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ABSTRACT 

 

Standing dead trees (SDTs) are an important forest component and impact a 

variety of ecosystem processes, yet the carbon pool dynamics of SDTs are poorly 

constrained in terrestrial carbon cycling models.  The ability to model wood decay and 

carbon cycling in relation to detectable changes in tree structure and volume over time 

would greatly improve such models.  The overall objective of this study was to provide 

automated aboveground volume estimates of SDTs and automated procedures to detect, 

quantify, and characterize structural losses over time with terrestrial lidar data.  The 

specific objectives of this study were: 1) develop an automated SDT volume estimation 

algorithm providing accurate volume estimates for trees scanned in dense forests; 2) 

develop an automated change detection methodology to accurately detect and quantify 

SDT structural loss between subsequent terrestrial lidar observations; and 3) characterize 

the structural loss rates of pine and oak SDTs in southeastern Texas.  

A voxel-based volume estimation algorithm, “TreeVolX”, was developed and 

incorporates several methods designed to robustly process point clouds of varying 

quality levels.  The algorithm operates on horizontal voxel slices by segmenting the slice 

into distinct branch or stem sections then applying an adaptive contour interpolation and 

interior filling process to create solid reconstructed tree models (RTMs).  TreeVolX 

estimated large and small branch volume with an RMSE of 7.3% and 13.8%, 

respectively.  A voxel-based change detection methodology was developed to accurately 

detect and quantify structural losses and incorporated several methods to mitigate the 
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challenges presented by shifting tree and branch positions as SDT decay progresses.  

The volume and structural loss of 29 SDTs, composed of Pinus taeda and Quercus 

stellata, were successfully estimated using multitemporal terrestrial lidar observations 

over elapsed times ranging from 71 – 753 days.  Pine and oak structural loss rates were 

characterized by estimating the amount of volumetric loss occurring in 20 equal-interval 

height bins of each SDT.  Results showed that large pine snags exhibited more rapid 

structural loss in comparison to medium-sized oak snags in this study. 
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NOMENCLATURE 

 

ALS Airborne laser scanning 
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1. INTRODUCTION AND LITERATURE REVIEW  

Standing dead trees (SDTs) are an integral component of forest ecosystems and 

impact a variety of processes of interest to forest managers and researchers, such as 

forest carbon stores, carbon cycling dynamics as aboveground woody debris transitions 

to atmospheric and soil C pools, nutrient cycling, species composition dynamics, fuel 

loading with respect to wildland fires, wildlife habitat, and structural diversity of forest 

stands (Russell et al., 2015).  Generally, nondestructive individual tree volume estimates 

are derived via measurement of tree parameters (e.g., diameter at breast height (DBH) 

and tree height) which are then used as predictors in empirically-derived, species-

specific allometric equations (Brown et al., 1989).   

Current SDT aboveground volume estimates employed by the United States 

Forest Service (USFS) Forest Inventory and Analysis (FIA) program characterize only 

the volume, and thus carbon, of a tree’s main stem in the case of timber species (i.e., 

from a one foot stump to a top diameter of four inches or the point where all limbs are 

smaller than a 4” diameter) or the stem, bark, and large branches in the case of woodland 

species (Woudenberg et al., 2010).  These estimates are not derived from direct volume 

measurements, but from standard FIA field measurements which are input to the same 

allometric equations used on live trees to arrive at an aboveground volume estimate 

(Domke et al., 2011).  Due to their focus on the tree’s bole, these estimates neglect to 

characterize the volume of a SDT’s entire stem and branches, especially when stem 

breakage and branch drop cannot be accurately accounted for.  Recent studies have 

proposed methodologies which incorporate structural loss adjustments (SLAs) and 
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density reduction factors (DRFs) to account for the inherent morphological differences 

of SDTs vs. their live counterparts (Domke et al., 2011).  These adaptations have 

resulted in more accurate estimates of SDT volume and carbon, yet are still based on 

allometric equations and qualitative decay class assignments, which may limit their 

overall accuracy in comparison to quantitative remote sensing-based methodologies.  

Currently, these SLAs and DRFs have yet to be developed and evaluated for a wide 

range of species and regions, leaving more generalized estimates as the pragmatic 

approach in most situations. 

As observed density reductions fail to completely account for the total amount of 

biomass lost during the decay process (Fraver et al., 2013; Harmon et al., 1987; Næsset, 

1999; Zell et al., 2009), it is important for studies to quantify and incorporate structural 

losses when modelling the decay rates of SDTs.  Laiho and Prescott (2004) reviewed 34 

wood decomposition studies and found that only five had considered mass loss as a 

component of decay, while the remaining studies were based on observed density 

reductions.   

The extent to which decay rates, estimated by reductions in wood density over 

time, affect the structural loss rates of SDTs is not clearly defined.  A number of studies 

have observed the longevity of standing dead trees or modelled their transition through 

qualitative decay classes in different regions (Aakala et al., 2008; Cain, 1996; Cline et 

al., 1980; Conner and Saenz, 2005; Corace et al., 2010; Garber et al., 2005; Landram et 

al., 2002; Vanderwel et al., 2006), but these approaches often are focused on stand-level 

observations and not able to quantify the different ways in which SDTs lose volume and 
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mass over time (i.e., fragmentation or structural loss vs. collapse), which could provide 

valuable contributions towards understanding the flux of woody debris from standing 

pools to downed pools among various species and regions.  In a review of research 

concerning the decomposition and carbon storage of dead wood in various forms, 

Russell et al. (2015) conducted a sensitivity analysis and found that structural reductions 

had the greatest relative influence on the C content of standing dead trees, 59.1%, while 

wood density had a relative influence of 19.8%.  This finding emphasizes the need for 

accurate volume estimations of SDTs, the increased development of SLAs for additional 

species and regions, and the development of methodologies which can precisely quantify 

structural losses of SDTs over time. 

Light detection and ranging (lidar) is an active remote sensing system which 

utilizes laser pulses to precisely measure the distance from the lidar sensor to an object 

by measuring the elapsed time between the transmission and return, at the sensor’s 

receiver, of a laser pulse which has been reflected off an object (Lefsky et al., 2002).  

The elapsed time measurement may be multiplied by the speed of light through air to 

obtain the total distance travelled by the laser pulse and subsequently divided by two to 

determine the distance from the lidar sensor to the object which reflected the pulse (Shan 

and Toth, 2008).  Lidar sensors are broadly categorized into two groups with respect to 

how the sensor records returned signals: discrete return systems identify significant 

amplitude peaks in the returned pulse which correspond to the energy reflected by 

physical objects and are thus recorded as individual points; while full waveform systems 

characterize the entire duration of the laser pulse by recording the amplitude of the 
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received pulse as it varies with time, thus digitizing and recording the entire reflected 

waveform (Lefsky et al., 2002).   

Modern lidar sensors are typically of the “scanning” variety, meaning they utilize 

rotating or oscillating mirrors, fiber optics, or rotating sensor heads to collect data in the 

across-track direction and may emit thousands of laser pulses per second, resulting in 

dense data sets which provide a detailed, three-dimensional characterization of an area 

(Wehr and Lohr, 1999).  Lidar sensors are deployed on an assortment of platforms to 

meet a variety of research objectives at a broad range of spatial and temporal scales, 

each with unique acquisition challenges.  Common lidar platforms include spaceborne 

(e.g., satellites), airborne (e.g., manned aircraft, unmanned aerial vehicles), terrestrial 

(e.g., mounted on a stationary tripod), and mobile platforms (e.g., handheld sensors, 

ground-based vehicles) (Van Leeuwen and Nieuwenhuis, 2010). 

In the context of forestry studies, airborne laser scanning (ALS) has been used to 

estimate biomass or volume (Anderson et al., 2008; Drake et al., 2002; Hudak et al., 

2012; Lefsky et al., 2005; Popescu et al., 2003; Sheridan et al., 2014) as has spaceborne 

lidar (Guo et al., 2010; Lefsky et al., 2005; Simard et al., 2011), but spaceborne systems 

are better-suited for regional or global estimates, respectively, and lack the precision 

required to reliably provide accurate individual tree estimates and change detection 

capabilities.  While ALS can effectively characterize a forest canopy and has been used 

to observe individual trees (Hyyppä et al., 2001; Popescu, 2007),  terrestrial laser 

scanning (TLS) has the potential to provide significantly more detailed observations at 

the individual tree level.  Collecting data from a terrestrial vantage point, TLS has 
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several advantages over ALS when considering objectives at the individual tree level: 

(1) the ability to characterize intermediate, suppressed, and understory trees which 

would often be subjected to significant occlusion from dominant and codominant trees 

with ALS; (2) the ability to more-completely capture the complex morphological 

characteristics of the entire tree (e.g., fine branches, stem sections) which would not be 

apparent from the aerial perspective of ALS; (3) higher point density and reduced point 

spacing in comparison to ALS; and (4) collection procedures which are more conducive 

to repeated observations at desired temporal intervals.  The general limitations of TLS in 

forest systems include: (1) occlusion (i.e., shadowing) caused by nearby vegetation or 

branches on the tree of interest; (2) fewer dedicated software packages and established 

methodologies for analyzing TLS data, particularly at the individual tree level; (3) 

potentially time-consuming data collection procedures; and (4) noise points caused by 

tree movement due to wind during scanning operations.   

 TLS has been used to estimate tree volume at both the plot level and individual 

tree level.  Aboveground biomass is commonly estimated as well, which is closely 

related to carbon content in that 50% of a tree’s biomass is commonly attributed to 

carbon (Penman et al., 2003), as is aboveground volume with the use of species-specific 

wood density estimates.  One approach to estimating tree volume or biomass with TLS 

consists of scanning trees at the plot or individual tree level, extracting metrics (e.g., 

height percentiles, point densities, skewness) or measurements (e.g., DBH, tree height, 

crown area) from the resultant point clouds which serve as a proxy for traditional field 

measurements, and subsequently using these measurements as inputs to allometric 
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equations (or regression models based on allometric equations) to estimate volume or 

biomass (Hopkinson et al., 2004; Ku et al., 2012; Tansey et al., 2009; Yao et al., 2011).  

While these studies have shown that TLS-derived metrics and tree measurements can 

work reliably with allometric equations, the reliance on allometric equations for volume 

estimates, biomass estimates, or accuracy assessments neglects to characterize the 

variation present in trees with the same morphological parameters (e.g., DBH or height), 

particularly with respect to SDTs (Hosoi et al., 2013). 

TLS-derived volume estimates through 3D reconstruction of individual trees 

provide a nondestructive methodology which functions without the need for allometric 

equations, structural loss adjustments, or detailed field measurements.  Individual tree 

3D reconstructions, with the objective of estimating a tree’s total volume, may be 

broadly categorized into two, sometimes used in tandem, approaches: (1) fitting 

geometric primitives (e.g., cylinders, cones) to tree components; and (2) converting point 

clouds to voxels and creating voxel-based tree models.  Côté et al. (2009) created 

approximated individual tree reconstructions of live trees, including foliage, by utilizing 

geometric primitives derived from tree skeletons and estimated convex hull volume with 

a mean root mean square error (RMSE) of 14.83%.  Delagrange and Rochon (2011) 

estimated the crown volume of a single hybrid poplar sapling using tree skeletons and 

fitted cylinders, resulting in a volume estimate deviation of 14.5% from a reference 

volume estimated by treating each point in their point cloud as a 1 cm3 voxel and 

summing their aggregate volumes.  The use of the point cloud data, which was used to 
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generate the tree model, to estimate a reference volume leads to uncertainty with regards 

to the validity of the accuracy assessment.   

Dassot et al. (2012) in a semi-automated procedure, used tree skeletons and fitted 

cylinders to estimate solid wood (i.e., branches or stems greater than 7 cm in diameter) 

volume for a variety of tree species, in leaf-off conditions, at the individual tree level.  

The authors estimated solid wood volume of main stems within 10% relative difference 

for 40/42 trees and total branch volume from 10% - 30% for 15/36 and 31/36 trees, 

respectively; and estimated the total solid wood volume within 10% relative difference 

for 40/42 trees.  It should be noted that, in contrast to the two aforementioned studies, 

the authors used destructive sampling (i.e., felled the individual trees and used diameter 

measurements and taper equations to estimate the volume of stem and branch sections), 

resulting in a presumably more reliable accuracy assessment.  Kaasalainen et al. (2014) 

used a methodology referred to as quantitative structure modeling (QSM) (Raumonen et 

al., 2013) which utilizes fitted circular cylinders applied to a point cloud in accordance 

with the morphological rules of tree structure (e.g., smaller branches attaching to larger 

branches, which are attached to the stem) to estimate the total volume of a large aspen 

branch, approximately 2 m in length, with multiple sub-branches.  Using the QSM 

methodology, the authors estimated the branch’s volume within approximately 12% of 

reference volumes which were calculated by weighing branch sections and calculating 

their density via water displacement. 

