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ABSTRACT

A new multi-continuum compositional gas simulation model is presented for deformable

organic-rich source rocks. The model describes the advective and diffusive mass balance

equations for each hydrocarbon components in the organic and inorganic continua. It ac-

counts for the presence of dispersed kerogen with sorbed-gas corrected dynamic porosity.

Maxwell-Stefan theory is used to predict the pressure- and composition-dependence of

molecular diffusion. The coupled nonlinear system of equations for the multi-component

gas transport and geomechanics are discretized using the control volume finite element

method, and linearized using the Newton-Raphson iteration scheme. Any fractures in the

reservoir domain is modeled using the discrete fracture model.

The simulation is based on a new multi-scale conceptual flow model, in which the

kerogen is considered to be discontinuous and dispersed in the inorganic matrix at reservoir

simulation scale. Scanning Electron Microscopy images, as well as the expected slow

transport in the nanoporous organic matrix in comparison to the advective transport in

the organic matrix form the basis for this new numerical model. A simple mass balance

equation is introduced to enable kerogen to transfer reservoir fluids to the inorganic matrix

that is collocated in the same grid-block. The advective-diffusive transport takes place

between neighboring grid blocks only in the inorganic matrix.

The simulation results indicate that the multi-scale nature of the rock is important and

should not be ignored because this could result in an overestimation of the contribution of

kerogen to production. Although the adsorbed fluid can contribute significantly to storage

in these source rocks, its contribution to production could be severely limited by the lack

of kerogen continuity at the reservoir scale and by a low degree of coupling between the

organic and inorganic pores. The contribution of Maxwell-Stefan diffusion to the over-
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all transport in organic-rich source rocks appears to be more significant at lower values

of matrix permeability, and as the permeability decreases in response to pressure decline

during production. The coupled geomechanics and flow simulation results indicate that

production of reservoir fluids can induce higher compressive stresses that can in turn re-

duce fracture conductivity, and lead to faster production decline.
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NOMENCLATURE

y vector of mole fractions of components, i in the gas
phase

yi mole fraction of component, i in the gas phase

z vector of overall mole fractions

zi overall mole fraction of component, i

c total concentration or total molar density, mol/m3

ci concentration or molar density of component i, mol/m3

cG concentration or molar density of the gas phase, mol/m3

cµ adsorbed-gas concentration in kerogen in mole per grain
volume, mol/m3

cµs maximum monolayer gas adsorption on the internal
kerogen solid surfaces (in mole per grain volume,
mol/m3)

cL Langmuir concentration, mol/m3

εkp kerogen pore volume per total matrix pore volume

εks total organic content in terms of organic grain volume
per total grain volume

v total Darcy velocity of the bulk phase m/s

k matrix permeability, m2

lm shape factor

p pressure, Pa

D matrix of diffusion coefficients in inorganic pores, m2/s

Dk matrix of diffusion coefficients in organic pores, m2/s
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Ds matrix of surface diffusion coefficients in kerogen, m2/s

B drag matrix

Ji relative (molar) flux of component, i

φ porosity

µ viscosity, Pa.s

τ tortuosity

Γ matrix of thermodynamic factor
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1. INTRODUCTION

1.1 Statement of the Problem

Commercial production of oil and gas from organic-rich source rocks has contributed

significantly towards the global energy supply over the past decade. The technologies

that facilitated the commercial production from these ultra-low unconventional resources

include hydraulic fracturing and horizontal drilling. Several researchers have therefore

developed models to describe the macroscopic transport of reservoir fluids towards the

multiply-fractured horizontal wells in these unconventional resources. There appears to

be a general consensus that the network of hydraulic fractures, natural fractures and/or

microcracks in these source rocks play a dominant role in the production, especially early

in the production life of these resources. However, the production typically shows a sharp

decline, which could be indicative of a transition from the early time, when the production

is mainly due to the flow in the fractures, to a later period, when the matrix begins to con-

tribute to production. Considering that these ultra-low permeability resources are typically

characterized by long production periods, a study of the storage and transport mechanisms

in both the fractures and matrices will be pivotal to the optimization of production from

these resources. At present, there is active research in the area of fracture modeling and

hydraulic fracture propagation. This work, in addition to the modeling of the production of

multi-component gas from the hydraulic fractures, also focuses on the study of the shale

matrix, and could provide new insights into the optimization of production from these

source-rocks.

This research involves the development of a new numerical model and simulator to

describe the coupled geomechanics and transport of multi-component gas in organic-rich

source rocks. Several authors have published different variations of multiple-continuum
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models, like the dual-continuum models, and triple continuum models, among others. In

these models, the matrix of the source-rock is typically modeled as two different continua,

comprising an inorganic matrix and an organic matrix, which is also known as kerogen. In

the triple continuum models, the fractures are typically modeled as the third continuum.

In this research, I develop a new model which seeks to honor the observation that Scan-

ning Electron Microscopy (SEM) images indicate that kerogen could be discontinuous and

dispersed within the inorganic matrix at the reservoir simulation scale. The SEM images

are typically on the order of micrometers, and they generally indicate that the kerogen is

less abundant and dispersed within the inorganic matrix. In this research, I therefore ne-

glect the continuous transport (by advection and diffusion) of hydrocarbons in the organic

matrix based on the argument that the kerogen will be discontinuous at the large scales

associated with reservoir simulation. The fact that the diffusion-dominated transport in

the organic matrix is expected to be much slower than the advection-dominated transport

in the microcracks also supports the argument in favor of neglecting the continuous trans-

port of hydrocarbons in the organic matrix. The model presented in this work allows the

release of fluids from the organic matrix into the inorganic matrix, but does not allow the

continuous transport of fluids from the organic matrix in a simulation cell to the organic

matrix in the neighboring cell.

Organic-rich source rocks are known to have very low matrix permeability values,

which leads to very long transient flow in these matrices. In order to capture the transient

flow in the coupling between the organic and inorganic matrices, I derived a transient shape

factor by making analogy to the Zimmerman transient shape factor that was developed for

a dual-permeability matrix/fracture system. To model the molecular diffusion of multi-

ple hydrocarbon components under concentration gradient, I used the multi-component

Maxwell-Stefan diffusion model. This, unlike most of the published models accounts

for the dependence of the diffusion coefficient tensor on pressure and composition. To
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accurately model the storage of multi-component gas in the organic matrix, I extended

the petrophysical model presented by Ambrose et al. (2012) and Hartman et al. (2012),

and incorporated this in the mass balance equation for the organic matrix. The Ambrose

et al. (2012) model accounts for the pore-volume occupied by the adsorbed gas molecules,

which was not considered in the old methodology that simply added the adsorbed gas

amount to the amount of gas stored in the pores (without considering that the amount of

gas in the pores will be reduced by an amount equal to the pore volume occupied by the

adsorbed gas molecules).

Considering the importance of propped hydraulic fractures to commercial production,

this research also presents a fully-coupled geomechanics and multi-component gas simu-

lator that is able to dynamically model the expected reduction in fracture aperture and con-

ductivity due to the closing stresses that are induced as reservoir fluids are produced from

these organic-rich source rocks. The coupling of the storage mechanism, which accounts

for the pore-volume occupied by the adsorbed gas molecules, together with the mechan-

ical deformation of the rock provides the ability to study the dynamics of pore-volume

reduction due to the decrease in pressure during production, as well as the potential in-

crease in pore volume due to the release of some adsorbed gas molecules. The Control

Volume Finite Element Method (CVFEM) was used to discretize all the species mass

balance equations and linear momentum balance equations, because it provides a mass

conservative scheme with flexible gridding, where all primary variables are co-located at

the vertices of the elements. The coupled geomechanics and compositional flow simulator

is used to perform a numerical study of the effect of the elastic and creep deformation of

the proppants during production. The simulator is also used to study to potential of stor-

ing CO2 in a depleted Barnett-type shale. The core objective of this numerical study is to

evaluate the feasibility of injecting CO2 into this shale, and to study of the potential of the

kerogen in trapping the injected CO2.
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1.2 Objectives

The overall objectives of this research are:

1. To develop a mathematical model for the transport of multi-component gas in a shale

matrix, consisting of the organic and inorganic matrices. Unlike previous models for

transport in shales, this work models the organic matrix (or kerogen) as a dispersed

and discontinuous continuum. The rationale behind this dispersed kerogen model is

inferred from SEM images, as well as the experimental and history-matching work

by Kang et al. (2011), which indicates that kerogen appears to be discontinuous at

scales larger than tens of microns, and that the coupling between the organic and

inorganic matrices is in series.

2. To present a Maxwell-Stefan formulation for the computation of the pressure- and

composition-dependent diffusion coefficients in a multi-component system with more

than two components.

3. To develop and implement a time-dependent shape factor to be used in the cou-

pling term that describes the series transport of the multi-component shale gas from

the kerogen into the inorganic matrix. This time-dependence of the coupling term

was developed based on the time-dependent shape factor presented by (Zimmerman

et al., 1993) for a dual-porosity matrix/fracture system. In this work, we focus on a

dual-continuum matrix comprising of the inorganic and organic matrices.

4. To implement a modified form of the petrophysical model proposed by Ambrose

et al. (2012) and Hartman et al. (2012). The petrophysical model from Ambrose

et al. (2012) and Hartman et al. (2012) basically reduces the pore volume available

for the storage of free gas in the shale matrix by the pore volume occupied by the

adsorbed gas molecules. The modification in this work is to correct only the organic
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pore volume (and not the total pore volume) by the volume occupied by the adsorbed

gas molecules because we do not expect any significant adsorption in the inorganic

pores.

5. To develop a fully-coupled model for the transport of multi-component gas in a

deformable shale matrix. The stress-dependence of the matrix permeability will

be modeled using the Gangi’s model (Gangi, 1978), while the stress and time-

dependence of the propped fracture conductivity will be modeled using an analytical

viscoelastic model presented by Guo and Liu (2012).

6. To evaluate the potential of injecting and storing anthropogenic CO2 in depleted

organic-rich source rocks, using the numerical simulator developed.
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2. LITERATURE REVIEW

2.1 The Multiscale Nature of the Shale Matrix

Oil and gas production from resource shale is characterized by a sharp decline. This

decline is a manifestation of flow-regime transition from an early time, when the pro-

duction is mainly due to flow in fractures, to a later period, when the matrix begins to

contribute to the production. The extent of the early transient, which could be ephemeral,

really depends on the presence of fractures and on the physical qualities (conductivity, spa-

tial distribution, etc.) of the fracture network. The later period, on the other hand, could

take large production times and is characterized by a long tail in production history plots.

Its extent is controlled by the shale formation qualities. The latter observation and the de-

sire to manipulate decline rates in shale-gas wells for optimum production has resulted in

research interest on the shale matrix, in particular, its storage and transport mechanisms.

Recent investigations on petrophysical characterization of resource shales using

scanning- and transmission-electron microscopy images have visually revealed the pres-

ence of multiple continua in the shale formation, consisting of the organic matrix also

known as kerogen, the inorganic matrix (mainly consisting of clays, quartz, carbonate,

pyrite, and feldspars), and the fractures (Loucks et al., 2009, 2012; Ambrose et al., 2012).

Kerogen appears in 2D images (like Figure 2.1) as the finely-dispersed phase within the

inorganic matrix at the sub-micron scale, or in 3D images (like Figure 2.2), as the continu-

ous phase creating its own interconnected network intertwined with the inorganic matrix.

Ambrose et al. (2012) presented 3D images at the micron-scale, using Barnett shale sam-

ples. An adapted version of the image is shown in Figure 2.2. Akkutlu and Fathi (2012)

presented the first set of governing equations honoring these petrophysical observations to

describe single-phase flow of gas in shale formation including this duality and coupling
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of the organic-inorganic matrices. These equations included the contribution of molecular

diffusion and surface diffusion in the shale formation. This was necessary, they argued,

because the permeability of the shale matrix could be so low that other transport mech-

anisms could contribute to the overall transport significantly. Recent publications (Sun

et al., 2015; Zhang et al., 2015; Akkutlu et al., 2016) on the numerical modeling of trans-

port in shale-gas reservoirs now typically include surface diffusion and Knudsen diffusion

in the kerogen pore network, in addition to molecular diffusion and convection in the kero-

gen/inorganic pore network. However, these publications typically ignore the dispersed

nature of kerogen, as well as the dependence of the molecular diffusion coefficients on

pressure and composition.

2.2 Numerical Modeling of Transport and Storage in Organic-rich Source

Rocks

Several authors have developed numerical models that attempt to describe the storage

and transport mechanicsms that are peculiar to organic-rich source rocks. Freeman et al.

(2010) and Moridis et al. (2010) presented a detailed mathematical model and simulator

Figure 2.1: 2D focused-ion-beam/scanning-electron-microscope image of an organic-rich
shale sample showing finely dispersed kerogen embedded in an inorganic matrix. In these
images, black represents the pores, dark gray represents the kerogen matrix, and light gray
represents the inorganic shale matrix. This image is adapted from Ambrose et al. (2012).
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Figure 2.2: 3D SEM image of an organic-rich shale adapted from Ambrose et al. (2012).
The sample has lengths of 5 µm, 4 µm, and 2.5 µm in the x, y, and z directions, re-
spectively. LEFT: The kerogen network is shown with the yellow outlines. RIGHT: The
kerogen network is also outlined in yellow, while the pore spaces are outlined in red.

for tight gas or shale gas reservoirs. Their model features an additional contribution of

adsorbed gas molecules to the total storage in these unconventional gas reservoirs, using

the Langmuir isotherm. Molecular effects were also considered and related to the Knud-

sen number. Ambrose et al. (2012) and Hartman et al. (2012) later indicated that adsorbed

gas molecules actually occupy some pore volumes, and they presented a new petrophysi-

cal model that accounts for the reduction in the free pore volume, due to the presence of

adsorbed gas molecules on the pore walls. Akkutlu and Fathi (2012) presented a mathe-

matical model for organic-rich source-rocks that basically considered the natural fractures,

organic and inorganic matrices as different continua. Several authors have also published

some results on the modeling of fractured organic-rich source rocks with multiple contin-

uum models (Sun et al., 2015; Zhang et al., 2015; Alfi et al., 2015; Akkutlu et al., 2016;

Yan et al., 2016).

This work considers the dispersed nature of kerogen observed in SEM images, which

was also indicated in the results of the experimental work by Kang et al. (2011). This, in
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addition to the fact that the diffusive transport of fluids in the kerogen is expected to be

much slower than the advective transport in the natural fractures and microcracks typically

seen in the inorganic matrix, indicates that the continuous transport of gas in kerogen can

be neglected at simulation scale. I therefore, present a model which allows the kerogen

to contribute to transport by releasing gas into the inorganic matrix that is collocated in

the same simulation cell, but disallows the continuous transport of gas from cell to cell at

simulation scale. Hydraulic and natural fractures are modeled in this work using the Dis-

crete Fracture Model (DFM). The model developed in this work is therefore simpler than

the multiple continuum models with several coupling terms between the different continua

because only a single coupling term (between the organic and inorganic matrix) needs to

be considered explicitly. Furthermore, in contrast to all the publications I have seen in the

literature, this work incorporates a petrophysical model that captures the expected reduc-

tion in the pore-volume available for free gas in the organic matrix, due to the pore-volume

occupied by the gas molecules adsorbed on the organic pore walls. Olorode et al. (2017a)

discussed the mathematical model described here within the context of a non-deformable

matrix. In this work, a fully coupled geomechanics and compositional gas transport simu-

lator is developed, validated and used to perform several numerical studies.

2.3 Modeling of Molecular Diffusion in Organic-rich Source Rocks

This work is motivated by the general consensus that molecular diffusion in the organic

and inorganic matrices can contribute appreciably towards the production performance,

and therefore, targets its detailed description in a petrophysical setting that is representa-

tive of organic-rich shale formations. Multi-component molecular diffusion theory, hereto

referred to as the Maxwell-Stefan diffusion, states that diffusion is a function of pressure,

temperature, and composition (Taylor and Krishna, 1993). Since it is common to as-

sume that the shale-gas production process is isothermal, one can ignore the temperature-
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dependence of diffusion. However, pressure is known to drop drastically near the fracture

faces (and more gently further into the matrix) while the hydrocarbon fluid composition

tends to evolve during production (Freeman et al., 2012). These changes in pressure and

composition then imply that the diffusion coefficients are not constant.

Yi et al. (2008) introduced the Maxwell-Stefan diffusion to model transport of a binary

gas mixture (CH4-CO2) in coals. Their interest was to investigate co- and counter-diffusion

phenomena of the mixture components in the presence of adsorption with application into

enhanced coalbed methane recovery. Hoteit and Firoozabadi (2009) and Hoteit (2011)

discussed the proper modeling of the diffusion of multi-component fluids using the full

tensor of the Maxwell-Stefan diffusion coefficient instead of just a single diffusion coef-

ficient for each hydrocarbon component. They indicated that this could be important in

tight reservoirs, where the matrix permeability values are much lower than in conventional

reservoirs. Fathi and Akkutlu (2014) applied the binary Maxwell-Stefan diffusion model

to simulate cyclic CO2 stimulation in depleted shale-gas wells. However, I have not found

any other published work showing the use of the Maxwell-Stefan diffusion theory to model

the diffusive transport in organic-rich source rocks with more than two hydrocarbon com-

ponents. This work presents a multi-component multi-continuum shale-gas model that

captures the pressure- and composition- dependence of molecular diffusion coefficient us-

ing the Maxwell-Stefan diffusion model. According to this model, the diffusive transport

introduces new and intricate non-linearities into our shale gas simulation problem, where

the diffusion coefficient of each species needs to be computed in each representative ele-

mentary volume (or grid block in the numerical model) using the pressure and composition

in the volume at the current time-step.

Additionally, I revisit and modify the Akkutlu-Fathi (2012) multi-continuum formula-

tion to capture the discontinuous nature of kerogen. Even though the kerogen may create

its own continuous phase in the inorganic matrix, the connectivity of the kerogen at a
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larger scale could be still poor. In addition, molecular transport in the interconnected part

of the kerogen pore network is relatively a slow process compared to flow of gas in the

inorganic matrix. Consequently, it is reasonable to assume that kerogen is discontinuous

at the reservoir scale. The next section gives more detailed argument for a discontinuous

kerogen network at the scale of a typical reservoir simulation grid-block.

2.4 Modeling of Coupled Geomechanics and Multi-continuum Compositional Gas

Transport

Several authors have developed multi-continuum models for the transport of reservoir

fluids in non-deformable organic-rich source rocks (Sun et al., 2015; Zhang et al., 2015;

Alfi et al., 2015; Akkutlu et al., 2016; Yan et al., 2016). A few authors have also published

some work on the coupling of geomechanics with multi-continuum models (Duguid and

Lee, 1977; Huyakorn and Pinder, 1983; Wilson and Aifantis, 1982; Valliappan and Khalili-

Naghadeh, 1990; Bai et al., 1993). However, there appears to be much less work done in

the area of coupling geomechanics with multi-continuum models in a compositional set-

ting. One of these few publications includes Xiong et al. (2015), which involved coupling

the geomechanical deformation of the matrix with the compositional flow model through

the mean stress.

Chen and Teufel (1997) presented a consistent model for coupling geomechanics and

flow simulation in double-porosity reservoirs. The model basically reduces to the single-

porosity equivalence when one of the continua is diminished to zero porosity or when the

pressure in both continua become equal. Chen and Teufel (2000) reviewed five models for

coupled geomechanics and flow simulation in double porosity reservoirs and concluded

that the Chen and Teufel (1997) model provides a consistent approach, while the other

models are typically not consistent in the limit when the pressure in the two continua

are equal, or when the volume fraction of any of the two continua vanishes. The other
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models they reviewed include the models by Duguid and Lee (1977) and Huyakorn and

Pinder (1983), Wilson and Aifantis (1982), Valliappan and Khalili-Naghadeh (1990) and

Bai et al. (1993).

