) = 6.27, p = 

0.0024). This effect was largely explained by significantly larger UP males in 2015 

relative to DOWN males in the same year (Tukey HSD: p < 0.001), as well as larger UP 

males in 2015 relative to UP males from previous years (2013-2015: p = 0.016, 2014-

2015: p = 0.033, Figure 3b). 

 Approximately 81.4% of the total variance in female reproductive allotment and 

fat content was modeled by principal component 1 (PC1, Figure 4a). I found a strong 

main effect of year on this component (F(2,54) = 40.1, p < 0.0001), and no significant 

effect of pool (F(1,54) = 0.017, p = 0.897) or their interaction (F(2,54) = 0.091, p = 

0.913). Specifically, females had the highest reproductive allotment and fat content in 

2014 (Tukey HSD: 2013-2014: p < 0.0001, 2014-2015: p < 0.0001), and the lowest 

levels in 2015 (2013-2015: p < 0.0001, Figure 4b). 

Testing for phenotypic and genetic effects on behavior 

Neither female PC1 nor male PC1 explained much of the variation in preference 

observed between pools and across years (ANOVA: female PC1: F(1,157) = 1.55, p = 

0.22, male PC1: F(1,157) = 0.93, p = 0.34). Furthermore, in the 2015 dataset, I found no 

effect of female genotypic cluster identity on female preference for male diet-dependent 

cues (two-way ANOVA p > 0.3, Figure 5a). As part of a previous study conducted on 

the same females collected in 2015, it was shown that site, but not female cluster 

identity, had an effect on female preference for male cluster identity, as female 

swordtails from the UP pool showed preferences for birchmanni-like male chemical 
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Figure 3 – Principal components analysis of male phenotypic distributions in UP and 

DOWN pools. a) Male phenotypic distribution in UP (blue) and DOWN (red) pools 

from 2013 (crosshair), 2014 (dark fill), and 2015 (light fill). Principal component 1 

(PC1) is most influenced by standard and dorsal fin lengths and mass (larger individuals 

on the left), and PC2 is most influenced by sword extension length (larger swords at the 

bottom). b) Mean PC1 value according to year and pool. Groups with non-matching 

letters have significantly different values of PC1 (p < 0.05). Error bars in both figures 

represent S.E.M. 
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Figure 4 - Principal components analysis of female physiological state in UP and 

DOWN pools. a) Female physiological state in UP (blue) and DOWN (red) pools from 

2013 (crosshair), 2014 (dark fill), and 2015 (light fill). b) Mean PC1 value according to 

year and pool. Groups with non-matching letters have significantly different values of 

PC1 (p < 0.05). Error bars in both figures represent S.E.M.  
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cues, while females from DOWN showed preferences for malinche-like males 

(Schumer, Powell et al. 2017)(Figure 5b). Female cluster identity did affect sexual 

responsiveness, as a greater proportion of females with a more X. malinche genetic 

background were responsive during both sets of preference trials (40 of 52 genotyped) 

than those from the birchmanni-like cluster (11 of 22 genotyped) (preference for genetic 

cluster: Χ2 (1, N = 74) = 17.9, p < 0.0001, preference for diet-dependent cue: Χ2 (1, N = 

74) = 4.05, p = 0.044). 

 

Discussion 

Mating preferences are extraordinarily labile, and sensitive to a wide range of 

extrinsic and intrinsic factors (Houde and Endler 1990, Godin and Dugatkin 1995, 

Wagner Jr, Murray et al. 1995). In this study, I found that, depending on the year, 

females from one pool exhibited drastically different preferences from those in an 

adjacent one, and these differences could not be explained by yearly or spatial 

differences in female physiological state, genotype or the male social environment. 

Specifically, females from the DOWN pool showed strong preferences for, then against, 

chemical cues of males fed a high-protein diet in 2013 and 2014, respectively, whereas 

females from the UP pool showed no significant preference, on average, for either male 

cue from 2013-2015. This result highlights the exceptionally fine-scale level at which 

behavior can covary with microhabitat. These behavioral differences were detected 

between two pools separated by only a slight barrier that has previously been shown to 

allow for a moderate level of downstream migration (Culumber, Ochoa et al. 2014), 
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Figure 5 - Net female olfactory preferences in UP and DOWN pools, according to 

female genotypic cluster identity. Preferences for a) males fed a high-protein diet, and b) 

birchmanni-like males in Calnali-mid in the summer of 2015. Blue and red bars indicate 

UP and DOWN pools, respectively. Filled and unfilled bars indicate birchmanni-like and 

malinche-like females based on genetic ancestry determined by MSG. Bar height 

represents mean association time ± S.E.M. * p < 0.05. 
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thereby suggesting that females may be adjusting certain preferences at a surprisingly 

high rate. These fluctuations in preferences at small spatial and temporal scales could act 

to weaken sexual selection within populations, thereby explaining why strengths of 

sexual selection through mate choice are often very weak (Jennions and Petrie 1997, 

Qvarnstrom, Brommer et al. 2006).  

 In many studies, sample sizes are obtained through collecting at various nearby 

locations, and then pooled together to measure a given behavior. However, this method 

could potentially be hiding fine-scale, or alpha-level (Whittaker 1972), heterogeneity in 

preference patterns that could play an important role in maintaining phenotypic and 

genetic diversity within a population. Sampling exclusively at one pool versus another, 

or in one year versus another, would have yielded markedly different behavioral results 

that could have subsequently led to misleading generalizations about species- or 

population-level preferences. Likewise, pooling the samples would have hidden this 

alpha-level of preference variation within the population, which could reinforce 

microhabitat-driven assortative mating. Therefore, it is important for future studies to 

clearly define the temporal and spatial resolution at which a given population-level 

relationship between the environment and a behavior is being described. 

One possible explanation for the preference differences observed in this study is 

that they were an artifact of sampling or methodological errors. Power simulations 

performed on parental species suggest that I had sufficient statistical power to detect 

moderate differences in preference between groups with the sample sizes obtained in this 

study. While low sample sizes are often assumed to result in reduced chances of 
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detecting true effects, they can also increase false positive rates (Button, Ioannidis et al. 

2013). This is an issue that is pervasive throughout mate choice and all of behavioral 

research, and the sample sizes used in the smallest groups (DOWN 2013 and DOWN 

2014: N = 16 responsive females) in this study are well within the range of many past 

behavioral studies (Pfennig and Tinsley 2002, Witte and Sawka 2003, Cummings, 

Larkins-Ford et al. 2008, Farris and Ryan 2011, Rosenthal and Ryan 2011, Willis, 

Rosenthal et al. 2012, Root, Denny et al. 2014, Kozak and Boughman 2015, Zhuang, 

Sun et al. 2016). Therefore, behavioral experiments should be repeated across space and 

time in order to assess the reproducibility of previously published results, as well as to 

gain an understanding of the alpha-level diversity in behaviors within genetic 

populations. In this system, just a few meters separating the ranges of local populations 

drastically affected population-level estimates of mating preference. Estimates of the 

strength of sexual selection and reproductive isolation at the population level may 

therefore often be artifacts of limited sampling in space and time. 

 

Conclusions 

Population-level estimates of mating preferences are a cornerstone of sexual 

selection research. Investigators often use behavioral measures to characterize how 

choosers in a natural population express preferences for one trait over another. Sample 

sizes are often obtained by pooling across microhabitats and over time, thereby 

potentially introducing unaccounted variance due to small-scale heterogeneity in 

preferences. I examined this in a natural population of hybrid swordtails (Xiphophorus 
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birchmanni x X. malinche) distributed between two adjacent pools separated by a small 

spillway. Over three successive years, I found marked, but highly variable, differences 

between pools in female preference for olfactory cues associated with male nutritional 

condition. While females from the upstream pool never showed preferences, females 

from immediately downstream showed strong preferences that reversed across years. 

These differences in preference could not be attributed to population-level differences in 

phenotypes previously shown to be mate-choice relevant. The heterogeneity in observed 

mating preferences and the intrinsic error generated by behavior trials call attention to 

the challenges inherent in estimating population-level distributions of complex 

phenotypes, and to the importance of accounting for small-scale heterogeneity when 

modelling and measuring the evolution of mating preferences and display traits. 
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CHAPTER III 

NEUROGENETIC FRAMEWORK OF LEARNED FEMALE MATING 

PREFERENCES IN THE SWORDTAIL FISH XIPHOPHORUS BIRCHMANNI 

 

Introduction 

 A major goal in evolutionary biology is to determine the mechanisms behind the 

maintenance of reproductive isolation between species. Mate choice can play an 

important role in reproductive isolation between lineages long before the evolution of 

postmating barriers (Grant and Grant 1997). Mating preferences are often learned rather 

than genetically specified, and can thereby be influenced by an individual’s social 

environment throughout life (Grant and Grant 1997, ten Cate, Verzijden et al. 2006, 

Verzijden, Ten Cate et al. 2012).  

Experience can elicit preferences either for or against a familiar trait, which can 

have important ecological and evolutionary consequences by promoting assortative 

mating through imprinting on familiar phenotypes (Verzijden, Lachlan et al. 2005, 

Servedio, Sæther et al. 2009) or outcrossing through learned “antipathy” (Hughes, 

Houde et al. 2013). Individuals can be genetically predisposed to favor early learning of 

familiar stimuli, thereby strengthening reproductive isolation between species (Marler 

1991). For example, in stickleback fish learned preferences for familiar stimuli act to 

minimize hybridization between ecotypes (Kozak and Boughman 2009, Kozak, Head et 

al. 2011). However, changes in the social environment can also facilitate hybridization 

(Irwin and Price 1999). Zebra finches can develop preferences for hybrid males through 
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early exposure to a mixed social environment (ten Cate 1987). In Darwin’s finches, mis-

imprinting on heterospecific songs promotes hybridization (Grant and Grant 2008). 

These studies show that learned mating preferences can be a major driver in maintaining 

or eroding reproductive isolation between species. It is therefore crucial to determine the 

mechanisms underlying conspecific mating preferences in order to gain a better 

understanding of their behavioral and evolutionary consequences.  