Hackenberg et al. (2014) utilized a sphere-cutting routine to extract point clouds 

corresponding to cross sectional areas of stems and branches, which were fitted with 
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cylinders and then refined to produce a final model consisting of many connected 

cylinders.  This method was assessed to have coverage values (i.e., the percentage of 

points within 3 cm of a cylinder in the final model) of approximately 99% when applied 

to two high quality point clouds and 84.45% when applied to 26 lower quality point 

clouds, all of which were scanned in an agroforestry system.  Testing volume estimation 

accuracy on 14 branches, each consisting of multiple small and fine branches, the 

method had an RMSE of approximately 0.123 L. 

 Lefsky and McHale (2008), in one of the earliest studies to quantify wood 

volume with TLS voxels, utilized cylinders fitted to voxelized TLS data to estimate the 

volume of the main stem and large branches of individual trees in leaf-on condition.  The 

authors used cubic voxels ranging in size from less than 3.1 cm to 20 cm, based on 

limitations of available computer memory with respect to the number of points present in 

the original TLS point clouds.  As the authors did not model fine branches or compare 

their results to reference volume measurements, an accuracy assessment of their 

methodology is unavailable.  Moskal and Zheng (2011) scanned individual trees, in leaf-

on condition, from a single location with TLS and used voxels to estimate total 

aboveground volume by multiplying the total number of points in the original TLS point 

cloud by the volume of an individual voxel and adding a “volume adjustment” factor, 

derived from an estimate of the main stem’s volume via the tree’s DBH and height as 

measured in the TLS point cloud.  The authors found their methodology to account for 

an average of 18% of an individual tree’s volume and attributed the low accuracy to 

occlusion effects caused by the use of a single scan position during data collection, 
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suggesting that multiple scan positions or alternative processing methods designed to 

compensate for point cloud occlusion may be necessary to increase the accuracy of 

volume estimates in future studies.   

Vonderach et al. (2012) used TLS to scan nine deciduous trees in leaf-off 

conditions and reconstruct the trees with 1 cm voxels to estimate the total volume of 

each tree.  Each tree was scanned from three to five positions and filtering was 

conducted to remove spatially isolated voxels from the initial model.  To fill interior 

sections of the stem and branches, horizontal layers of one voxel-thickness were 

processed by traversing each layer in four orthogonal directions, with respect to each 

voxel in the layer.  Voxels which were counted four times during this process were 

considered to be interior voxels and thus added to the tree’s voxel model.  This interior 

filling process sometimes resulted in erroneously filled voxels, appearing between 

branch segments, which were then removed with a region growing algorithm 

implemented to segment individual branches from inadvertently filled voxels.  The 

volume of each layer was calculated by averaging the area of the branches with and 

without the original surface voxels and multiplying this resultant area by the voxel 

height to determine the volume of that particular layer.  The volume of each layer was 

then summed and a filtering process was carried out to remove sparsely populated voxels 

(i.e., voxels containing a small number of points) from the final model.  The authors 

felled and weighed the nine trees, taking samples at a range of heights to arrive at a total 

reference volume; resulting in accuracies ranging from -5.1% to +14.3% for their final 

volume estimates.   
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 Hosoi et al. (2013) used TLS to scan a Japanese zelkova (Zelkova serrata) tree in 

leaf-off conditions from six positions and performed a complete tree reconstruction 

using 0.5 cm voxels to estimate the tree’s total volume.  The authors presented an 

automated algorithm which converts the point cloud to voxels and processes horizontal 

layers of one voxel-thickness to create the model.  Large branches and stem sections 

were first distinguished from small branches, under the premise that small branches 

would not require the contour and filling processing necessitated by the larger branches 

and stem.  In each horizontal layer, an implementation of Moore’s neighbor-tracing 

algorithm was used to segment voxels into discrete branches which were then processed 

with linear interpolation to form a closed contour model of each branch segment.  The 

segments were then filled (i.e., voxels in the interior of the stem/branch were added to 

the model) by scanning the segment in the positive X and Y directions, such that voxels 

which were intersected twice during the scanning were considered to be interior voxels.  

Once each horizontal layer had been processed, the stem and large branches which had 

been filled were merged with the small branches, which were not filled, to form a 

completed reconstruction of the tree.  The Hosoi et al. (2013) algorithm estimated small 

branch (diameter ≤ 1 cm) accuracy with a mean average percentage error (MAPE) of 

34% and large branch and stem volume with a MAPE of 6.8%, determined by averaging 

the percentage errors of volume estimates, compared to direct volume measurements 

taken with clay molds of the target tree, among 0.3 meter height intervals along the main 

stem and a portion of the tree’s large and small branches.   
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Bienert et al. (2014) scanned 13 young Norway maple (Acer platanoides) trees, 

in leaf-off conditions, from four positions each using TLS to estimate the total wood 

volume of each tree.  The authors used an algorithm similar to that presented in Hosoi et 

al. (2013), but used axis-parallel bounding boxes, based on point distribution within 

voxels, to characterize the contour of large branch and stem sections to avoid volume 

overestimates.  The authors felled the thirteen trees and measured their volume by 

cutting the trees into small segments and weighing the amount of water displaced by 

each individual tree, which is considered to be the most accurate method of measuring a 

tree’s volume; resulting in an absolute error of 6.8% and an RMSE of 18.5% when 

comparing the summed reference volume to the estimated volume of the entire dataset of 

13 trees.  Small and fine branches, when considered separately from the trunk of each 

tree, were estimated with percentage errors ranging from -80.2% - 70.1%. 

Despite the increasing interest in, and successful examples of, reconstructive tree 

modelling, the use of TLS to perform change detection analysis on individual trees, and 

structural loss in particular, has not been thoroughly tested in the literature.  Kaasalainen 

et al. (2010) used TLS to quantify the defoliation of Scots pine (Pinus sylvestris) and 

Norway spruce (Picea abies) trees scanned in a laboratory environment.  Three point 

cloud parameters were derived, for each tree, to estimate measured biomass changes 

after needles had been manually removed from the trees: (1) the total number of point 

cloud returns; (2) the ratio of tree returns to total returns; and (3) the number of ground 

returns.  These parameters were used as predictors for biomass loss in linear regression 

models, resulting in Pearson correlation coefficients ranging from 0.929 to 0.977.  A 
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similar methodology was carried out in a field setting, but visual assessments were used 

as reference data and quantified linear relationships were not reported.  While this study 

shows the potential of TLS to quantify biomass changes, it is unclear how well this 

particular methodology would work under a variety of field conditions with varying tree 

species and significant reductions in tree biomass, such as branch drops or stem 

breakage.   

Srinivasan et al. (2014) used single-position scans with a TLS to estimate the 

biomass change of 29 loblolly pine (Pinus taeda) trees in a forested environment.  The 

authors used linear regression techniques to model biomass change at the individual tree 

level in comparison to reference biomass changes estimated with allometric equations 

over a three year period.  Out of several different approaches, the most accurate estimate 

of biomass change was based on the direct changes in two point cloud parameters 

between observations, volume beneath top of canopy and 90th percentile height, 

resulting in an R-squared of 0.50 and an RMSE of 10.09 kg.  Kaasalainen et al. (2014) 

applied the quantitative structure modelling (QSM) methodology to detecting biomass 

changes in laboratory and field environments, with an accuracy of 12% in estimating the 

volume of a small branch following the manual removal of branch sections and an 

unknown accuracy in the field with regards to a estimating the volume of a single live 

tree over time, which was estimated to be approximately +/- 10%.  These estimates were 

the mean results of 10 modelling runs, which typically exhibited a standard deviation of 

5 – 15 % for estimated branch volume due to the stochastic nature of the algorithm.  The 
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accuracy of this study suggests that reconstructive tree modeling has the potential to 

reliably quantify biomass or volume loss in forest environments. 

As current SDT volume, and thus carbon, estimates are derived primarily from 

field-based inventory measurements input into allometric equations which only account 

for a SDT’s main stem volume, the development of accurate TLS-based volume 

estimates, which do not rely on field measurements or allometric equations and 

characterize the entire SDT, may potentially provide a more accurate and direct means 

of estimating individual SDT volume and carbon in forest ecosystems.  By avoiding the 

generalizations of allometric equations and regression modelling, the proposed 

methodology facilitates non-destructive, detailed volume estimations of individual trees 

as well as the potential to evaluate and refine existing allometric equations or the 

development of new allometric equations without the constraints of laborious destructive 

sampling typically required for field measurements.  This study presents a novel voxel-

based SDT volume estimation technique which is designed to be robust with respect to 

mitigating the common error sources encountered in point clouds collected in dense 

forest systems.  The volume estimation methodologies proposed in this study have the 

potential to be applied to a variety of tree species and field conditions, making them 

well-suited to filling current information gaps.  Such volume estimation methodologies 

could serve as useful components to a variety of programs such as the U. S. 

Environmental Protection Agency (EPA) National Greenhouse Gas Inventory (NGHGI), 

FIA national inventory, and similar programs around the world when combined with 

regional sampling of SDTs.  Additionally, these methodologies could be useful to a 
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variety of research interests such as regional carbon flux studies, tree morphology, tree 

structural loss and decay dynamics, nutrient cycling, species composition dynamics, 

wildlife habitat, and fuel loading with respect to wildland fires. 

The change detection methodology described in this study presents a novel, 

voxel-based TLS approach to addressing the current knowledge gaps concerning the 

structural loss of standing dead trees by developing automated methods to detect, 

quantify, and characterize volumetric losses over time using solid, voxel-based 

reconstructed tree models.  To the best of the author’s knowledge, this study represents 

the first attempt to characterize the fragmentation of SDTs in a forest environment with 

the use of multitemporal TLS observations at the individual-tree level.  The presented 

approach may be applied to future studies and has the potential to be applied to a variety 

of tree species in different forest systems.  In the future, this technique, or similar 

approaches, may be used to provide quantitative structural loss data which could 

facilitate the development of SLAs for a variety of species in various regions to increase 

the accuracy of regional volume and carbon accounting with respect to SDTs.   
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2. AUTOMATED ESTIMATION OF STANDING DEAD TREE VOLUME USING 

VOXELIZED TERRESTRIAL LIDAR DATA 

2.1 Introduction 

Standing dead trees (SDTs) are an integral component of forest ecosystems and 

impact a variety of processes of interest to forest managers and researchers, such as 

forest carbon stores, carbon cycling dynamics as aboveground woody debris transitions 

to atmospheric and soil C pools, nutrient cycling, species composition dynamics, fuel 

loading with respect to wildland fires, wildlife habitat, and structural diversity of forest 

stands (Russell et al., 2015).  Generally, nondestructive individual tree volume estimates 

are derived via measurement of tree parameters (e.g., diameter at breast height (DBH) 

and tree height) which are then used as predictors in empirically-derived, species-

specific allometric equations (Brown et al., 1989).   

Current SDT aboveground volume estimates employed by the United States 

Forest Service (USFS) Forest Inventory and Analysis (FIA) program characterize only 

the volume, and thus carbon, of a tree’s main stem in the case of timber species (i.e., 

from a one foot stump to a top diameter of four inches or the point where all limbs are 

smaller than a 4” diameter) or the stem, bark, and large branches in the case of woodland 

species (Woudenberg et al., 2010).  These estimates are not derived from direct volume 

measurements, but from standard FIA field measurements which are input to the same 

allometric equations used on live trees to arrive at an aboveground volume estimate 

(Domke et al., 2011).  Due to their focus on the tree’s bole, these estimates neglect to 

characterize the volume of a SDT’s entire stem and branches, especially when stem 
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breakage and branch drop cannot be accurately accounted for.  Recent studies have 

proposed methodologies which incorporate structural loss adjustments (SLAs) and 

density reduction factors (DRFs) to account for the inherent morphological differences 

of SDTs vs. their live counterparts (Domke et al., 2011).  These adaptations have 

resulted in more accurate estimates of SDT volume and carbon, yet are still based on 

allometric equations and qualitative decay class assignments, which may limit their 

overall accuracy in comparison to quantitative remote sensing-based methodologies.  

Currently, these SLAs and DRFs have yet to be developed and evaluated for a wide 

range of species and regions, leaving more generalized estimates as the pragmatic 

approach in most situations.      

Light detection and ranging (lidar) is an active remote sensing system which 

utilizes laser pulses to precisely measure the distance from the lidar sensor to an object 

by measuring the elapsed time between the transmission and return, at the sensor’s 

receiver, of a laser pulse which has been reflected off an object (Lefsky et al., 2002).  