In this dissertation, I adapt the Chen and Teufel (1997) model to the transport of multi-

component gas in a deformable shale matrix, which consists of the inorganic and organic

matrices. Most of the previous publications on coupled geomechanics and flow simulation

use the finite element method to discretize the linear momentum balance equation, and use

a mass conservative scheme like the finite volume methods to discretize the mass balance

equations. In this work, I used the Control-Volume Finite Element Method (CVFEM) as

a natural discretization to solve the fully-coupled equations describing both the composi-

tional gas transport and the mechanical deformation of the shale matrix.

2.5 The Control Volume Finite Element Method (CVFEM)

The Control Volume Finite Element Method (CVFEM) is a numerical discretization

scheme that basically combines the advantages of the finite element method with the ad-

vantages of the finite volume method. It is locally conservative, like the finite volume

methods, and like the finite element methods, it allows the flexibility of gridding with tri-

angular or quadrilateral elements. Lemonnier (1979), Forsyth (1990), Fung et al. (1992),

Chen et al. (2006), and others have demonstrated the use of the CVFEM to model fluid

flow in petroleum reservoirs. Voller (2009) detailed the use of this method to model solid

deformation and fluid flow. Cordazzo et al. (2003), (2005), and Hurtado et al. (2007)

showed that the CVFEM can be improved by simply specifying porosity and permeability

to be constant over each finite element (instead of having these properties specified at the

nodes). This improved form of the CVFEM was shown to give lower truncation errors and

better accuracy in the modeling of heterogeneities (Cordazzo et al., 2003). Eymard and

Sonier (1994) showed some mathematical and numerical properties of the CVFEM. They
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performed some numerical simulations and concluded that the CVFEM has several math-

ematical and numerical advantages over the conventional control volume finite difference

method, and no disadvantages were reported.

The fact that all the primary variables are collocated at the nodes or vertices of the

elements in the reservoir domain makes this method a good fit for the fully coupled dis-

cretization and solution of the equations describing the flow of multi-component reservoir

fluids and the mechanical deformation of the reservoir matrix. Additionally, the geomet-

rical quantities computed in the discretization of the mass balance equations are readily

available for re-use in the discretization of the solid linear momentum balance equations.

This makes it a relatively efficient numerical discretization procedure.
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3. MATHEMATICAL MODEL FOR SIMULATING TRANSPORT IN

ORGANIC-RICH SOURCE ROCKS

In this work, I present a model that strives to honor the major storage and transport

mechanisms that could be expected in resource shales. Based on observations from SEM

images (Figure 2.1 for example), I propose a model that captures the observation that

kerogen is typically discontinuous and dispersed in the inorganic matrix at the micron

scale. I present two different mathematical models, corresponding to the scenarios where

the shale matrix is deformable1, and when it is not deformable2.

Figure 3.1: The proposed model captures the dispersed nature of kerogen in the inorganic
matrix.

1Part of the model developed for deformable shales is reprinted with permission from “A Compositional
Model for CO2 Storage in Deformable Organic-Rich Shales” by O. M. Olorode, I. Y. Akkutlu, and Y.
Efendiev, 2017. SPE Europec featured at 79th EAGE Conference, Copyright 2017 by SPE.

2Part of the model developed for non-deformable shales is reprinted with permission from “Composi-
tional Reservoir-Flow Simulation for Organic-Rich Gas Shale” by O. M. Olorode, I. Y. Akkutlu, and Y.
Efendiev, 2017. SPE Journal, Copyright 2017 by SPE.
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Using gas permeation experiments and history-matching, Kang et al. (2011) showed

that a large portion of injected gas reaches the organic pores through the inorganic pores.

They pointed out that this is consistent with SEM images that do not show the connectivity

of kerogen on scales larger than tens of microns, and they concluded that the coupling

between the inorganic and organic matrices is in series. Given that the REV or reservoir

simulation grid-block could easily be up to 5 orders of magnitude larger than SEM images,

this work conjectures that these micron-scale “pockets” of kerogen will be discontinuous

across the simulation grid blocks. I propose a model with an in-series coupling between

the organic and inorganic matrices. Figure 3.1 gives a sketch of the proposed model in

1D and 2D. The figure shows that the kerogen in each grid block is not in direct hydraulic

communication with the kerogen in the neighboring grid blocks. The sketch of the model

clearly shows that the communication between the organic and inorganic pores are in

series. The organic pores release reservoir fluids into the inorganic pores, which in turn

release their fluids into the hydraulic and/or natural fractures in the reservoir. This work

models both the hydraulic fractures (and discrete fracture networks if present) with the

discrete fracture model, which is discussed in a later section.

The matrix of the organic-rich source rocks tend to deform as effective stresses build

up during production. The Biot’s effective stress is the difference between the total stress

and the product of the Biot constant (α) and the pore pressure. Therefore, the effective

stress in the vicinity of the fracture surface builts up rapidly as the pore pressure declines

rapidly in this region. This effective closure stress could result in significant decrease in

fracture aperture and conductivity, leading to a consequent decline in production. This

work therefore sets out to study the production of multi-component gas in a deformable

shale matrix. To clarify, this dissertation sometimes uses the term “shale(s)” to refer to

all organic-rich source rocks, which could include mudrocks, carbonates, etc. The next

section starts with a presentation of the mass balance equations for a non-deformable shale
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matrix, while the following section extends this to the deformable case, where the coupled

geomechanics and flow problem are discussed.

3.1 Mass Balance Equations for Multicomponent Gas in a Non-deformable Shale

Matrix

The origin of the multi-component mass balance equations employed in this work

could be traced to Akkutlu and Fathi (2012). Some of the specific modifications made in

this work are as follows:

1. This work models the organic matrix as a dispersed and discontinuous continuum,

as inferred from SEM images.

2. This work extends the developed formulation to a multi-component system, and

uses the Maxwell-Stefan diffusion coefficient to capture the pressure-dependence of

diffusion.

3. This work implements a modified form of the petrophysical model proposed by

Ambrose et al. (2012) and Hartman et al. (2012). The modification made in this

dissertation is to correct only the organic pore volume (and not the total pore volume)

by the volume occupied by the adsorbed gas molecules because I do not expect

significant adsorption in the inorganic pores.

3.1.1 Inorganic Mass Balance Equations for a Non-deformable Shale Matrix

The equation for the mass balance of the gas component in a non-deformable shale

matrix is given as:

−∇ · J Ii +∇ ·
(
yIi c

I km
µg
∇pI

)
+W i

OI =
∂

∂t

[
(1− εkp)φyIi cI

]
(3.1)
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where:

J Ii = − (1− εkp)
φ

τ
Di∇

(
cIyIi

)
(3.2)

and

W i
OI = lTm

εkfφ

τ
Di,O

(
yOi c

O − yIi cI
)

+ (1− φ) lTmD
i
sc
i
µ + yOi

lTm cO kOm
µOg

(
pO − pI

)
(3.3)

The three terms on the right-hand-side of Eq. 3.3 refer to the transfer of reservoir fluids

from the organic to the inorganic matrix by molecular diffusion in the pores, surface dif-

fusion, and advection, respectively. The second term in Eq. 3.3 has been written in terms

of the adsorbed concentration in units of gram-mol per reservoir cubic meter of rock.

The adsorbed gas concentration of component, i can be obtained using the Extended

Langmuir isotherm as follows:

ciµ =
ciµsy

O
i p

O/piL
1 +

∑nc

j=1 (yOi p
O/piL)

(3.4)

If the maximum adsorbed gas amount is specified in scf/ton, I can convert this value into

the corresponding maximum adsorbed concentration in mol/r·m3 using the equation:

cµs = GsL ρma

( n
V

)
sc

(
1 ton

907, 185 g

)(
1 sm3

3.280843 scf

)
(3.5)

The term “εkfφ” in Eq. 3.3 represents the ratio of the organic free-gas pore volume to

the bulk volume. This concept is based on the petrophysical model presented by Ambrose

et al. (2012), where the authors presented a model to account for the pore volume occupied

by gas molecules adsorbed on the organic pore walls. Their model corrected the effective

porosity (ratio of the total pore volume of connected pores to the bulk volume) in shale by

subtracting the adsorbed porosity (ratio of the volume occupied by the adsorbed gas to the
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bulk volume) from the effective porosity. This work extends their petrophysical model to

implement the adsorbed-gas porosity-correction only in the organic pores. This is because

virtually all of the adsorbed gases are expected to reside in the organic nanopores with

large internal surface areas. I therefore keep the pore volume for free gases in the inorganic

pores unchanged, but modify the pore volume available for free gas in kerogen, to account

for the space taken up by the adsorbed gas. The free organic porosity (that is, organic

pore volume available for free gas divided by bulk volume), εkfφ can be obtained by first

computing the adsorbed porosity, φa using Equation (A-4) from Ambrose et al. (2012)

which is given as:

φa = 1.318x10−6M
ρb
ρs

(
GsL

p

p+ pL

)
(3.6)

I can write the total organic porosity, φεkp as the sum of the adsorbed porosity φεka and

the free organic porosity φεkf :

φεkp = φεka + φεkf (3.7)

This implies that εkp = εka + εkf , where εkp is the ratio of the kerogen pore volume to the

total pore volume, εka is the ratio of the adsorbed pore volume to the total pore volume

and εkf is the ratio of the free kerogen pore volume to the total pore volume. So, to obtain

εkf , I compute φa using Eq. 3.6, divide φa by φ to obtain εka, then subtract εka from εkp to

obtain εkf .

In Eq. 3.2, I can substitute the definition for effective diffusivity as a function of

porosity and tortuosity. This widely used definition for effective diffusivity comes from

the Bruggeman equation:

Deff =
φ

τ
Di (3.8)

where φ is the total porosity. Di is the Maxwell-Stefan diffusion coefficient which will
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be discussed in the next chapter. Tortuosity, τ is defined as the ratio of the actual length

of the flow path in the inorganic matrix to the thickness of the porous medium in the flow

direction.

Hu et al. (2015) reported overall tortuosity values ranging from 2 to 12 for some Bar-

nett shale samples. They explained that these high values could be as a result of the poor

connectivity in shale formations. In this work, I note that in addition to the poor connec-

tivity, the presence of dispersed kerogen in shales could act as barriers to the continuous

fluid transport that would have been expected if the resource shale had larger inorganic

pores instead of the organic nanopores.

Although Eq. 3.2 and Eq. 3.3 are written with subscripts i, the products of the diffusion

coefficients and the mole fractions are evaluated by taking the matrix-vector product of

the Maxwell-Stefan diffusion coefficient matrix and the vector of the mole fractions. This

is also how I compute the products of the diffusion coefficients and the mole-fraction

gradients.

The mass balance equation for the total mass of the hydrocarbons in the inorganic

matrix is given as:

−
nc∑
i=1

∇ · J Ii +∇ ·
(
cI
km
µg
∇pI

)
+

nc∑
i=1

W i
OI =

∂

∂t

[
(1− εkp)φcI

]
(3.9)

The first term on the left-hand-side represents the molecular diffusion of all the hydrocar-

bon components. To obtain this value, I simply sum the molecular diffusion of each of

the hydrocarbon components given in Eq. 3.2. Since the Maxwell-Stefan diffusion coef-

ficients are computed for nc − 1 components, and relative to the diffusion of the heaviest

component, the diffusion of the heaviest component relative to itself is zero, and the sum

of the diffusion of all the components defined in this manner is not zero (Taylor and Kr-

ishna, 1993). The physical interpretation of this is that the hydrocarbon components are
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able to diffuse towards a fractured well in an ultra-low permeability reservoir, and the sum

of the molecular diffusion fluxes of each component in each grid-block is not zero in this

case. The section on Maxwell-Stefan diffusion gives more details on the computation of

the coefficients.

Given that the Maxwell-Stefan diffusion coefficient matrix has a dimension of (nc−1)

x (nc− 1), Eq. 3.1 is for the first nc− 1 components of the gas. To obtain the last equation

to complete the model, I wrote Eq. 3.9 for the total mass of hydrocarbon instead of the

equation for the last hydrocarbon component, nc. Cao (2002) gives more details on this

numerical modeling approach, but it is worth mentioning that I now have nc inorganic

mass balance equations in terms of nc unknowns– pI , y1, y2, ..., ync−1.

In this work, gas viscosity, µg is computed using the Lee et al. (1966) correlation, while

the gas compressibility factor, Z, is computed using the Peng-Robinson Equation of State

(Peng and Robinson, 1976). This Z-factor is then substituted into the Real-Gas Equation

to obtain the gas molar density, cI .

3.1.2 Organic Mass Balance Equations for a Non-deformable Shale

Matrix

The equation for the mass balance of gas component, i in the organic pores is given as:

−W i
OI =

∂

∂t

[
εkfφy

O
i c

O + (1− φ) ciµ
]

(3.10)

The diffusive and advective transport mechanisms (that were modeled in the inorganic

mass balance equations) are neglected in the organic matrix. This is based on the in-series

model that assumes that the organic matter (or kerogen) in shales are not expected to be

continuous over the typical sizes of reservoir simulation grid-blocks, as explained in the

section on the proposed multi-continuum model.

The mass balance equation for the total mass of hydrocarbons in the organic pores
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could be written as:

−
nc∑
i=1

W i
OI =

∂

∂t

[
εkfφc

O + (1− φ)
nc∑
i=1

ciµ

]
(3.11)

The organic mass balance equations add another nc equations and nc unknowns, so the

total number of equations and unknowns is 2nc. The unknowns or primary variables are:

pI , yI1 , y
I
2 , ..., y

I
nc−1, p

O, yO1 , y
O
2 , ..., y

O
nc−1.

3.2 Transient Coupling Between the Organic and Inorganic Components of

Shale

Given that the dispersed kerogen model presented in this work allows the organic ma-

trix to contribute to transport only through its coupling with the inorganic matrix, it is

important to accurately estimate the parameters in this coupling term. This section fo-

cusses on the estimation of the transient shape factor, lTm.

Kazemi et al. (1992) presented an equation for estimating the shape factor for any

geometry, in a dual-porosity model. The shape factor, as shown in Eq. 3.12, is estimated

based on the volume of the matrix block, the surface open to flow in all directions, and the

distances between these surfaces and the center of the matrix block.

σPSS =
1

V

n∑
i=1

Ai
di

(3.12)

where σPSS is the pseudo-steady-state shape factor, V is the volume of the matrix block,

Ai is the area of each surface, i of the matrix block, di is the distance between the center

of the matrix block and each surface, i, and n is the total number of surfaces of the matrix

block. Heinemann and Mittermeir (2012) re-derived Eq. 3.12 and concluded that the

equation is exact at pseudo-steady-state flow conditions in dual-porosity systems.

In this work, instead of the matrix and fracture continua, I model the organic and
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inorganic continua. This implies that V, Ai and di in Eq. 3.12 are for kerogen (instead of

the matrix, in a dual-porosity system). The kerogen bulk volume can be easily estimated

from φ, εkp and εks, as shown in Appendix A. The corresponding equation for the kerogen

pseudo-steady-state shape factor, lPSSm is given as:

lPSSm =
1

V k

n∑
i=1

Aki
dki

(3.13)

where the superscript, k indicates that these geometric parameters are for the kerogen

matrix.

Given the ultra-low permeability of shale, coupled with molecular and surface diffu-

sion in the organic matrix, I do not expect resource shales to reach a pseudo-steady state

within the typical productive life of these unconventional resources. However, this implies

a need to account for transient flow/transport in shales.

Although, any geometry of kerogen can be modeled, I can simplify the model by as-

suming that the dispersed kerogen has an approximate shape (like a sphere, cube, cuboid,

hexahedra, tetrahedra, etc). Assuming that the approximate geometry of the kerogen is a

sphere, and substituting the equations for the volume and total surface area of a sphere into

Eq. 3.13, yields:

lPSSm =
3

r2
k

(3.14)

Making the radius, rk the subject of the equation for the volume of a sphere, I obtain

rk = (3V k/4π)1/3. Introducing V k
b as the kerogen bulk volume, and substituting the

expression for the radius of a sphere into Eq. 3.14 yields:

lPSSm =
3(

3V k
b /4π

)2/3
≈ 7.8

(
V k
b

)−2/3
(3.15)

In a similar fashion, I can substitute the equations for the volume, area and the distance
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to the centroid of a cube into Eq. 3.13. After making the length of a side of the cube the

subject of the equation for its volume, I obtain:

lPSSm = 12
(
V k
b

)−2/3 (3.16)

This approach can be extended to different geometries and presented in the following

generic form:

lPSSm = GA ∗
(
V k
b

)−2/3 (3.17)

where GA is a geometric factor. So, for a sphere, GA ≈ 7.8 and for a cube, GA = 12. Ap-

pendix B gives examples of the computation of the geometric factor for some geometries.

However, given that it is unrealistic to obtain the exact geometry for all the organic matter

in a given shale resource, this parameter is recommended to be used as a history-matching

parameter, instead of the transient or pseudo-steady-state shape factor, as is customarily

done in dual-porosity reservoir modeling.

This work recognizes the fact that pseudo-steady-state flow is not expected during the

typical productive life of shale-gas reservoirs. Therefore, in the coupling term, I use a

model based on the Zimmerman transient shape factor (Zimmerman et al., 1993) instead

of the Warren-Root pseudo-steady-state shape factor (Warren and Root, 1963). Azom

and Javadpour (2012) applied the Zimmerman transient shape factor in terms of pseudo-

pressures, while Lu et al. (2008) applied it in terms of concentration (or molar density).

In this work, I write the simplified expression for the transient shape factor, presented by

Azom and Javadpour (2012), in terms of concentration as follows:

lTm =
2cOi −

(
cOi − cI

)
2 (cOi − cO)

lPSSm (3.18)

Here, cOi refers to the value of the organic concentration (or molar density) at initial condi-
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tions. In order to clearly show that this equation approaches the pseudo-steady-state shape

factor when cO tends to cI , I simplify the equation further, by expanding the numerator

and separating out the two fractions to obtain:

lTm =

(
0.5 + 0.5

cOi − cI

cOi − cO

)
lPSSm (3.19)

I define a transient factor, Tf to be equal to the bracketed term on the right-hand-side, that

is:

Tf =

(
0.5 + 0.5

cOi − cI

cOi − cO

)
(3.20)

Substituting this as well as Eq. 3.17 into Eq. 3.19 yields:

lTm = GATf
(
V k
b

)−2/3 (3.21)

As demonstrated by Zimmerman et al. (1993), the transient coupling term captures the cor-

rect scaling of the matrix pressure (in this case, organic gas concentration) with the square

root of time (t1/2), while the corresponding pseudo-steady-state coupling term scales in-

correctly with time (t). For this reason, the use of the shape-factor as a constant history-

matching parameter could be erroneous. The pseudo-steady-state shape factor (and conse-

quently the transient shape factor) for each grid-block, as shown in Eq. 3.13, is a function

of its corresponding volume. Therefore, the use of a constant shape-factor in all the grid

blocks of a numerical model with varying grid-block sizes could lead to significant errors

in the coupling term. This error could be further magnified in models with grid refine-

ments, where the smallest cells could be orders of magnitude smaller than the largest

ones.