As individuals are developing, this behavioral tuning of the social environment 

on mating preferences is likely to leave a neurogenomic imprint on the brain. Despite the 

large behavioral literature on learned mating preferences and their ubiquity across 

systems (ten Cate 1987, Bischof and Clayton 1991, Payne, Payne et al. 2000, ten Cate, 

Verzijden et al. 2006, Kozak, Head et al. 2011, Verzijden, Ten Cate et al. 2012), the 

neurogenomic mechanisms driving this behavior are relatively unknown. The majority 

of sexual imprinting studies have focused on a small set of genes, usually non-specific, 

immediate-early genes that serve as general markers of neural activity, in a subset of 

functionally relevant brain regions (Changeux and Mikoshiba 1978, Bolhuis, Zijlstra et 

al. 2000, Bolhuis and Gahr 2006, Sadananda and Bischof 2006, Maekawa, Nakamori et 

al. 2007, Meparishvili, Nozadze et al. 2015). While these studies are of vital importance 

for understanding the roles of specific genes within a given brain region in the formation 

of learned mating preferences, they do not allow for the detection of more general gene 

expression patterns throughout the whole brain. Recent advances and reduced costs in 

next-generation sequencing have made individual-level, transcriptome-wide analyses 

more practical. Examining the neurogenomic effects of learning through this wider lens 



29 
 

will allow for the detection of new genes previously unknown to have roles in the 

development of learned preferences. Furthermore, these studies can address how 

networks of co-varying genes respond to changes in an individual’s social environment. 

Across the animal kingdom, and notably in fishes, olfactory cues play an 

important role in conspecific mate preference. As with other cues, response to these cues 

can depend on previous experience. Exposure to artificially-supplied chemicals during 

development alters sensitivity to these odorants later in life (Nevitt, Dittman et al. 1994, 

Harden, Newton et al. 2006), and sensitivity to new odors is accompanied by increased 

expression of genes involved in odorant receptor cell neurogenesis at the sensory 

periphery (Harden, Newton et al. 2006). Differences in social exposure can result in 

differential regulation of certain odorant receptor genes in the olfactory epithelium (Cui, 

Delclos et al. 2017). Odorant receptor neurons project to the olfactory bulb, which 

further project throughout the forebrain and other brain regions. Furthermore, 

individuals have been shown to have a neuronally plastic response in the forebrain to 

varying levels of social exposure (Corotto, Henegar et al. 1994, Yamaguchi and Mori 

2005, Makinodan, Rosen et al. 2012, Okuyama, Yokoi et al. 2014). Therefore, social 

exposure is likely to have transcriptomic implications throughout the entire brain as well 

as the sensory periphery. Specifically, I expect exposure to different species to result in 

the relative upregulation of species-typical odorant receptor genes, which will have 

differential consequences on downstream processing in the whole brain. Applying RNA-

sequencing methods on whole brain and sensory tissue can serve as a powerful means of 

identifying species-typical odorant receptor genes (Cui, Delclos et al. 2017) as well as 
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networks of genes that are differentially regulated at the sensory periphery and brain 

across exposure treatments. 

Swordtail fish Xiphophorus birchmanni serve as an ideal system for studying 

mechanisms of learned mating preferences. Many swordtail species rely on olfactory 

signaling for conspecific mate preference (Crapon de Caprona and Ryan 1990, 

McLennan and Ryan 1999, Fisher, Wong et al. 2006b, Verzijden and Rosenthal 2011). 

Wild-caught female X. birchmanni generally prefer the chemical cues of conspecific 

males over males of a closely related congener, X. malinche. However, this preference is 

sensitive to both early (Verzijden and Rosenthal 2011) and recent (Verzijden, Culumber 

et al. 2012) experiences; female X. birchmanni  prefer familiar olfactory cues regardless 

of whether they are conspecific or heterospecific. This study aims to describe the 

transcriptomic differences between brains and sensory tissue of sexually mature female 

X. birchmanni raised under different social exposure treatments in order to elucidate the 

general transcriptomic effect of the social environment on the whole brain and sensory 

periphery.  

 

Materials and Methods 

Fish collection and exposure treatments 

 Fifteen X. birchmanni females were collected from the Río Coacuilco at 

Coacuilco, Hidalgo, Mexico (Culumber, Fisher et al. 2011) in March 2014 and 

transported to Texas A&M University facilities where they gave birth. When offspring 

reached approximately 3 weeks of age, broods were evenly pooled, separated into 
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groups of 30 juveniles, and assigned to one of 3 treatment groups (3 replicates each): 1) 

B-EXP: exposed to 2 males and 2 females of adult conspecifics (X. birchmanni from the 

Río Garces locality); 2) M-EXP: exposed to 2 males and 2 females of adult 

heterospecifics [X. malinche from the Chicayotla locality (Culumber, Fisher et al. 2011)] 

and 3) NO-EXP: controls which did not receive adult stimulus exposure. Exposure 

treatments were performed at 23 °C, 12:12 light:dark cycle in adjacent, though visually 

isolated, 120-liter aquaria where adults and juveniles were divided by a transparent, 

perforated Plexiglas board which allowed for transmission of both visual and olfactory 

cues (Verzijden and Rosenthal 2011, Cui, Delclos et al. 2017). Sufficient shelter was 

provided to both adults and juveniles, and water was continually refreshed via a flow-

through system. Juvenile males were removed from aquaria upon the first sign of 

maturation (thickening of the anal fin to form the gonopodium). At an average of 11 

months of age, I tested female preference for olfactory cues of X. birchmanni and X. 

malinche as described below. After all behavioral trials, females were rinsed in aquarium 

water and returned to their respective treatment for an additional week before sample 

collection to minimize possible short-term effects from behavioral trials. Visual and 

olfactory exposure thus continued until the time of tissue collection. 

Olfactory preference trials 

 I tested female preference for conspecific vs. heterospecific male odors following 

a well-established protocol (McLennan and Ryan 1999, Verzijden and Rosental 2011, 

Fisher et al. 2006). Briefly, to produce the olfactory cues, 20 L aquaria were thoroughly 

rinsed with Alconox and a 1:1 mixture of hydrogen peroxide, followed by rinsing with 
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carbon-filtered water 4 times. Groups of 5 males of X. birchmanni and 5 X. malinche 

were separately placed in 20 L of carbon-filtered water and visually exposed to 5 

females from their own population in adjacent tanks for 4 hours. The water from the 

male tanks was used as the olfactory stimulus in preference trials. None of the males or 

females used to produce olfactory cues were used as exposure models in the rearing 

tanks. All preference trials were conducted with the same stimulus water. 

 The preference trial tanks (75 x 19 x 20 cm filled to a depth of 15 cm) were 

opaque on all sides. A small shelter was provided in the middle of each tank. Female 

position during the trial was recorded using an overhead camera connected to the Viewer 

(Biobserve GmbH, Bonn, Germany) recording software. The tank was equally divided 

along its length into three virtual zones: two preference zones on either end of the tank, 

with the middle defined as a neutral zone. Twenty minutes before each trial, the focal 

female was introduced to the testing tank for acclimation. Immediately afterward, 

stimulus water started dripping on both ends of the tank via computer-controlled 

peristaltic pumps (VWR) until the end of the trial at a rate of approximately 5 ml/min. 

Upon initiation of the cue pumps, I allowed 5 minutes for the focal female to visit both 

preference zones. If the subject failed to do so, she was defined as unresponsive. Starting 

at the moment the subject visited both preference zones, the time in each zone was 

recorded for a total of 5 minutes. Each female was tested a second time after another 20 

minutes of acclimation and switching the sides from which each cue was dripped to 

account for potential positional biases. The association times from both trials were 

summed for data analysis. I tested a total of 30 B-EXP (22 responsive), 30 M-EXP (21 
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responsive), and 32 control females (27 responsive).  

Statistical analysis of olfactory preferences 

 I tested the normality of association time datasets using Shapiro-Wilk tests. For 

datasets fitting the normality assumption, I used paired Student’s t-tests to detect 

differences in mean association time between the two stimuli for each group. Unpaired t-

tests assuming equal variance were then used to test for differences in net preference 

between groups. A one-way mixed effects ANOVA on net preference (time with X. 

birchmanni – time with X. malinche in seconds) was used to test whether exposure 

experience significantly affected mate preference. Replicate was included as a random 

effect, and exposure treatment was the fixed effect. I used non-parametric tests 

(Wilcoxon signed-rank tests and Kruskal-Wallis rank-sum tests) for datasets violating 

the normality assumption. All analyses were conducted in R. ANOVA was conducted 

using the nlme package in R. 

Tissue sample collection for RNAseq 

I randomly selected 5 females from each replicate of each treatment group (45 

total samples). Females were euthanized with an overdose of MS-222, then decapitated. 

For RNAseq analyses, whole heads were preserved in either RNALater solution, placed 

at 4 °C overnight, then whole brains, optic nerves and both nares, including olfactory 

epithelia were dissected and stored at -80 °C until use (Figure B-1). 

RNA extraction and library preparation 

 RNA was extracted from the above tissue using a standard Trizol reagent (Life 

Technologies) protocol following manufacturer’s instructions and quantified and 
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assessed for quality on a Bioanalyzer 2100 (Agilent Technologies). Briefly, tissue was 

removed from the RNALater solution and dried on a sterile, RNAse-free wipe, then 

completely homogenized in Trizol with a hand-held TissueRuptor (Qiagen). RNA was 

extracted with 100 µL of bromochloropropane, followed by overnight precipitation with 

isopropanol in -20 °C and two washes of 75% ethanol. RNA quality (RIN) indices from 

the Bioanalyzer ranged from 6.9-8.5. Only those samples with RIN > 7 were used for 

further analyses (36 samples total). 500 ng of total RNA was used to prepare libraries 

following Illumina’s TruSeq RNA Library Preparation Kit v2 (Set A) with minor 

modifications. Briefly, mRNA was purified from total RNA using manufacturer 

provided beads. Following cDNA synthesis, mRNA was chemically fragmented and 

following end repair and A-tailing, unique index adapters were ligated to each sample. 

Libraries were PCR-amplified for 15 cycles and library size distribution and quality was 

verified on an Agilent 2200 TapeStation using the D1000 ScreenTape Assay. Libraries 

were quantified on a Qubit fluorimeter, pooled in equal quantities, and sequenced on 

three Illumina HiSeq 2500 lanes (125x125 paired-end reads). Adaptor and PCR primer 

sequences and low quality bases in the raw reads were removed and trimmed by 

cutadapt (leading, trailing and sliding window quality >= 20 PHRED scale)(Martin 

2011). Only reads > 30 bp after filtering were kept for the downstream analyses.  

Read mapping 

 I use the previously described de-novo genome assembly for X. maculatus 

(Schartl, Walter et al. 2013) as the reference sequence for read mapping. First, I mapped 

pooled reads from all individuals using TopHat 2.0.10 to obtain a comprehensive 
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alternative junction list. I then mapped reads for each individual sample separately 

guided by this junction list. I allowed 5 mismatches to the reference per read (5/125 bp) 

and used default settings for all other parameters (--read-gap-length 1 –read-mismatches 

5 –read-edit-dist 5 –b2- very-sensitive)(Cui, Delclos et al. 2017). Allowing for this 

number of mismatches did not substantially change the percentage of multiple-aligned 

reads, which was < 1% for all samples. 