The elapsed time measurement may be multiplied by the speed of light through air to 

obtain the total distance travelled by the laser pulse and subsequently divided by two to 

determine the distance from the lidar sensor to the object which reflected the pulse (Shan 

and Toth, 2008).  Lidar sensors are broadly categorized into two groups with respect to 

how the sensor records returned signals: discrete return systems identify significant 

amplitude peaks in the returned pulse which correspond to the energy reflected by 

physical objects and are thus recorded as individual points; while full waveform systems 

characterize the entire duration of the laser pulse by recording the amplitude of the 
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received pulse as it varies with time, thus digitizing and recording the entire reflected 

waveform (Lefsky et al., 2002).   

Modern lidar sensors are typically of the “scanning” variety, meaning they utilize 

rotating or oscillating mirrors, fiber optics, or rotating sensor heads to collect data in the 

across-track direction and may emit thousands of laser pulses per second, resulting in 

dense data sets which provide a detailed, three-dimensional characterization of an area 

(Wehr and Lohr, 1999).  Lidar sensors are deployed on an assortment of platforms to 

meet a variety of research objectives at a broad range of spatial and temporal scales, 

each with unique acquisition challenges.  Common lidar platforms include spaceborne 

(e.g., satellites), airborne (e.g., manned aircraft, unmanned aerial vehicles), terrestrial 

(e.g., mounted on a stationary tripod), and mobile platforms (e.g., handheld sensors, 

ground-based vehicles) (Van Leeuwen and Nieuwenhuis, 2010). 

In the context of forestry studies, airborne laser scanning (ALS) has been used to 

estimate biomass or volume (Anderson et al., 2008; Drake et al., 2002; Hudak et al., 

2012; Lefsky et al., 2005; Popescu et al., 2003; Sheridan et al., 2014) as has spaceborne 

lidar (Guo et al., 2010; Lefsky et al., 2005; Simard et al., 2011), but spaceborne systems 

are better-suited for regional or global estimates, respectively, and lack the precision 

required to reliably provide accurate individual tree estimates and change detection 

capabilities.  While ALS can effectively characterize a forest canopy and has been used 

to observe individual trees (Hyyppä et al., 2001; Popescu, 2007),  terrestrial laser 

scanning (TLS) has the potential to provide significantly more detailed observations at 

the individual tree level.  Collecting data from a terrestrial vantage point, TLS has 
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several advantages over ALS when considering objectives at the individual tree level: 

(1) the ability to characterize intermediate, suppressed, and understory trees which 

would often be subjected to significant occlusion from dominant and codominant trees 

with ALS; (2) the ability to more-completely capture the complex morphological 

characteristics of the entire tree (e.g., fine branches, stem sections) which would not be 

apparent from the aerial perspective of ALS; (3) higher point density and reduced point 

spacing in comparison to ALS; and (4) collection procedures which are more conducive 

to repeated observations at desired temporal intervals.  The general limitations of TLS in 

forest systems include: (1) occlusion (i.e., shadowing) caused by nearby vegetation or 

branches on the tree of interest; (2) fewer dedicated software packages and established 

methodologies for analyzing TLS data, particularly at the individual tree level; (3) 

potentially time-consuming data collection procedures; and (4) noise points caused by 

tree movement due to wind during scanning operations.   

 TLS has been used to estimate tree volume at both the plot level and individual 

tree level.  Aboveground biomass is commonly estimated as well, which is closely 

related to carbon content in that 50% of a tree’s biomass is commonly attributed to 

carbon (Penman et al., 2003), as is aboveground volume with the use of species-specific 

wood density estimates.  One approach to estimating tree volume or biomass with TLS 

consists of scanning trees at the plot or individual tree level, extracting metrics (e.g., 

height percentiles, point densities, skewness) or measurements (e.g., DBH, tree height, 

crown area) from the resultant point clouds which serve as a proxy for traditional field 

measurements, and subsequently using these measurements as inputs to allometric 
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equations (or regression models based on allometric equations) to estimate volume or 

biomass (Hopkinson et al., 2004; Ku et al., 2012; Tansey et al., 2009; Yao et al., 2011).  

While these studies have shown that TLS-derived metrics and tree measurements can 

work reliably with allometric equations, the reliance on allometric equations for volume 

estimates, biomass estimates, or accuracy assessments neglects to characterize the 

variation present in trees with the same morphological parameters (e.g., DBH or height), 

particularly with respect to SDTs (Hosoi et al., 2013). 

TLS-derived volume estimates through 3D reconstruction of individual trees 

provide a nondestructive methodology which functions without the need for allometric 

equations, structural loss adjustments, or detailed field measurements.  Individual tree 

3D reconstructions, with the objective of estimating a tree’s total volume, may be 

broadly categorized into two, sometimes used in tandem, approaches: (1) fitting 

geometric primitives (e.g., cylinders, cones) to tree components; and (2) converting point 

clouds to voxels and creating voxel-based tree models.  Côté et al. (2009) created 

approximated individual tree reconstructions of live trees, including foliage, by utilizing 

geometric primitives derived from tree skeletons and estimated convex hull volume with 

a mean root mean square error (RMSE) of 14.83%.  Delagrange and Rochon (2011) 

estimated the crown volume of a single hybrid poplar sapling using tree skeletons and 

fitted cylinders, resulting in a volume estimate deviation of 14.5% from a reference 

volume estimated by treating each point in their point cloud as a 1 cm3 voxel and 

summing their aggregate volumes.  The use of the point cloud data, which was used to 
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generate the tree model, to estimate a reference volume leads to uncertainty with regards 

to the validity of the accuracy assessment.   

Dassot et al. (2012) in a semi-automated procedure, used tree skeletons and fitted 

cylinders to estimate solid wood (i.e., branches or stems greater than 7 cm in diameter) 

volume for a variety of tree species, in leaf-off conditions, at the individual-tree level.  

The authors estimated solid wood volume of main stems within ~10% and total branch 

volume within ~30% for the majority of trees used in the study.  It should be noted that, 

in contrast to the two aforementioned studies, the authors used destructive sampling (i.e., 

felled the individual trees and used diameter measurements and taper equations to 

estimate the volume of stem and branch sections), resulting in a presumably more 

reliable accuracy assessment.  Kaasalainen et al. (2014) used a methodology referred to 

as quantitative structure modeling (QSM) (Raumonen et al., 2013) which utilizes fitted 

circular cylinders applied to a point cloud in accordance with the morphological rules of 

tree structure (e.g., smaller branches attaching to larger branches, which are attached to 

the stem) to estimate the total volume of a large aspen branch, approximately 2 m in 

length, with multiple sub-branches.  Using the QSM methodology, the authors estimated 

the branch’s volume within approximately 12% of reference volumes which were 

calculated by weighing branch sections and calculating their density via water 

displacement. 

Hackenberg et al. (2014) utilized a sphere-cutting routine to extract point clouds 

corresponding to cross sectional areas of stems and branches, which were fitted with 

cylinders and then refined to produce a final model consisting of many connected 



 

21 

 

cylinders.  This method was assessed to have coverage values (i.e., the percentage of 

points within 3 cm of a cylinder in the final model) of approximately 99% when applied 

to two high quality point clouds and 84.45% when applied to 26 lower quality point 

clouds, all of which were scanned in an agroforestry system.  Testing volume estimation 

accuracy on 14 branches, each consisting of multiple small and fine branches, the 

method had an RMSE of approximately 0.123 L. 

 Lefsky and McHale (2008), in one of the earliest studies to quantify wood 

volume with TLS voxels, utilized cylinders fitted to voxelized TLS data to estimate the 

volume of the main stem and large branches of individual trees in leaf-on condition.  The 

authors used cubic voxels ranging in size from less than 3.1 cm to 20 cm, based on 

limitations of available computer memory with respect to the number of points present in 

the original TLS point clouds.  As the authors did not model fine branches or compare 

their results to reference volume measurements, an accuracy assessment of their 

methodology is unavailable.  Moskal and Zheng (2011) scanned individual trees, in leaf-

on condition, from a single location with TLS and used voxels to estimate total 

aboveground volume by multiplying the total number of points in the original TLS point 

cloud by the volume of an individual voxel and adding a “volume adjustment” factor, 

derived from an estimate of the main stem’s volume via the tree’s DBH and height as 

measured in the TLS point cloud.  The authors found their methodology to account for 

an average of 18% of an individual tree’s volume and attributed the low accuracy to 

occlusion effects caused by the use of a single scan position during data collection, 

suggesting that multiple scan positions or alternative processing methods designed to 
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compensate for point cloud occlusion may be necessary to increase the accuracy of 

volume estimates in future studies.   

Vonderach et al. (2012) used TLS to scan nine deciduous trees in leaf-off 

conditions and reconstruct the trees with 1 cm voxels to estimate the total volume of 

each tree.  Each tree was scanned from three to five positions and filtering was 

conducted to remove spatially isolated voxels from the initial model.  To fill interior 

sections of the stem and branches, horizontal layers of one voxel-thickness were 

processed by traversing each layer in four orthogonal directions, with respect to each 

voxel in the layer.  Voxels which were counted four times during this process were 

considered to be interior voxels and thus added to the tree’s voxel model.  This interior 

filling process sometimes resulted in erroneously filled voxels, appearing between 

branch segments, which were then removed with a region growing algorithm 

implemented to segment individual branches from inadvertently filled voxels.  The 

volume of each layer was calculated by averaging the area of the branches with and 

without the original surface voxels and multiplying this resultant area by the voxel 

height to determine the volume of that particular layer.  The volume of each layer was 

then summed and a filtering process was carried out to remove sparsely populated voxels 

(i.e., voxels containing a small number of points) from the final model.  The authors 

felled and weighed the nine trees, taking samples at a range of heights to arrive at a total 

reference volume; resulting in accuracies ranging from -5.1% to +14.3% for their final 

volume estimates.   
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 Hosoi et al. (2013) used TLS to scan a Japanese zelkova (Zelkova serrata) tree in 

leaf-off conditions from six positions and performed a complete tree reconstruction 

using 0.5 cm voxels to estimate the tree’s total volume.  The authors presented an 

automated algorithm which converts the point cloud to voxels and processes horizontal 

layers of one voxel-thickness to create the model.  Large branches and stem sections 

were first distinguished from small branches, under the premise that small branches 

would not require the contour and filling processing necessitated by the larger branches 

and stem.  In each horizontal layer, an implementation of Moore’s neighbor-tracing 

algorithm was used to segment voxels into discrete branches which were then processed 

with linear interpolation to form a closed contour model of each branch segment.  The 

segments were then filled (i.e., voxels in the interior of the stem/branch were added to 

the model) by scanning the segment in the positive X and Y directions, such that voxels 

which were intersected twice during the scanning were considered to be interior voxels.  

Once each horizontal layer had been processed, the stem and large branches which had 

been filled were merged with the small branches, which were not filled, to form a 

completed reconstruction of the tree.  The Hosoi et al. (2013) algorithm estimated small 

branch (diameter ≤ 1 cm) accuracy with a mean average percentage error (MAPE) of 

34% and large branch and stem volume with a MAPE of 6.8%, determined by averaging 

the percentage errors of volume estimates, compared to direct volume measurements 

taken with clay molds of the target tree, among 0.3 meter height intervals along the main 

stem and a portion of the tree’s large and small branches.   
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Bienert et al. (2014) scanned 13 young Norway maple (Acer platanoides) trees, 

in leaf-off conditions, from four positions each using TLS to estimate the total wood 

volume of each tree.  The authors used an algorithm similar to that presented in Hosoi et 

al. (2013), but used axis-parallel bounding boxes, based on point distribution within 

voxels, to characterize the contour of large branch and stem sections to avoid volume 

overestimates.  The authors felled the thirteen trees and measured their volume by 

cutting the trees into small segments and weighing the amount of water displaced by 

each individual tree, which is considered to be the most accurate method of measuring a 

tree’s volume; resulting in an absolute error of 6.8% and an RMSE of 18.5% when 

comparing the summed reference volume to the estimated volume of the entire dataset of 

13 trees.  Small and fine branches, when considered separately from the trunk of each 

tree, were estimated with percentage errors ranging from -80.2% - 70.1%. 