It is important to note that the remarks on shape factors in this section are also appli-

cable in conventional dual-porosity systems.
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3.3 Maxwell-Stefan Diffusion Theory for the Computation of Composition

and Pressure-dependent Diffusivity

Most of the published works on molecular diffusion in porous media assume a con-

stant effective diffusion coefficient for each of the hydrocarbon components (Wasaki and

Akkutlu, 2015; Sun et al., 2015; Xiong et al., 2015). In this work, I note that the ki-

netic theory of gases indicates that the diffusion coefficient is inversely proportional to

pressure. This implies that the diffusion coefficients for an Eagle Ford shale-gas reservoir

with a pressure of about 11,400 psi (Orangi et al., 2011) could be as little as about 35%

of that for a Barnett shale-gas reservoir with a pressure of about 4,000 psi (provided that

the mole-fractions of the hydrocarbon components are not too different). The use of the

Maxwell-Stefan diffusion coefficient provides a means to estimate the diffusion coeffi-

cient for any reservoir, given its pressure and gas composition. This enables the modeling

of the dependence of diffusion on pressure and composition. Taylor and Krishna (1993)

noted that the Maxwell-Stefan diffusion is capable of modeling osmotic diffusion, reverse

diffusion, and diffusion at a diffusion barrier, while the Fickian diffusion, as well as the

effective diffusion model could be limited in these cases. This work uses the General-

ized Maxwell-Stefan Diffusion Equation (GMSE) to estimate the diffusion coefficient for

the hydrocarbon components in an open medium. The corrections for a tortuous porous

medium were explained in the previous section.

Details on the theory and some applications can be found in Taylor and Krishna (1993).

Below, I simply give the final form of the Maxwell-Stefan diffusion equation:

J = −c B−1 Γ ∇y (3.22)

Comparing this equation to Fick’s law for diffusion, I can obtain a Fickian-type matrix of
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coefficients for the Maxwell-Stefan equation. That is,

D = B−1 Γ (3.23)

The equations to obtain the drag matrix, B are given by Taylor and Krishna (1993):

Bii =
yIi
Din

+
n∑

k=1; i 6=k

yk
Dik

Bij = −yIi
(

1

Dij

− 1

Din

) (3.24)

where Dij, Din and Dik are the Maxwell-Stefan diffusion coefficient for any pair of com-

ponents, and can be obtained from the kinetic theory of gases. In this work, I use the

Fuller et al. (1966) correlation, which is based on the kinetic theory of gases. The param-

eters for this correlation are readily available in Fuller et al. (1969), and this correlation is

recommended by Danner and Daubert (1983), and by Reid et al. (1987).

The equation for the thermodynamic factor is given by Walas (1985):

Γij = δij + yIi
∂ ln Φi

∂yj
|T,P,Σ (3.25)

where Φ in this equation represents the fugacity coefficient, while the subscript Σ indicates

that the differentiation of ln Φi with respect to mole fraction, yj should be performed such

that the mole fractions of all other components are kept constant, except the nth. The

fugacity coefficient is computed using the Peng-Robinson Equation of state (Peng and

Robinson, 1976).

It is important to note that the equations for B given above assume that the sum of

the molecular diffusion fluxes of each component is equal to zero. If instead, I define the

molecular diffusion relative to the heaviest component in the mixture, nc, the molecular
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diffusion flux of that component will be zero, while the sum of all the other nc − 1 com-

ponents will be non-zero. To obtain the corresponding B in this case, I use the modified

equation from Taylor and Krishna (1993) :

Bnc
ii =

n∑
k=1; i 6=k

yk
Dik

Bnc
ij = − yIi

Dij

(3.26)

The equations presented for the computation of the Maxwell-Stefan diffusion coefficient

were programmed and validated against several examples given in Taylor and Krishna

(1993). Using mole fraction values that could be representative of Barnett shale gas com-

position, I computed the 2x2 matrix of diffusion coefficients (for a three-component sys-

tem) at different pressures, ranging from 12,000 to 2,000 psi. Each element of this matrix

of diffusion coefficients is then plotted against pressure in Figure 3.2a. The plot shows that

the diffusion coefficients increase as the pressure drops. To confirm whether the matrix of

diffusion coefficients are strictly inversely proportional to pressure, I plot these diffusion

coefficients against the inverse of pressure. The dotted lines shown in Figure 3.2b show

rough estimates of the diffusion coefficients assuming a strictly inverse proportionality

with respect to pressure, while the solid lines are the results obtained using the code devel-

oped based on the rigorous procedure described in this section. The figure shows that this

rough approximation could be acceptable given the considerable computational efficiency

of this approximation in comparison to the rigorous computation of the diffusion coeffi-

cients at each Newton iteration and simulation time-step. It is worth noting that although

the kinetic theory of gases and the Fuller’s correlation (Fuller et al., 1966) show that the

binary diffusion coefficients are strictly inversely proportional to pressure, the deviation

of the matrix of diffusion coefficients from this strict proportionality comes from the non-
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(a) The diffusion coefficient shows a nonlinear relationship with pressure. It in-
creases as the reservoir pressure drops in response to production.

(b) The relatively close proximity of the dotted lines to the solid lines suggests that
the diffusion coefficient is roughly inversely proportional to pressure.

Figure 3.2: The diffusion coefficient plots show a strong dependence of the diffusion co-
efficient on pressure.
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linear dependence of the thermodynamic factor, Γ on pressure. Recall that the matrix of

diffusion coefficients is a matrix multiplication of the inverse of the drag matrix, B, and

the thermodynamic factor, Γ.

The change in the Maxwell-Stefan diffusion coefficients in response to a change in

composition (during production) was less than 4% on the diagonal terms. The mole frac-

tions were varied within the range that was observed during the simulation runs, and the

diffusion coefficients were computed at 12,000 psi and 2,000 psi. The greatest change in

the matrix of diffusion coefficients (<29%) was on the second row, first column, while

the other off-diagonal element was less than 9%. Comparing these changes in diffusion

coefficient to the changes in response to pressure drop, the composition-dependence of

the Maxwell-Stefan diffusion coefficients could be neglected in exchange for improved

computational efficiency in systems under primary production.

Given that permeability is expected to decrease as pressure decreases during produc-

tion, I can infer that the contribution of molecular diffusion to production in these ultra-

low permeability reservoirs could be more significant, particularly in high-pressure shale

reservoirs where I expect a large drop in pressure from the initial reservoir pressure to the

flowing bottomhole pressure.

3.4 Mass Balance Equations for Multi-component Gas in a Deformable Shale

Matrix

This section provides the mass balance equations for each of the gas hydrocarbon com-

ponents in the inorganic and organic matrices, which are modeled as deformable continua.

The modeling of the fully-coupled geomechanics and multi-component gas transport in-

volves modifying the accumulation term to include the change in accumulation due to the

deformation of the matrix. An additional equation is also introduced to model the linear

elastic deformation of the matrix. Considering that the transport terms in the mass balance
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equations presented in Section 3.1 remain unchanged (in the Lagrangian description of

poroelasticity), only the accumulation terms are modified.

3.4.1 Inorganic Mass Balance Equations for a Deformable Shale

Matrix

By making analogy to the Chen and Teufel (1997) dual-porosity model for a de-

formable matrix/fracture system, the equation for the mass balance of each gas component

in the deformable inorganic matrix could be written as:

−∇ · J Ii +∇ ·
(
yIi c

I km
µ
∇pI

)
+W i

OI = yIi c
Ib11

∂pI

∂t
+ yIi c

Ib12
∂pO

∂t
+ yIi c

Ib13
∂εv
∂t

(3.27)

where:

J Ii = − (1− εkp)
φ

τ
Di∇

(
cIyIi

)
(3.28)

and

W i
OI = lm

εkpφ

τk
Di,O

(
yOi c

O − yIi cI
)

+ εks (1− φ) lmD
i
s

(
ciµsy

O
i p

O
G/p

i
L

1 +
∑nc

j=1 (yOi p
O
G/p

i
L)

)

+yOi
lm cO kOm
µOg

(
pO − pI

)
(3.29)

The superscripts “I” and “O” refer to the inorganic and organic matrices, respectively.

The inorganic porosity is given as: φI = (1− εkp)φ while the organic porosity, φO =

εkpφ. εv represents the volumetric strain, while the terms b11, b12 and b13 are analogous to

those defined in Chen and Teufel (1997), with a modification of the porosity to reflect the
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corresponding porosity of the inorganic and organic matrices.

b11 = φ (1− εkp)
[
cIp
(
βI − αI

)
+

1

KI
g

]
b12 = φ (1− εkp) cIp

(
βO − αO

)
b13 =

φ (1− εkp) cIp
cb

(3.30)

where K is bulk modulus, which is equivalent to the inverse of compressibility, and cp and

cb refer to the pore and bulk compressibilities, respectively.

3.4.2 Organic Mass Balance Equations for a Deformable Shale

Matrix

Similarly, the equation for the mass balance of the gas component, i in the organic

pores could be written as:

−W i
OI = yOi c

Ob21
∂pI

∂t
+ yOi c

Ob22
∂pO

∂t
+ yOi c

Ob23
∂εv
∂t

+ (1− φ)
Dciµ
Dt

(3.31)

The terms b21, b22 and b23 are also defined as in Eq. 3.30:

b21 = φεkpc
O
p

(
βI − αI

)
b22 = φεkp

[
cOp
(
βO − αO

)
+

1

KO
g

]
b23 =

φεkpc
O
p

cb

(3.32)
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The parameters in equations 3.30 and 3.32 can also be derived from analogous parameters

in Chen and Teufel (1997), and are given as:

αI = α∗
c∗b
cb

αO = α

(
1− α∗c∗b

αcb

)

βI = β∗
c∗p
cp

βO = β

(
1−

β∗c∗p
βcp

)

cIp =
φ

φ (1− εkp)
c∗p cOp =

φ

φεkp
cp

(
1−

c∗p
cp

)
(3.33)

The parameters with the asterisks are the parameters for a single-continuum shale matrix

with no kerogen, while the corresponding parameters without the asterisks are for the dual-

continuum shale matrix with both organic and inorganic matrices. These equations could

provide a consistent estimation of the inorganic and organic matrix parameters to be used

in a dual-continuum model, based on estimates of the corresponding parameters for a shale

matrix without the organic pores, and for the shale matrix with the organic pores.

Equations 3.27 and 3.31 are written in the Lagrangian form, where the transport of

the hydrocarbon components are specified relative to the initial description of the solid

skeleton of the porous medium. Section 3.1 discusses the details of these equations for

a non-deformable shale matrix, and the extension of this model to the case where the

matrix is deformable provides a coupled geomechanics and flow model that dynamically

accounts for the change in free pore volume as pressure is reduced during production, as

well as the change in the total pore volume due to the geomechanical deformation of the

porous medium.

32



3.5 Solid Momentum Balance Equation

The linear momentum balance equation is given as:

∇ · σ = 0 (3.34)

where σ is the total stress, which can be decomposed in terms of the effective stress and

pore pressure as follows:

σ = σ′ − αIpII− αOpOI (3.35)

σ′ is the effective stress, I is the identity matrix, αO and αI are the Biot coefficients for the

organic and inorganic matrices, respectively. The negative sign of the pore pressure terms

is based on the convention that compressive stresses are considered negative.

The Generalized Hooke’s Law will be used as the constitutive equation to relate stress

and strain. This equation is given as:

σ′ij = Cijkl : εkl (3.36)

where C is a fourth-order stiffness tensor, and ε is the second-order strain tensor.

For an isotropic porous medium, the Generalized Hooke’s law for the effective strain

can be written as:

σ′ = 2Gεij + λεvI (3.37)

Here, λ and G are the first and second Lame’s constants, respectively. G is also called the

shear modulus. Substituting Eq. 3.37 into Eq. 3.35 and integrating over a control volume,

Ω gives: ∫
Ω

∇ ·
(
2Gεij + λεvI− αIpII− αOpOI

)
dΩ = 0 (3.38)

Given that integration is a linear operator, I can separate the effective stress from the pore-
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pressure terms, and then apply the Gauss divergence theorem to the effective stress term

to obtain:

∫
S

(2Gεij + λεvI) · n dS −
∫

Ω

∇ ·
(
αIpII + αOpOI

)
dΩ = 0 (3.39)

Substituting the expressions for λ, G, εij and εv, I can express Eq. 3.39 in 2D as follows:

∫
S

[
E

1− ν2

(
∂ux
∂x

+ ν
∂uy
∂y

)]
· nx +

[
E

2 (1 + ν)

(
∂uy
∂x

+
∂ux
∂y

)]
· ny dS

−
∫

Ω

(
αI
∂pI

∂x
+ αO

∂pO

∂x

)
dΩ = 0

(3.40)

∫
S

[
E

2 (1 + ν)

(
∂uy
∂x

+
∂ux
∂y

)]
· nx +

[
E

1− ν2

(
ν
∂ux
∂x

+
∂uy
∂y

)]
· ny dS

−
∫

Ω

(
αI
∂pI

∂y
+ αO

∂pO

∂y

)
dΩ = 0

(3.41)

3.6 Simplifications for compositional gas flow in deformable shale-gas

reservoirs

Considering that this work focusses on the numerical modeling of multi-component

gas in a deformable porous medium, it is reasonable to assume that the compressibility

of the gas phase will be orders of magnitude larger than that of the shale matrix. This

suggests that I can neglect the compressibility of the solid grain, and obtain simplified

expressions for the parameters in equations 3.30, 3.32 and 3.33 as follows:

b11 = φI
1

KI
g

; b12 = b21 = 0

b13 =
c∗b
cb

; b22 = φOf
1

KO
g

; b23 = 1− c∗b
cb

(3.42)
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αI = βI =
c∗b
cb

; αO = βO = 1− c∗b
cb

cIp =
c∗b
φI

; cOp =
cb − c∗b
φOf

(3.43)

Substituting these parameters into equations 3.27 and 3.31 yields:

−∇ · J Ii +∇ ·
(
yIi c

I km
µ
∇pI

)
+W i

OI = φI
1

KI
g

yIi c
I ∂p

I

∂t
+ yIi c

Ib13
∂εv
∂t

(3.44)

−W i
OI = φOf

1

KO
g

yOi c
O ∂p

O

∂t
+ yOi c

Ob23
∂εv
∂t

+ (1− φ)
Dciµ
Dt

(3.45)

Given that the total organic content (TOC) of resource shales are generally less than 12%,

the contribution of the organic matrix to the bulk volume of the shale matrix is very small in

comparison to the contribution of the inorganic matrix. Furthermore, the assumption that

the kerogen is discontinuous and dispersed within the inorganic matrix indicates that its

mechanical contribution to the deformation of the shale matrix could be limited. The lower

depletion of the organic pore pressures (in comparison to the inorganic pore pressures) also

indicates that the contribution of the organic matrix to the effective stresses induced during

production could be limited. Based on these premises, Equations 3.44 and 3.45 could be

further simplified such that the mechanical deformation of the shale matrix is controlled

by the mechanical properties of the inorganic matrix only. Eq. 3.44 therefore simplifies

to:

−∇ · J Ii +∇ ·
(
yIi c

I km
µ
∇pI

)
+W i

OI = φI
1

KI
g

yIi c
I ∂p

I

∂t
+ φIyIi c

IαI
∂εv
∂t

(3.46)
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Eq. 3.45 on the other hand yields:

−W i
OI = φOf

1

KO
g

yOi c
O ∂p

O

∂t
+ (1− φ)

Dciµ
Dt

(3.47)

The momentum balance equation given in Eq. 3.35 also yields:

∇ · σ = σ′ − αIpII (3.48)

Lewis and Schrefler (1998) showed that the expression for the first term on the right-

hand-side of Eq.3.46 or Eq. 3.47 was obtained from the substitution of the definition of

compressibility. Without making this substitution into the equation, the balance equations

can be written in terms of the change in molar density with respect to time as:

−∇ · J Ii +∇ ·
(
yIi c

I km
µ
∇pI

)
+W i

OI = φI
D

Dt

(
yIi c
)

+ φIyIi c
IαI

∂εv
∂t

(3.49)

−W i
OI =

D

Dt

(
φOf y

O
i c

O
)

+ (1− φ)
Dciµ
Dt

(3.50)

where φI is the ratio of the inorganic pore volume to the bulk volume, and φO is the ratio

of the organic pore volume to the bulk volume. These two porosities can be defined as

follows:

φI = φ (1− εkp) (3.51)

φO = φεkp (3.52)

As discussed in Ambrose et al. (2012) and Hartman et al. (2012), the pore volume available

for the storage and transport of gas molecules in the organic pores is reduced by the pore

volume occupied by the adsorbed gas molecules. During production, pressure decreases

and some adsorbed gas molecules can be produced, leading to an increase in the pore
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volume available for the transport and storage of gas molecules in the free-gas state. From

Eq. 3.7, this free pore volume can be defined as follows:

φOf = φεkf = φεkp − φa (3.53)

It is important to note that the free organic porosity (in the first term on the right-hand-

side of Eq. 3.50) is not modeled as a constant with respect to time because the adsorbed

porosity is time-dependent. This also makes the free organic porosity time-dependent, as

indicated by Eq. 3.53. Substituting Eq. 3.53 into Eq. 3.50 and simplifying yields:

−W i
OI = φOf

D

Dt

(
yOi c

O
)
− yOi cO

Dφa
Dt

+ (1− φ)
Dciµ
Dt

(3.54)

Equations 3.49, 3.54, and 3.48 can then be solved as detailed in the previous sections.

Hydraulic fractures are modeled using the discrete fracture model, which is discussed in

the next chapter.

3.7 Modeling of Proppant Embedment

This section focuses on the modeling of the embedment of proppants, as well as the

elastic deformation of the propped hydraulic fractures in resource shales. From the def-

inition of the Biot’s effective stress, the sharp drop in pore pressures expected near the

hydraulic fracture surfaces generally leads to a corresponding sharp increase in the ef-

fective stresses that are induced near these fractures. This induced stresses, which are

compressive, tends to result in the closing of the matrix on the proppants in the hydraulic

fractures. To avoid the crushing of these proppants under these stresses, the proppants are

generally designed to be harder than the shale matrix. This could lead to the embedment of

these proppants into the matrix, and lead to a significant loss in the fracture conductivity.

The time-dependent (or creep) deformation of these proppants, during proppant embed-
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ment could be modeled using the viscoelastic model proposed by Guo and Liu (2012).

This model is written as:

∆wf = wf

[
(1− ν2)

E
σ′xx (t) +

1

4η

(
1 +

(1− 2ν)2

3

)∫ t

0

σ′xx (t) dt

]
(3.55)

where, wf is the initial fracture width, ν is the viscoelastic shear coefficient, and σ′xx(t) is

the time-dependent effective closure stress that acts on the hydraulic fracture surface.
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4. CONTROL-VOLUME FINITE ELEMENT METHOD

This chapter explains the discretization of the coupled partial differential equations

presented in the previous chapter. I employ the control-volume finite element method to

discretize all the equations presented in this work. The method is particularly suitable for

the discretization of the coupled geomechanical and flow equations because it is a mass

conservative scheme, where all primary variables (pressure, composition, and displace-

ments) are colocated at the nodes or vertices of the finite elements used in the meshing of

the domain. Some parts of the models presented in this chapter were presented in Olorode

et al. (2017a)1, Olorode et al. (2017b)2, and Olorode et al. (2017c)3.

4.1 Control-volume finite element discretization of the multi-component gas mass

balance equation for a non-deformable shale reservoir

Eq. 3.27 and Eq. 3.10 can be written in a general form:

∇ · F µ
i +Bµ

i =
∂

∂t
Mµ

i
(4.1)

where µ represents the inorganic and organic matrices (µ = I, O), BI
i = WOI , BO

i =

−WOI , FO
i = 0, F I

i = J Ii + yic
I km
µg
∇pI , and Mµ

i represents the mass accumulation terms

on the right-hand-side of equations 3.27 and 3.10.