Differential expression analysis 

 Gene models (v. 82) for X. maculatus were downloaded from Ensembl. I counted 

the number of reads mapping to each gene using the python package htseq-count (strand 

specific: no, mode: union, counted feature: exon), requiring a mapping quality of 20. 

These raw counts were imported into the DESeq2 package in R (Love, Huber et al. 

2014) for differential expression (DE) analysis. I visualized gene expression profiles of 

individuals by conducting a multidimensional scaling analysis on normalized gene 

counts. 

 Using DESeq2, I performed a transcriptome-wide analysis, following the 

DESeq2 default parameters. To control for differences among tanks, replicate was 

included in the design formula. I defined significance as genes differentially expressed 

between treatment groups at p < 0.05 after Benjamini-Hochberg adjustments. 

Weighted gene co-expression network analysis 

 Systems genetics uses the connectivity of genes to describe the relationship 

between the transcriptome and a trait of interest. To identify modules of interconnected 

genes that correlate with social treatments, I used weighted gene co-expression network 
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analysis [WGCNA (Langfelder and Horvath 2008)] on log-transformed count data for 

genes that passed an initial 0.5 CPM threshold filter. Two outliers (one B-EXP and one 

M-EXP sample) were found and excluded from subsequent WGCNA analyses, based on 

a standardized connectivity threshold of 2.0 standard deviations from mean connectivity. 

Therefore, final sample sizes for WGCNA analyses were 10 B-EXP, 11 M-EXP and 13 

NO-EXP females. Sample network connectivity was then reanalyzed among the 

remaining samples. For all possible pairs of variable genes, Pearson correlation 

coefficients were calculated across all samples. An unsigned matrix was created, and I 

adjusted the soft-threshold value to ensure a scale-free topology (β = 12), thereby 

creating a weighted network. Within this topological overlapping network (Yip and 

Horvath 2007), genes were hierarchically clustered, and modules were identified based 

on the degree of similarity among genes (Langfelder and Horvath 2008). A merging 

threshold of 0.2 was used (mergeCutHeight=0.2), with a minimum module size of 30 

genes (minModuleSize=30) and a mean connectivity threshold of greater than or equal 

to 0.7 (minkMEtoStay=0.7). Default parameters were used for the rest of the analyses. 

GO enrichment and PANTHER pathway analysis 

 To determine whether particular functional categories and pathways might be 

implicated in developing socially sensitive learned mating preferences, I performed gene 

ontology (GO) enrichment analysis on: 1) the three lists of differentially expressed genes 

between pairwise comparisons of the three exposure groups (B-EXP/M-EXP, B-

EXP/control and M-EXP/control), and 2) WGCNA modules that were significantly 

differentially regulated (p < 0.05) between exposure treatments (B-EXP/M-EXP). I used 
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the annotated X. maculatus genome to assign Human Genome Organization (HUGO) 

gene symbols to each gene. All genes that passed coverage filtering in DESeq2 were 

included as part of the gene universe, and I tested for significant enrichment (FDR < 

0.05) of different biological processes and pathways by comparing the gene universe to 

gene lists using the PANTHER Classification System [release 20160321 (Mi, 

Muruganujan et al. 2013)]. Briefly, genes are organized into families and subfamilies 

according to sequence homology and functional similarity. They are then assigned GO 

terms (“GO biological processes complete”) and placed within one of 177 “PANTHER 

Pathways”. Gene lists are compared to the gene universe to find GO terms or biological 

pathways that are statistically over- or underrepresented using a binomial test. I used 

Revigo (Supek, Bošnjak et al. 2011) to visualize GO categories clustered by semantic 

similarities (SimRel). 

 

Results 

Female preference behavior 

 Early social experience had a significant effect on olfactory preference (F(2, 65) 

= 5.17, p = 0.0083, Figure 6). Females exposed to adult X. birchmanni showed a 

significant olfactory preference for conspecific (X. birchmanni) male water (Wilcoxon 

signed-rank, Z = 2.65, p = 0.0067), and females exposed to heterospecific adult X. 

malinche showed a trend towards an olfactory preference for heterospecific male water 

(Wilcoxon signed-rank, Z = -1.58 , p = 0.06). Socially isolated females did not show 

significant olfactory preferences (Z = 0.120, p = 0.9153). Conspecific-exposed females 

had significantly greater preferences for X. birchmanni cues than both heterospecific-
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exposed (p = 0.0024) and females isolated from adults (p = 0.038). 

Transcriptome-wide differential expression 

 Social exposure had a large effect on female gene expression profiles (Figure 7). 

After applying a 0.5 CPM coverage filter with DESeq2, 19,126 genes were retained, of 

which 17,715 had annotated gene symbols. B-EXP and M-EXP females showed the 

greatest level of transcriptomic separation, while socially isolated females showed a 

large variance in gene expression profile resulting in relatively little separation from 

either exposure treatment (Figure 8). After false discovery correction at FDR = 0.05, 919 

genes were significantly differentially expressed between B-EXP and M-EXP females, 

and only 6 (two unique) and 2 (one unique) genes were significantly differentially 

expressed in B-EXP and M-EXP groups compared to the socially isolated group 

respectively (Table S1). 

Gene ontology and PANTHER pathway analysis 

 To determine the functional roles of differentially expressed genes between 

group comparisons, I performed gene ontology (GO) enrichment analysis. No significant 

terms were statistically overrepresented in the list of 6 and 2 differentially expressed 

genes between B-EXP/NO-EXP and M-EXP/NO-EXP comparisons. Of the genes 

differentially expressed between B-EXP and M-EXP groups, a term related to mRNA 

nuclear export, “SRP-dependent cotranslational protein targeting to membrane” 

(GO:0006614) was the most significantly enriched process. In total, 220 GO categories 

were statistically enriched or underrepresented at p < 0.05 after FDR correction between 

the two exposure treatments (Table S2). 
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Figure 6 – Mean net association time of Xiphophorus birchmanni females for 

conspecific versus heterospecific (Xiphophorus malinche) male chemical cues according 

to social exposure treatment. Blue bar: exposed to conspecific adults, red bar: exposed to 

heterospecific adults, and black bar: isolated from adults throughout development. Error 

bars represent SEM. 
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Figure 7 – Venn diagram showing overlaps of differentially expressed genes between 

social exposure treatments. Numbers indicate the number of differentially expressed 

genes in a given pairwise comparison of social exposure treatments. B-EXP/NO-EXP: 

conspecific-exposed vs. socially isolated X. birchmanni females, M-EXP/NO-EXP: 

heterospecific (X. malinche)-exposed vs. socially isolated females, and B-EXP/M-EXP: 

conspecific-exposed vs. heterospecific-exposed females. 
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Figure 8 – Multidimensional scaling plot depicting within- and among-treatment 

variation in female neural gene expression profiles according to social exposure 

treatment. blue dots: conspecific-exposed X. birchmanni, red dots: heterospecific (X. 

malinche)-exposed females, and black dots: socially isolated females. Data points 

correspond to individual gene expression profiles. 
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 To gain a better understanding of the functional relationships of differentially 

expressed genes between the two exposure groups, I divided the gene list according to 

direction of gene regulation (Hong, Zhang et al. 2014). A total of 468 and 451 genes 

were significantly upregulated and downregulated, respectively, in the B-EXP group 

compared to the M-EXP group. In the list of upregulated genes, “SRP-dependent 

cotranslational protein targeting to membrane” (GO:0006614) was the most significantly 

enriched process out of a total 374 significant GO terms, while “generation of neurons” 

(GO:0048699) was the most enriched process in the list of relatively downregulated 

genes out of a total 34 significant GO terms (Table S3). Using Revigo to visualize the 

list of enriched GO terms revealed that a large proportion of relatively upregulated genes 

pertain to biological processes related to the immune system, behavioral responses to 

stimuli and ribosome assembly (Figure 9a). Meanwhile, genes that were significantly 

upregulated in the M-EXP group were largely related to synaptic plasticity and 

neurogenesis (Figure 9b).  

PANTHER pathway analyses revealed a total of seven significantly enriched 

biological pathways in the lists of differentially expressed genes. Specifically, four 

pathways mostly pertaining to immune system processes were significantly upregulated 

in B-EXP females, with “B cell activation” (P00010) being the most enriched. Three 

pathways pertaining to glutamate receptor and G-protein signaling pathways were 

upregulated in M-EXP females, with “metabotropic glutamate receptor group 1 

pathway” (P00041) being the most enriched (Table 1).  
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WGCNA results 

WGCNA analysis revealed no significantly differentially regulated gene modules 

between either M-EXP and NO-EXP or B-EXP and NO-EXP after corrections for 

multiple comparisons (see figure B-2). When comparing B-EXP and M-EXP gene 

expression profiles, WGCNA analysis revealed that the brain transcriptome of female X. 

birchmanni can be grouped into 12 modules of similarly coregulated genes (Figures 10-

12). Three of these modules were significantly differentially expressed, on average, 

between B-EXP and M-EXP females, and I refer to these modules according to their 

functional roles (synapse module, p = 0.02; vision module, p = 0.02; olfaction module, p 

= 0.01, Figure 12b). The synapse module consists of 2,768 genes (Table S4), and gene 

ontology enrichment analysis revealed that this module is largely comprised of genes 

with similar GO terms to those found in the traditional differential expression analysis, 

such as “synaptic transmission” and “immune response” (Figure 13, Table S5). On 

average, this module was significantly upregulated in M-EXP females. The genes with 

highest module membership- a measure of intramodular connectivity and relative 

importance within a module- were mmp16b, cntn2, and rc3. These genes have roles in 

tissue remodeling (Hotary, Allen et al. 2000), neuronal migration and adhesion (Tsiotra, 

Karagogeos et al. 1993, Yoshihara, Kawasaki et al. 1995), and synaptic vesicle 

scaffolding (Nagano, Kawabe et al. 2002), respectively. 

The vision module consists of 86 genes (Table S6), is upregulated in B-EXP 

females, and consists of genes with roles in visual detection (Figure 14a, Table S7). Four 

of the five genes most central to the vision module (i.e., highest module membership  
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Figure 9 – Significantly enriched gene ontology terms of genes significantly (FDR < 

0.05) a) upregulated and b) downregulated in conspecific vs. heterospecific-exposed 

female X. birchmanni. Visualized with Revigo using the SimRel similarity index 

(Schlicker, Domingues et al. 2006). Positioning in semantic space indicates functional 

similarity of GO terms, although the semantic space units have no intrinsic meaning. 
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Table 1 – List of significantly enriched PANTHER biological pathways in list of genes 

differentially up- or down-regulated between B-EXP and M-EXP females. P-value 

shown is FDR adjusted. 