As current SDT volume, and thus carbon, estimates are derived primarily from 

field-based inventory measurements input into allometric equations which only account 

for a SDT’s main stem volume, the development of accurate TLS-based volume 

estimates, which do not rely on field measurements or allometric equations and 

characterize the entire SDT, may potentially provide a more accurate and direct means 

of estimating individual SDT volume and carbon in forest ecosystems.  By avoiding the 

generalizations of allometric equations and regression modelling, the proposed 

methodology facilitates non-destructive, detailed volume estimations of individual trees 

as well as the potential to evaluate and refine existing allometric equations or the 

development of new allometric equations without the constraints of laborious destructive 
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sampling typically required for field measurements.  This study presents a novel voxel-

based SDT volume estimation technique which is designed to be robust with respect to 

mitigating the common error sources encountered in point clouds collected in dense 

forest systems.  The methodologies proposed in this study have the potential to be 

applied to a variety of tree species and field conditions, making them well-suited to 

filling current information gaps.  Such volume estimation methodologies could serve as 

useful components to a variety of programs such as the U. S. Environmental Protection 

Agency (EPA) National Greenhouse Gas Inventory (NGHGI), FIA national inventory, 

and similar programs around the world when combined with regional sampling of SDTs.  

Additionally, these methodologies could be useful to a variety of research interests such 

as regional carbon flux studies, tree morphology, tree structural loss and decay 

dynamics, nutrient cycling, species composition dynamics, wildlife habitat, and fuel 

loading with respect to wildland fires. 

The overall objective of this study is the development of a methodology to accurately 

estimate the volume of standing dead trees using terrestrial lidar data.  The specific 

objectives are: 

1) The development of an automated, voxel-based volume estimation algorithm to 

accurately estimate the volume of SDTs when scanned with a TLS in dense 

forest conditions. 

2) The implementation of novel, adaptive processing techniques and user-selectable 

algorithm parameters designed to mitigate modelling errors caused by imperfect 

point clouds. 
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2.2 Methods 

2.2.1 Study Area 

The study area consisted of three separate sites, each containing one scan 

location, all located in southeastern Texas (Figure 1).  Site 1 was in Lick Creek Park, 

located in College Station, Texas, and is within a dense, upland post oak woodland 

environment.  Site 2 was in a mixed pine-hardwood forest in the Sam Houston National 

Forest, located near Huntsville, Texas.  Site 3 was located in Research Park, in College 

Station, Texas and consisted of manicured grasses and mostly-isolated oak trees. 

2.2.2 Data 

 Each site was scanned with a TLS to obtain point clouds of standing dead trees 

for the purposes of algorithm development and testing.  Each scan site was focused on a 

single standing dead tree, resulting in three SDTs being used for algorithm development; 

a post oak (Quercus stellata) from site 1, loblolly pine (Pinus taeda) from site 2, and 

post oak from site 3.  Sites 1 and 2 were scanned with a Leica ScanStation 2 and site 3 

was scanned with a FARO Focus3D X 330.  The FARO TLS was acquired during the 

course of the study and, as an example of a newer generation of TLS, enabled scans to 

be conducted at a higher resolution from additional scanning positions while reducing 

the total amount of time spent conducting scanning operations.  
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Figure 1: Study sites in southeastern Texas.  

 

 

2.2.2.1 Leica TLS 

The Leica ScanStation 2 is a high density, discrete return, 3D TLS utilizing a 

green laser, at a wavelength of 532 nm, with a 50 kHz scan rate (Figure 2).  The 

ScanStation 2 has a single scanning mirror and a direct-drive rotating turret, enabling a 

vertical and horizontal field of view of 270° and 360°, respectively, a laser spot size of 

approximately 4 mm within a 50 m range, and a mean position and distance accuracy of 

±6 mm and ±4mm, respectively (Leica Geosystems, 2006).  The scanner was mounted 
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on an aluminum tripod and precision-levelled with Cyclone 9.0 (Leica Geosystems, 

2012), the software package ran in the field on a laptop computer to operate the 

ScanStation 2, ensuring accurate recorded measurements regardless of the scan 

location’s topography and relative orientation of the TLS. 

 

 

 

Figure 2: Leica ScanStation 2 terrestrial laser scanner and flat scanning target at 

site 1. 

 

 

The post oak SDT at site 1 (from here on referred to as SDT1) was scanned from 

four positions, located at approximately 90o intervals with respect to the center of the 

tree with a vertical and horizontal resolution of 3 cm, at a range of 50 m, and scanned 

from an average distance of approximately 3 m.  The loblolly pine SDT at site 2 (from 

here on referred to as SDT2)  was scanned from two positions, located at approximately 

180o intervals with respect to the center of the tree with a horizontal and vertical 



 

29 

 

resolution of 10 cm, at a range of 50 m, with an average scanner distance of 

approximately 7 m.  Exact scanner placement was determined in an attempt to maximize 

coverage of the target trees and minimize occlusion due to understory vegetation.  Two 

Leica High Definition Survey targets, with their locations measured using a Trimble 

GeoExplorer 6000 handheld GNSS unit with a Trimble Zephyr Model 2 antenna 

(Trimble, 2010), were used to coregister and georeference SDT1 and SDT2 with 

differentially corrected target positions. 

2.2.2.2 FARO TLS 

 The FARO Focus3D X 330 is a high density, phase-based, 3D TLS utilizing a 

near-infrared laser, at a wavelength of 1550 nm, with a maximum scan rate of 976 kHz 

(Figure 3).  The Focus3D X 330 has a single scanning mirror and rotating turret, enabling 

a vertical and horizontal field of view of 300o and 360o, respectively, and a beam 

diameter, at exit, of 2.25 mm, with a mean distance accuracy of ±2 mm (FARO, 2013).  

The scanner was mounted on a carbon fiber tripod and levelled using the Focus3D X 

330’s onboard inclinometer. 

The post oak SDT at site 3 (from here on referred to as SDT3) was scanned from 

four positions, located at approximately 90o intervals with respect to the center of the 

tree with a scan resolution of 3.068 mm (i.e., ½ resolution as defined by FARO system 

settings), at a range of 10 m, with an average scanner distance of approximately 3 m and 

a quality setting of 2X.  SDT3 was spatially isolated in an area consisting primarily of 

manicured grass, resulting in minimal occlusion. 



 

30 

 

    

Figure 3: FARO Focus
3D

 X 330 terrestrial laser scanner and spherical scanning 

targets at site 3. 

 

 

Five spherical laser scanning targets, with the location of each target being 

measured with a Trimble GeoExplorer 6000 handheld GNSS unit with a Trimble Zephyr 

Model 2 antenna, were utilized to coregister and georeference SDT3 with differentially 

corrected target locations using the FARO SCENE 5.5 software package (FARO, 2015).  

2.2.2.3 Terrestrial Lidar Preprocessing 

The georeferenced point clouds were processed with Quick Terrain Modeler 

(Applied Imagery, 2009) to manually extract the three individual SDTs (Figure 4) from 

each site’s point cloud, such that all returns caused by the ground surface or nearby 

vegetation were removed.  Intensity values were normalized as 8 bit integers (i.e., 
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ranging from 0 – 255), thus providing a uniform range of intensity values between the 

two scanners and varying scan conditions. 

 

 

 

Figure 4: Individual SDT point clouds used for algorithm development and testing. 

a) SDT1; b) SDT2; c) SDT3. 

  

 

The three point clouds used for algorithm development varied in their relative 

quality with respect to reconstructing solid tree models. The relative quality of each 

point cloud, in terms of point density and the extent of occlusion effects, was 

characterized by visual assessment as well as the descriptive statistics: total number of 

points, point density (i.e., the average number of points per square meter), and mean 

nearest neighbor distance (i.e., the average Euclidean distance to each point’s nearest 
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neighbor in 3D space) (Table 1).  While the number of points and point density provide 

an approximate sense of point cloud quality, they are also strongly influenced by the 

height and structural complexity of each particular tree, where the mean nearest neighbor 

distance metric provides a more objective relative quality assessment by only 

considering the spacing between individual points.  SDT3, with the lowest mean nearest 

neighbor distance and highest point density, was assessed as a high quality point cloud, 

while SDT1 and SDT2 were considered to be medium and low quality, respectively. 

 

 

Table 1: Tree measurements, descriptive statistics, and quality assessment of the 

three point clouds used for algorithm development. 

 

 

2.2.2.4 Accuracy Assessment 

The algorithm’s accuracy was evaluated using two point cloud datasets, one 

consisting of stem and large branch samples and the other consisting of small and fine 

branch samples, and comparing the voxel-based volume estimates of each sample to a 

ID Scanner Species 
Height 

(m) 

DBH 

(cm) 

Number 

of Points 

Point 

Densitya 

Mean NN 

Distanceb 

(cm) 

Relative 

Quality 

SDT1 Leica 
Quercus 

stellata 
11.4 37.53 975,681 97,437.70 0.2912911 Medium 

SDT2 Leica 
Pinus 

taeda 
14.45 21.9 37,464 71,958.55 0.7558868 Low 

SDT3 FARO 
Quercus 

stellata 
11.59 35.45 8,483,915 501,220.12 0.1542635 High 

a Number of points per m2 

b Average Euclidean distance to nearest neighbor 
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reference measurement.  The stem and large branch accuracy assessment dataset was 

collected by scanning a post oak SDT with the FARO Focus3D X 330, felling and 

extracting 13 cross sectional stem and large branch samples from the felled tree.  The 

volume of each sample was determined with a xylometric approach by measuring the 

increase in water displacement observed when submerging each sample in a circular 

water container.  The extracted samples ranged in diameter from approximately 11 – 38 

cm.  Prior to scanning, paint was used to designate samples on the SDT, facilitating 

accurate extraction of the samples in both the point cloud and from the felled tree.  The 

SDT was scanned from four positions with a resolution setting of ½, a quality setting of 

2X and imagery was collected with the scanner’s integrated color camera in order to 

identify and extract the samples from the final voxel models using the colorized point 

cloud as a guide. 

To assess the algorithm’s accuracy with regards to small and fine branches, a 

reference dataset created and made publicly available by Hackenberg (2015) was 

utilized.  This dataset consists of 15 TLS point clouds of leaf-off branches, from the 

species Prunus avium, Acer pseudoplatanus, Quercus robur, and Fraxinus excelsior, 

which were collected and scanned indoors from four positions each.  Each point cloud is 

considered to be of overall high quality and density, but the effects of occlusion and 

reduced point density, particularly among fine branches, are still present.  The branches 

range from 2 – 3 m in length and consist of small and fine branches, with diameters 

ranging from approximately 2 mm to 5 cm.  The volume of each branch was estimated 

by performing two perpendicular caliper measurements at 5 cm intervals along the 
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branch, averaging the four diameter measurements, using the average diameter for each 

5 cm segment to calculate the volume of a cylinder representing the segment, and 

summing the estimated volume of each segment. 

2.2.3 Voxel Concept 

 A voxel (i.e., “volumetric element”) is analogous to a 3D pixel and represents a 

particular element of a 3D space that has been divided into a grid of identically-sized and 

equally-spaced cubes (Figure 5).  While a lidar point cloud consists of dimensionless 

points which are arranged unevenly throughout the 3D space, voxels have the defined, 

morphometric properties of cubes and form a uniform grid of elements, making the 

voxel model conducive to systematic modelling and raster-like processing techniques.  A 

voxel model is also capable of characterizing complex objects consisting of overhanging 

components, large amounts of negative space, and components with a variety of sizes, 

shapes, and orientations.  The voxel models used in this work are stored in the sparse 

format, such that only voxels containing points are included in the voxel model and 

arrays of X, Y, and Z centroid coordinates are used as the fundamental distinction 

between each particular voxel; in contrast to a dense voxel format in which both empty 

and filled voxels are stored and referenced by their relative positions in each respective 

equally-sized, horizontal voxel slice.  In the sparse voxel format each individual voxel 

contains at least one point, but may contain many points within its extent. 
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Figure 5: A 3D space represented as uniform cubic voxels. 

 

 

2.2.4 Volume Estimation Algorithm Overview 

 An overview of the volume estimation algorithm’s major steps is presented in 

Figure 6; dashed lines indicate optional procedures which may be performed based on 

the characteristics and quality of a particular SDT point cloud.  The volume estimation 

algorithm is conceptually similar to one presented by Hosoi et al. (2013) and utilizes 

voxel-based processing to reconstruct a solid voxel model of a SDT, but provides several 

novel methods (i.e., adaptive contour interpolation, incremental ellipse segmentation, 

and vertical point cloud resampling) designed to reduce the effects of common point 

cloud imperfections on modelling accuracy.  The algorithm operates on slices (i.e., 

horizontal cross sections of one-voxel thickness) such that the voxels in a slice are first 

segmented into distinct stem and branch segments.  As lidar can only characterize the 

exterior surface of an object, interior voxels and exterior voxels absent from the model 
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due to occlusion and point density limitations must be identified and filled to perform an 

accurate reconstruction.   