1Part of the numerical model for non-deformable shales is reprinted with permission from “Composi-
tional Reservoir-Flow Simulation for Organic-Rich Gas Shale” by O. M. Olorode, I. Y. Akkutlu, and Y.
Efendiev, 2017. SPE Journal, Copyright 2017 by SPE.

2Part of the numerical model for deformable shales is reprinted with permission from “Modeling of
Compositional Gas Transport in Shale as a Deformable Porous Medium” by O. M. Olorode, I. Y. Akkutlu,
and Y. Efendiev, 2017. Poromechanics, VI, 1984-1991, Copyright 2017 by American Society of Civil
Engineers.

3Part of the numerical model for the storage of CO2 in depleted and deformable organic source rocks
is reprinted with permission from “A Compositional Model for CO2 Storage in Deformable Organic-Rich
Shales” by O. M. Olorode, I. Y. Akkutlu, and Y. Efendiev, 2017. SPE Europec featured at 79th EAGE
Conference, Copyright 2017 by SPE.
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The simplification of FO
i to zero is because I assume that kerogen is typically dispersed

or discontinuous at the reservoir scale, as explained in the section on the proposed model.

Note that the simplification of FO
i to zero is based on the assumption that kerogen

appears to be discontinuous at the reservoir simulation scale (based on SEM images). An-

other reason is that the rate of transport of reservoir fluids through the nanoporous kerogen

is expected to be much slower than the advective transport of hydrocarbons through the

inorganic pores.

First, I perform temporal discretization independently of space. The time-dependent

term on the right-hand side is discretized using the implicit Euler scheme to obtain:

∇ · F µ
i +Bµ

i =
Mµ,k+1

i −Mµ,k
i

∆t
(4.2)

I then proceed to integrate the conservative equation in space, over a 3D control volume,

Ωink: ∫
Ω

∇ · F µ
i dΩ +

∫
Ω

Bµ
i dΩ =

∫
Ω

Mµ,k+1
i −Mµ,k

i

∆t
dΩ (4.3)

Recall the Divergence theorem:

∫
V

∇ · F dV =

∫
S

F · n dS (4.4)

Using the Divergence theorem to convert the volume integral in the first term on the left-

hand-side of Eq. 4.3 to a surface integral yields:

∫
∂Ω

F µ
i · n dS +

∫
Ω

Bµ
i dΩ =

∫
Ω

Mµ,k+1
i −Mµ,k

i

∆t
dΩ (4.5)

Figure 4.1 illustrates the construction of a control volume centered at m. The volume

integrals in Eq. 4.5 correspond to evaluating the corresponding integrals over the control
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Figure 4.1: Control volume centered at m, showing its region of support, n=1,..,6. Sub-
scripts f1 and f2 refer to face 1 and face 2 of the control volume (centered at m) within
the element m,4,5

volume, circumscribed by the black dotted lines in the figure. The integration of the second

term on the left-hand-side of Eq. 4.3 can be done using nodal lumping to obtain:

∫
Ω

Bµ
i dΩ ≈ Bµ

i,mVm (4.6)

The integration of the mass accumulation terms on the right-hand side of Eq. 4.3 can also

be performed using nodal lumping as follows:

∫
Ω

Mµ,k+1
i dΩ ≈Mµ,k+1

i,m Vm (4.7)

∫
Ω

Mµ,k
i dΩ ≈Mµ,k

i,mVm (4.8)

For the control volume centered at m, I can evaluate the surface integral as follows:

∫
∂Ω

F µ
i · n dS =

nm∑
n=1

∫
An

F µ
i · n dA (4.9)
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where An refers to the area of the faces of the control volume in the n-th element of

support. This equation basically states that the net total of the diffusive flux going into the

control volume centered at m is zero. For each n-th element of support in this equation, I

can express the integral within the summation term as a sum of the integrals over the two

faces in each element within the region of support of the control volume centered at m:

∫
An

F µ
i · n dA =

∫
An,face1

F µ
i · n dA+

∫
An,face2

F µ
i · n dA (4.10)

These integral over the faces of the element, n can be approximated using the midpoint

integration rule to obtain:

∫
An

F µ
i · n dA ≈ F µ

i · n An|f1 + F µ
i · n An|f2 (4.11)

To solve this equation in 2D, I introduce shape functions, φ1, φ2 and φ3, which are defined

such that:

φm (x, y) =


1, at node m

0, at all points on the opposite side of node m.
(4.12)

and

φ1 (x, y) + φ2 (x, y) + φ3 (x, y) = 1, at all points in the element (4.13)

Using these shape functions, any continuous variable ψ at any point in the domain can

be estimated from a linear combination of the discrete values of the variable at nodes,

m=1,2,3:

ψ (x, y) ≈
3∑

m=1

φm (x, y) Ψm (4.14)

In this formulation, ψ can represent the continuous variables– yIi , c
I , pI , yOi , c

O and pO.
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Note that these include both primary and secondary variables. The primary variables are

the reference pressures in the organic and inorganic matrices (pI and pO) and the mole

fractions in both matrices (yIi and yOi ). All other variables listed are obtained from flash

computations using the primary variables and a constant temperature, T as the inputs.

Figure 4.2 shows a piece-wise linear triangular finite element, with nodes at the vertices

1, 2 and 3. The area of triangle 1,2,3 can be written in the determinant form below:

A123 =
1

2

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
(4.15)

Evaluating the determinant yields:

A123 =
1

2
[(x2y3 − x3y2)− x1 (y3 − y2) + y1 (x3 − x2)] (4.16)

From Figure 4.2, three sub-triangles are formed by connecting each edge of the triangle

with any point, P(x,y) within the triangle. I can also compute the areas of each of these

Figure 4.2: A triangular finite element

43



sub-triangles using the determinant form:

AP23 =
1

2

∣∣∣∣∣∣∣∣∣∣
1 x y

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
=

1

2
[(x2y3 − x3y2)− x (y3 − y2) + y (x3 − x2)] (4.17)

AP31 =
1

2

∣∣∣∣∣∣∣∣∣∣
1 x y

1 x3 y3

1 x1 y1

∣∣∣∣∣∣∣∣∣∣
=

1

2
[(x3y1 − x1y3)− x (y1 − y3) + y (x1 − x3)] (4.18)

AP12 =
1

2

∣∣∣∣∣∣∣∣∣∣
1 x y

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣∣∣∣
=

1

2
[(x1y2 − x2y1)− x (y2 − y1) + y (x2 − x1)] (4.19)

Shape functions, φ1, φ2 and φ3 can now be defined as follows:

φ1 (x, y) =
AP23

A123
=

1

2A123
[(x2y3 − x3y2)− x (y3 − y2) + y (x3 − x2)]

φ2 (x, y) =
AP31

A123
=

1

2A123
[(x3y1 − x1y3)− x (y1 − y3) + y (x1 − x3)]

φ3 (x, y) =
AP12

A123
=

1

2A123
[(x1y2 − x2y1)− x (y2 − y1) + y (x2 − x1)]

(4.20)

Since the sum of the areas of the three sub-triangles is equal to the area of the triangle–

1,2,3, it is easy to see that these definitions of shape functions φ1, φ2 and φ3 ensure that

Eq. 4.13 is satisfied.

If point, P is moved to any of the three vertices (m=1,2 or 3), the m-th shape function,

corresponding to that vertex will be equal to 1 because the area in the numerator of Eq.

4.20 will be equal to A123. The other two shape functions will be zero because the area

subtended between point P (which is at a vertex, m) is zero, making the numerator zero.

These two statements basically confirm that Eq. 4.12 is satisfied.
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To evaluate the gradient of the continuous variables ∇ψ I differentiate Eq. 4.14 to

obtain:

∇ψ (x, y) ≈
3∑

m=1

∇φm (x, y) Ψm (4.21)

It is important to note that ψ is continuous with respect to space while Ψ is constant, and

is specified at the nodes, m. In two dimensions,∇φm = ∂φm
∂x

+ ∂φm
∂y

. Substituting this into

Eq. 4.21 yields:

∇ψ (x, y) ≈
(
∂φ1

x
+
∂φ1

∂y

)
Ψ1 +

(
∂φ2

∂x
+
∂φ2

∂y

)
Ψ2 +

(
∂φ3

∂x
+
∂φ3

∂y

)
Ψ3 (4.22)

For brevity, I introduce the subscipt notation for the derivative of the shape functions with

respect to x and y. Using this notation Eq. 4.22 can be written as:

∇ψ (x, y) ≈ (φ1x + φ1y) Ψ1 + (φ2x + φ2y) Ψ2 + (φ3x + φ3y) Ψ3 (4.23)

The partial derivatives of each of the shape functions with respect to x and y can be ob-

tained by differentiating Eq. 4.20 with respect to x and y to obtain:

φ1x =
1

2A123
(y2 − y3) ; φ1y =

1

2A123
(x3 − x2)

φ2x =
1

2A123
(y3 − y1) ; φ2y =

1

2A123
(x1 − x3)

φ3x =
1

2A123
(y1 − y2) ; φ3y =

1

2A123
(x2 − x1)

(4.24)

The ∆−→x and ∆−→y terms in Figure 4.1 can be computed from the x and y co-ordinates

of the vertices of each support element. This is done by first estimating the x and y co-

ordinates of the barycenter of the triangle, then estimating the co-ordinates of the point

where the faces intersect the edges of the support elements.

For the support element shown on the right of Figure 4.1, the x and y co-ordinates of
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the barycenter are obtained by an arithmetic average of the corresponding co-ordinate of

the three vertices at m=1, n=4, and n=5. That is,

xc =
1

3
(x1 + x2 + x3)

yc =
1

3
(y1 + y2 + y3)

(4.25)

It is important to note that I have employed the local numbering from m=1 to 3 (in the

counter-clockwise direction) within the support element with vertices at m=1, n=4 and

n=5.

Since the control volume faces are formed by connecting the mid-point of the edges

of the support vertices and the barycenter of the elements in the region of support, I can

compute the co-ordinates of these midpoints as simple arithmetic averages of the two

nodes that define each edge. Hence, for face 1:

xf1 =
1

2
(x1 + x2)

yf1 =
1

2
(y1 + y2)

(4.26)

and for face 2,

xf2 =
1

2
(x1 + x3)

yf2 =
1

2
(y1 + y3)

(4.27)

To obtain ∆−→x and ∆−→y for face 1, I simply subtract Eq. 4.26 from Eq. 4.25 to obtain:

∆−→x f1 = xc − xf1 =
1

3
(x1 + x2 + x3)− 1

2
(x1 + x2) =

1

6
(2x3 − x2 − x1)

∆−→y f1 = yc − yf1 =
1

3
(y1 + y2 + y3)− 1

2
(y1 + y2) =

1

6
(2y3 − y2 − y1)

(4.28)
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To obtain ∆−→x and ∆−→y for face 2, I subtract Eq. 4.25 from Eq. 4.27 to obtain:

∆−→x f2 = xf2 − xc =
1

2
(x1 + x3)− 1

3
(x1 + x2 + x3) =

1

6
(x1 − 2x2 + x3)

∆−→y f2 = yf2 − yc =
1

2
(y1 + y3)− 1

3
(y1 + y2 + y3) =

1

6
(y1 − 2y2 + y3)

(4.29)

I can then use Pythagoras theorem to calculate the length, l of face 1 and face 2 as follows:

lf1 =
√

∆−→x 2
f1 + ∆−→y 2

f1

lf2 =
√

∆−→x 2
f2 + ∆−→y 2

f2

(4.30)

Assuming a constant thickness of ∆z, the area of face 1 and face 2 can be computed by

simply multiplying Eq. 4.30 through by ∆z to obtain:

Af1 = ∆z
√

∆−→x 2
f1 + ∆−→y 2

f1

Af2 = ∆z
√

∆−→x 2
f2 + ∆−→y 2

f2

(4.31)

The x and y components of the unit normal pointing outwards from the control volume on

face 1 are given as:

nf1
x =

∆−→y f1

Af1

; nf1
y = −∆−→x f1

Af1

(4.32)

Similarly, the x and y components of the unit normal pointing outwards from the control

volume on face 1 are given as:

nf2
x =

∆−→y f2

Af2

; nf2
y = −∆−→x f2

Af2

(4.33)

To simplify the formulation for evaluating the flux terms in Eq. 4.1, I introduce a generic

nonlinear coefficient q (ψ) to represent any of the nonlinear coefficients in these two equa-
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tions. When this term is not strongly direction-dependent, a simple evaluation of q (ψ) at

the mid-point of the interface between any two control volumes should be sufficient. In

cases where q (ψ) is strongly nonlinear and direction-dependent, the upwinding scheme

discussed in Zhao (2012) could be more suitable. Zhao (2012) opined that this method

keeps the flux across the interface between two subcontrol volumes continuous, and en-

sures local mass balance. The method is implemented as follows:

qf (ψ) =


qf (Ψm) , if∇Ψ · nAf ≤ 0

qf (Ψn) , if∇Ψ · nAf > 0.
(4.34)

Equation 4.34 is written out for any face, f. This is because the equation applies for both

faces f1 and f2. The only difference is the support node, n, that is used at each face f1 or

f2, and the corresponding unit outward normal vector n for each face.

One more point to note is that at any node m or n, the shape function at that node is

equal to 1. This means that ψ and Ψ are equivalent at the nodes.

Using the definition for the generic nonlinear coefficient, I introduce a generic flux, F

defined as F = q∇ψ. Evaluating Eq. 4.11 in terms of these generic functions yields:

∫
An

q∇ψ · n dA ≈ q∇ψ · n An|f1 + q∇ψ · n An|f2 (4.35)

I now proceed to evaluate Eq. 4.35 using the derived geometric equations. Substituting

Eq. 4.22 into Eq. 4.35 yields:

∫
An

q∇ψ · n dA ≈ q∇ψ · n An|f1 + q∇ψ · n An|f2

= qf1 [(φ1x + φ1y) Ψ1 + (φ2x + φ2y) Ψ2 + (φ3x + φ3y) Ψ3] · nf1 Ajf1

+qf2 [(φ1x + φ1y) Ψ1 + (φ2x + φ2y) Ψ2 + (φ3x + φ3y) Ψ3] · nf2 Ajf2

(4.36)
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Expressing nf1 and nf2 in terms of their x and y components and collecting like terms

yields:

∫
Aj

q∇ψ · n dA =

qf1

[
(φ1x Ψ1 + φ2x Ψ2 + φ3x Ψ3) · nf1

x + (φ1y Ψ1 + φ2y Ψ2 + φ3y Ψ3) · nf1
y

]
Ajf1

+qf2

[
(φ1x Ψ1 + φ2x Ψ2 + φ3x Ψ3) · nf2

x + (φ1y Ψ1 + φ2y Ψ2 + φ3y Ψ3) · nf2
y

]
Ajf2

(4.37)

Substituting Eq. 4.32 and Eq. 4.33 into Eq. 4.37 yields:

∫
Aj

q∇ψ · n dA =

qf1 [(φ1x Ψ1 + φ2x Ψ2 + φ3x Ψ3) ∆−→y f1 − (φ1y Ψ1 + φ2y Ψ2 + φ3y Ψ3) ∆−→x f1]

+qf2 [(φ1x Ψ1 + φ2x Ψ2 + φ3x Ψ3) ∆−→y f2 − (φ1y Ψ1 + φ2y Ψ2 + φ3y Ψ3) ∆−→x f2]

(4.38)

Rearranging the equations such that the coefficients of Ψ1, Ψ2 and Ψ3 are grouped together

yields:

∫
Aj

q∇ψ · n dA =

[qf1 (φ1x∆
−→y f1 − φ1y∆

−→x f1) + qf2 (φ1x∆
−→y f2 − φ1y∆

−→x f2)] Ψ1

+ [qf1 (φ2x∆
−→y f1 − φ2y∆

−→x f1) + qf2 (φ2x∆
−→y f2 − φ2y∆

−→x f2)] Ψ2

+ [qf1 (φ3x∆
−→y f1 − φ3y∆

−→x f1) + qf2 (φ3x∆
−→y f2 − φ3y∆

−→x f2)] Ψ3

(4.39)

Introducing variables a1, a2 and a3 to replace the coefficients of Ψ1, Ψ2 and Ψ3 in Eq. 4.39

yields: ∫
Aj

q∇ψ · n dA = a1Ψ1 + a2Ψ2 + a3Ψ3 (4.40)
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where,

a1 = qf1 (φ1x∆
−→y f1 − φ1y∆

−→x f1) + qf2 (φ1x∆
−→y f2 − φ1y∆

−→x f2)

a2 = qf1 (φ2x∆
−→y f1 − φ2y∆

−→x f1) + qf2 (φ2x∆
−→y f2 − φ2y∆

−→x f2)

a3 = qf1 (φ3x∆
−→y f1 − φ3y∆

−→x f1) + qf2 (φ3x∆
−→y f2 − φ3y∆

−→x f2)

(4.41)

Note that in these equations, index 1 corresponds to the index of the control volume center,

i, while local nodes 2 and 3 correspond to the other two nodes (n=4 and n=5 for the

expanded element in Figure 4.1) in any element within the region of support of node, m.

For any element having the other two nodes at any global n value, Eq. 4.40 can be written

as: ∫
Aj

q∇ψ · n dA = amΨm + anΨn + an+1Ψn+1 (4.42)

This equation, written for just one element in the region of support of a node m, can then

be summed for all the elements in the region of support of any node, m using Eq. 4.9:

∫
∂Ω

F · n dS =
nn∑
n=1

∫
An

F · n dA

=
nn∑
n=1

(
ajmΨm + ajnΨn + ajn+1Ψn+1

) (4.43)

where I have written the equation in terms of each of the transport mechanisms. So, for

the gas-phase advection term in the inorganic matrix for instance, amΨm = aadvP I
m.

To set up the full problem in matrix form, I start by multiplying both sides of Eq.4.5

by ∆t to obtain:

∆t

∫
∂Ω

F · n dS + ∆t

∫
Ω

B dΩ =

∫
Ω

Mk+1 dΩ−
∫

Ω

Mk dΩ (4.44)
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The residual of this equation at the pth Newton Raphson Iteration can then be written as:

Rp
i = ∆t

∫
∂Ω

F µ
i · n dS + ∆t

∫
Ω

Bµ
i dΩ−

∫
Ω

Mµ,k+1
i dΩ +

∫
Ω

Mµ,k
i dΩ = 0 (4.45)

Substituting equations 4.6, 4.7, 4.8 and 4.43 into Eq. 4.45 yields:

Rp
i = ∆t

nn∑
n=1

(
ajmΨm + ajnΨn + ajn+1Ψn+1

)
+ ∆tBµ

i,mVm −M
µ,k+1
i,m Vm +Mµ,k

i,mVm ≈ 0

(4.46)

To complete the formulation of this equation in matrix form, I need to express the volume,

Vm in terms of the sum of the volumes coming from each element in the region of support

of the control volume centered at m. The volume of an element within the region of

support of a node, m, can be expressed as a product of the area of the element and its

thickness, ∆z, assuming a constant thickness. Hence from Eq. 4.16, the the volume of

triangle 123 is given by:

V 123 =
∆z

2
[(x2y3 − x3y2)− x1 (y3 − y2) + y1 (x3 − x2)] (4.47)

A triangle within the region of support for a node, m, contributes only a third of its area (or

volume, assuming a constant thickness) to the control volume centered at m. Therefore,

the control volume centered at m, as a volume:

Vm =
nn∑
n=1

1

3
V m,n,n+1 (4.48)

Substituting this into Eq. 4.46 and writing the equation for the inorganic matrix yields:
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RI
i = ∆t

[
nn∑
n=1

(
ajmΨm + ajnΨn + ajn+1Ψn+1

)]I
+ ∆tBI

i,m

nn∑
n=1

1

3
V m,n,n+1

−M I,k+1
i,m

nn∑
n=1

1

3
V m,n,n+1 +M I,k

i,m

nn∑
n=1

1

3
V m,n,n+1 ≈ 0

(4.49)

where all the Ψm, Ψn and Ψn+1 terms are evaluated at the p-th Newton Raphson Iteration

and at the current time-step, k + 1, except the last term, Ψk
m, which is simply the value of

Ψm at the previous time step, k.