ID Description Relative 

B-EXP 

expression 

p-value 

P00010 B cell activation ↑ < 0.0001 

P00031 Inflammation mediated by chemokine and 

cytokine signaling pathway 
↑ < 0.0001 

P00053 T cell activation ↑ < 0.0001 

P00009 Axon guidance mediated by netrin ↑ 0.0147 

P00041 Metabotropic glutamate receptor group I 

pathway 
↓ 0.0441 

P00026 Heterotrimeric G-protein signaling pathway-

Gi alpha and Gs alpha mediated pathway 
↓ 0.0458 

P00027 Heterotrimeric G-protein signaling pathway-

Gq alpha and Go alpha mediated pathway 
↓ 0.0480 
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Figure 10 – Cluster dendrogram measuring similarity among conspecific- and 

heterospecific-exposed female X. birchmanni gene expression profiles. Pink bars 

represent conspecific-exposed females (B-EXP), and red bars represent heterospecific-

exposed females (M-EXP). Lower height values indicate greater similarity between 

samples. Similarity was assessed via a Euclidean distance based network in the WGCNA 

package in R



47 
 

 

Figure 11 – Hierarchical cluster tree of all genes passing coverage filter based on 

similarities in expression. Module color bands represent module identities of individual 

genes (individual tree leaves) using the blockwise automatic module detection method in 

the WGCNA package in R (a = block 1, b = block 2). The bottom row of colors denotes 

the association of a gene with a given exposure treatment (blue: relatively upregulated in 

M-EXP, red: upregulated in B-EXP). 
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Figure 12 – Heatmap of the eigengene network representing relationships among modules and between modules and exposure 

to conspecifics. a) The top panel shows a hierarchical clustering dendrogram of the modules according to similarity, while the 

bottom panel shows the module adjacency values as calculated in the WGCNA package in R. b) Table of module-trait 

correlations and p-values for comparison of B-EXP and M-EXP female gene expression profiles. The table is color-coded by 

relative upregulation in B-EXP females according to the legend on the right. MEblue: “synapse” module, MEpurple: “vision” 

module, MEyellow: “olfaction” module.
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Figure 13 - Significantly enriched gene ontology terms of the list of genes within the 

synapse module. These genes were, on average, upregulated in heterospecific-exposed 

female X. birchmanni. Visualized with Revigo using the SimRel (Schlicker, Domingues 

et al. 2006) term similarity index. Positioning in semantic space indicates functional 

similarity of GO terms, although the semantic space units have no intrinsic meaning. 
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values, pde6g, gnat1, aipl1, and rlbp1a) have direct roles in visual detection (Pittler, 

Baehr et al. 1990, Jacobson, Cideciyan et al. 2011, Naeem, Chavali et al. 2012, 

Nagashima, Barthel et al. 2013). 

The olfaction module consists of 951 genes (Table S8), is upregulated in B-EXP 

females, and consists of genes with roles in ribosomal activity and a wide variety of GO 

terms (Figure 14b, Table S9). In this module, the genes with the highest modular 

membership, rpl35, rpl7, btf3, nsa2 and ddx21, all have known roles in the assembly or 

maintenance of ribosomes. This module also contains a high proportion of odorant 

receptors. Interestingly, all but two of the annotated genes with roles in sensory 

perception of smell are found in this one module. Furthermore, all show the same trend 

of relative upregulation in B-EXP females relative to M-EXP females (Figure 15). 

 

Discussion 

Social experience is necessary for the development of olfactory conspecific 

recognition 

 Female X. birchmanni showed positive experience-dependent preferences 

for olfactory cues, in contrast to females of the sister species X. malinche which develop 

relative antipathy for familiar olfactory cues (Cui, Delclos et al. 2017). These results 

confirm previous research showing that X. birchmanni female preferences for the 

familiar can occur after both short-term and long-term exposure to different social cues 

(Verzijden and Rosenthal 2011, Verzijden, Culumber et al. 2012). Furthermore, this is 

the first study to show that X. birchmanni do not develop an innate olfactory preference  



51 
 

 

Figure 14 - Significantly enriched gene ontology terms of the lists of genes within the 

vision and olfaction modules. The genes within the (a) vision module and (b) olfaction 

module were, on average, upregulated in conspecific-exposed female X. birchmanni. 

Visualized with Revigo using SimRel index (Schlicker, Domingues et al. 2006). 

Positioning in semantic space indicates functional similarity of GO terms, but the axis 

units have no intrinsic meaning.  
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Figure 15 – Representative expression levels for genes within the gene ontology term 

“sensory perception of smell”. Y-axis represents total reads in counts per million. All 

genes shown are significantly upregulated in conspecific-exposed (blue) relative to 

heterospecific-exposed (red) females after FDR correction. 
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for conspecifics, as females that were socially isolated from adults throughout 

development formed no olfactory preference for conspecific cues; rather, learning from 

the social environment may be necessary for development of these preferences. This 

crucial role of social experience in the development of mating preferences has been 

shown in other systems as well (Bischof and Clayton 1991), and may differ significantly 

from learning mechanisms in X. malinche, where exposure to heterospecifics, but not 

conspecifics, was required to elicit conspecific mating preferences. Because of these 

stark differences in learning between such closely related species, X. birchmanni and X. 

malinche could serve as a model system for understanding the behavioral and neural 

mechanisms of sexual imprinting, and its evolutionary implications. 

Exposure type affects neural development more than exposure per se in maturing 

adults 

 Our results revealed greater differentiation between neural gene expression 

profiles of conspecific- and heterospecific-exposed females than between either of these 

exposure groups and socially isolated females (Figure 7-8). Mirroring the behavioral 

differences between X. birchmanni and X. malinche females (Figure 6), this is strikingly 

different from patterns of gene expression change in X. malinche in response to social 

exposure. In X. malinche, the differences in gene expression profiles between socially 

exposed and isolated females were greater than between females exposed to conspecifics 

versus heterospecifics (Cui, Delclos et al. 2017). This large degree of separation between 

M-EXP and B-EXP transcriptomes in X. birchmanni further suggests that learning 

mechanisms are not only necessary for the development of certain mating preferences, 
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but that a female’s social environment plays a crucial role in neural development.  

The observed differences in gene expression profiles may be driven by 

morphological differences caused by exposure to conspecifics versus heterospecifics. It 

is possible that females from one exposure group were, on average, larger than those 

from another group, as seen in the male swordtails (see Chapter IV). While the females 

selected for RNAseq analyses were chosen based on size similarities across treatments, it 

is possible that the observed transcriptomic differences are influenced by treatment-level 

differences in population structure. Future studies focusing on the role of population-

level phenotypic distribution on an individual’s neural development will provide a 

clearer interpretation of the results obtained in this study. 

 Although I found a high level of separation between conspecific- and 

heterospecific-exposed female gene expression profiles, I found little to no significant 

difference between either exposure group and socially isolated females. One possible 

explanation for this is that a lack of social experience results in greater variation in 

transcriptomic profiles due to a relatively greater contribution from unmeasured 

environmental variables as well as stochastic influences on development. Another 

possibility is that social exposure results in a sort of canalization process of neural 

development. In zebra finches, social exposure during critical time periods results in a 

neuronal “shedding” process in key brain regions where only those neurons that are 

activated in response to a given social stimulus are retained, and inactive neurons are lost 

(Changeux and Mikoshiba 1978, Bischof 2003). In socially isolated juveniles, a lack of 

exposure significantly slows down this process (Bischof, Geißler et al. 2002). If this 
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mechanism is similar in X. birchmanni, then this process could potentially cause the 

observed variation in the transcriptomes of socially-isolated individuals. 

 Lastly, this relatively greater separation in M-EXP and B-EXP transcriptomes 

may be a result of the time at which brains were examined. While anatomical research 

has shown that swordtails’ olfactory epithelia undergo a rapid maturation process shortly 

before sexual maturation (Schreibman, Margolis-Kazan et al. 1984), behavioral studies 

show that juveniles as young as seven days old can attend to olfactory cues of adult 

conspecifics and exhibit social preferences (Coleman and Rosenthal 2006). Social 

exposure during the first ten weeks of life are sufficient for developing olfactory 

preferences for familiar phenotypes upon maturation (Verzijden and Rosenthal 2011). In 

other systems, learned social preferences in juveniles during critical periods of 

development often translate to later sexual preferences in adults (Bischof 1979, Bischof 

1994). Therefore, social environment likely affects neural development in discrete stages 

throughout early life, and that the largest transcriptomic separation between socially 

isolated and exposed individual brains may occur much earlier in life. Meanwhile, 

separation in neural gene expression profiles may be expected to become more 

prominent between social exposures shortly after maturation, at a time when these 

developed mating preferences are becoming more relevant to the individual in 

preparation for future mate choice. Future studies should focus on addressing the 

temporal nature of sexual imprinting in order to identify 1) the trajectory of neural 

development as it relates to the social environment and 2) the transcriptomic imprint of 

critical periods in development where sexual preferences become consolidated. 
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Exposure type alters regulation of immune processes and neurogenesis 

 A traditional analysis of differential expression between conspecific and 

heterospecific-exposed female neural tissues revealed 919 differentially regulated genes. 

Of these genes, 468 were upregulated in conspecific-exposed females, and GO 

enrichment analysis revealed that these genes largely have functional roles in immune 

response (Figure 9a). Exposure to adult male conspecifics may induce a female defense 

response, as seen in other species (Lawniczak and Begun 2004, Bailey, Gray et al. 2011, 

Immonen and Ritchie 2012). Previous studies have described a typical upregulation of 

immune-related genes when comparing virgin to mated females (McGraw, Gibson et al. 

2004). Furthermore, in fruit flies, exposure to conspecific courtship displays also 

resulted in a similar upregulation of immune-related and odorant-binding genes in 

conspecific-exposed relative to heterospecific-exposed females (Immonen and Ritchie 

2012). This response by females could be in anticipation of future sexual conflict caused 

by internal fertilization and sperm competition (Neville and Goodwin 2012), a typical 

mating tactic in poeciliid fish (Pilastro, Benetton et al. 2003, Paczolt, Passow et al. 

2014). However, the results from this study suggest that this transcriptomic response 

may not require mating to be induced; rather, exposure throughout development, 

specifically to adult conspecifics, may be sufficient to activate the observed immune-

related processes. 

The remaining 451 genes that were upregulated in heterospecific-exposed 

females had roles largely pertaining to neurogenesis and synaptic plasticity (Figure 9b). 

This is the first study, to the best of my knowledge, to find these classes of genes to be 
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upregulated in heterospecific-exposed individuals relative to conspecific-exposed ones. 