An ellipse is fitted to each segment within a slice and the spatial characteristics 

of the segment are evaluated in comparison to the ellipse to determine if the segment 

sufficiently portrays the expected true shape of the branch.  Segments which have voxels 

well-distributed around the perimeter of the best-fit ellipse are considered to be accurate 

representations of the true branch shape and will have their contour defined with linear 

interpolation, while segments whose voxels only cover a small portion of the ellipse 

perimeter are considered to be heavily occluded and the best-fit ellipse is then used to 

define their contour.  Each segment in the slice is then filled by inserting the voxels 

which are inside its defined contour.  This process is repeated for each slice in the voxel 

model and the SDT’s final volume is estimated by summing the volume of the 

reconstructed tree model’s (RTM) voxels.  The algorithm is written in R (R Core Team, 

2016) and utilizes the packages “data.table” (Dowle and Srinivasan, 2017), “spatstat” 

(Baddeley et al., 2015) and “conicfit” (Gama and Chernov, 2015).  The presented 

algorithm is planned to be released as an R package under the name “TreeVolX” at a 

later date. 
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Figure 6: Flowchart of major volume estimation algorithm steps. 
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2.2.5 Volume Estimation Algorithm Description 

2.2.5.1 Point Cloud Filtering 

 A common challenge when scanning vegetation with a phase-based TLS is the 

identification and removal of noise points, sometimes referred to as “ghost” points 

(Aschoff et al., 2004; Cifuentes et al., 2014; Litkey et al., 2008; Pueschel, 2013).  Noise 

points are thought of as erroneous points which do not accurately characterize the target 

object and are typically caused by the laser being reflected off multiple surfaces around 

object edges, as the instrument receives more than one return pulse and calculates an 

ambiguous distance measurement.  Thus, noise points were predominantly observed in 

the vicinity of bifurcated stem and branch sections as well as around fine branches.  It 

should be noted that while modern ALS systems are capable of properly detecting 

multiple returns, this technology has not yet been implemented in the majority of 

commercially available phase-based TLSs.  Noise points, if left unfiltered in the point 

cloud, can cause modelling errors and often result in an overestimation of SDT volume 

as distinct branches are erroneously clustered together due to the presence of noise in 

areas that are empty space in reality. 

 SDT3, being scanned with the phase-based FARO Focus3D X 330, contained a 

significant amount of noise points while SDT1 and SDT2, which were scanned with the 

discrete-return Leica ScanStation 2, contained few noise points and were not filtered as 

described below.  Noise points in the SDT3 point cloud were empirically observed to 

have two characteristics which generally distinguished them from valid returns: 1) lower 

point density and increased spatial isolation; and 2) lower intensity values.   
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The removal of noise points was achieved using a voxel-based method of 

identifying spatially isolated points (i.e., areas of relatively low point density) as well as 

an adaptable intensity filter which utilizes the k-means algorithm (MacQueen, 1967) to 

remove points with low intensity values (Figure 7).   

 

 

 

Figure 7: Flowchart of point cloud filtering procedure. Each voxel filter stage is 

executed iteratively with the filtering-voxel size decreasing in each iteration. 
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The voxel-based point count filtering iteratively voxelizes the point cloud and 

removes all of the points within a particular voxel if the total number of points within 

that voxel is less than a defined threshold value.  It should be noted that this 

methodology operates on the assumption that the point cloud is of very high density such 

that voxels characterizing valid returns typically contain many more points than those 

voxels resulting from noise points.  This procedure was repeated with an incrementally 

decreasing voxel size to remove the most likely noise points (i.e., those which are 

furthest from valid return points) first and progressively remove points which are less 

likely to be true noise points.   

The incremental point count filtering was first conducted with a threshold of one 

point at voxel resolutions of 10 cm, 5 cm, 4 cm, 3 cm, 2 cm, and 1 cm.  Next, the 

remaining points were clustered into three groups, based on their intensity values, using 

the k-means algorithm.  The cluster with the lowest mean intensity value was considered 

to consist of noise points and the entire cluster was removed from the point cloud.  

Finally, the voxel-based filtering was again applied to the remaining points with a 

threshold of two points at the same set of voxel resolutions used initially, resulting in a 

final filtered point cloud with a significant noise reduction (Figure 8). 
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Figure 8: a) Significant noise present around branch junctions and fine branches in 

SDT3 prior to filtering; b) the majority of noise points were removed by the 

filtering procedure. 

 

  

2.2.5.2 Voxelization 

The point clouds were each then voxelized into a sparse voxel format with the 

following equations (Hosoi and Omasa, 2006): 

�� 	� 	����	 
�� �	�
��10∆� � � 10∆� Equation (1) 
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where (��, ��, ��) are the coordinate arrays of each resultant voxel’s centroid, ����	 is 

a function rounding the value to one decimal place, (��, ��, ��) are the coordinate arrays 

of the SDT in point cloud format, (�
��, �
��, �
��) are the minimum values of 

(��, ��, ��) for the entire SDT, and ∆� is the length of one side of the resultant voxel in 

meters.  Since cubic voxels were used in this study, a ∆� value of 0.02, for example, 

would result in cubic voxels of dimensions 2 cm x 2 cm x 2 cm when utilizing a UTM 

coordinate system. 

 The voxel size used during modelling is a crucial consideration that will impact 

the accuracy of the final volume estimation.  A voxel size that is too large will result in 

an overestimation of volume and loss of modelling precision, while a voxel size that is 

too small will cause many horizontal slices of the voxel model to be so sparsely 

populated that it becomes difficult to apply any meaningful form of systematic 

processing.  In general, the smallest possible voxel size which results in meaningful 

slices is the ideal size to use for this methodology.   

The appropriate voxel size selection for a SDT is dependent on the point cloud’s 

density and coverage.  A voxel size of 5 mm was empirically determined to be 

appropriate for SDT1 and SDT3, but was too small for the lower relative quality point 

cloud of SDT2.  A stem and branch section of SDT3, as seen in Figure 9, illustrate the 

importance of selecting an appropriate voxel size when modelling a high quality point 

�� 	= 	����	 
�� −	�
��10∆� � × 10∆� Equation (2) 

�� 	= 	����	 
�� −	�
��10∆� � × 10∆� Equation (3) 
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cloud; the 5 mm voxels most-faithfully represent the SDT while the larger voxels 

increasingly result in a loss of precision and obvious overestimation of volume. 

 

  

 

Figure 9: Stem and branch cross section from SDT3 illustrating the effects of voxel 

size selection on modelling precision and volume estimation when processing a high 

quality point cloud. a) original point cloud; b) 5 mm voxels; c) 1 cm voxels; d) 2 cm 

voxels; e) 5 cm voxels; f) 10 cm voxels. 

 

 

In contrast, Figure 10 depicts the challenge of modelling lower quality point 

clouds with voxels; the 5 mm, 1 cm, and 2 cm voxels result in horizontal slices which 

are too sparse to properly process, while the 5 cm and larger voxels provide horizontal 
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slices which are populated densely enough to be properly processed at the expense of a 

loss of precision and general overestimation of volume. 

 

 

 

Figure 10: Stem and branch cross section from SDT2 illustrating the effects of 

voxel size selection on modelling precision and volume estimation when processing 

a low quality point cloud. The use of larger voxels may effectively allow a low 

quality point cloud to be processed, but results in an obvious volume 

overestimation. a) original point cloud; b) 5 mm voxels; c) 1 cm voxels; d) 2 cm 

voxels; e) 5 cm voxels; f) 10 cm voxels. 
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Vertical point cloud resampling is described in Section 2.2.5.3 and facilitated the 

use of a uniform 5 mm voxel size among the various quality point clouds, eliminating 

the inherent overestimation of volume which would have otherwise been caused by the 

use of larger voxels in compensation for the lower relative quality of SDT2. 

2.2.5.3 Vertical Point Cloud Resampling 

The concept of vertical point cloud resampling (VPCR) was developed to address 

the inherent volume overestimation which would have resulted from the use of larger 

voxels in compensation for low point cloud quality.  A low quality point cloud is first 

voxelized using large voxels (e.g., 5 cm) and the points contained within each 5 cm 

horizontal voxel slice are projected onto horizontal planar surfaces (i.e., “flattened”) and 

then voxelized at a resolution of 5 mm (Figure 11).  The VPCR process thus provides 5 

mm voxel slices with a sufficient number of voxels to facilitate further processing.  

While VPCR results in a generalization of a SDT’s morphology, it allows for greater 

modelling precision than the use of a larger voxel size.  The vertically-resampled 5 mm 

voxels are then processed in the same manner as 5 mm voxels from a high quality point 

cloud (i.e., sections 2.2.5.4 – 2.2.5.7) and once processing is complete, each vertically-

resampled slice is duplicated to fill the height interval of the larger voxel size (e.g., a 5 

mm vertically-resampled slice would be duplicated 10 times at height intervals of 5 mm 

to fill an original voxel size of 5 cm). 
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Figure 11: Illustration of the vertical point cloud resampling process as applied to 

SDT2; green – original 5 mm voxels, blue – resampled 5 mm voxels, yellow – 

duplicated resampled 5 mm voxels, white – 5 cm resampling voxels.  (a) and (c) 

show the resampled slices (blue) are populated densely enough to be processed 

further following vertical resampling.  (b) and (d) illustrate the theory of 

duplicating the resampled 5 mm voxel slices (yellow) rather than using larger 5 cm 

voxels (white) for modelling, avoiding a significant overestimation of volume. 

 

 

The choice of appropriate large voxel sizes to use for VPCR was determined 

empirically during the development and testing process with the general goal of 

selecting the smallest size which would result in adequately dense 5 mm voxel slices.  

SDT2 was vertically-resampled using 5 cm voxels to generate a 5 mm voxel model, 

while SDT1 and SDT3 were not processed with VPCR and were able to be processed at 

an original voxel resolution of 5 mm. 

2.2.5.4 Segmentation 

 Voxel slices were segmented to form distinct objects which represent individual 

branches or stems, based on the spatial characteristics of the voxels’ centroids.  Due to 

variations in voxel density and occlusion, both within a single SDT model and between 
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different SDT models, an iterative incremental ellipse segmentation approach which 

utilized proximity-based clustering in combination with least squares ellipse fitting was 

implemented to provide a general solution for a variety of situations, particularly 

medium to low relative quality point clouds. 

 Each voxel slice was first clustered with respect to the Euclidean distance 

between voxel centroids, such that all pairs of voxels whose centroids were closer than a 

specified distance threshold are assigned to the same segment.  Each segment was then 

fitted with an ellipse using a direct least squares ellipse fitting algorithm (Fitzgibbon et 

al., 1999) as available in the R package “conicfit” (Gama and Chernov, 2015) to provide 

an estimate of the segment’s true shape in the case of significant occlusion.  Erroneous 

segment ellipses, defined as any ellipse with a maximum voxel centroid-to-ellipse 

distance of greater than 6 cm or a semi-major or semi-minor axis that is greater than 3X 

or 2X, respectively, the largest range (i.e., either the X or Y range) of the segment, were 

omitted from the slice.  Each segment with a valid ellipse had 50 equally-spaced ellipse 

perimeter points temporarily added to the segment and was re-clustered with the same 

distance threshold used initially.  The temporary ellipse perimeter points were then 

removed and the ellipse-fitting, erroneous ellipse removal, temporary addition of ellipse 

perimeter points, and re-clustering steps were repeated one more time on the resultant 

segmentation from the first iteration. 

 The above procedures were repeated using increasing clustering distance 

thresholds of 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, 7 cm, 10 cm, 13 cm, and 16 cm.  Once a 

segment is identical (i.e., consisting of the same voxels) through three consecutive 
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distance thresholds, it was considered to be accurately segmented and is removed from 

the slice; this procedure was repeated until all voxels in the slice have been assigned to a 

final segment.  Any voxels which did not form a consistent segment among three 

consecutive passes were segmented with a simple distance threshold of 4 cm and added 

to the final segmented slice. 

 The algorithm also includes an option to perform a Euclidean distance-only 

segmentation instead, such that each slice is segmented solely on the basis of the 

Euclidean distance between voxel centroids.  The user may elect to use this 

segmentation method and specify a distance threshold to be used for clustering.  A 

distance-only segmentation, with a small distance threshold (e.g., 1 – 3 cm), may 

provide a more precise reconstruction when the SDT point cloud is of very high quality 

and has been scanned from at least four positions to minimize occlusion, but will not 

reliably segment a lower quality point cloud with more occlusion or reduced point 

density. 

 As a lower-quality, vertically-resampled SDT voxel model, SDT2 was densified 

to further increase its suitability to be reconstructed with a 5 mm voxel size prior to 

segmentation.  Each resampled slice was densified by adding a point at the midpoint of a 

straight line connecting each voxel to its nearest neighbor voxel, if the voxel pair was 

separated by a distance of 20 cm or less.  The densified points were used for the 

purposes of segmentation only and were removed from each resampled slice after 

segmentation had been completed.  SDT1 and SDT2, being higher-quality voxel models, 

were not densified but were segmented using two contiguous slices at a time (i.e., a 
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particular slice and the slice directly above it) to help mitigate the effects of intermittent 

low-density areas. 