Going through an identical procedure, the residual of the organic mass balance equa-

tion can be obtained as:

RO
i = ∆tBO

nn∑
n=1

1

3
V m,n,n+1 −MO,k+1

i,m

nn∑
n=1

1

3
V m,n,n+1 +MO,k

i,m

nn∑
n=1

1

3
V m,n,n+1 ≈ 0

(4.50)

I substitute the total mass of the hydrocarbon in place of the n-th hydrocarbon species

mass balance, to obtain the following equations for the inorganic and organic matrices,

respectively:

RI
H = ∆t

[
nn∑
n=1

(
aHmΨm + aHn Ψn + aHn+1Ψn+1

)]I
+ ∆tBI

H,m

nn∑
n=1

1

3
V m,n,n+1

−M I,k+1
H,m

nn∑
n=1

1

3
V m,n,n+1 +M I,k

H,m

nn∑
n=1

1

3
V m,n,n+1 ≈ 0

(4.51)

RO
H = ∆tBO

H,m

nn∑
n=1

1

3
V m,n,n+1 −MO,k+1

H,m

nn∑
n=1

1

3
V m,n,n+1 +MO,k

H,m

nn∑
n=1

1

3
V m,n,n+1 ≈ 0

(4.52)

where the superscript or subscript, H, refers to the equation for the total mass of hydro-

carbon. Therefore, Ψ refers to the inorganic matrix pressure in Eq. 4.51, while the a’s

correspond to the mobility term, which are the coefficients of the pressure gradient in Eq.
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3.9. Note that the first term on the right-hand-side of Eq. 4.51 is missing in Eq. 4.52. This

is because of the assumption that the kerogen is discontinuous in the reservoir domain as

explained in Chapter 2.

From Taylor series expansion:

Rk+1 (X + ∆X) = Rk+1 (X) + ∆X
∂Rk+1

∂X
+ ... ≈ 0 (4.53)

where X represents the vector of primary variables (pI , yIi , pO, yOi ) .

Since Rk+1 ≈ 0, I can rearrange the Taylor series expansion equation to obtain:

∂Rk+1

∂X
∆X = −Rk+1 (X) (4.54)

This presents the linearized system of equations in the form Ax = b, where for a cell at a

global index m, the equation can be written in the matrix form:
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∂RI
PI

∂pI

∂RI
PI

∂pO

∂RI
PI

∂yI1

∂RI
PI

∂yO1
..

∂RI
PI

∂yInc−1

∂RI
PI

∂yOnc−1

∂RO
PO

∂pI

∂RO
PO

∂pO

∂RO
PO

∂yI1

∂RO
PO

∂yO1
..

∂RO
PO

∂yInc−1

∂RO
PO

∂yOnc−1

∂RI
1

∂pI
∂RI
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(4.55)

where each term in the linear system of equations is evaluated at the current time step

(k+1) and Newton-Raphson iteration level (p).

The solution to this equation gives the change in the primary variables (∆X) at each

Newtonian iteration level, p, for the current time step (k+1). At this same current time step

(k+1), the primary variables for the next Newtonian iteration is then calculated as outlined

below:

pI,k+1,p+1
m = pI,k+1,p

m + ∆pI,k+1,p
m (4.56)

pO,k+1,p+1
m = pO,k+1,p

m + ∆pO,k+1,p
m (4.57)

yI,k+1,p+1
i,m = yI,k+1,p

i,m + ∆yI,k+1,p
i,m (4.58)

yO,k+1,p+1
i,m = yO,k+1,p

i,m + ∆yO,k+1,p
i,m (4.59)
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The Newtonian iteration is continued until the system converges. When the system con-

verges, I update the primary variables and then move on to the next time-step.

4.2 Control-volume finite element discretization of the gas mass balance equation

for a deformable shale reservoir

In this section, I solve the fully-coupled poroelasticity equations that describe the flow

of multicomponent gas in a deformable dual-continuum shale matrix. The use of the

CVFEM provides a natural discretization for the simultaneous solution of the mass bal-

ance and solid linear momentum balance equations. The data structures and geometric

parameters that are required for the numerical solution of the mass balance equations are

readily available for use in the solution of the solid linear momentum balance equations.

Comparing the mass balance equations for a non-deformable matrix (Eq. 3.1 and 3.10)

with those for the deformable matrix (Eq. 3.49 and 3.54), I observe that the main differ-

ences are in the accumulation terms on the right-hand-side. Therefore, the results of the

CVFE discretization of the transport terms in Eq. 3.1 and 3.10 are the same as those of the

transport terms in Eq. 3.49 and 3.54. For a complete discretization of Eq. 3.49 and 3.54, I

only need to discretize the accumulation terms in Eq. 3.49 and 3.54.

The evaluation of all the terms on the right-hand-side of Eq. 3.54 and the first term on

the right-hand-side of Eq. 3.49 can be obtained by a simple application of nodal lumping,

as in Eq. 4.6. However, to evaluate the second term on the right-hand-side of Eq. 3.49, I

need a procedure to evaluate the numerical integral of a nodal derivative.

Equation 8.18 of Voller (2009) for the estimation of a nodal derivative was written as:

∂Ψ

∂x
|1V1 =

∫
CV

∂Ψ

∂x
dA =

∮
CS

Ψ · nx dS ≈
∑
faces

Ψmid∆
−→y (4.60)
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and from Equation 8.25 of Voller (2009), I obtain:

∂Ψ

∂x
|1V1 =

∑
support

Vele
3

∂Ψ

∂x
|ele ;

∂Ψ

∂y
|1V1 =

∑
support

Vele
3

∂Ψ

∂y
|ele (4.61)

Recall that from nodal lumping:

∫
V

∂Ψ

∂x
dV =

∂Ψ

∂x
V (4.62)

So, combining Eq. 4.62 and Eq. 4.61 yields:

∫
V

∂Ψ

∂x
dV =

∑
support

Vele
3

∂Ψ

∂x
|ele ;

∫
V

∂Ψ

∂y
dV =

∑
support

Vele
3

∂Ψ

∂y
|ele (4.63)

where
∂Ψ

∂x
|ele = φ1xΨx1 + φ2xΨx2 + φ3xΨx3

∂Ψ

∂y
|ele = φ1yΨy1 + φ2yΨy2 + φ3yΨy3

(4.64)

By Eq. 4.63, the integral of the second term on the right-hand-side of Eq. 3.49 over a

control volume Ω can be discretized as follows:

φIyIi c
IαI

∫
Ω

∂εv
∂t

dΩ =
φIyIi c

IαI

∆t

∫
Ω

[(
∂ux
∂x

+
∂uy
∂y

)k+1

−
(
∂ux
∂x

+
∂uy
∂y

)k]
dΩ =

φIyIi c
IαI

∆t

∑
support

Vele
3

[(
∂ux
∂x
|ele +

∂uy
∂y
|ele
)k+1

−
(
∂ux
∂x
|ele +

∂uy
∂y
|ele
)k]
(4.65)

This approach of evaluating the integral of a nodal derivative by applying a lump mass

approximation and a Gaussian quadrature to evaluate the volume strain integral was also

discussed in Fung (1992). Combining the results from Eq. 4.65 with the CVFE discretiza-
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tion results of the transport terms in Eq. 4.49 yields:

RI
i = ∆t

[
nn∑
n=1

(
ajmΨm + ajnΨn + ajn+1Ψn+1

)]I
− φI

(
yic

I |k+1
m − yicI |km

)
Vm

−yicIφIαI
nn∑
n=1

Vele
3

(
∂ux
∂x

k+1

|ele +
∂uy
∂y

k+1

|ele −
∂ux
∂x

k

|ele −
∂uy
∂y

k

|ele
)

+∆tBI
i,m Vm

(4.66)

The expression for determining the x and y components of the volumetric strain over an

element can be obtained from Eq. 4.64 as:

∂ux
∂x
|ele = φ1xUxi + φ2xUxj + φ3xUxj+1

(4.67)

∂uy
∂y
|ele = φ1yUyi + φ2yUyj + φ3yUyj+1

(4.68)

where the φi terms are the interpolating functions or shape functions associated with the

control volume finite element method, and i, j and j + 1 are the indices of the three nodes

making up each triangular finite element in the region of support of the control volume

centered at node, i.

The residual form of the mass balance equations for the hydrocarbon components in

the organic pores can be obtained in a similar fashion as follows:

RO
i = ∆tBO

i,m Vm − φOf
(
yOi c

O|k+1
m − yOi cO|km

)
Vm − yOi cO

(
φk+1
a − φka

)
Vm

− (1− φ)
(
ck+1
µ,i − ckµ,i

)
Vm

(4.69)

Considering that the Maxwell-Stefan diffusion coefficient matrix is of order nc − 1 for

a system with nc hydrocarbon components, the equations for each component in each

continuum with subscript, i is for the first nc − 1 components. To obtain the last equation
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to complete the system of equations, I write the mass balance equation for the total mass

of hydrocarbons as the sum of all the hydrocarbon components. More details on this

numerical modeling approach is given by Cao (2002).

Therefore, to obtain the residual of the total mass of hydrocarbon (which is also re-

ferred to as the residual of the pressure equation), I add up the residual equations for each

hydrocarbon component to obtain:

RI
H = ∆t

[
nn∑
n=1

(
ajmΨm + ajnΨn + ajn+1Ψn+1

)]I
− φI

(
cI |k+1

m − cI |km
)
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−cIφIαI
nn∑
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3

(
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k+1

|ele +
∂uy
∂y
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|ele −
∂ux
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k

|ele −
∂uy
∂y

k

|ele
)

+∆tBI
m Vm

(4.70)

RO
H = ∆tBO

H,m Vm − φOf
(
cO|k+1

m − cO|km
)
Vm − cO

(
φk+1
a − φka

)
Vm

− (1− φ)
(
ck+1
µ − ckµ

)
Vm

(4.71)

It is important to note that all the parameters in each of the residual equations are evaluated

at the current time-step, k + 1, except the parameters shown explicitly at k.

4.3 Control-volume finite element discretization of the momentum balance equation

for a deformable shale matrix

Voller (2009) detailed the procedure for discretizing and solving the equations for lin-

ear elasticity. This work extends this to the poroelastic case by accounting for the contri-

bution of the fluids in the pore spaces to the support of confining stresses on the porous

medium.

Substituting, κxx = κyy = E/ (1− ν2) and κxy = E/ [2 (1 + ν)], and following the
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CVFE procedure detailed in Voller (2009), I discretize Eq. 3.40 and obtain:

∫
S

κxx
∂ux
∂x
· nx + κxy

∂ux
∂y
· ny + νκxx

∂uy
∂y
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−
∫
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nn∑
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nn∑
j=1
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(4.72)

Similarly, Eq. 3.41 becomes

∫
S

κxy
∂uy
∂x
· nx + κyy

∂uy
∂y
· ny + κxy

∂ux
∂y
· nx + νκyy

∂ux
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−
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dΩ = −

nn∑
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αI
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∂y
|ele

Vele
3

+
nn∑
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ayi,juySi,j
+

nn∑
j=1

byi,juxSi,j

(4.73)

where the constants ai,j and bi,j in this equation are defined in a similar fashion as in Voller

(2009). It is also worth noting that the evaluation of the integral of the derivative of pore-

pressure in equations 4.72 and 4.73 involved using nodal lumping to evaluate the integral

of a nodal derivative as discussed in the previous section.

Expressing these two equations in the residual form yields:

RUx =
nn∑
j=1

axi,juxSi,j
+

nn∑
j=1

bxi,juySi,j
−

nn∑
j=1

αI
∂pI

∂x
|ele

Vele
3

(4.74)

RUy =
nn∑
j=1

ayi,juySi,j
+

nn∑
j=1

byi,juxSi,j
−

nn∑
j=1

αI
∂pI

∂y
|ele

Vele
3

(4.75)

The derivatives of pressure over each triangular element can be evaluated using the deriva-

tives of the shape functions as shown in equations 4.67 and 4.68. So, for any pressure, p,
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its derivative with respect to x over an element is given as:

∂p

∂x
|ele = φ1xPi + φ2xPj + φ3xPj+1 (4.76)

where Pi is the pressure at a node i, while Pj and Pj+1 are the pressures at the two neigh-

bors of node i in any triangular element.

4.4 Discrete Fracture Model

All the equations presented up to this point implicitly assume that the matrix is not

fractured. In this section, I focus on how I can model hydraulic and natural fractures in

shale-gas reservoirs using the Discrete Fracture Model (DFM). The DFM was originally

developed as a better alternative to the dual continuum models in naturally-fractured reser-

voirs, where the properties of the individual fractures in the fracture network vary, and the

fractures may be unevenly distributed across the reservoir domain. Additionally, the DFM

is computationally efficient because the fractures are modeled at a dimension of n − 1,

where n is the number of dimensions of the reservoir (Noorishad and Mehran, 1982). An

attempt to explicitly model all the natural fractures in a reservoir could be very tedious,

unrealistic and unnecessary, given the relative accuracy of the DFM in comparison to an

explicit model for the fracture. Kim and Deo (2000) presented some examples of this com-

parison, albeit in the context of natural fractures. Li and Lee (2008) also used the DFM

to model natural fractures in black oil reservoirs, and discussed an implementation of the

DFM for long fractures that intersect wells. In the next section, I show a corresponding

comparison of the results from DFM to an explicit fracture model for hydraulic fractures.

Given the tendency for shale and tight gas reservoirs to be naturally fractured, the use

of the DFM to model these unconventional resources could provide a consistent, efficient

and accurate treatment of hydraulic and natural fractures. Multiscale models based on

the DFM have also been developed to further improve the computational efficiency in the
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Figure 4.3: This figure shows the unstructured gridding of the reservoir domain with
Gmsh. The physical dimension of the reservoir is also shown.

Figure 4.4: The fracture is represented as a line in the geometrical domain, but as a 2D
plane with an aperture (and corresponding volume) in the computational domain.
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modeling of fractured shale-gas reservoirs (Efendiev et al.,2015; Akkutlu et al.,2016). A

simple way of implementing the DFM in a CVFEM simulator involves a linear superpo-

sition of the matrix and fracture domains. That is, the total domain could be decomposed

into these two subdomains. Programmatically, this means that I add the residual of the

mass balance equations of the hydrocarbon components in the inorganic matrix to the

mass balance equations of the hydrocarbon components in the fracture. Monteagudo and

Firoozabadi (2004) details the application of this approach in a control-volume method.

Figure 4.3 shows the discretization of a single vertical fracture in a reservoir modeled

using the DFM, with all dimensions shown in meters. This grid (as well as all other grids

used in the simulation studies presented) was generated using “Gmsh”, a free 3D finite

element grid generator (Geuzaine and Remacle, 2009). Figure 4.4 gives a sketch illustrat-

ing how the hydraulic fractures were modeled with the DFM and CVFEM. This sketch

focusses only on the finite elements and control volumes in the region near the hydraulic

fracture. The triangles are the finite elements used to discretize the domain, while the dot-

ted lines enclose the control volumes that are implicitly or numerically constructed around

each node (or vertex) in the domain. In the 2D geometrical domain of the reservoir, the

fracture is represented as a line. However, in the computational model, I fully account for

the volume of the fractures using the length, width and height of the fracture.

For a 2D reservoir, I can write the residual form of the 1D mass balance equation for

each species in the fracture in the same form as Eq. 4.46:

Rf
i = ∆t

nf∑
f=1

hwf y
f
i c
f kf

µfg

(
pfj − pli
/ij/

)
− h lf wf

[(
φfcf

)k+1 −
(
φfcf

)k] ≈ 0 (4.77)

The residual equation for the fracture, given in Eq. 4.77 is simply added to the matrix

residual equation, given in Eq. 4.46, and the equation is solved as detailed in the previous

section. It is worth noting that this simple addition of the two equations ensures that the
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flux across any pair of fracture nodes is added to the flux on the interface between the two

control volumes centered on these two nodes. So, the total flux across the surface of any

control volume with a fully penetrating fracture includes the additional flux between the

control volume and all neighboring control volumes connected by a fracture. To ensure

that the accumulation of reservoir fluid in the fracture is correctly modeled, I subtract the

volume of each fracture segment from the volume of the control volume in which the

fracture segment is located. This reduced volume is the bulk volume of the matrix which

is used in Eq. 4.46. Syihab (2009) provides more details on this volume correction, as

well as the treatment of the geometrical and computational domains.
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5. RESULTS AND ANALYSES

This section discusses the results obtained from the numerical simulations performed

in this work. Some of the results presented in this chapter were presented in Olorode et al.

(2017a)1, Olorode et al. (2017b)2, and Olorode et al. (2017c)3. The physical description of

the single vertically-fractured shale-gas well modeled is given in Figures 4.3 and 4.4. All

the results presented in this section assume that the permeability of the nanoporous organic

pores are so small that I do not expect significant advective transport from the organic pores

into the inorganic pores, so I neglect the advective term in Eq. 3.3. Furthermore, to avoid

the complexities associated with the multi-component surface diffusion from the organic

pores into the inorganic pores, I neglect the second term in Eq. 3.3. These two assumptions

imply that the simulation results presented are based on the coupling of the organic pores

to the inorganic pores by molecular diffusion; but I account for the contribution of the

adsorbed fluids to storage in the accumulation terms on the right-hand-side of Eq. 3.10.

The degree of coupling between the organic and inorganic pores is therefore controlled by

the coefficient of the concentration gradient between these pores. The expression for this

“coupling coefficient” (Cc) can be obtained from Eq. 3.3 as:

Cc = lTm
εkfφ

τ
Di,O (5.1)

1Part of the simulation results for non-deformable shales is reprinted with permission from “Compo-
sitional Reservoir-Flow Simulation for Organic-Rich Gas Shale” by O. M. Olorode, I. Y. Akkutlu, and Y.
Efendiev, 2017. SPE Journal, Copyright 2017 by SPE.

2Part of the simulation results for deformable shales is reprinted with permission from “Modeling of
Compositional Gas Transport in Shale as a Deformable Porous Medium” by O. M. Olorode, I. Y. Akkutlu,
and Y. Efendiev, 2017. Poromechanics, VI, 1984-1991, Copyright 2017 by American Society of Civil
Engineers.

3Part of the results for the storage of CO2 in depleted organic source rocks is reprinted with permission
from “A Compositional Model for CO2 Storage in Deformable Organic-Rich Shales” by O. M. Olorode, I.
Y. Akkutlu, and Y. Efendiev, 2017. SPE Europec featured at 79th EAGE Conference, Copyright 2017 by
SPE.
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Substituting the definition of lTm given in Eq. 3.21, I can write Eq .5.1 as:

Cc =
εkfφ

τ
GATf

(
V k
b

)−2/3
Di,O (5.2)

Given the expected uncertainties in tortuosity, τ and the kerogen geometric factor GA, I

can group these two terms together by defining a coupling constant, ζ as follows:

ζ =
GA
τ

(5.3)

This allows me to perform sensitivity studies on ζ , which is basically an unknown constant

in the simulation model. Substituting this definition for ζ into Eq. 5.2 yields:

Cc = ζ εkfφTf
(
V k
b

)−2/3
Di,O (5.4)

For completeness, note that εkf and φ could be estimated from petrophysical analysis and

are considered as inputs (specified in Table 5.1) in this work. To estimate the kerogen bulk

volume, V k
b , I use Eq. A.8, which is derived in Appendix A. Tf is estimated using Eq.