In many songbirds, juveniles have auditory biases that lead to a development of species-

specific song predispositions (Marler and Peters 1977, Konishi 1985, Marler 1997, 

Wheatcroft and Qvarnström 2015). These predispositions can also lead to biases in 

neural development. For example, embryonic transplants of brain regions with 

functional roles in auditory learning have been shown to result in the development of 

donor mating preferences (Long, Kennedy et al. 2001). While the behavioral results 

from my study suggest that females do not have an innate behavioral preference for 

conspecific chemical cues, it is possible that there is still a neural predisposition towards 

developing a brain that is tuned towards learning to prefer conspecific cues, a so-called 

“instinct to learn” (Marler 1991). A deviation from this predisposition via exposure to a 

novel phenotype, such as adult heterospecifics, could potentially result in a neuronal 

“rewiring” process that results in a relative upregulation of genes related to neurogenesis 

and synaptic plasticity. However, future experiments are required to validate this 

hypothesis. Further studies examining the differential neural mechanisms between 

exposure types will provide a much-needed understanding of the neural and behavioral 

consequences of exposure to novel experiences, such as a heterospecific environment. 

Conspecific exposure fine-tunes the sensory periphery 

 WGCNA revealed three gene modules that are differentially regulated between 

conspecific and heterospecific-exposed females (Figures 7-9). The largest of these 

modules (synapse: 2,768 genes), which was relatively upregulated in M-EXP females, 

contained 380 of the genes found to be differentially expressed between conspecific and 
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heterospecific-exposed females in the traditional differential expression analysis. Due to 

the large overlap between datasets, many similar gene ontology terms were significantly 

enriched in the synapse module. However, the synapse module was more heavily 

comprised of genes with functional roles in synaptic transmission, neurogenesis and 

brain development relative to immune response genes. Furthermore, WGCNA revealed 

that these genes strongly covary with genes related to cognition and behavior. Therefore, 

this result provides strong evidence that heterospecific-exposed females exhibit relative 

upregulation of neuroplasticity-related genes that are either directly or indirectly tied to 

cognition and behavior. 

 The other two significant modules (vision: 86 genes, olfaction: 951 genes) were 

relatively upregulated in conspecific-exposed females. The vision module contained one 

gene that was significantly differentially expressed between the two exposure treatments. 

However, on average, genes in this module tended to be more highly expressed in B-

EXP females. Gene ontology enrichment analyses on the vision module revealed that it 

is largely comprised of genes pertaining to visual detection. Specifically, many of these 

genes have important roles in the retina, which was not included in the tissue sample. 

However, most of these genes also have moderate expression levels within the brain, 

though their functions in these regions are not well known. The results from this study 

suggest an alternative role of these genes in downstream visual detection and processing. 

Future studies should focus on localizing where these genes are expressed in the brain in 

order to better determine their functional relevance to learned mating preferences. 

 The olfaction module contains 146 genes found to be differentially expressed 



59 
 

between conspecific and heterospecific-exposed females. I identified a large group of 

genes within this module directly involved in the sensory perception of smell (GO: 

0007608). All but two of the annotated genes within this biological process were found 

within the olfaction module. Furthermore, all of these genes showed relatively greater 

expression in conspecific-exposed versus heterospecific-exposed females (Figure 15). 

This suggests that conspecific recognition may not rely on the activation of a single or 

few types of odorant receptors, but rather an entire suite of species-specific receptors. 

The results from the vision and olfaction modules support the hypothesis that exposure 

to conspecifics upregulates sensory detection genes through a potential “fine-tuning” 

mechanism. This follows similar previous studies which suggest that exposure to a given 

stimulus increases the expression of odorant receptor genes for that stimulus, and 

thereby improves detection (Bazáes, Olivares et al. 2013, Saraiva, Ahuja et al. 2015).  

While I found several odorant receptor genes that are upregulated with 

conspecific exposure, no annotated odorant receptor genes were upregulated in 

heterospecific-exposed females. Male X. birchmanni chemical cues might elicit 

upregulation of cue-specific odorant receptors beyond a baseline level of expression, 

whereas X. malinche males may lack this chemical structure. For conspecific-exposed 

females, detection of these chemical cues may be sufficient for triggering a mating 

preference for them. However, heterospecific-exposed females show a relative 

preference for X. malinche olfactory cues despite a lack of upregulation of any annotated 

odorant receptor genes. Instead of preferring the cue that elicits the strongest activation 

of the sensory periphery, females in this scenario might be relying more on processing 
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the cues they are detecting. This mechanism would explain the observed relative 

upregulation of synaptic-plasticity related genes in heterospecific-exposed females. 

Future studies should follow up on this experiment by directly testing the hypothesis that 

conspecific exposures result in the prioritization of sensory detection while 

heterospecific or novel exposures prioritize sensory processing.  

PANTHER analysis reveals candidate molecular pathways implicated in learned 

mating preferences 

 To gain a better understanding of the specific biological pathways that might be 

functionally implicated in the development of learned mating preferences, I conducted a 

PANTHER molecular pathway enrichment analysis on the list of differentially expressed 

genes between conspecific and heterospecific-exposed female X. birchmanni. The 

analysis revealed seven molecular pathways that may directly or indirectly explain the 

behavioral differences between B-EXP and M-EXP females (Table 1). Three immune-

related pathways were identified, all of which were upregulated in conspecific-exposed 

females.  

 I also identified one pathway related to axon guidance by netrin that was 

upregulated in conspecific-exposed females. This result suggests that, while on average 

heterospecific-exposed females exhibit a relative upregulation in genes related to the 

generation and development of neurons, conspecific-exposed females are also 

experiencing a localized upregulation of specific neural processes. Netrins can minimize 

spatial memory impairment (Bayat, Baluchnejadmojarad et al. 2012) and have 

previously been found to be upregulated in key imprinting brain regions in juveniles that 
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successfully imprinted (Yamaguchi, Fujii-Taira et al. 2008). This result is in accord with 

the hypothesis that different exposure types elicit the activation of different learning 

mechanisms. Future studies on the functional relevance of netrin-mediated axon 

guidance with regards to imprinting will help explain why its regulation may be sensitive 

to different types of exposure. 

 PANTHER pathway analysis also revealed three pathways upregulated in 

heterospecific-exposed females pertaining to glutamate receptor pathways and pathways 

involved in the signaling of G-protein alpha subunits s, i, q, and o. Group 1 metabotropic 

glutamate receptors have been shown to be required for the formation of memories 

(Rodrigues, Bauer et al. 2002, Homayoun, Stefani et al. 2004), and G-protein alpha 

subunits o, s, and i are expressed at the sensory periphery and implicated in the olfactory 

signal transduction needed to process odors (Jones and Reed 1987, Jia and Halpern 

1996, Leinders-Zufall, Brennan et al. 2004). Furthermore, rgs2, which actively inhibits 

G-protein alpha subunit s signaling in the olfactory epithelium (Sinnarajah, Dessauer et 

al. 2001, Kehrl and Sinnarajah 2002), exhibits upregulation in conspecific-exposed 

females (FDR < 0.05). Interestingly, this same upregulation is seen in conspecific-

exposed female X. malinche, who learn to disdain the familiar (Cui, Delclos et al. 2017), 

suggesting that conspecific exposure may have similar effects on the sensory periphery 

of both species, while downstream changes in the processing and valuation of these 

detected cues result in the observed behavioral dichotomy. The molecular pathways 

identified in the PANTHER analysis will serve as good starting points for future studies 

assessing their functional roles in the development of learned mating preferences. 
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Conclusions 

 Female mate choice can play a pivotal role in the nature and extent of 

reproductive isolation between species. Mating preferences are often learned from an 

individual’s social experience with adult phenotypes throughout development. The 

results from this study revealed that social exposure is necessary for the development of 

learned olfactory preferences in X. birchmanni. This exposure evokes strong gene 

expression responses in both the sensory periphery and the brain. Specifically, in 

maturing females, the type of social exposure (conspecific vs. heterospecific) can result 

in greater neural differentiation than exposure itself relative to isolation from adults. 

Furthermore, conspecific exposure appears to result in a relative upregulation of genes 

pertaining to the immune system and visual and olfactory detection, while heterospecific 

exposure is characterized by an increased expression of neurogenesis and synaptic-

plasticity related genes. These results suggest that the neural mechanisms for developing 

and expressing a learned preference may be dependent on the type of social exposure a 

female experienced. Specifically, females exposed to adult conspecifics may rely more 

heavily on the detection of chemical cues, while those exposed to heterospecifics may 

rely more on the downstream processing of these cues in the brain. Lastly, this study 

identified molecular pathways that will serve as the foundations for future studies 

assessing their causal implications in the development of learned mating preferences.  
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CHAPTER IV 

CULTURAL TRANSMISSION OF A HETEROSPECIFIC PERSONALITY TRAIT IN 

A VERTEBRATE WITHOUT PARENTAL CARE 

 

Introduction 

Personality - consistent behavioral variation among individuals across time and 

contexts - interacts in important ways with individual fitness (Ariyomo and Watt 2012, 

Ariyomo and Watt 2013) and social structure (Wilson, Grimmer et al. 2013, Briffa, 

Sneddon et al. 2015). Personality-related traits are often under strong ecological 

selection (Reale, Dingemanse et al. 2010, Sih, Cote et al. 2012, Wolf and Weissing 

2012) and may play a key role in speciation through its effects on mate choice (Ingley 

and Johnson 2014). In particular, assortative mating according to personality is 

widespread and could result in reproductive isolation over time (Schuett, Tregenza et al. 

2010, Nosil 2012). Alternatively, differences in personality could impede reproductive 

isolation by affecting individual preference functions (Coleman, Patricelli et al. 2004, 

David and Cézilly 2011, Sommer-Trembo, Bierbach et al. 2016). Personality could thus 

constitute a ‘magic trait’ (Servedio, Van Doorn et al. 2011), simultaneously under 

divergent ecological selection and coupled to divergence in mate-choice mechanisms 

(Boughman and Svanbäck 2017, Rosenthal 2017). 

Personality traits are often highly heritable (Schuett, Tregenza et al. 2010, 

Thomson, Watts et al. 2011, Wisenden, Sailer et al. 2011, Ariyomo, Carter et al. 2013) 

and subject to contextual cues and recent experience (Suboski, Bain et al. 1990, Mathis, 



64 
 

Chivers et al. 1996). Few studies, however, have addressed the intergenerational transfer 

- or cultural transmission - of personality traits [but see (Schuett, Dall et al. 2013)]. 

Cultural transmission can increase individual fitness by allowing for the development of 

relatively rapid behavioral adaptations to fluctuating environments (Danchin 2011). 