2.2.5.5 Ellipse Fitting 

 Following the segmentation procedures, each distinct segment of a SDT was 

fitted with an ellipse using a direct least squares ellipse fitting algorithm (Fitzgibbon et 

al., 1999).  Segments with fewer than five voxels were flagged and set aside as a 

minimum of five observations are required to fit an ellipse using the Fitzgibbon et al. 

algorithm.  The five geometric parameters of each ellipse (i.e., center X coordinate, 

center Y coordinate, semi-major axis, semi-minor axis, and angle of rotation) were 

stored with each respective segment and the resultant ellipses were then used to 

determine an appropriate contour interpolation and interior fill method. 

2.2.5.6 Contour Method Selection 

Before the occluded interior voxels of each segment may be filled, an appropriate 

method of constructing a closed contour form must be selected.  The method of contour 

interpolation, either linear or elliptical, is determined by the continuity and distribution 

of voxels within each particular voxel segment, hereafter referred to as “segment 

completeness.”  Segment completeness is a binary parameter defined by two factors: the 

total linear distance covered by the segment’s voxels relative to the size of the segment’s 

fitted ellipse (i.e., coverage) and the number of voxels present in each of six 60o sectors 

(i.e., distribution), calculated with respect to the ellipse center.  The segment 

completeness parameter (Equation 4) provides a quantitative method of selecting an 

appropriate contour generation method for each individual voxel segment. 



 

50 

 

�������	 ��!"�����## = $�%&	'( )���*	 ×	∆�(+,-. ) ≥ 2.5	&	4'#�5'6��'��	 ≥ 27 Equation  (4) 

Where ���*	is the number of voxels in the segment, ∆� is the length of a voxel’s edge, 

8 and 6 are the semi-major and semi-minor axes, respectively, of the segment’s ellipse, 

and 4'#�5'6��'�� is the number of voxels present in the sector containing the fewest 

number of voxels.   

Linear interpolation provides a more precise reconstruction when a voxel 

segment is nearly continuous, but fails to accurately characterize a voxel segment when 

contiguous sections of the branch are missing.  When a voxel segment has a minimum of 

two voxels present in each sector and a coverage value of at least 2.5, the segment 

completeness parameter is considered to be true and the segment’s contour is 

subsequently designated to be processed with linear interpolation.  Direct least squares 

ellipse fitting provides a more robust contour generation in the case of a significantly 

occluded segment, as this method avoids the significant volume underestimation which 

would occur using linear interpolation under the same circumstances.  Fine branches, 

considered to be segments whose ellipse has a semi-major axis of less than 6 mm, a 

semi-minor axis less than 5 mm, or contain fewer than five voxels, were identified and 

designated to be processed by centroid simplification.  Segments which have a semi-

major axis greater than 2 m, or a semi-major axis which is greater than ten times the 

length of the semi-minor axis are considered to be the result of an erroneous 

segmentation and are omitted from the interior filling process, but their original voxels 
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remain in the final RTM.  All other segments were flagged as linear interpolation or 

ellipse interpolation and processed accordingly during the interior fill function. 

2.2.5.7 Interior Fill 

 Interior voxels of branches and stems are inherently missing from TLS data sets, 

as the scanner can only obtain a return from the exterior surface of a SDT; as such, these 

interior voxels must be accounted for in order to provide an accurate volume estimate.  

Once every stem and branch segment of a SDT had been assigned a contour 

interpolation method, a closed contour form of each segment was interpolated then 

occluded interior voxels were filled to create a solid model characterizing the true 

segment structure. 

 A grid representing the centroids of potential interior voxels was first created for 

each segment such that the grid extended beyond the minimum and maximum X and Y 

extent of the original segment by 10 voxels in the case of a linear-method segment and 

45 voxels for an ellipse-method segment.  Linear-method segments were filled by 

creating a polygon whose vertices consisted of the segment’s voxels, dilating then 

eroding the polygon using a disk with a radius equal to one half the voxel resolution (i.e., 

2.5 mm) to remove artifacts caused by segments whose perimeter exceeds one voxel 

thickness, and selecting grid points which lie on or within the polygon boundary to be 

filled as interior voxels.  Ellipse-method segments are filled in the same manner as 

linear-method segments, using 50 equally-spaced ellipse perimeter points to define the 

vertices of a polygon, but were not dilated and eroded.  Fine branches, flagged to be 

processed by centroid simplification, are reduced to a single voxel placed at the 
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segment’s centroid; thus reducing the tendency to overestimate the volume of fine 

branches when using voxels.     

 The closed contour, filled segments represent the final reconstructed tree model 

whose total volume is calculated by summing the volume of the RTM’s voxels 

(Equation 5). 

�9:; = <� × ∆�= Equation (5) 

Where �9:; is the RTM’s total volume in cubic meters, <� is the number of voxels 

comprising the RTM, and ∆� is the length of one side of a voxel in meters.  If the voxel 

model was vertically-resampled, as described in section 2.2.5.3, each closed contour, 

filled slice is duplicated at 5 mm height intervals to fill the height range of its original 

large voxel slice. 

2.2.6 Accuracy Assessment 

For the stem and large branch accuracy assessment, the algorithm procedures 

were performed on the coregistered set of all four scans, as well as three sets of manually 

occluded samples to assess the importance of point cloud quality in terms of volume 

estimation accuracy.  The colorized point cloud was used as a guide to extract the 13 

samples from the final RTMs, in the case of the coregistered scans, and from the point 

cloud in the case of the manually occluded samples (Figure 12).  Manually occluded 

samples were created by first extracting each sample from the point cloud, calculating 

the centroid of each segment and removing all points that had a coordinate value greater 

than the centroid in the X or Y plane, respectively, thus removing approximately half of 

each segment and simulating a severely occluded large branch.  Several model runs were 
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conducted to assess the impact of voxel size selection, segmentation method (i.e., 

distance-only vs. incremental ellipse), and the ability of adaptive contour interpolation to 

minimize errors caused by point cloud occlusion. 

Each small/fine branch point cloud was processed separately using 5 mm voxels 

and two trials were conducted, testing both the distance-only, with a distance threshold 

of 2 cm, and incremental ellipse fitting segmentation methods.  

 

 

 

Figure 12: Q. stellata SDT (a) and colorized point cloud (b) with painted stem and 

branch sections used to identify and extract the accuracy assessment samples in the 

processed voxel model after the tree was felled and sectioned. 
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2.3 Results and Discussion 

2.3.1 Volume Estimation Accuracy 

 The algorithm’s accuracy, when processing point clouds collected under ideal 

scanning conditions, was evaluated with respect to both large and small branches.  Table 

2 shows the results of the large branch accuracy assessment, of 13 samples, when using 

5 mm voxels with each segmentation method.  The distance-only segmentations were 

conducted with a distance threshold of four times the voxel size for each voxel size 

tested.  Processed voxel samples were extracted by using the colored point cloud as a 

guide such that each separate RTM was clipped at precisely the same locations for each 

respective sample.  While this approach was considered to be the most consistent option, 

it may also result in minor artifacts, particularly when evaluating the accuracy of larger 

voxel sizes, as the clipping planes may happen to include or exclude an additional slice 

of voxel centroids at the uppermost or lowermost extent of the sample.  The distance-

only segmentation method was slightly more accurate than the incremental ellipse 

method due to several areas of minor over-clustering where a sample was in close 

proximity to another branch.   

 

 

Table 2: Large branch accuracy assessment results with each segmentation method, 

both using 5 mm voxels. 

 

 

  

 Segmentation Method 

Error Distance-Only Incremental Ellipse 

RMSE (L) 0.4941 0.5042 
RMSE (%) 7.27 8.45 
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The distance-only and incremental ellipse segmentation methods accounted for 

99.6% and 99.5%, respectively, of the variance when regressed on the xylometric 

volume measurements of each sample (Figure 13).  The accuracy assessment point cloud 

was processed with 1 cm voxels, 2 cm voxels, and vertically-resampled 5 cm voxels to 

assess the sensitivity of volume estimation to these algorithm parameters.  Processing the 

SDT with 2 cm voxels, using the distance-only segmentation, resulted in a general 

overestimation of sample volume and an RMSE of 25.38%, as the larger voxel size 

resulted in a reduced ability to characterize the details of the large branch samples as 

well as an increased tendency to over-cluster with neighboring branches (Figure 14).   

A voxel size of 1 cm resulted in an RMSE of 6.81%, contrary to the expectation 

that larger voxel sizes generally provide less accurate volume estimations.  It is possible 

that artifacts caused by the described sample clipping procedure contributed errors to the 

process and erroneously resulted in an RMSE which was lower than the 5 mm voxel 

size.  The vertically-resampled 5 cm voxels, with a final size once resampled of 5 mm, 

had an RMSE of 13.54% and were more accurate than the 2 cm voxel size, suggesting 

that the VPCR procedure provided in the algorithm provides a desirable alternative to 

using large voxel sizes in compensation for lower quality point clouds.  
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Figure 13: Scatter plots and best-fit regression line of estimated large branch 

volume vs. measured xylometric volume. a) distance-only segmentation; b) 

incremental ellipse segmentation.  
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Figure 14: Boxplot of large branch volume estimation percent error. 

 

 

 The algorithm’s ability to estimate volume in instances of severe occlusion was 

assessed with the two large branch sample point cloud sets that were manually occluded 

in the X or Y plane to remove approximately 50% of each sample along an 180o sector 

with respect to each sample’s centroid.  The occluded samples were then processed with 
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5 mm voxels using a linear-only contour interpolation method or the adaptive contour 

method (described in section 2.2.5.6) which utilizes a best-fit ellipse to define a branch’s 

contour when occlusion is detected or linear interpolation otherwise.  The linear-only 

contour method consistently underestimated the volume of each severely occluded large 

branch sample, while the adaptive contour method generally underestimated and 

occasionally overestimated sample volume.  Although both methods resulted in volume 

underestimations, the adaptive contour method was more accurate for both the X plane 

and Y plane sample sets, with RMSEs ranging from 27.01% - 37.75%, while the linear 

contour interpolation method resulted in RMSEs ranging from 52.99% - 66.57% (Figure 

15). 

Another test was performed by merging each respective sample that was 

occluded in the X and Y plane, such that each merged sample contained approximately 

75% of its original points along a 270o sector with respect to each sample’s centroid, and 

processing each occluded sample with 5 mm voxels using linear-only and adaptive 

contour interpolation methods.  The linear-only contour interpolation method shows a 

general tendency to underestimate volume, with RMSEs of 13.55% and 37.65% when 

using the incremental ellipse and distance-only segmentation methods, respectively.  
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Figure 15: Boxplot of severely occluded (~50% of each sample removed) large 

branch volume estimation percent error using 5 mm voxels with each segmentation 

method; comparing adaptive and linear-only contour interpolation methods. 

 

 

The adaptive contour interpolation method had a slight tendency to 

underestimate volume when using the distance-only segmentation, with an RMSE of 

18.29%, while the incremental ellipse segmentation method was approximately balanced 
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with regards to underestimating or overestimating volume, with an RMSE of 13.24% 

(Figure 16). 

 

 

 

Figure 16: Boxplot of moderately occluded (~25% of each sample removed) large 

branch volume estimation percent error using 5 mm voxels with each segmentation 

method; comparing adaptive and linear-only contour interpolation methods. 
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While ideal terrestrial lidar data collection procedures (e.g., scanning a tree from 

four or more positions and clearing obstructions such as understory vegetation) may 

reduce the occurrence of point cloud occlusion, it is difficult to completely eliminate this 

source of error when scanning in forest environments.  The number of scanning 

positions utilized in the field may be limited by the presence of neighboring trees or 

dense understory vegetation, equipment limitations, time constraints, or weather 

conditions (e.g., high winds), making point cloud occlusion a common challenge in 

terms of reconstructing accurate three dimensional tree models.  The complex branching 

structure of some trees can also be a source of point cloud occlusion, even when scanned 

from multiple positions, as the presence of many large branches can often prevent the 

laser from reaching all parts of the tree’s crown.  In all three manually occluded sample 

sets, the adaptive contour interpolation method outperformed the linear contour 

interpolation with respect to both RMSE and the extent to which each sample was 

generally underestimated.  By providing an adaptive contour interpolation method, the 

algorithm is able to consistently reduce errors associated with occluded branch and stem 

segments through the usage of elliptical contours, while still utilizing a more precise 

linear contour interpolation to characterize the fine details of irregularly-shaped branches 

when a sufficient point distribution is present. 