3.20, and Di,O is estimated from the Maxwell-Stefan diffusion model, as described in the

section on Maxwell-Stefan Diffusion.

5.1 Model Validation

This section focuses on the validation of the simulator developed for the modeling of

multi-component gas in deformable and undeformable source rocks. Table 5.1 outlines the

reservoir parameters for the model studied in this work. These parameters are based on

Barnett shale-gas reservoir properties obtained from Akkutlu and Fathi (2012), Olorode

et al. (2013) and Hu et al. (2015). The sorption parameters were obtained from Ambrose

(2011), and the physical dimensions of the reservoir system modeled is given in Figure 4.3.
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In all cases simulated, I model the production well as a constant-pressure inner boundary,

while the external boundaries of the reservoir are modeled as no-flow boundaries.

Table 5.1: Reservoir and hydraulic fracture parameters

Parameters SI Unit Field Unit
Fracture half-length, xf 450 m 1476 ft
Fracture width, wf 3 mm 0.00984 ft
Reservoir thickness, h 100 m 330 ft
Matrix permeability, km 1.0 x 10−19 m2 1.0 x 10−4 md
Fracture permeability, kf 5.0 x 10−11 m2 5.0 x 104 md
Matrix porosity, φ 0.04 0.04
Fracture porosity, φfrac 0.33 0.33
Temperature, T 50oC 122oF
Well radius, rw 0.1 m 0.32 ft
Initial pressure, pi 2.76 x 107 Pa 4,000 psia
Initial mole fractions, zi [0.899,0.1,0.001] [0.899,0.1,0.001]
Bottomhole pressure, pwf 6.9 x 106 Pa 1,000 psia
TOC 5% 5%
εkp 0.35 0.35
Tortuosity, τ 7 7
GsL,i [184.5, 299.7, 589.6] g-mol/r·m3 [56, 91, 179] scf/ton
Langmuir Pressure, pL,i [10.8, 5.6, 5.8] x106 Pa [1562, 811, 844] psi
Sorbed Gas Density, ρs,i [371, 460, 486] kg/m3 [23.2, 28.7, 30.3] lb/cuft
Bulk Density, ρb 2,500 kg/m3 1.56 x 105 lb/cuft
Young’s Modulus, E 40 GPa 5.8 x 106 psia
Poisson ratio, ν 0.25 0.25
Viscoelastic coefficient, η 3.4 x 109 MPa-s 493 x 109 psi-s
Biot coefficient, α 0.2 0.2
Initial displacements 0 m 0 ft
Initial stress, σx and σy 0 Pa 0 psia
Initial fracture width, wf 0.003 m 0.01 ft
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5.1.1 Validation of the simulation model for gas transport in a non-

deformable porous medium

In this section, I discuss the validation of the numerical simulator developed (called

“TamCVFEM”) against Eclipse 300, a commercial compositional reservoir simulator. The

model compared corresponds to a tight-gas reservoir with a porosity of 4%, a permeability

of 100 nD, and without an organic matrix. Additional details on the tight-gas reservoir

can be found in Table 5.1. Figures 5.1a and 5.1b show a comparison of TamCVFEM with

Eclipse 300 on rate and cumulative plots, respectively. The differences in the production

rates at early time (in Figure 5.1a) could be attributed to numerical differences between

the discretization schemes used in the two simulators. The hydraulic fracture is modeled

explicitly in Eclipse 300, while the DFM is used in TamCVFEM. These plots show that the

developed simulator is capable of modeling a compositional gas reservoir with hydraulic

(or discrete) fractures.

5.1.2 Validation of the coupled flow and geomechanics simulation with published

analytical solutions

This section focuses on the validation of the coupled geomechanics and flow simulator

against known analytical solutions. One of the most popular consolidation problems with

published analytical solutions is the Terzaghi’s consolidation problem Terzaghi (1943).

This problem involves applying a constant overburden stress, σ on a 100% water-saturated

soil sample with thickness, 2h. The overburden stress is applied suddenly at time, t = 0,

and both the top and bottom of the soil sample are maintained at a constant pressure of

zero. The bottom of the soil sample is fixed at a constant vertical displacement of zero.

The analytical solution for the Terzaghi problem is sometimes modeled as half of the total

thickness (h) as in Verruijt (2016). In this work, the full thickness (2h) of the soil sample

is used, and the corresponding analytical solution is discussed in Wan (2002). The details
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(a) Gas Production Rate Plots.

(b) Cumulative Gas Production Plots.

Figure 5.1: Comparison of the production plots validates TamCVFEM against Eclipse
300.

68



of the derivation of the analytical solution is presented in Terzaghi (1943) and Verruijt

(2016). The final form of the analytical solution is given as:

p

p0

=
4

π

∞∑
j=1

{(−1)j−1

2j − 1
cos

[
(2j − 1)

π (h− z)

2h

]
exp

[
− (2j − 1)2 π

2cvt

4h2

]}
(5.5)

Table 5.2 outlines the parameters used in the modeling of the Terzaghi problem, while

Figure 5.2 presents a sketch of the problem description, as well as the actual grid which

is modeled in this work. To model the Terzaghi problem, I modeled single-phase water

in a single-porosity matrix instead of the multi-continuum, multi-component simulation

of compressible gas, which is modeled in all other cases presented in this dissertation.

Figure 5.3 shows the validation of the coupled geomechanics and flow simulator against

the analytical solution to the Terzaghi problem. The points in this figure correspond to the

numerical solution at specific dimensionless heights in the domain, while the solid curves

correspond to the analytical solution presented in Eq. 5.5. The slight differences at early

times could be attributed to the fact that the sudden stress to be applied at time, t = 0+ was

only applied over all the time-steps taken in the simulation model. The simulation was run

at a dimensionless time ranging between 0 and 1, and in increments of 0.01.

In addition to these validations, Appendix C gives some basic verification of the numer-

ical model by performing sensitivities with respect to the mesh sizes and mesh orientation.

5.2 Study of Storage and Transport Mechanisms in Non-deformable Source Rocks

This section focuses on the numerical study of storage and transport mechanisms in

non-deformable source rocks. This implies that the coupled mechanical deformation of

the rock matrix and fractures are neglected in the results presented in this section.
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Table 5.2: Input Parameters for the Terzaghi Problem

Parameters SI Unit Field Unit
Young modulus, E 1.0 x109 Pa 1.45 x105 psi
Poisson ratio, ν 0.2 0.2
Biot coefficient, α 1.0 1.0
Fluid viscosity, µ 1 x10−3 Pa. s 1 cp
Fluid density, ρf 1000 kg/m3 62.4 lb/cuft
Permeability, k 5.0 x10−14 m2 50 mD
Porosity, φ 0.3 0.3
Initial pressure, pi 0 Pa 0 psi
Overburden stress, σ 2.125 x106 Pa 308 psi

Figure 5.2: The left figure shows a sketch of the Terzaghi Problem while the actual grid
used in this work is shown on the right.
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Figure 5.3: Validation of the coupled geomechanics and flow simulator against the analyt-
ical solution of the Terzaghi problem. The simulation results are shown as dots, while the
analytical solutions are shown as curves.

5.2.1 Contribution of molecular diffusion to transport in the inorganic shale matrix

In the results shown in Figures 5.4a and 5.4b, I model a system that corresponds to the

inorganic matrix of a shale-gas reservoir, that is, εkp = 0. The idea is to evaluate the rel-

ative contribution of molecular diffusion as a means of transport of fluids in the inorganic

matrix of a shale-gas reservoir. The dotted lines in Figure 5.4a correspond to the cases

where I model advective transport only, while the solid lines correspond to the scenarios

where I model both molecular diffusion and advection. The logarithmic scale in Figure

5.4a tends to amplify the differences between production profiles at very low values, and

it compresses or masks the differences at high values of production rate. Figure 5.4a and

Figure 5.4b (as well as all other simulations in this work) indicate that the contribution of

the diffusive transport in the inorganic pores is negligible at 100 nD, which is the base case

that could be representative of a resource shale. The results suggest that the contribution
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(a) Flow Rate.

(b) Cumulative Production.

Figure 5.4: Effect of Diffusion on Shale-gas Production. The results indicate that diffusion
is not important in the inorganic pores at permeability values of 100 nD or higher.

72



Figure 5.5: The contribution of diffusion to production appears increasingly significant at
lower permeability values (10 nD or lower).

of diffusive transport to production could be higher at lower permeability values (10 nD

and 1 nD). However, in addition to the production plots with and without diffusion at 100,

10 and 1 nD, I added a case at 100 nD, where the tortuosity was set to 2 (instead of the

base-case value of 7), which is the lowest value in the range given in Table 5.1. The result,

as well as all other cases at 100 nD showed that advective transport dominates diffusive

transport in an inorganic matrix with a permeability of 100 nD.

It is important to point out that the relatively large cumulative production values of

the 100 nD case could mask the magnitude of the contribution of molecular diffusion

contribution at 10 nD and 1nD. Figure 5.5 gives the corresponding cumulative production

curves without the 100 nD cases. Additionally, Figure 5.5 shows the increased contribution

of molecular diffusion if the tortuosity is set to 2 instead of the base-case value of 7.

Virtually all the simulation cases performed at 100 nD appeared almost indistinguish-

able on the log-log rate plots, so all other results presented in this dissertation show the

cumulative gas production plots only. To clarify, although the results presented in this sec-
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tion show that advective transport dominates molecular diffusion in an inorganic matrix

with a permeability of 100 nD, this is not the case in the organic pores where diffusive

transport could be the dominant transport mechanism.

5.2.2 Effect of the coupling constant on shale-gas production

I defined the coupling constant, ζ as the ratio of the geometric factor GA to the tor-

tuosity, τ in Eq. 5.3. The section on shape factor, as well as Appendix B discusses the

computation of the geometric factor, GA. Figure 5.6 shows the production performance

of the representative Barnett shale studied at different values of ζ . I observe that the plot

shows observable increase in cumulative production at relatively low values of ζ . At ζ val-

ues greater than 27, I do not observe any significant increases in cumulative production.

This indicates that beyond a particular level of coupling between the organic and the inor-

ganic matrix, further increases in the magnitude of the coupling does not result in increased

production because the organic and inorganic pores could be said to be “fully coupled” at

Figure 5.6: The sensitivity runs at increasing values of the coupling constant shows that the
increase in cumulative production at increasing levels of the coupling constant becomes
less significant at higher values of the coupling constant.
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these values of the coupling factor. A possible extension of the interpretation of this result

is a hypothesis that further increases in the transport of gases in the nanoporous organic

matrix (due to surface diffusion, or additional adsorbed-phase transport) may not lead to

any significant increase in gas production if the organic pores are already fully coupled

with the inorganic pores.

Figure 5.7 shows the corresponding pressure profiles at the different values of ζ . There

was no observable difference in the inorganic pore pressure profiles, so I show only one

inorganic pore pressure profile together with the organic pore pressure profiles at the cor-

responding ζ values. All pressure profiles shown in Figure 5.7 include the correction for

the pore volume occupied by the adsorbed gas molecules. Given the negligible contribu-

tion of diffusion to transport at a matrix permeability of 100 nD, the simulated changes in

the composition of the produced fluid was negligible.

5.2.3 Importance of the nonlinearity in the coupling coefficient

In this section, I study the effect of the nonlinearity in the terms comprising the cou-

pling coefficient. The expression for the coupling coefficient is given in Eq. 5.4. An

inspection of the equation shows that the nonlinear terms include the transient factor, Tf

and the diffusion coefficient. The results presented in Figure 5.8 indicate that the nonlin-

earities in the coupling coefficient result in an increase in the estimated production, and this

effect is more significant at lower degrees of coupling between the organic and inorganic

matrices. This is expected because the transient factor is always greater than 1, and only

gets equal to one at pseudo-steady state. Additionally, the inverse pressure-dependence of

the diffusion coefficient is such that the diffusion coefficient increases as pressure drops

during production.
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Figure 5.8: The nonlinearities in the coupling factor could be more significant at lower
degrees of coupling between the organic and inorganic matrices.

Figure 5.9: Comparison of a simulation run with and without the reduction of the free gas
pore volume by the adsorbed gas pore volume shows that the absence of this correction
could lead to an over-estimation of the cumulative production by about 17% at a flowing
bottomhole pressure of 2,000 psia.
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5.2.4 Impact of the correction for the pore volume occupied by sorbed gas molecules

Figure 5.9 shows the impact of the correction of the free gas pore volume to account

for the pore volume taken up by the gas molecules adsorbed on the surfaces of the organic

pore walls. The comparison of the case with and without the reduction of the free gas pore

volume by the adsorbed gas pore volume shows that the absence of this correction could

lead to an over-estimation of the cumulative production by about 17%. This is because the

pore volume available for gas storage in the free state is implicitly larger by an amount

that is equal to the pore volume taken up by the adsorbed gas molecules. From the results

shown in Figure 5.9 I can infer that it is important to account for the pore spaces occupied

by sorbed gas molecules in organic-rich resource shales. The details on how this correction

was implemented is discussed in Section 3.1.

5.2.5 Contribution of kerogen to production in shale-gas reservoirs

Given the definition of εkp as the ratio of the kerogen pore volume to the total pore

volume, Figure 5.10 shows the contribution of kerogen to production when the organic

pores account for 35% of the total pore volume (in Figure 5.10a) and when the organic

pores account for 50% of the total pore volume (in Figure 5.10b). The black dotted lines

in both figures correspond to the cases where I essentially take out all of the organic pores,

and model production from the inorganic pores only. The solid red lines in both figures

correspond to the cases where I model both the organic and inorganic pores at the base-

case parameter levels, and with a coupling constant (ζ) of 27. The difference between the

solid red line and the dotted black line gives the contribution of the organic pores to the cu-

mulative production. The dotted blue line in both plots show the production performance

for a system where the bulk volume occupied by kerogen is replaced by a corresponding

inorganic bulk volume. The fact that the dotted-blue line is higher than the solid red line in

both plots indicates that for a given bulk volume, the inorganic pores tend to produce more
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gas than the organic pores, even though I expect more gas storage in the organic pores (due

to adsorption). The higher production from the dotted-blue line in comparison to the solid

red line could be attributed to the observation that the fractional recovery from inorganic

pores are generally much larger than the corresponding fractional recovery from organic

(a) Cumulative gas production plots at εkp = 0.35

(b) Cumulative gas production plots at εkp = 0.5

Figure 5.10: Cumulative gas production plot shows that the dispersed kerogen in shale-gas
reservoirs can contribute appreciably towards production.
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pores at typical average reservoir pressures in shale-gas reservoirs. The next section stud-

ies the fractional recoveries associated with both free and adsorbed gases, and shows that

the contribution of the adsorbed gases in the organic nanopores could be curtailed by the

relatively high average reservoir pressures in shales. Another possible reason for the lower

production from an organic pore in comparison to an inorganic pore could be related to

the curtailment of the production from the organic pores by the degree of coupling be-

tween the inorganic and the organic pores. Additionally, note that the advective transport

expected in the inorganic matrix, could play a major role in accelerating the rate of produc-

tion from a reservoir with no organic pores, in comparison to another reservoir with some

kerogen. This is because kerogen typically lacks micro-cracks and laminations that could

contribute to accelerated advective transport. The observation that advective transport

dominates diffusive transport at 100 nD or more, while diffusion gets increasingly more

important below 10 nD suggests that we might have predominantly advective transport in

the inorganic pores, and predominantly diffusive transport in the organic pores. This dif-

ference in the expected transport mechanisms in the organic and inorganic pores suggests

that it might be crucial to model these two continua differently, as is done in this work.

A simple homogenization of the organic and inorganic continua (using a single-porosity

simulation model, for example) without accounting for the distinct storage and transport

mechanisms peculiar to each of these continua could lead to inaccurate results. This is

because an assumption of advective transport in the homogenized continuum for example,

could over-estimate the transport term, and lead to an overestimation of the production

performance using such a single-porosity model.

A comparison of Figure 5.10a to Figure 5.10b indicates that the contribution of kerogen

towards cumulative production appears to be more significant when more of the pores in

the total system is in the kerogen pores. This is expected given that the kerogen tends to

hold more free gases in addition to the adsorbed gases at higher values of εkp. It is worth
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noting that a high value of εkp values does not automatically imply that the organic pores

are continuous at the reservoir simulation grid-block scale. It could however be indicative

of a lack of abundance of macropores and/or micro-cracks in the inorganic matrix. The

generally low TOCs (usually less than 10%) even when εkp values are high, could indicate

that kerogen is still dispersed in the inorganic matrix, which has a much higher volume

fraction than the organic matrix.

5.2.6 Analysis of fractional recovery

This section seeks to study the relative contribution of free and adsorbed gases to pro-

duction, with the idea of explaining the results shown in Figure 5.10a. The results in

Figure 5.11a were computed based on the volumetric shale gas-in-place calculations pre-

sented by Ambrose et al. (2012) and Hartman et al. (2012). These fractional recoveries

were computed by subtracting the free and sorbed gas amounts at any pressure from the

corresponding amounts at initial pressure, and dividing the result by the total (free+sorbed)

gas amount at the initial conditions. In Figure 5.11b, I focus on the limited range of aver-

age reservoir pressure that was observed from the numerical simulations performed. The

line plots are the analytical estimates from Figure 5.11a, while the dotted points show the

corresponding fractional recoveries estimated from the numerical simulations performed.

The average pressure at a given time is calculated using the pressure values within the ra-

dius of investigation. The results indicate that the free-gas fractional recoveries are much

larger than the sorbed-gas recoveries. At the estimated average reservoir pressure of about

3,300 after 20 years of production, the simulation results indicated that the free-gas frac-

tional recovery is about 6.3 times larger than that of the sorbed gas, while the analytical

calculations showed it is about 4.7 times larger. The main difference between the analyti-

cal and numerical estimates of fractional recovery is that the numerical estimates account

for the resistances to flow (and associated transient flow effects) due to the permeability
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(a) Fractional recoveries estimated from shale-gas in place calculations.

(b) Comparison of analytical to simulation-based fractional recovery esti-
mates.

Figure 5.11: The fractional recoveries indicate that the contribution of sorbed gas to total
recovery could be limited at relatively high average reservoir pressures. The increase in
this contribution at lower pressures could be related to the shape of the Langmuir Isotherm.
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and diffusivity of the system, while the analytical estimates essentially correspond to a

“tank-model” that does not account for the resistance and transient effects associated with

the transport mechanisms in the reservoir.

It is worth noting that free gas molecules exist in both inorganic and organic pores.

Although the free gases in the organic pores could be released at rates similar to the rate of

production of free gas from the inorganic pores (if the organic and inorganic pores are fully

coupled, with high ζ values), the additional production from desorption could be limited

by the low recoveries at the relatively high average pressures expected in strongly-transient

shale-gas reservoirs. The shape of a typical adsorption/desorption isotherm is such that the

adsorbed gas amount flattens at high pressures, but shows relatively steep declines only at

very low pressures, which may be much lower than typical flowing bottomhole pressure

values. This explains why the amount of sorbed gas desorbed at typical average reservoir

pressures could be much less than the free gas produced. These average reservoir pressures

were estimated using a volume-weighted average of the cell pressures in all the grid blocks

within the drainage area observed in the simulated pressure profiles.