Cultural transmission through social learning is sufficient for the development of mating 

preferences that maintain reproductive isolation between closely related species 

(Verzijden and ten Cate 2007, Verzijden, Ten Cate et al. 2012). As personality and mate 

choice dynamics are intricately coupled (David and Cézilly 2011, Bierbach, Sommer-

Trembo et al. 2015, Sommer-Trembo, Bierbach et al. 2016), it is likely that personality-

related traits have culturally inherited components as well. 

I studied the effects of social exposure to adults during ontogeny on personality-

related traits in the swordtail fish Xiphophorus birchmanni. Boldness, the measure of 

how likely an individual is to explore and take risks in a relatively novel environment 

(Wilson, Clark et al. 1994, Sih, Bell et al. 2004), is the most well-studied axis of 

personality in fish (Toms, Echevarria et al. 2010) and has been shown to be positively 

correlated with certain fitness-related traits, such as reproductive success, social 

dominance and anti-predator behaviors (Dingemanse and de Goede 2004, Bell and Sih 

2007, Ariyomo and Watt 2012), although bolder individuals also experience a greater 

risk of mortality (Dugatkin 1992, Stamps 2007). X. birchmanni show repeatable within-

individual correlations in traits related to boldness (Boulton, Grimmer et al. 2014). X. 

birchmanni are relatively bold compared to the closely related sister species X. malinche 

(Johnson, Culumber et al. 2015).  
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Hybridization between the two species occurs in areas of coexistence, and hybrid 

individuals display intermediate boldness behaviors (Johnson, Culumber et al. 2015). 

However, it remains unknown whether this observed difference is genetically-based or 

may be influenced through the social environment. Studies of cultural transmission 

largely focus on social interactions within species. However, interspecific encounters 

can often affect behavioral development among individuals (Mathis, Chivers et al. 1996, 

Verzijden, Korthof et al. 2008, Verzijden and Rosenthal 2011). In this study, I assess 

whether boldness can be culturally inherited across species by male and female X. 

birchmanni through observational learning. If the development of boldness behaviors 

has a socially sensitive component, then I expect individual X. birchmanni boldness 

traits to mimic the species to which an individual was exposed throughout development. 

Differences in personality-related traits have been shown to affect growth in X. 

birchmanni males (Wilson, Grimmer et al. 2013). Over longer timescales, the behavioral 

consequences of differing social environments during ontogeny may shape adult 

morphology (Stamps 2007), further affecting mate choice dynamics, as female 

swordtails rely on both visual and chemical cues to choose mates (Fisher, Mascuch et al. 

2009). To test whether social exposure affects the development of secondary sexual 

traits, I assessed the effects of social environment on male morphology, and correlated 

this to observed boldness measures.  

Lastly, personality could potentially play an important role in predicting 

individual preference functions, particularly those preferences that are shaped via social 

cues, as shyer individuals across systems have been shown to typically prioritize social 
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over private information (Kurvers, Van Oers et al. 2010, Trompf and Brown 2014). To 

determine whether differences in personality and mating preferences are linked, I 

evaluated the association between female boldness measures and observed mating 

preferences for conspecific vs. heterospecific male odorant cues.  

  

Materials and Methods 

Fish collection and exposure treatments 

 Swordtails for this experiment were collected from the rearing experiment 

described in Chapter III. To summarize briefly, fifteen X. birchmanni females were 

collected from the Río Coacuilco in Coacuilco, Hidalgo, Mexico (Culumber, Fisher et al. 

2011) in March 2014 and transported to Texas A&M University facilities where they 

gave birth. When offspring reached approximately 3 weeks of age, broods were evenly 

pooled, separated into groups of 30 juveniles, and assigned to one of 3 treatment groups 

(3 replicates each): 1) B-EXP: exposed to 2 males and 2 females of adult X. birchmanni 

from the Río Garces locality; 2) M-EXP: exposed to 2 males and 2 females of adult X. 

malinche from the Chicayotla locality (Culumber, Fisher et al. 2011) and 3) NO-EXP: 

controls which did not receive adult stimulus exposure. Exposure treatments were 

performed at 23 °C, 12:12 light:dark cycle in adjacent, though visually obstructed, 120-

liter aquaria where adults and juveniles were divided by a transparent, perforated 

Plexiglas board which allowed for transmission of both visual and olfactory cues 

(Verzijden and Rosenthal 2011). Sufficient shelter was provided to both adults and 

juveniles, and water was continually changed via a flow-through system.  
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Juvenile males were removed from aquaria upon the first sign of maturation 

(hardening of the anal fin to form the gonopodium). The age at which the male was 

removed was noted, and the male was then placed into an individual tank, isolated from 

all individuals for 90 days to allow for complete development of secondary sexual traits. 

Male X. birchmanni are slightly aggressive and exhibit dominance in social 

environments (Wilson, Grimmer et al. 2013). Therefore, I isolated all males to account 

for any potential effects of the peer social environment on behavior. After 90 days in 

isolation, I performed shy-bold trials, and then photographed the males for 

morphological analysis. 

Male shy-bold open field trials 

Boldness behavior is commonly assessed across animal systems using an open-

field trial (OFT) paradigm (Warren and Callaghan 1975, Walsh and Cummins 1976, 

Budaev 1997, Burns 2008, Boulton, Grimmer et al. 2014, Johnson, Culumber et al. 

2015), where an individual is placed in an empty, open arena, and its behavior is 

observed for a predetermined amount of time. Therefore, to assess boldness, I conducted 

OFTs on male X. birchmanni swordtails as in previous experiments (Boulton, Grimmer 

et al. 2014) with minor modifications. I used a 75x19x20-cm tank filled to a depth of 15 

cm with room temperature water (22 °C). Male swordtails were caught individually from 

their respective tanks with a dip net and immediately placed into the OFT tank, and 

behavior was immediately filmed with a video camera suspended above the tank. Water 

was changed between individual trials to prevent chemical cues from affecting 

subsequent behavior.  
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To gain a more complete estimate of boldness, we measured three behaviors in 

males: latency to enter an open area (Lo) and amount of time spent in an open area (To) 

as measures of risk-taking behavior, and total distance travelled (Td) as a measure of 

exploratory behavior. I measured multiple behaviors likely to reflect variation along a 

shy-bold axis, as is frequently done in studies of boldness (Huntingford 1976, Moretz 

2003, Boulton, Grimmer et al. 2014), in accordance with previous studies that warn 

against using any one measure of boldness on a given species which can be easily 

misinterpreted (Boulton, Grimmer et al. 2014). Furthermore, these three measures were 

chosen as they have each previously been suggested to be reliable indicators of boldness 

(Dingemanse, Wright et al. 2007, Boulton, Grimmer et al. 2014). Using a custom video-

scoring script, the tank was divided into two equal zones, a perimeter and middle or 

“open” zone. With this script, I first noted Lo in seconds. Upon first entering the open 

zone, I then measured the amount of time spent in the open zone over the following 600 

seconds (To).  

In addition, I also measured Td during the 600-second trial using the software 

program Tracker (Brown 2012). Briefly, every 20 frames (2 seconds) an individual’s 

location in xy-space (origin placed at the bottom left of the arena) was measured. Td was 

then calculated as the sum of all linear distances between successive data points.  

Measuring female boldness behavior 

 Estimates of female shy-bold behavior were extracted from video footage of 

previously conducted mating preference trials. Briefly, female olfactory preferences 

were assessed in successive, 600-second trials (see Chapter III for method details). Due 
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to differences in experimental setup (i.e. the presence of a small shelter in the center of 

the trial arena), I was not able to obtain an accurate measure of Lo and did not directly 

compare differences in Td behavior between the sexes. Td was assessed for female 

swordtails during the entire 600-s trial as previously described. To gain a better 

understanding of shy-bold behavior in female swordtails, we also measured the amount 

of time females spent within the shelter provided during preference trials (Ts), a measure 

frequently used to estimate boldness behaviors (Boulton, Grimmer et al. 2014).  

Measuring male morphology 

 To assess the effects of social environment on male morphology, males were 

weighed to the nearest 0.01 g and photographed on both sides after behavior trials. The 

images were then loaded on the ImageJ program (Abràmoff, Magalhães et al. 2004), and 

I measured males’ body depth, dorsal fin, gonopodium and standard lengths to the 

nearest 0.1 mm. Measurements were averaged from both sides. I also recorded the 

number of vertical bars on each side of the male, as well as the presence or absence of a 

false gravid spot, a dark pigment near the base of the gonopodium. 

 I conducted a principal components analysis (PCA) on log + 1 transformed 

measurements using the rda function in the vegan package of R (center and scale = 

TRUE). Approximately 40.4% of total variance was explained in the first principal 

component (PC1), and 27.8% was explained by the second (PC2). Loading scores 

indicated that high PC1 scores correspond to longer, heavier males with large gonopodia 

and dorsal fins, and high PC2 scores correspond to early-maturing males with more 

vertical bars.  
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Measuring effect of social exposure on behavior and morphology 

 Lo, To, Ts and Td were all square-root transformed to reduce positive skew 

(Boulton, Grimmer et al. 2014). To relate male morphology and behavior to exposure 

treatment, I used linear mixed-effects ANOVAs on each behavior and PC1 and PC2 

measures of male morphology. Replicate was included as a random effect, and exposure 

treatment as a fixed effect. Boldness measures, PC1 and PC2 of male morphology were 

included as covariates to assess how personality-related traits and morphological 

measures covaried with one another. I then ran Tukey’s Honest Significant Difference 

contrasts to compare between-group differences in all behaviors and morphology using 

the multcomp package in R. ANOVAs were conducted using the nlme package in R. 

To compare individual female boldness behaviors with observed mating 

preferences, I conducted a similar analysis, including replicate as a random effect, 

exposure as a fixed effect, and boldness measures and net mating preference as 

covariates. 

 

Results 

Exposure effects on boldness 

 Early social experience had a significant effect on both the amount of time taken 

for a male to enter the open zone (F(2, 62) = 20.7, p < 0.0001, Figure 16a), as well as the 

amount of time spent in the open zone during a 10-minute period (F(2, 62) = 4.07, p = 

0.022, Figure 16b). Specifically, male X. birchmanni that had been exposed to 

heterospecific X. malinche adults took significantly longer to enter the open area of the  
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Figure 16 – Mean times a) taken to enter open zone and b) spent in open zone by male X. 

birchmanni during open-field shy-bold behavior trials according to social exposure 

treatment. Blue bars: exposed to conspecific adults throughout development, red bars: 

exposed to heterospecific X. malinche adults, and black bars: isolated from adults. Error 

bars represent SEM. Asterisks denote significant differences between groups (p < 0.05). 
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arena (143.8 ± 39.0 s) than those exposed to adult conspecifics (30.1 ± 9.4 s, p < 0.0001) 

or those isolated from adults altogether (34 ± 13.1 s, p < 0.0001). Meanwhile, males 

exposed to heterospecific adults throughout development spent the least amount of time 

within the open zone of the arena (111.3 ± 21.7 s), and significantly less time in this area 

than males exposed to adult conspecifics (171.1 ± 18.7 s, p = 0.042) and males isolated 

from adult swordtails (185.7 ± 16.8 s, p = 0.011). Males exposed to conspecific adults 

did not significantly differ from socially isolated males in either latency to enter or time 

spent within the open area (p = 0.76 and p = 0.40, respectively). 