 The volume of small and fine branches were estimated with an RMSE of 

13.84% and 75.92% when using the distance-only and incremental ellipse segmentation 

methods, respectively, and a 5 mm voxel size (Table 3).   
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Table 3: Small branch accuracy assessment results with each segmentation method, 

both using 5 mm voxels. 

 

 

 

 

 

The distance-only and incremental ellipse segmentation methods accounted for 

88.6% and 38.1%, respectively, of the variance when regressed on the reference circular 

cylinder volume measurements of each sample (Figure 17). 

The incremental ellipse segmentation resulted in significant segmentation errors, 

where distinct small branches were erroneously considered to be to a single branch, and 

thus what was negative space in reality was filled with voxels in the resultant model.  

When several small branches are in close proximity to each other in a voxel slice, they 

may often be situated such that the perimeter of a best-fit ellipse includes multiple 

distinct branches.  In combination with the increasing distance threshold used for each 

stage of segmentation in the incremental ellipse method, it was expected that small 

branches in close proximity would be estimated with reduced accuracy in comparison to 

the distance-only segmentation.  These segmentation errors caused the incremental 

ellipse method to consistently overestimate the volume of the 15 small and fine branch 

samples.  The distance-only segmentation method provided a significantly more accurate 

volume estimation as it is less prone to over-clustering distinct branches, allowing them 

to be reconstructed more faithfully to their true size and shape. 

 Segmentation Method 

Error Distance-Only Incremental Ellipse 

RMSE (L) 0.02042 1.1797 
RMSE (%) 13.84 75.92 
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Figure 17: Scatter plots and best-fit regression line of estimated small branch 

volume vs. reference caliper volume. a) distance-only segmentation; b) incremental 

ellipse segmentation. 
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2.3.2 Analysis of RTMs 

 All three SDTs were successfully processed with the TreeVolX algorithm, 

having an average runtime of 9.3 minutes per tree, producing three reconstructed tree 

models.  Each RTM consisted of consecutively filled interior voxels (Figure 18), 

providing a solid model and means of estimating the entire aboveground volume of each 

tree (Table 4).  Due to variation in the quality of the original point clouds, each SDT was 

processed with algorithm parameters intended to provide the most accurate result 

possible at each relative quality level and assess the algorithm’s ability to accurately 

model trees which were scanned in challenging environments.  Every model run utilized 

the adaptive contour interpolation method while the segmentation method and VPCR 

technique were selectively applied in accordance with point cloud quality.  SDT2, being 

considered a relatively low quality point cloud, due to lower point density and 

intermittent occlusion, was processed using the VPCR technique, such that 5 cm voxels 

were used to vertically-resample the point cloud to facilitate a final voxel size of 5 mm, 

and was segmented with the incremental ellipse segmentation approach. 
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Figure 18: a) Stem and branch RTM output and b) cutaway view of SDT3 

illustrating solid interior filled with adjacent 5 mm voxels.  

 

 

Table 4: Volume estimation results. 

 

 

 

 

 

ID Scanner Species 
HeightTLS 

(m) 

DBHTLS 

(cm) 

Estimated 

Volume 

(L) 

SDT1 Leica 
Quercus 

stellata 
11.4 37.53 456.24 

SDT2 Leica 
Pinus 

taeda 
14.45 21.9 257.98 

SDT3 FARO 
Quercus 

stellata 
11.59 35.45 1844.26 

TLS measurement estimated from point cloud 
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 The effects of VPCR can be seen in Figure 19, where a stem section from SDT2 

is shown in the form of a vertically-resampled and non-resampled RTM, both with a 

final voxel size of 5 mm.  Due to the low point density of the source point cloud, the 

non-resampled RTM shows an obvious and significant underestimation of volume, as 

each voxel slice does not contain enough voxels to be processed correctly.  

 

 

 

Figure 19: SDT2 RTM stem and branch detail using a) non-resampled 5 mm voxels 

and b) vertically-resampled 5 cm voxels with a final size of 5 mm. 

   

 

The VPCR process was able to successfully model the areas of low point density 

without having to resort to using a larger voxel size, which would generally overestimate 
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volume throughout the tree.  Although VPCR results in a level of generalization and may 

induce some modelling errors (e.g., over-clustering near branch junctions and 

overestimating the volume of small branches) it provides a reasonable solution to 

handling lower quality point clouds and was considered to provide a more accurate RTM 

than the non-resampled processing technique for SDT2 (Figure 20). 

 

 

.  

Figure 20: a) SDT2 5mm voxel RTM output; b) detail of over-clustering near 

branch junction. 
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As a medium quality point cloud, SDT1 was processed using non-resampled 5 

mm voxels and the incremental ellipse segmentation method.  The resultant RTM was 

considered to provide an accurate reconstruction of the original point cloud (Figure 21).   

 

 

 

Figure 21: a) SDT1 5 mm voxel RTM output; b) detail of erroneous ellipse fitting 

along a horizontal branch. 

 

 

A visual analysis of the RTM revealed several errors in the form of over-

clustering, and subsequent overestimation of volume, of small branches and large branch 

junctions, the fitting of excessively wide ellipses to long, horizontal branches, and 

several small void spaces caused by occlusion or low point density. 

 The SDT3 RTM, processed using 5 mm voxels and the distance-only 

segmentation with a threshold of 2 cm, was the most accurate model due to the quality of 

its source point cloud and thus its ability to utilize the most precise modelling techniques 
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available in the presented algorithm.  Minor errors were observed mainly in the form of 

excessively large ellipses being fit in areas of reduced point density, occlusion, or noise 

points.  These errors were likely due to under-clustering during the segmentation process 

such that an ellipse was being fit to a small number of voxels which did not correspond 

to an entire branch section (Figure 22). 

 

 

 

Figure 22: a) SDT3 5 mm RTM output; b) detail of excessively large ellipse fit to 

stem as a result of segmentation error.  

  

 

Based on the modelling results, accuracy assessment, and empirical observations 

during algorithm development, the accuracy of an RTM can be maximized by scanning a 

tree from a minimum of four positions at a high resolution setting, using a voxel size of 

5 mm, and utilizing the distance-only segmentation and adaptive contour interpolations 

methods.  As noted by Hosoi et al. (2013) and Bienert et al. (2014), the selection of a 

small voxel size and linear contour interpolation method can accurately characterize 

irregularly-shaped branches without resorting to the generalizations associated with 
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fitting geometric primitives or the use of larger voxel sizes, when modelling a high 

quality point cloud.  Since lower quality point clouds can be a reality of terrestrial laser 

scanning in dense forest environments, the proposed algorithm offers several processing 

options (i.e., adaptive contour interpolation, incremental ellipse segmentation, and 

vertical point cloud resampling) designed to compensate for reduced point cloud quality 

while attempting to minimize errors commonly caused by generalization. 

2.4 Conclusions 

 This study presents an automated voxel-based technique for accurately 

estimating the volume of standing dead trees with terrestrial lidar data.  Using an 

adaptive contour interpolation approach, the method is capable of precisely modelling 

complex shapes with linear interpolation when a branch slice contains sufficiently dense 

point coverage as well as compensating for areas of occlusion or reduced point density 

by applying an elliptical contour generation.  The incremental ellipse segmentation 

method offers an ability to more-accurately segment point clouds characterized by 

moderate, intermittent occlusion and the presented VPCR technique is capable of 

modelling point clouds with significant occlusion effects or consistently low point 

density.  These features offer a robust solution to estimating the volume of standing dead 

trees as dense forest systems present a challenging scanning environment with respect to 

the objective of collecting very high quality point clouds. 

 Although this study focused on modelling standing dead trees, the method is 

expected to provide similar results when applied to live trees scanned in leaf-off 

conditions.  With the addition of a foliage filtering step, it could also presumably be 
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applicable to live trees in leaf-on condition, although the presence of leaves may cause 

significant levels of occlusion with regards to laser returns from the tree’s woody 

structure, leaving some branches difficult or impossible to model accurately and 

increasing the overall error of volume estimation.  With the inclusion of density 

measurements or species-specific parameter estimates, accurate volume estimations 

could be used to estimate biomass, carbon content, or other biogeochemical parameters 

of interest.  The voxel-based modelling technique also facilitates accurate volume 

estimations of individual tree components, as branches or other areas of interest may be 

manually extracted from the reconstructed tree models and estimated by simply 

multiplying the number of voxels present by the volume of an individual voxel.  Other 

potential applications of this modelling technique include evaluating or refining 

allometric equations, particularly with respect to standing dead trees in various states of 

decay, conducting change detection analysis to precisely monitor the decay or growth of 

individual trees over time, using TLS to validate or calibrate regional biomass 

estimations, and the automated estimation of morphological tree parameters. 

 Future studies could focus on developing techniques to reduce the overall error 

of volume estimation, further refining methods intended to minimize errors caused by 

imperfect point clouds, testing the presented method on additional tree species, and 

investigating the potential to model individual tree point clouds derived from unmanned 

aerial systems lidar sensors or structure from motion techniques. 
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3. DETECTING AND QUANTIFYING STANDING DEAD TREE STRUCTURAL 

LOSS WITH RECONSTRUCTED TREE MODELS 

3.1 Introduction 

Standing dead trees (SDTs) influence a variety of processes studied by 

researchers and forest managers, such as carbon storage and cycling dynamics in forests, 

nutrient cycling, species composition dynamics, wildland fire, wildlife habitat, and 

structural diversity of forest stands (Russell et al., 2015).  In 2011 and 2012 a severe and 

extensive drought covered Texas, with precipitation values 50-75% below the long-term 

average (Hoerling et al., 2013). The drought increased tree mortality  approximately 9-

times above normal and translated to the estimated death of ~301 million trees statewide 

and the transformation of  approximately 30 Tg of live tree C to a dead pool of C in one 

year (Moore et al., 2016).  The regional C cycling effect of this tree mortality was the 

equivalent of nearly 50% of the average C annually emitted from forest fires in the 

continental United States (McKinley et al., 2011). Globally, the pool of SDTs and coarse 

woody debris (CWD) is estimated to be 36 – 72 Pg C, with the wide range in estimates 

reflecting that this C pool’s dynamics are poorly constrained in terrestrial C cycling 

models (Cornwell et al., 2009). The performance of these models would be greatly 

improved if changes in tree structure could be linked to wood decay (Domke et al., 

2011). 

Nondestructive volume estimates for SDTs are typically calculated using various 

forms of allometric models, where parameters measured in the field (e.g., diameter at 

breast height (DBH) and tree height) serve as independent variables to species-specific 
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equations designed to estimate volume based on empirically observed relationships 

(Brown et al., 1989).  The United States Forest Service (USFS) Forest Inventory and 

Analysis (FIA) program currently estimates the volume of SDTs using the same 

allometric relationships designed for living trees, which only account for the volume of a 

tree’s main stem, in the case of timber species, or the stem, large branches, and bark in 

the case of woodland species (Woudenberg et al., 2010).  Since this approach does not 

distinguish between live or dead trees and focuses primarily on a tree’s bole, these 

estimates fail to account for the structural losses and wood decay which occur in SDTs, 

as well as the woody material contained in branches and sections of the stem which are 

not accounted for in allometric equations.   

Recent research has recommended the application of structural loss adjustments 

(SLAs) and density reduction factors (DRFs) to allometric volume estimations to better 

characterize the structural differences between SDTs and live trees (Domke et al., 2011).  

The incorporation of SLAs and DRFs provide an opportunity to differentiate between 

live and dead standing trees, but such estimates based on allometric relationships and 

qualitative decay class systems and would need to be developed and evaluated for a wide 

range of species and regions, possibly limiting their utility and accuracy when compared 

to the potential of emerging remote sensing methodologies. 

 As observed density reductions fail to completely account for the total amount of 

biomass lost during the decay process (Fraver et al., 2013; Harmon et al., 1987; Næsset, 

1999; Zell et al., 2009), it is important for studies to quantify and incorporate structural 

losses when modelling the decay rates of SDTs.  Laiho and Prescott (2004) reviewed 34 
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wood decomposition studies and found that only five had considered mass loss as a 

component of decay, while the remaining studies were based on observed density 

reductions.   

The extent to which decay rates, estimated by reductions in wood density over 

time, affect the structural loss rates of SDTs is not clearly defined.  A number of studies 

have observed the longevity of standing dead trees or modelled their transition through 

qualitative decay classes in different regions (Aakala et al., 2008; Cain, 1996; Cline et 

al., 1980; Conner and Saenz, 2005; Corace et al., 2010; Garber et al., 2005; Landram et 

al., 2002; Vanderwel et al., 2006), but these approaches often are focused on stand-level 

observations and not able to quantify the different ways in which SDTs lose volume and 

mass over time (i.e., fragmentation or structural loss vs. collapse), which could provide 

valuable contributions towards understanding the flux of woody debris from standing 

pools to downed pools among various species and regions.  In a review of research 

concerning the decomposition and carbon storage of dead wood in various forms, 

Russell et al. (2015) conducted a sensitivity analysis and found that structural reductions 

had the greatest relative influence on the C content of standing dead trees, 59.1%, while 

wood density had a relative influence of 19.8%.  This finding emphasizes the need for 

accurate volume estimations of SDTs, the increased development of SLAs for additional 

species and regions, and the development of methodologies which can precisely quantify 

structural losses of SDTs over time. 