5.2.7 Contribution of diffusion at lower flowing bottomhole-pressures

In an earlier section, I showed that the contribution of diffusion to flow in the inorganic

pores could be dominated by the advective transport. In Figure 5.12a, I show a slightly

increased contribution of diffusion to flow at a lower flowing bottom-hole pressure of 500

psia, in a system with both organic and inorganic pores. The profile for the case with a

constant diffusion coefficient is practically identical to the case with a pressure-dependent

diffusion coefficient at a flowing bottomhole pressure of 1,500 psia, while a slight differ-

ence is observed at a pressure of 500 psia. This can be attributed to the increased contribu-

tion of desorption to production at lower pressures, as explained in the previous section. I

expect this difference to be more significant at an even lower pressure, but it might be un-
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realistic to produce a well at a much lower pressure. The typical sharp increase in pressure

(shown in Figure 5.7) away from the fracture surface indicates that the increased desorp-

(a) Diffusion contribution increases at lower flowing bottomhole pressures.

(b) Comparison of production profiles with and without kerogen at flowing
bottomhole pressures of 1500 psi and at 500 psi.

Figure 5.12: The simulation results indicate that the contribution of diffusion could be
more significant at lower flowing bottomhole pressure values.
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tion at the lower pressure of 500 psi could be limited to a small region very close to the

fracture faces. Figure 5.12b shows the production performance with and without organic

pores at a bottomhole pressure of 500 psia and at the base-case bottomhole pressure of

1,500 psia. The lowest three production profiles correspond to the cases shown in Figure

5.10a, where the bottomhole pressure is maintained at 1,500 psia. The production profile

shows higher production at a flowing bottomhole pressure of 500 psia, as expected given

the increased pressure drawdown in this case.

5.2.8 Analysis of Péclet number

In this section, I focus on the analysis of the relative contribution of advective and

diffusive transport in the base-case simulation model, with a matrix permeability of 100

nD, using Péclet number. By definition, Péclet number is the ratio of the rate of advective

transport to the rate of diffusive transport. Figure 5.13a gives the plot of the Péclet number

for methane in the inorganic pores versus the orthogonal distance away from the fracture

face. Each curve on the plot corresponds to a particular snapshot in time. The relatively

high values (greater than 10) of the Péclet number indicates that the rate of advective

transport is much faster than the rate of diffusive transport in the inorganic pores. The

gradual drop in the curves as time evolves indicates that the contribution of diffusion to

transport tends to increase as the duration of the production increases. The observation

that the Péclet number decreases in the direction of the fracture surface, indicates that the

contribution of diffusion to transport increases in the direction of the fracture surface. This

contribution of diffusion is greatest in the proximity of the fracture surface, as indicated by

the observation that the Péclet number is lowest right by the fracture surface. A physical

explanation for the maximum contribution of diffusive transport at the fracture surfaces

is related to the typical sharp drop of the grid-block pressures to the flowing bottomhole

pressure in the vicinity of the fracture surface. When this happens, the pressure gradient

85



(a) Methane Péclet number in the inorganic pores.

(b) Ethane Péclet number in the inorganic pores.

Figure 5.13: Péclet number for methane and ethane in the inorganic pores indicates that
advective transport could be the dominant transport mechanism in the reservoir.
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(a) Modified-Péclet number for methane in the coupling term.

(b) Modified-Péclet number for ethane in the coupling term.

Figure 5.14: The Modified-Péclet numbers for methane and ethane indicate that the rate
of advective transport in the inorganic pores is much faster than the rate at which gas is
released from the organic pores into the inorganic pores.
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term becomes small in magnitude, leading to a reduction in the advective transport, and

a consequent decrease in the Péclet number. A similar trend is observed in the Péclet

number for ethane, which is given in Figure 5.13b. Comparing Figure 5.13b to Figure

5.13a, I observe that the Péclet numbers for ethane are generally greater than the Péclet

numbers for methane. This is expected because methane is lighter than ethane, and its rate

of diffusion is generally faster than that of ethane under the same conditions.

In Figure 5.14, I introduce the "modified-Péclet number", which is simply the ratio of

the rate of advective transport in the inorganic pores to the rate at which gas is released

from the organic pores into the inorganic pores. The results indicate that the rate of advec-

tive transport in the inorganic pores is faster than the rate at which gas is released from the

organic pores into the inorganic pores. These results are consistent with the results shown

in Section 6.8, where I show that the fractional recovery from inorganic pores is generally

larger than the fractional recovery from the organic pores. This is because of the higher

resistance to flow in the organic pores, the dispersed nature of these organic pores, as

well as the curtailed desorption of gas at relatively high pressures, as discussed in Section

6.8. Furthermore, comparing Figure 5.14a with Figure 5.14b, I observe that the modified-

Péclet numbers for methane are generally lower than those for ethane, because the rate of

diffusion of methane is generally faster than that of ethane under the same conditions.

5.2.9 Effect of the pressure-dependence of permeability and diffusion on production

in shale-gas reservoirs

Section 3.3 discussed the modeling of the pressure and composition dependence of

molecular diffusion using the Maxwell-Stefan diffusion theory. To model the dependence

of the matrix permeability on the stresses in the matrix, I use the Gangi (1978) model,
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which is based on a model of a bed of nails. The Gangi model is given as:

k = ko

[
1−

(
Pc − αp
p1

)m]3

(5.6)

where ko is the matrix permeability at zero confining stress, Pc is the confining stress, α

is the Biot constant, p1 is the maximum stress at which the bed of nail (or micro-crack, in

the context of this work) closes completely, and m is a measure of the resistance of the

micro-cracks to closure under confining stresses.

Figure 5.15 gives the cumulative production plot for the cases run to study how gas

production is affected by the pressure-dependence of the diffusion coefficient, and the

stress-dependence of permeability. The dotted lines correspond to the cases where the

diffusion coefficients are kept constant, while the solid lines correspond to the cases where

the diffusion coefficients are inversely proportional to pressure. As explained in the results

on the study of the effect of diffusion, the cases with and without the pressure-dependence

of the diffusion coefficient are indistinguishable because diffusive transport appears to

be insignificant at a matrix permeability of 100 nD. The inverse proportionality of the

Maxwell-Stefan diffusion coefficients comes from the kinetic theory of gases, which was

used to obtain the binary diffusion coefficients. In Figure 5.15, the red lines correspond to

the cases where I assume that the matrix permeability is constant, while the black lines are

representative of the cases where I model the stress-dependence of the matrix permeability

using the Gangi’s model (Gangi, 1978). The difference in production between the red and

the black lines could be attributed to the reduction in matrix permeability in response

to pressure depletion during production. Given that the results presented in this section

are based on infinite-conductivity hydraulic fractures, I neglect the possible changes in

fracture permeability and aperture during production.

All the simulation results presented so far have been based on a single hydraulic frac-
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Figure 5.15: Simulation results indicate that the contribution of the pressure-dependence
of diffusion is negligible, while the contribution of the stress-dependence of matrix per-
meability could be significant at an initial reservoir permeability of 100 nD.

ture. To evaluate the stress-sensitivity of the matrix permeability in a more realistic hor-

izontal well with multiple fractures, I generated the meshes presented in Figure 5.16. I

simulated 20 years of production from this multiply-fractured horizontal well and the pore-

pressure and matrix permeability profiles are given in Figures 5.17 and 5.18, respectively.

The pressure profile indicates that fracture interference begins after about three years of

production. After this, the pore pressure profile continues to evolve in the Stimulate Reser-

voir Volume (SRV). The profiles in Figure 5.18 indicate that the matrix permeability re-

duces from 100 nD to 70 nD during production. This 30% reduction in permeability is

dependent on the parameters used in the Gangi model, and are outlined in Table 5.1. It is

worth mentioning that this 30% reduction could be significant considering that this takes

place mostly near the fracture surface. A comparison of cumulative production with and

without the stress-sensitive matrix permeability was presented and discussed in Figure

5.15. When the stencil shown in Figure 5.16 was simulated, and the results were multi-

plied by ten, the cumulative production profiles were almost identical. However, it suffices
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Figure 5.16: This figure shows the unstructured gridding of a horizontal well with multiple
fractures using Gmsh. The physical dimension of the reservoir domain is also shown.

to mention that the use of a stencil is limited to the cases were the geometry of the problem

features a repetitive fracture pattern.

5.3 Study of coupled geomechanics and transport of multi-component gas in

deformable source rocks

This section focuses on the study of the production of multi-component gas from

organic-rich source rocks, which are deformable. As seen in the pore-pressure profiles

in the previous sections, the production of reservoir fluids typically results in sharp pres-

sure drops near the surfaces of the hydraulic fractures. By the definition of effective stress,

these sharp drops in pore-pressure could induce a corresponding increase in the effective

stresses near the fracture surfaces. These induced stresses are compressive, and could lead

to the elastic deformation, crushing, or embedment of the proppants in the propped hy-

draulic fractures. Given that the proppants can be designed to withstand crushing under

the influence of the stresses in the reservoir, this work focuses on the study of the elastic
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Figure 5.17: The evolution of the pore pressures with time indicates that fracture interfer-
ence begins in three months. After fracture interference, the pore pressure in the stimulated
area around the fractures continues to drop.

Figure 5.18: This decline in pore pressure in Figure 5.17 leads to increased effective
stresses, which in turn result in a decrease in the matrix permeability. The results indi-
cate that the matrix permeability can be reduced from an initial value of 100 nD to 70
nD.
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deformation and the potential embedment of the proppants into the shale matrix. Addi-

tionally, the abundance of clay in these shales could contribute to the creep deformation or

embedment of the proppants into the shale matrix.

5.3.1 Simulation results for compositional gas transport in deformable source rocks

The production well is modeled as a constant-pressure inner boundary, while the exter-

nal boundaries of the reservoir are modeled as no-flow boundaries. For the geomechanics

problem, all the external boundaries of the domain were set to a fixed displacement of

zero in the x and y directions. Figure 5.19 shows the pressure profile in the inorganic and

organic pores after 20 years of production at a flowing bottom hole pressure of 1,000 psia.

The profiles show a sharp drop in pressure from the initial pressure of 4,000 psia to the

flowing bottom-hole pressure in the vicinity of the fracture surfaces.

Figure 5.20 gives the profiles for the mole fractions of methane and ethane in the

inorganic and organic matrices. It shows that the mole fraction of methane gradually drops

during production because methane is the lightest gas component, and it tends to diffuse

towards the production well faster than the other components.

Figures 5.21(a) and (b) show the changes in the horizontal and displacement displace-

ment profiles after 20 years of production. To clarify, the initial conditions for the simu-

lation of production corresponds to the situation in the shale matrix, after hydraulic frac-

turing and flow back. The actual value of the displacement profile is not expected to be

zero throughout the domain, because the fracture has a finite width, and the matrix is ex-

pected to be displaced away from the fracture surface. However, to focus on the changes

in displacement induced during production only, I set the initial displacement to be zero

everywhere in the domain. This implies that the displacement profiles shown in Figures

5.21(a) and (b) represent the change in the displacement relative to the condition in the

shale matrix prior to gas production. The horizontal displacement solution indicates that
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Figure 5.19: Pressure profile (in psi) after 20 years of production.

Figure 5.20: Mole-fraction of methane and ethane (yMethane and yEthane).

94



Figure 5.21: The displacement and stress profiles indicate that the fractures tend to close
during production.

the simulation of production of reservoir fluids can cause the grid-blocks on the left of

the fracture surface to be displaced toward the right (positive x-direction), while the grid-

blocks on the right of the fracture surface can be displaced toward the left. Similarly, the

vertical displacement profiles indicate that the simulation grid-blocks in the bottom half

of the domain can be displaced upwards, while the grid-blocks in the upper half of the do-

main can be displaced downwards. This implies that the induced horizontal stresses tend

to reduce the hydraulic fracture aperture, while the induced vertical stresses tend to reduce

the fracture length. Additionally, the maximum upward and downward displacements are

centered at the location of the fracture tips.

Figure 5.21(c) gives the profile of the change in the volumetric component of the effec-

tive stress (σ′xx) acting in the x-direction after 20 years of production. This is the change

in the effective closure stress (relative to the initial condition before production), which

acts on the hydraulic fracture to reduce the fracture aperture and conductivity. The profile
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shows that this change in closure stress is maximum around the fracture surfaces, and is

induced as a result of the pore-pressure drop around the fracture surfaces, shown in Figure

5.19. The negative sign of this change in effective stress is consistent with the convention

that compressive stresses are considered negative in this dissertation. Considering that

the in-situ stresses in the formation prior to fracturing and production are compressive,

the negative change in effective stress implies that the total compressive stresses acting

on the hydraulic fracture surface will increase during production. This increased com-

pressive stresses typically leads to proppant deformation, crushing, or embedment during

production.

5.3.2 Effect of induced stresses on fracture width, conductivity and production

The change in fracture width is modeled with Guo and Liu (2012) model, as discussed

in Section 3.7. The fracture conductivity is then computed as the product of the updated

fracture width and fracture permeability. The fracture permeability is scaled as the square

of the fracture width. The uncertainty in the creep deformation of the proppants in the

hydraulic fracture is reflected in the viscoelastic shear coefficient, which could be treated

as a history-matching parameter. To evaluate the impact of this parameter on the hydraulic

fracture width, conductivity and production, I performed the numerical simulations at val-

ues corresponding to high, mid and low values of the viscoelastic shear coefficient. These

values were taken from obtained from Huang et al. (2016).

Figure 5.22 presents the change in induced stress, normalized fracture width and con-

ductivity with time, and shows the effect these have on the cumulative production. The

fracture width and conductivity are normalized by dividing with the corresponding val-

ues before the production. The results are based on the base-case parameters shown in

Tables 5.1 and 5.2. At these base-case values, the fracture conductivity is infinite, with a

dimensionless fracture conductivity of about 3,300. Figure 5.22a shows that the fracture
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width and conductivity decline during production, while the effective stress acting on the

hydraulic fracture surface increases. The sensitivity of these changes in fracture width

and conductivity to the viscoelastic shear coefficients indicates that the decline in fracture

width and conductivity is more severe at lower values of the viscoelastic shear coefficient.

This is expected considering that the change in fracture width is inversely proportional to

the viscoelastic shear coefficient ν as given in Eq. 3.55. The high-, mid- and low-case val-

ues of the viscoelastic shear coefficient correspond to strong, medium, and weak propped

hydraulic fractures. The blue curve in Figure 5.22a represents the magnitude of the change

in stress acting on the hydraulic fracture surface. As discussed in the previous subsection,

this magnitude of the change in the effective stress increases sharply as the pressure near

the fracture surfaces drop rapidly. Only one curve is shown for the closure stress because

this was basically unchanged at the different values of the viscoelastic shear coefficient.

Figure 5.22b indicates that the sensitivity of the cumulative production to the viscoelas-

tic shear coefficient is negligible, even though there is considerable drop in fracture width

and conductivity, as shown in Figure 5.22a. This is because the initial fracture conductiv-

ity is so high that the fracture still behaves as an infinite-conductivity fracture even after

the fracture width and conductivity decline as shown in Figure 5.22a. To investigate this

further, the simulation study was repeated but at a dimensionless fracture conductivity of

100 instead of 3,300. Figure 5.23 shows the corresponding results. Although, the decline

in the fracture width and conductivity in Figure 5.23a are relatively similar in magnitude

to those shown in Figure 5.22a, the impact on cumulative production in Figure 5.23b is

much more severe than in Figure 5.22b. As expected, the simulation results show that

the weak hydraulic fractures give the least cumulative production because they show the

most decline in fracture conductivity, while the hydraulic fractures with high values of the

viscoelastic coefficient show higher cumulative production because they offer more resis-

tance to viscoelastic deformation. The significant reduction in fracture conductivity and
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cumulative production shown in Figures 5.23(a) and (b) could possibly explain the sharp

production decline typically observed in shale-gas reservoirs.

(a) Change in induced stress, normalized fracture width and conductivity
with time.

(b) Cumulative production versus time.

Figure 5.22: Results indicate that the induced effective stress increases due to pressure
decline during production. This leads to a reduction in the fracture width and conductivity,
which consequently results in considerable reduction in production.
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(a) Change in induced stress, normalized fracture width and conductivity
with time.

(b) Cumulative production versus time.

Figure 5.23: Results indicate that the induced effective stress increases due to pressure
decline during production. This leads to a reduction in the fracture width and conductivity,
which consequently results in considerable reduction in production.

Figure 5.24 indicates the decline in fracture width and conductivity as the magnitude

of the effective stress change increases. The change in stress in Figure 5.24 refers to the
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Figure 5.24: The fracture width and conductivity decline as the effective fracture closure
stress increases due to pressure decline during production.

increase in the magnitude of the effective stress (in the x-direction) due to the pore-pressure

depletion only, excluding the contribution of the initial effective stress before production.

The dotted lines show the decline in the fracture width and conductivity at the low-case

viscoelastic shear coefficient value of 3.4E9 MPa-s from Huang et al. (2016), while the

solid lines represent the corresponding curves at the mid-case values. The fracture width

and conductivity decline faster at lower values of this coefficient because strain is inversely

proportional to the viscoelastic shear coefficient and Young’s Modulus.

5.4 Evaluation of the storage of CO2 in depleted and deformable source

rocks

In this section, the objective is to evaluate the potential of injecting anthropogenic CO2

into depleted organic-rich source rocks that are located near industrial areas. The simu-

lation is performed in two stages, consisting of a production stage and an injection stage.

The simulation results from the production stage are similar to those from the previous

section, except that I simulate a four-component system here, whereas the previous sys-
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tem involved only three components. The fourth component introduced here is CO2 at

a trace amount of 2% at initial conditions. Figure 5.25 gives the profile of the inorganic

and organic pore pressures after 20 years of simulated production. As discussed in the

previous section, sharp drops in pore pressures can be seen near the fracture surfaces.

Figure 5.26 gives the profile of the changes in the horizontal displacements, vertical

displacements and induced horizontal stresses with respect to the corresponding values

at initial conditions (prior to production). Figure 5.26(a) indicates that the production of

reservoir fluids could lead to the displacement of the matrix grid-blocks towards the frac-

ture surface. Similarly, Figure 5.26(b) indicates that production could lead to the displace-

ment of the matrix grid-blocks (at the fracture tips) towards the center of the hydraulic

fracture. The negative change in stresses observed in Figure 5.26(c) indicates that gas

Figure 5.25: Pressure profile (in psi) after 20 years of production.
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Figure 5.26: The profiles of the change in displacement and stress fields indicate that the
fractures tend to close during production.

production could lead to an increase in the magnitude of the compressive stresses, because

compressive stresses are considered to be negative.

Figure 5.27 gives the profiles of the methane, ethane and CO2 compositions after 20

years of production. As in the previous section, the profile shows that the mole fraction of

methane gradually drops during production because methane is the lightest gas component,

and it tends to diffuse towards the production well faster than the other components. After

20 years of simulated production, CO2 is then injected into the single vertically fractured

shale-gas well at a constant injection pressure of 4,100 psia. The profile of the change in

pore pressure after 10 years of injection is shown in Figure 5.28. To clarify, these changes

in pore pressure are relative to the pressure profile after 20 years of simulated production.

The maximum change in pore-pressure is 3,100 psia because the lowest pressure near

the fracture surface was 1,000 psia after production, and the maximum pressure near the

fracture surface was 4,100 psia during CO2 injection. The sharp increase in the inorganic
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pressure near the fracture surface indicates that CO2 is injected into the formation, while

the corresponding sharp increase in the organic pressure indicates that the injected fluid is

able to diffuse into the organic matrix.