Social exposure had no significant effect on the total distance traveled during 

shy-bold trials (F(2,62) = 1.74, p = 0.18, Figure 17). NO-EXP males (1459.0 ± 113.7 

cm) traveled relatively further than M-EXP (1275.3 ± 136.5 cm) and B-EXP males 

(1223.9 ± 78.2 cm), though neither difference was significant (NO-EXP/M-EXP: p = 

0.363, NO-EXP/B-EXP: p = 0.107, B-EXP/M-EXP: p = 0.818).  

Exposure type had a considerable role in shaping female shy-bold behaviors, as 

heterospecific-exposed female X. birchmanni spent significantly more time within the 

provided shelter than conspecific-exposed females (M-EXP: 41.6 ± 11.7 s, B-EXP: 15.9 

± 4.3 s, p = 0.042, Figure 18a). Neither exposure treatment differed significantly in Ts 

from females isolated from adult swordtails (NO-EXP: 28.9 ± 9.7 s, both p > 0.05). 

Furthermore, heterospecific-exposed female X. birchmanni traveled significantly less 

distance (M-EXP: 489.9 ± 55.6 cm) than both conspecific-exposed (B-EXP: 685.3 ± 

79.7 cm, p = 0.047) and isolated females (NO-EXP: 690.0 ± 64.4 cm, p = 0.020, Figure 

18b). 



73 
 

 

Figure 17 - Mean distance Xiphophorus birchmanni males traveled during open-field 

shy-bold behavior trials according to social exposure treatment. Blue bar: exposed to 

conspecific adults throughout development, red bar: exposed to heterospecific X. 

malinche adults, and black bar: isolated from adults). Error bars represent SEM. 
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Figure 18 – a) Mean time spent in sheltered area and b) mean distance traveled by 

Xiphophorus birchmanni females during mating preference trials according to social 

exposure treatment. Blue bars: exposed to conspecific adults throughout development, 

red bars: exposed to X. malinche adults, and black bars: isolated from adults. Error bars 

represent SEM. Asterisks denote significant differences between groups (p < 0.05). 
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Exposure effects on male morphology 

 Early social experience had a significant effect on male morphology. 

Specifically, exposure significantly affected PC1 (F(2,62) = 6.47, p = 0.003). Male X. 

birchmanni exposed to adult conspecifics were, on average, larger than males exposed to 

adult X. malinche (B-EXP: PC1 = 0.067 ± 0.081, M-EXP: PC1 = -0.216 ± 0.096), p = 

0.0049). Socially isolated males were intermediate in size, though not significantly 

different than either exposure group (NO-EXP: PC1 = 0.033, 0.092, both p > 0.05, 

Figure C-1). No significant effect of exposure on PC2 was detected (F(2,62) = 1.36, p = 

0.27).  

Correlations between boldness and sexual traits 

 Male boldness behaviors significantly covaried with male morphology. 

Specifically, PC2 was significantly correlated with the total distance traveled during shy-

bold trials (F(1,62) = 5.82, p = 0.019). However, this effect was relatively weak (r2 = 

0.059). No significant covariance between PC1 and observed boldness measures were 

observed (all p > 0.5).  

The total distance a male traveled during shy-bold trials significantly covaried 

with the latency to enter the open zone (F(1,62) = 4.67, p = 0.035) and the amount of 

time spent in the open (F(1,62) = 12.05, p = 0.001), with males that traveled greater 

distances spending more time in, and less time to enter, the open zone. Latency and time 

spent in the open zone did not significantly covary with one another (F(1,62) = 0.62, p = 

0.43).  

 Lastly, female boldness behaviors did not significantly covary with one another 
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(F(1,84) = 0.09, p = 0.77) nor with observed female mating preferences (time in shelter: 

F(1,84) = 0.36, p = 0.55; distance traveled: F(1,84) = 3.60, p = 0.06). 

 

Discussion 

Boldness behaviors are culturally transmitted between swordtail species 

 In this study, I found a significant effect of social exposure on boldness-related 

behaviors. Whereas previous studies have highlighted the influence of the social 

environment on learned female mating preferences [see Chapter III and (Verzijden and 

Rosenthal 2011)], the results from this study show that cultural transmission plays an 

important role in shaping personality-related traits, and that the development of these 

traits are not bounded by species.  

Previous studies examining the relationship between the social environment and 

boldness have focused on the short-term effects of direct encounters or observed contests 

on the focal individual (Frost, Winrow-Giffen et al. 2007, Nomakuchi, Park et al. 2009, 

Harcourt, Biau et al. 2010). However, this study is among the first to directly test the 

role of learning through social communication between generations in the development 

of boldness behaviors. Furthermore, the results from this study show that these social 

effects on boldness have long-term implications on personality later in life, as males 

were isolated from all social cues for 90 days prior to testing.  

 I previously found that the social environment plays a direct role in shaping 

female mating preferences (see Chapter III), and the results from this study suggest that 

social upbringing may also indirectly affect mate choice dynamics through changes to 
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personality-related traits in both males and females. Previous studies in other fish 

systems have found that personalities play an important role in mate choice by affecting 

both female mating preferences (Sommer-Trembo, Bierbach et al. 2016) as well as male 

mating preferences (Bierbach, Sommer-Trembo et al. 2015) and attractiveness (Godin 

and Dugatkin 1996). Swordtail females have previously been shown to prefer more 

active male courtship behaviors (Wong, So et al. 2011). Furthermore, the combination of 

personalities between males and females could have post-mating implications, as 

pairings of dissimilar personality types can result in lower reproductive success 

(Ariyomo and Watt 2013). I found no significant correlation between individual female 

boldness measures and mating preferences for conspecific versus heterospecific male 

chemical cues, although it is possible that preferences for other traits may be affected by 

differences in personality. The results from these studies suggest that the social 

environment can have a complex effect on mate choice dynamics via both direct effects 

on mating preferences as well as indirect effects through shaping the personalities of 

both sexes. 

Social environment affects male morphology 

 In this study, I found a significant effect of social environment on male 

morphological development. Specifically, males raised with conspecifics tended to grow 

larger than those raised with heterospecific adults. Although the mechanisms behind this 

result are unclear, these effects might result from long-term physiological effects caused 

by differences in the social environment. Boldness measures are often correlated with 

testosterone levels (Chang, Li et al. 2012, Raynaud and Schradin 2014), which in turn 
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drive the development of secondary sexual traits in swordtails (Sangster 1948, Offen, 

Blum et al. 2008). X. birchmanni males have been shown to grow differentially 

according to personality, with more dominant and aggressive males growing at a faster 

rate (Wilson, Grimmer et al. 2013). This result is in accordance with my finding that 

heterospecific-exposed males, on average, grew less and were shyer than conspecific-

exposed males. This morphological effect can be expected to have important mate 

choice implications, as female swordtails typically prefer larger and bolder males 

(Cummings, Larkins-Ford et al. 2008, Wong, So et al. 2011), which may allow for the 

cultural evolution of certain personalities. Furthermore, future studies should aim to 

address whether the observed morphological response to social exposure in males is 

driven by behavioral and physiological mechanisms, or if the reverse is true, and the 

behavioral responses to social exposure observed are driven by differences in 

morphology. Regardless of the result, this study has shown that X. birchmanni 

swordtails’ social experiences throughout development can have important long-term 

consequences on both morphology and personality. 

Future studies 

 Female X. birchmanni learn to prefer familiar visual and chemical cues 

[(Verzijden and Rosenthal 2011) and see Chapter III]. However, it remains unknown 

whether this learning process also translates to preferences for familiar personalities. 

Future rearing experiments should test whether learned male personalities confer an 

advantage in female mate choice. Developing a familiar personality would therefore 

benefit males by behaviorally matching the species preferred by female X. birchmanni. 
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Results from such a study would shed light on the potential selective implications of 

these learned personalities. 

Whereas female X. birchmanni prefer familiar phenotypes, females of the sister 

species X. malinche learn to relatively disdain familiar chemical cues (Verzijden, 

Culumber et al. 2012). However, visual preferences in this system appear to be 

insensitive to learning (Cui, Delclos et al. 2017). Therefore, further research is required 

in the X. malinche system to determine whether male and female personalities are 

sensitive to the social environment, and whether females exhibit preferences for 

particular personalities. Regardless of the results, these studies would provide a 

foundation towards making the X. birchmanni-X. malinche system a powerful one for 

studying the evolution of personality. 

The finding that personalities in X. birchmanni are sensitive to the social 

environment also makes this system highly suitable for future research on the neural 

mechanisms of learning-dependent personalities. Outside of studies involving human 

subjects, relatively little research has been conducted on the neural correlates of boldness 

(Beaton, Schmidt et al. 2008). The swordtail system could provide a basis for examining 

the neurogenetic framework of personality development in novel ways by being 

amenable to next-generation sequencing methods. 

 

Conclusions 

 Recent theoretical and empirical research has highlighted the importance of 

considering individual personality in a variety of fields. However, the mechanisms by 
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which personality is developed in an individual remains largely unknown. While mating 

preferences have been shown to be largely influenced by the social environment through 

learning processes, the potential for personality-related traits to be culturally transmitted 

across species has yet to be examined. In this study, I tested whether male and female 

Xiphophorus birchmanni boldness behaviors varied according to exposure to conspecific 

adults, to adults of the sister species Xiphophorus malinche, and social isolation from 

adult swordtails. I found that both male and female X. birchmanni learned to develop 

boldness behaviors similar to their exposure models, mirroring the previous finding that 

female X. birchmanni learn to prefer familiar cues. Their ability to learn was not limited 

by species, as individuals raised with adult X. malinche developed personalities similar 

to their interspecific models. Furthermore, male morphology was significantly affected 

by social exposure, as conspecific-exposed males developed relatively larger than 

heterospecific-exposed males. The results from this study highlight the complexity with 

which cultural transmission can shape mate choice dynamics by affecting the 

development of mate-choice related morphology and behavior.  
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CHAPTER V 

CONCLUSIONS 

 

 A major goal in evolutionary biology is to determine the behavioral and neural 

mechanisms by which reproductive isolation is maintained between populations. Mating 

preferences are extraordinarily sensitive to environmental and social factors. In my 

dissertation, I took advantage of the Xiphophorus birchmanni – Xiphophorus malinche 

swordtail system to determine how environmental and social cues affect the expression 

of behaviors that are implicated in female mate choice. 