The change in the horizontal displacements, vertical displacements and induced hori-

zontal stresses are shown in Figure 5.29. These changes are relative to the corresponding

profiles in the reservoir after 20 years of simulated production. Figure 5.29(a) indicates

that the injection of CO2 could lead to the displacement of the matrix grid-blocks away

from the fracture surface. Similarly, Figure 5.29(b) indicates that the injection of CO2

could lead to the displacement of the matrix grid-blocks (at the fracture tips) away from

fracture tips and into the matrix. The positive change in stresses observed in Figure 5.29(c)

indicates that the injection of CO2 could lead to a reduction in the magnitude of the com-

Figure 5.28: Change in the pressure profile (relative to the profile before injection) after
10 years of CO2 injection.
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Figure 5.29: The change in displacement and stress profiles indicate that the induced
stresses could reduce the magnitude of the effective compressional stresses acting on the
propped hydraulic fractures during CO2 injection.

pressive stresses, because compressive stresses are considered to be negative. Considering

that the injection pressure is only 100 psi more than the initial pore-pressure, the pore-

pressure is not expected to exceed the minimum horizontal stress, which is compressional.

This implies that the actual value of the effective stress acting on the hydraulic fracture

surface is still expected to be negative, implying that the fracture width and length do

not increase. Additionally, the injected CO2 is expected to remain within the Stimulated

Reservoir Volume (SRV) that was created during hydraulic fracturing, since the injection

pressure is less than the minimum horizontal stress in the reservoir.

It is important to emphasize that the changes in the displacement and stress profiles,

are relative to the displacement and stress fields after 20 years of production. So, the

actual value of the displacement field during CO2 injection will incorporate the initial dis-

placement field before fracturing, as well as the displacements induced during hydraulic
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fracturing, production and injection. Similarly, the actual effective stress that acts on

the hydraulic fracture surface during CO2 injection will include the effect of the initial

stress distribution before production, the stresses induced during production, as well as

the stresses induced during CO2 injection. Injecting CO2 at pressures greater than the sum

of the minimum horizontal stresses and the strength of the rock could lead to re-fracturing,

and an increase in the fracture width and length. This will require the modeling of hy-

draulic fracture propagation, and is beyond the scope of this dissertation.

Figure 5.30 gives the profiles of the methane, ethane and CO2 compositions after 10

years of CO2 injection. The profile shows an increase in the mole fraction of CO2 in the

organic matrix, which indicates that the injected CO2 can diffuse into the organic matrix,

and could be trapped by adsorption near the large internal organic surfaces. Figure 5.31

shows the injection rates and cumulative injection of CO2 into the depleted organic-rich

source rock modeled. The green, red and blue lines correspond to the cases where the

bottomhole pressure was fixed at 5000, 4500 and 4100 psia, respectively. The dotted

black line corresponds to a case where the bottomhole pressure was fixed at 4,100 psia,

but the organic matrix was artificially removed from the model. The cumulative injection

curves indicate that a large amount of CO2 is injected at very early times, after which the

rate of injection of CO2 slows down remarkably. The large volumes injected at very early

times could be explained by the expected rapid injection rates into the depleted hydraulic

fractures. The very low pressures around the well and hydraulic fractures (about 1,000

psia as shown in Figure 5.25) imply that the change in pressure during injection will be

4000, 3500 and 3100 psia, when the bottomhole pressure is fixed at 5000, 4500 and 4100

psia, respectively. These large changes in pressure when multiplied with the injectivity

yield high injection rates. However, with continued CO2 injection, the pressure around the

well and hydraulic fractures builds up very quickly, leading to sharp drops in the change

in pressure, and a consequent drop in the injection rates. Figure 5.32 presents the amount
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(a) CO2 Injection Rate Plots.

(b) Cumulative CO2 Injection Plots.

Figure 5.31: Comparison of the injection plots at different bottomhole pressures indicates
the amount of CO2 injected into the depleted shale matrix at these different pressures.
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of CO2 injected in 10 years as a fraction (in percentage) of the amount of gas produced in

20 years. The respective percentages for the four cases shown in Figure 5.31 are given on

a yearly basis. The results show that the amount of CO2 injected within a 10-year period

could be significant in comparison to the amount of gas produced over a 20-year period.

This suggests that CO2 injectivity into a depleted shale formation could be comparable to

the productivity of gas from the same shale formation.

To access the potential of the organic matrix to trap some of the injected CO2, I show

a plot of the percentage of the injected CO2 that gets sorbed into the organic matrix (in

Figure 5.33). The result shows that about 25% of the total amount of CO2 injected (in a

10-year time frame) is stored in the sorbed state within the organic matrix. This indicates

that the organic matrix could potentially serve as a trapping mechanism for some of the

CO2 that is injected during CO2 sequestration in depleted organic-rich source rocks.

Figure 5.32: Percentage of CO2 injected in 10 years. The results indicate that the amount
of CO2 injected could be significant in comparison to the amount of gas that was produced
over 20 years. This indicates that the CO2 injectivity into a depleted organic-rich source
rock could be significant in comparison to the gas productivity from the same source rock.
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Figure 5.33: Plot of the fraction of injected CO2 that gets sorbed into the organic matrix.
The results indicate that about 25% of the total amount of injected CO2 gets sorbed into
the organic matrix over a 10-year time frame. This indicates that the kerogen in depleted
organic-rich source rocks could potentially provide a trapping mechanism for the injected
CO2.
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6. SUMMARY AND CONCLUSIONS

6.1 Summary

This work presents a mathematical model and simulator for the transport of multi-

component gas in a deformable organic-rich source rock. The coupled partial differential

equations presented in this work were discretized using the control volume finite element

method, and the fractures in the reservoir domain were modeled using the discrete fracture

model. The new contributions provided in this work includes:

1. To develop a mathematical model for the transport of multi-component gas in a shale

matrix, consisting of the organic and inorganic matrices. Unlike previous models for

transport in shales, this work models the organic matrix (or kerogen) as a dispersed

and discontinuous continuum. The rationale behind this dispersed kerogen model is

inferred from SEM images, as well as the experimental and history-matching work

by Kang et al. (2011), which indicates that kerogen appears to be discontinuous at

scales larger than tens of microns, and that the coupling between the organic and

inorganic matrices is in series.

2. To present a Maxwell-Stefan formulation for the computation of the pressure- and

composition-dependent diffusion coefficients in a multi-component system with more

than two components.

3. To develop and implement a time-dependent shape factor to be used in the cou-

pling term that describes the series transport of the multi-component shale gas from

the kerogen into the inorganic matrix. This time-dependence of the coupling term

was developed based on the time-dependent shape factor presented by (Zimmerman

et al., 1993) for a dual-porosity matrix/fracture system. In this work, I focus on a
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dual-continuum matrix comprising of the inorganic and organic matrices.

4. To implement a modified form of the petrophysical model proposed by Ambrose

et al. (2012) and Hartman et al. (2012). The petrophysical model from Ambrose

et al. (2012) and Hartman et al. (2012) basically reduces the pore volume available

for the storage of free gas in the shale matrix by the pore volume occupied by the

adsorbed gas molecules. The modification made to be made in this work is to correct

only the organic pore volume (and not the total pore volume) by the volume occupied

by the adsorbed gas molecules because I do not expect any significant adsorption in

the inorganic pores.

5. To develop a fully-coupled model for the transport of multi-component gas in a

deformable shale matrix. The stress-dependence of the matrix permeability will

be modeled using the Gangi’s model (Gangi, 1978), while the stress and time-

dependence of the propped fracture conductivity will be modeled using an analytical

viscoelastic model presented by Guo and Liu (2012).

6. To evaluate the potential of injecting and storing anthropogenic CO2 in depleted

organic-rich source rocks, using the numerical simulator developed.

6.2 Conclusions

This work presents a multiple-continuum model for multi-component gas transport in

organic-rich source rocks with a deformable matrix. The model presented captures the

dispersed nature of kerogen observed in SEM images, and the consequent series coupling

between the organic and inorganic pores. To account for the pressure and composition

dependence of molecular diffusion in the nanoporous matrix, I used the multi-component

Maxwell-Stefan diffusion formulation. The model accounts for the elastic and creep de-

formation of the shale formation and its interaction with a propped hydraulic fracture. I
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model the free-gas pore-volume increase due to desorption coupled with the pore-volume

reduction due to the mechanical deformation of the shale matrix. All the poroelasticity

equations were discretized using the CVFEM. A simplified version of the simulator built

as part of this work was validated against Eclipse 300 for a multi-component system, with-

out organic pores. I validated the coupled geomechanical and flow simulator by comparing

with the analytical solution of the Terzaghi problem.

The numerical studies performed in this work indicates that advective transport dom-

inates diffusive transport in the inorganic pores of the representative Barnett shale-gas

reservoir simulated. However, at lower values of permeability (10 nD and lower), the

contribution of molecular diffusion to the total transport becomes increasingly significant.

This coupled with the expected lack of cracks and large macropores in kerogen suggests

that advective transport could be negligible in the organic pores, and the predominant

transport mechanism could be diffusive (free-gas and adsorbed gas diffusion). Consider-

ing that most commercially-viable unconventional resources are expected to have over 10

nD of matrix permeability, the contribution of molecular diffusion to the transport in these

organic-rich source rocks is expected to be negligible. This work argues that it could be

crucial to model the organic and inorganic continua separately, given the expected phys-

ical differences in the transport mechanisms that prevail in these two continua, and the

dispersed nature of kerogen.

The results of this work shows the importance of correcting the free-gas pore vol-

ume for the pore volume occupied by the gas molecules adsorbed on the organic pore

walls. The comparison of a shale-gas simulation model to a similar model with all the

organic pores replaced by inorganic pores indicates that although organic pores could con-

tribute significantly towards the total storage in resource shales, the contribution of these

organic pores to the cumulative gas production (during the typical production life of these

unconventional resources) could be severely curtailed by the generally lower recoveries
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associated with desorption at relatively high average reservoir pressures, as well as the

degree of coupling between the organic and inorganic pores. This further supports the

argument that the micro-scale nature of resource shales could be important and should

not be ignored because this could result in an overestimation of the contribution of the

discontinuous organic matter. The sensitivity studies on the degree of coupling between

the organic and inorganic pores indicates that the contribution of the organic pores to to-

tal production peaks off at a particular value of the coupling constant. The study of the

effect of the stress-dependence of matrix permeability indicates that the cumulative pro-

duction could be reduced significantly because of the reduction in permeability as the pore

pressure decreases during production.

The studies of coupled geomechanics and compositional gas simulation in this work

indicate that the production of fluids from fractured shale-gas reservoirs could result in

compressive stresses that could lead to the closing of the hydraulic fractures. This could

in turn lead to considerable decline in production. The simulator developed in this work

was used to evaluate the potential injection and storage of anthropogenic CO2 in depleted

resource shales. The results indicate that the effective stress induced during production

and subsequent injection of CO2 will depend on the magnitudes of initial stresses in the

shale formation prior to fracturing, the stresses induced during hydraulic fracturing, the

compressive stresses induced during production, as well as the tensile stresses that could

be induced if CO2 is injected at pressures higher than the in situ stresses. Additionally, the

studies performed in this work indicate that CO2 could be potentially injected and stored

in depleted organic-rich source rocks.

6.3 Recommendations for Further Work

This work focused on the development of mathematical models that describe important

mechanisms of storage and transport in organic-rich shale gas reservoirs. A 2D coupled
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geomechanics and flow simulator was developed based on the assumption of linear elas-

ticity. I would strongly recommend the extension of this model to three dimensions, with

a transversely isotropic shale matrix and a plasticity model for the deformation of the ma-

trix. Other further extensions of this model could include the extension to multiple phases

and the incorporation of multiphase flash with confinement effects. For improved compu-

tational efficiency, the code developed could be parallelized to take advantage of parallel

computing on multicore, and other parallel computers.
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APPENDIX A

ESTIMATION OF KEROGEN BULK VOLUME

Here, I show the derivation of an expression for the kerogen bulk volume in terms of

input parameters– εks, εkp, φ and bulk volume (Vb).

By definition:

εks =
GVk
GV

(A.1)

This implies that:

GVk = εksGV (A.2)

Similarly, from the definition of εkp as the ratio of the kerogen pore volume to the total

pore volume (PV ), I obtain:

PVk = εkp PV (A.3)

By volume balance,

V k
b = PVk +GVk (A.4)

Substituting Eq. A.2 and Eq. A.3 into Eq.A.4 yields:

V k
b = εkp PV + εksGV (A.5)

Since porosity is defined as the ratio of pore volume to bulk volume, I can write pore

volume PV as:

PV = φVb (A.6)
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Similarly, I can express the grain volume, GV as:

GV = (1− φ)Vb (A.7)

Substituting Eq.A.6 and Eq. A.7 into Eq. A.5 yields:

V k
b = εkp φVb + εks (1− φ)Vb (A.8)
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APPENDIX B

COMPUTATIONS OF GEOMETRIC FACTOR

I already showed how to compute the geometric factor for a sphere with radius r and

a cube with sides, x. Here, I proceed to show the computation of some rectangular ge-

ometries with sides that are functions of x. The idea is to show the effect of these aspect

ratios on the estimated geometrical factors that go into the computation of the shape fac-

tor. Figure B.1 shows the cube, whose geometric factor was determined in the dissertaion,

together with two other cuboids with different aspect ratios. Following the procedure

explained in the section on the estimation of shape factors, the geometric factor, GA for

Cuboid 1 is 21, while that for Cuboid 2 is 68.25. This shows that the geometric factor

increases significantly as the kerogen geometry gets flatter and longer. The comparison of

the geometric factor of the cube to that of the sphere (given in the section on the estima-

tion of shape factors) indicates that the shape factor for a flat surface is less than that for a

convex surface. We also expect that the shape factor for a concave surface will be further

less than that for a flat surface.

In comparison to the shape factors for conventional dual-porosity models for matrix

and fractures , we expect the shape factors for kerogen in shales to be much larger because

Figure B.1: Illustration of the effect of aspect ratios on geometric factors
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of the rather dispersed nature in which kerogen is deposited in shales, as seen in SEM

images. The dispersed kerogen matrix is expected to give larger shape factors than the

rather large and blocky matrices that are typically seen in the illustrations of the Warren

and Root model (Warren and Root, 1963).
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APPENDIX C

MESH SENSITIVITY STUDIES

As part of the model validation studies performed in this work, I performed sensitivity

studies to evaluate the sensitivity of the model to mesh sizes and mesh orientation. All the

sensitivity studies shown in this appendix were based on the result from a single “stencil”,

as shown and discussed in Figure 5.16. Considering that the size of the smallest elements

in the reservoir domain are located around the surface of the hydraulic fractures, I gener-

ated increasingly larger meshes by specifying the sizes of the smallest finite elements. The

size of the other elements in the domain generally increase away from the fracture surface.

Using Gmsh, I created different meshes with the size of the smallest element increasing

Figure C.1: Illustration of the effect of mesh size on the model estimates of production
rate.
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from 1 through 32 meters, each case having a size that is two times bigger than the previ-

ous one. The production rates from all of these cases are shown in Figure C.1. The cases

with the smallest mesh sizes greater than 4 meters show distinct humps between 0.1 and

10 days. These humps could be interpreted as numerical artifacts related to the effect of

adding the residual of the mass balance equations of the hydraulic fractures to those of

the control volumes in which the hydraulic fracture segment is located (as explained in

Section 4.4 on the “discrete fracture model”). At smaller mesh sizes, this effect is less

significant as expected.

Table C.1 gives a quantitative analysis of the errors associated with the estimated pro-

duction rates shown in Figure C.1. The estimated production rates from the domain with

the finest mesh is used as the reference solution. In Table C.1, h is the size of the small-

est mesh size in the domain, while ||∆q|| is the L2 norm of the difference between the

production rate from any other mesh size and the reference solution. The results indi-

cate that the estimated production rates are convergent. To evaluate the sensitivity of

Table C.1: Mesh Size Sensitivity

2 m 4 m 8 m 16 m 32 m
||∆q|| 1.44 4.27 10.82 16.12 30.59
||∆q||/h 0.72 2.14 5.41 8.06 15.30
||∆q||/h2 0.36 0.53 0.68 0.50 0.48

the model to different mesh orientations, different meshing algorithms were used to dis-

cretize the reservoir domain. The three meshing algorithms used are the “Delaunay”,

“mesh adapt”, and the “frontal” method. The resulting meshes from these three algorithms

are shown in Figure C.2. Geuzaine and Remacle (2009) and the “Gmsh” reference manual

(http://gmsh.info/doc/texinfo/gmsh) provides further details on these meshing algorithms.
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The smallest mesh size, h used in the generation of all three meshes shown in Figure C.2 is

2 meters. However, the use of different meshing algorithms results in different total num-

ber of elements and vertices. Table C.2 presents the actual number of vertices and elements

corresponding to the meshes shown in Figure C.2. It shows that the “frontal” algorithm

used the most elements, while the “mesh adapt” algorithm used the fewest elements. It is

worth noting that the default meshing algorithm in “Gmsh” is the “Delaunay” algorithm,

and all other meshes used in this work were based on this algorithm. Figure C.3 shows the

production rates corresponding to the meshes generated using these three algorithms. The

production rate from the reference solution (based on the finest mesh solution with h=1

m) is also shown for comparison. The computed value of the L2 norm of the error for the

Figure C.2: Different mesh orientations based on the “Delaunay”, “mesh adapt”, and
“frontal” algorithms.
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Table C.2: Number of Elements and Vertices

Delaunay Mesh Adapt Frontal
Vertices 635 465 664
Elements 1234 894 1292

“Delaunay”, “mesh adapt”, and “frontal” algorithms are 1.44, 2.01 and 1.36, respectively.

This implies that the “frontal” algorithm was the most accurate, while the “mesh adapt”

algorithm was the least accurate. The relative accuracy of these meshing algorithm could

be related to the number of elements that were used to discretize the domain, because the

most accurate mesh was the one that used the most elements, while the least accurate result

came from the algorithm that gave the fewest elements.

In this dissertation, the time steps were selected to be very small at early times, and

they arbitrarily increase in size at later times where this fine resolution is unnecessary. This

is in order to capture the very early-time flow in the fractures. Time was discretized us-

Figure C.3: Illustration of the effect of the meshing algorithm on the model estimates of
production rate.
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ing a fully-implicit backward Euler scheme, which theoretically guarantees unconditional

stability. However, if a very large time step is taken at early times, the estimated mass of

fluid to be withdrawn from a grid block (or control volume) could be larger than the mass

of fluid stored in that grid block. This is easily seen when a very large initial step is taken,

and the well model indicates the withdrawal of more fluid mass than is stored in the grid

block in which the well is located. To overcome this potential problem, I implemented

an adaptive time stepping where the time step size is automatically reduced whenever the

model cannot converge on a solution. The implicit time-stepping, arbitrary spacing of

time-step sizes, and the growing mesh sizes makes a time-step study less straight-forward.

In Figures C.4 and C.5, I show simulation results with different arbitrary time-steps sizes.

In addition to the base case, I ran two other cases with respectively fewer and more time

steps than the base case. The log-log scale in Figure C.4 tends to exaggerate the differ-

ences at early times and it indicates. Figure C.5 shows the same results on a semi-log plot,

and it indicates that all three cases appear almost identical. This implies that the sensitivity

of the numerical model to time-step sizes is not significant.
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Figure C.4: The log-log rate plot illustrates the effect of time-step size on the model esti-
mates of production rate. The log scale tends to exaggerate the differences at very early
times.

Figure C.5: The semi-log rate plot illustrates the effect of time-step size on the model
estimates of production rate. The results from all three cases studied appear to match,
indicating that the model sensitivity to time step size is not significant.
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