 In Chapter II of my dissertation, I used behavioral, morphological and genetic 

data to describe standing variation in swordtail mate-choice related phenotypes across 

time and small-scale space. The results from this study highlight the level of variation in 

preference patterns across year and small-scale space, with female preferences for a 

condition-dependent chemical cue differing according to pools separated by only a few 

meters. Furthermore, these preferences switched according to year, highlighting the 

importance of replicating across time and space in order to more confidently determine 

the potential evolutionary implications of an observed mating preference. Measures of 

selection strengths through mate choice are often very weak (Qvarnstrom, Brommer et 

al. 2006), and the results from this study provide a clear example of how fluctuations in 

mating preferences at microspatial and temporal scales could weaken sexual selection 

within populations. Whether these differences in association times are related to real 

mating preferences or methodological error, the results from this study provide a strong 
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caution for past and future behavioral studies that extrapolate observed preference 

patterns to the population or species level. 

 In Chapter III, I heeded the cautions discussed in the previous chapter and tested 

the reproducibility of a previous finding that female Xiphophorus birchmanni learn to 

prefer the olfactory cues of familiar males when raised with conspecifics or 

heterospecifics. Furthermore, I tested a control group where juvenile swordtails were 

socially isolated from all adults and showed that preference for conspecifics may not be 

completely innate, but that social exposure may be necessary for the development of 

these preferences. I then used RNA-sequencing methods on sensory and brain tissue to 

identify differentially expressed genes and significantly enriched molecular pathways 

that correlate with this observed preference for a familiar phenotype. I found greater 

differentiation between gene expression profiles of conspecific- and heterospecific-

exposed females than the differentiation observed between socially isolated females and 

either of these exposure groups. Specifically, conspecific-exposed female X. birchmanni 

experienced net upregulation of genes pertaining to immune response and visual and 

olfactory detection. Meanwhile, heterospecific-exposed females exhibited net 

upregulation of genes related to neurogenesis and synaptic plasticity. These results 

suggest that the type of social exposure elicits downstream transcriptional regulation of 

different biological processes that ultimately lead to learned preferences. Specifically, 

conspecific-exposed female X. birchmanni may rely more on sensory detection in order 

to realize a preference for conspecific males, whereas heterospecific-exposed females 

may rely on greater sensory processing to prefer heterospecific males. Previous theory 
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(Marler 1991, Marler 1997) has suggested the presence of “innate releasing 

mechanisms”, where individuals may be neurally primed to learn from conspecific 

stimuli in social interactions. Consistent exposure to this stimulus subsequently improves 

the ability to detect the cue, as seen in other species (Corotto, Henegar et al. 1994, 

Bazáes, Olivares et al. 2013). However, exposure to a heterospecific cue may require a 

sort of neuronal rewiring of this primed architecture in order to create a modified 

template that allows the individual to learn to prefer the familiar heterospecifics. The 

findings from this study have opened several promising avenues of research that will 

elucidate the neurogenetic framework of learned mating preferences. 

 While I and other authors have shown that female mating preferences can be 

learned from their social environment via cultural transmission (Verzijden and Rosenthal 

2011, Verzijden, Culumber et al. 2012), it was unknown whether other mate-choice 

relevant behaviors, such as personality-related traits, are culturally learned. In Chapter 

IV, I tested behavioral indicators of boldness in male and female X. birchmanni 

according to the social exposures described in Chapter III. Furthermore, I tested whether 

social exposure affected male morphology, which would have drastic mate choice 

consequences as females also rely on the visual modality when selecting mates (Fisher, 

Mascuch et al. 2009). Lastly, I correlated behavioral measures of female boldness to 

observed mating preferences to determine whether preference and personality behaviors 

are linked to one another. I found that, much like how female X. birchmanni develop 

mating preferences typical of the species to which they are exposed, both males and 

females learn to mirror some of the personalities of their exposure model as well. 
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Specifically, males and females exposed to adults of the relatively shy sister species X. 

malinche (Johnson, Culumber et al. 2015) became relatively shy themselves. This is the 

first study showing that male behaviors in this system can be learned from their 

developmental social environment, and is the first, to my knowledge, showing that 

individuals can learn personality-related traits from heterospecific models of a previous 

generation. Furthermore, heterospecific-exposed males developed relatively smaller than 

conspecific-exposed males. These results are likely to have important mate choice 

consequences, as female swordtails typically prefer larger and more active males 

(Cummings, Larkins-Ford et al. 2008, Wong, So et al. 2011). The results from this study 

highlight the complexity with which the social environment can influence female mate 

choice, not only by directly shaping learned female mating preferences, but also by 

affecting mate-choice related behavior and morphology. 

 The results from the studies described in this dissertation highlight the 

environmental sensitivities of mate-choice related traits, and bring to light some of the 

complex mechanisms through which these traits can fluctuate within and between 

populations. In Chapter II, I concluded that interannual and small-scale spatial 

differences can be associated with behavioral differences and may contribute to a 

resolution to the paradox of the lek. In Chapter III, I focused on the role of the social 

environment in directly shaping learned mating preferences, and provided the necessary 

foundation for future studies examining the neural mechanisms of these learned 

behaviors. Finally, in Chapter IV, I revealed how the social environment can also have 

indirect implications on mate choice by affecting personality-related traits and 
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morphology that, in turn, are expected to have important consequences on mate choice 

dynamics. Together, these studies describe the complex direct and indirect relationships 

between the environment and female mate choice. 
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APPENDIX A 

SUPPORTING INFORMATION FOR  

HETEROGENEITY IN MATING PREFERENCES ACROSS TIME AND 

MICROHABITAT: A HARD LIMIT ON MEASURES OF MATE CHOICE? 

 

Table A-1 - Principal components analysis loading scores and summary statistics for 

measurements of male swordtails from the UP and DOWN pools of the Calnali-Mid 

locality taken from 2013-2015. 

    PC1 PC2 PC3 PC4 PC5 

Measurements standard length 2.31 -0.08 0.276 -0.29 0.336 

 dorsal fin length 2.16 -0.27 0.658 0.694 -0.05 

 sword length -0.01 -2.36 -0.24 -0.08 -0.02 

 gonopodium length 1.73 0.256 -1.59 0.155 -0.01 

 mass 2.29 0.129 0.309 -0.47 -0.28 

Importance of components eigenvalue 3.23 1.02 0.571 0.146 0.035 

  % explained 64.6% 20.3% 11.4% 2.9% 0.7% 

 

Table A-2 - Principal components analysis loading scores and summary statistics for 

measurements of female swordtails from the UP and DOWN pools of the Calnali-Mid 

locality taken from 2013-2015. 

    PC1 PC2 

Measurements reproductive allotment 2.1 -1.0 

 fat content 2.1 -1.0 

Importance of components eigenvalue 1.63 0.37 

  % explained 81.4% 18.6% 
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APPENDIX B 

SUPPORTING INFORMATION FOR 

NEUROGENETIC FRAMEWORK OF LEARNED FEMALE MATING 

PREFERENCES IN THE SWORDTAIL FISH XIPHOPHORUS BIRCHMANNI 

 

Figure B-1 - Sampling method of pooled sensory and brain tissue. Whole brain was 

dissected and cut at the base of the hindbrain, and olfactory epithelia were removed from 

cuts around fish nares (dashed red lines). Abbreviations: AN- anterior nare, PN- 

posterior nare, OE- olfactory epithelium, OB- olfactory bulb, TE- telencephalon, ON- 

optic nerve, OT- optic tectum, CB- cerebellum, SC- spinal cord. 
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Figure B-2 - Table of module-trait correlations and adjusted p-values for comparisons of a) M-EXP and NO-EXP, and b) B-

EXP and NO-EXP female X. birchmanni gene expression profiles. The table is color-coded by correlation according to the 

legend on the right. Negative correlations denote relative upregulation of module genes in NO-EXP samples.  
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Supplementary Table Titles 

Table S1- List of significant differentially expressed genes for all pairwise comparisons 

between conspecific-exposed, heterospecific-exposed, and socially isolated female X. 

birchmanni. 

Table S2- Biological process gene ontology results for conspecific-exposed versus 

heterospecific-exposed differentially expressed genes at FDR < 0.05. Table restricted to 

gene ontology terms significantly enriched at FDR < 0.05. 

Table S3- Biological process gene ontology results for conspecific-exposed versus 

heterospecific-exposed differentially expressed genes at FDR < 0.05, with gene lists 

divided according to relative up- and down-regulation according to treatment. Table 

restricted to gene ontology terms significantly enriched at FDR < 0.05. 

Table S4- Full list of genes assigned to the “synapse” module comparing conspecific-

exposed and heterospecific-exposed female X. birchmanni gene expression profiles. 

Table S5- Biological process gene ontology results for list of genes found within the 

“synapse” module. Table restricted to gene ontology terms significantly enriched at FDR 

< 0.05. 

Table S6- Full list of genes assigned to the “vision” module comparing conspecific-

exposed and heterospecific-exposed female X. birchmanni gene expression profiles. 

Table S7- Biological process gene ontology results for list of genes found within the 

“vision” module. Table restricted to gene ontology terms significantly enriched at FDR < 

0.05. 

Table S8- Full list of genes assigned to the “olfaction” module comparing conspecific-
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exposed and heterospecific-exposed female X. birchmanni gene expression profiles. 

Table S9- Biological process gene ontology results for list of genes found within the 

“olfaction” module. Table restricted to gene ontology terms significantly enriched at 

FDR < 0.05. 
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APPENDIX C 

SUPPORTING INFORMATION FOR  

CULTURAL TRANSMISSION OF A HETEROSPECIFIC PERSONALITY TRAIT IN 

A VERTEBRATE WITHOUT PARENTAL CARE 

 

Figure C-1 – Principal components analysis of male X. birchmanni phenotypic 

distribution according to social exposure treatment. Blue dots: exposed to conspecific 

adults, red dots: exposed to X. malinche adults, and green dots: socially isolated from 

adults. PC1 is most influenced by general size of the male (larger individuals on the 

right), and PC2 is most influenced by maturation age and vertical bar number (early-

maturing individuals with more vertical bars towards the top). Circles represent 95% 

confidence intervals of the standard error of the mean centroid value of a given group. 