Light detection and ranging (lidar) is an active remote sensing technology which, 

by measuring the elapsed time between a laser pulse and its return after being reflected 
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by an object, is capable of precisely recording the distance of objects from the lidar 

sensor and thus facilitating the capture of detailed 3D point clouds (Lefsky et al., 2002).  

Lidar sensors have been integrated into a wide variety of platforms and systems, such as: 

spaceborne (e.g., satellites), airborne (e.g., manned and unmanned aircraft), terrestrial 

(e.g., sensor fixed to a tripod), and mobile platforms (e.g., automobiles, all-terrain 

vehicles, handheld scanners) (Van Leeuwen and Nieuwenhuis, 2010).   

Terrestrial laser scanners (TLS) in particular are capable of producing very dense 

point clouds of individual trees and have the advantage of being able to scan a tree from 

multiple vantage points, thus characterizing the fine details of an entire tree in terms of 

the structure, size, and orientation of its stem and branches, which are difficult to 

measure using other lidar platforms or traditional measurement approaches.  TLS has 

been used in a wide variety of forestry applications (Dassot et al., 2011; Van Leeuwen 

and Nieuwenhuis, 2010) and recently has been utilized with the objective of 

reconstructing solid 3D models of trees derived from TLS point clouds, enabling 

accurate, nondestructive estimates of volume or biomass.  Although this is a relatively 

new application of TLS, algorithms presented in the literature may be broadly grouped 

into two common approaches: (1) the fitting of geometric primitives, such as circular 

cylinders, to tree components (Côté et al., 2009; Dassot et al., 2012; Hackenberg et al., 

2014; Raumonen et al., 2013); and (2) converting point clouds to a voxel-based 

representation and subsequently processing the voxels to derive a solid model (Bienert et 

al., 2014; Hosoi et al., 2013; Lefsky and McHale, 2008; Vonderach et al., 2012).   
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Despite the increasing interest in, and successful examples of, reconstructive tree 

modelling, the use of TLS to perform change detection analysis on individual trees, and 

structural loss in particular, has not been thoroughly tested in the literature.  Kaasalainen 

et al. (2010) used TLS to quantify the defoliation of Scots pine (Pinus sylvestris) and 

Norway spruce (Picea abies) trees scanned in a laboratory environment.  Three point 

cloud parameters were derived, for each tree, to estimate measured biomass changes 

after needles had been manually removed from the trees: (1) the total number of point 

cloud returns; (2) the ratio of tree returns to total returns; and (3) the number of ground 

returns.  These parameters were used as predictors for biomass loss in linear regression 

models, resulting in Pearson correlation coefficients ranging from 0.929 to 0.977.  A 

similar methodology was carried out in a field setting, but visual assessments were used 

as reference data and quantified linear relationships were not reported.  While this study 

shows the potential of TLS to quantify biomass changes, it is unclear how well this 

particular methodology would work under a variety of field conditions with varying tree 

species and significant reductions in tree biomass, such as branch drops or stem 

breakage.   

Srinivasan et al. (2014) used single-position scans with a TLS to estimate the 

biomass change of 29 loblolly pine (Pinus taeda) trees in a forested environment.  The 

authors used linear regression techniques to model biomass change at the individual tree 

level in comparison to reference biomass changes estimated with allometric equations 

over a three year period.  Out of several different approaches, the most accurate estimate 

of biomass change was based on the direct changes in two point cloud parameters 
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between observations, volume beneath top of canopy and 90th percentile height, 

resulting in an R-squared of 0.50 and an RMSE of 10.09 kg.  Kaasalainen et al. (2014) 

applied the quantitative structure modelling (QSM) methodology to detecting biomass 

changes in laboratory and field environments, with an accuracy of 12% in estimating the 

volume of a small branch following the manual removal of branch sections and an 

unknown accuracy in the field with regards to a estimating the volume of a single live 

tree over time, which was estimated to be approximately +/- 10%.  These estimates were 

the mean results of 10 modelling runs, which typically exhibited a standard deviation of 

5 – 15 % for estimated branch volume due to the stochastic nature of the algorithm.  The 

accuracy of this study suggests that reconstructive tree modeling has the potential to 

reliably quantify biomass or volume loss in forest environments. 

The methodology described in this study presents a novel, voxel-based approach 

to addressing the current knowledge gaps concerning the structural loss of standing dead 

trees by developing automated methods to detect, quantify, and characterize volumetric 

losses over time using solid, voxel-based reconstructed tree models.  To the best of the 

author’s knowledge, this study represents the first attempt to characterize the 

fragmentation of SDTs in a forest environment with the use of multitemporal TLS 

observations at the individual-tree level.  The presented approach may be applied to 

future studies and has the potential to be applied to a variety of tree species in different 

forest systems.  In the future, this technique, or similar approaches, may be used to 

provide quantitative structural loss data which could facilitate the development of SLAs 
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for a variety of species in various regions to increase the accuracy of regional volume 

and carbon accounting with respect to SDTs. 

The overall objective of this study is the development of a methodology capable 

of detecting, quantifying, and characterizing the structural loss of standing dead trees 

using multitemporal terrestrial lidar observations.  The specific study objectives are: 

1) Estimating the volume of 29 standing dead trees using the voxel-based 

TreeVolX algorithm with terrestrial lidar data. 

2) The development and evaluation of novel, voxel-based change detection 

methodologies to accurately detect and quantify SDT structural loss between 

subsequent TLS observations. 

3)  The characterization of SDT annual structural loss rates, for the Pinus and 

Quercus genera in southeastern Texas, in percentile height bins. 

3.2 Methods 

3.2.1 Study Area 

The study area consisted of four separate sites located in southeastern Texas 

(Figure 23).  Site 1 was in Lick Creek Park, located in College Station, Texas, covering 

an area of approximately 209 hectares.  The topography of Lick Creek Park is nearly 

level, with slight, rolling elevation changes and an average elevation of approximately 

74 meters above mean sea level.  The scan location was within a dense, upland post oak 

woodland, consisting primarily of post oak (Quercus stellata) and winged elm (Ulmus 

alata), with a dense understory of yaupon holly (Ilex vomitoria) and American 

beautyberry (Callicarpa americana).  
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Figure 23: Locations of study sites in southeastern Texas. 

 

 

 Site 2 was in the Sam Houston National Forest, located near Huntsville, Texas, 

which covers an area of approximately 65,978 hectares.  The plots were characterized by 

nearly flat, gently rolling topography with a mean elevation above mean sea level of 

approximately 117 meters.  Located in mixed pine-hardwood stands, site 2 was 

composed predominantly of loblolly pine (Pinus taeda), with intermixed shortleaf pine 

(Pinus echinata), post oak (Q. stellata), sweet gum (Liquidambar styraciflua) and an 
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understory of yaupon holly (I. vomitoria), American beautyberry (C. americana), and 

dwarf palmetto (Sabal minor). 

 Site 3 was located in Research Park, in College Station, Texas.  This site covers 

approximately 65 hectares and is nearly flat with a mean elevation above sea level of 

approximately 96 meters.  Site 3 consists primarily of manicured grasses and mostly-

isolated post oak (Q. stellata) and live oak (Q. virginiana) trees in clearings. 

 Site 4 was located in the Texas A&M University Ecology and Natural Resources 

Teaching Area in College Station, Texas and covers approximately 73 hectares.  Site 4 

was located in a post oak savannah consisting of post oak (Q. stellata), winged elm (U. 

alata), blackjack oak (Quercus marilandica), ashe juniper (Juniperus ashei), and a dense 

understory of yaupon holly (I. vomitoria) and American beautyberry (C. americana). 

3.2.2 Data 

Each site was scanned twice with a TLS to obtain multitemporal point clouds of 

standing dead trees to quantify their volume loss over the observation period.  The sites 

consisted of multiple Q. stellata or P. taeda SDTs and were scanned with a Leica 

ScanStation 2 or FARO Focus3D X 330, for a total of 13 post oak and 16 loblolly pine 

SDTs (Table 5).  The FARO TLS was purchased during the duration of the study and 

replaced the Leica TLS in data collection.  The phase-based FARO TLS allowed scans 

to be conducted from additional positions at high resolution due to its faster setup 

procedures and scanning times.  The trees observed in this study were presumed to have 

been killed following extreme drought conditions in Texas during 2011 – 2012 

(Hoerling et al., 2013), although the exact time of death is not known. 
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Table 5: Scanning campaign summary and point cloud quality assessment. 

 

 

3.2.2.1 Leica TLS 

The Leica ScanStation 2 (Table 6) (Leica Geosystems, 2006) was mounted on an 

aluminum tripod and precision-levelled with Cyclone 9.0 (Leica Geosystems, 2012).  

The plots in sites 1 and 2 were each initially scanned with the Leica TLS from two 

positions, located at an approximately 180o offset with respect to the center of the plot 

with a horizontal and vertical resolution of 10 cm, at a range of 50 m.  Intermittent 

technical malfunctions with the scanner prevented the collection of multiple scans per 

tree, necessitating the use of plot-level scanner placements.  Exact scanner placement 

  Species Count        

Site Plot Q. stellata P. taeda ScannerI ScannerF DateI DateF ∆T (days) 

Mean 

NN 

DistI(F) 

(cm) 

Relative 

QualityI(F) 

1 1 5 0 Leica FARO 
May 
2015 

Dec 
2016 

753 
0.9898 Low 

(0.0877) (Medium) 

2 1 0 8 Leica FARO 
June 
2015 

Dec 
2016 

588 
0.9399 Low 

(0.1) (Medium) 

2 2 2 3 Leica FARO 
July 
2015 

Dec 
2016 

554 
1.9313 Low 

(0.1568) (Medium) 

2 3 0 5 Leica FARO 
Mar 
2015 

Apr 
2017 

516 
1.93 Low 

(0.0951) (Medium) 

3 1 2 0 FARO FARO 
July 
2016 

Jan 
2017 

171 
0.1623 High 

(0.1607) (High) 

4 1 4 0 FARO FARO 
Jan 

2017 
Mar 
2017 

71 
0.1144 Medium 

(0.0831) (Medium) 

I initial scan 

F final scan 
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was determined in an attempt to maximize coverage of the target trees and minimize 

occlusion due to understory vegetation and other trees; the average distance between the 

scanner and each tree was approximately 7 m. 

 

 

Table 6: Technical specifications of terrestrial laser scanners. 

 

 

Two stationary Leica High Definition Survey (HDS) flat targets were used in the 

field to coregister (i.e., accurately combine data from multiple scanner positions into one 

unified dataset) the scans from each plot.  Each HDS target was measured with a tape 

measure to record its height above ground level and the locations of the targets were 

measured using a Trimble GeoExplorer 6000 handheld GNSS unit with a Trimble 

Zephyr Model 2 antenna, capable of centimeter-level accuracy following differential 

correction in post-processing (Trimble, 2010).  These procedures allow the TLS data to 

 Leica ScanStation 2 FARO Focus
3D

 X 330 

Type Time-of-Flight Phase-Shift 
Wavelength (nm) 532 1550 

Maximum Scan Rate (kHz) 50 976 
Maximum Range at 90% Albedo (m) 300 330 

Beam Divergence (mrad) 0.15 0.19 
Beam Diameter (1/e) (mm) 3.2 @ 20 m 2.25 @ exit 

Vertical Field of View (
o
) 270 300 

Horizontal Field of View (
o
) 360 360 

Vertical Resolution (
o
) ~ 0.003 0.009 

Horizontal Resolution (
o
) ~ 0.003 0.009 

Position Error (mm) 6 unknown 
Ranging Error (mm) 4 2 
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be georeferenced (i.e., assign a real-world location to each laser return), facilitating the 

use of a projected coordinate system to support the creation of voxel models.  Each 

plot’s point cloud was georeferenced with differentially corrected target positions using 

Cyclone 9.0 after being coregistered. 

3.2.2.2 FARO TLS 

The FARO Focus3D X 330 (Table 6) (FARO, 2013) was mounted on a carbon 

fiber tripod and levelled using the Focus3D X 330’s onboard inclinometer.  The final 

scans at sites 1 and 2 and both initial and final scans at sites 3 and 4 were conducted with 

the FARO TLS.  Each SDT at site 3 was scanned from four positions, located at 

approximately 90o intervals with respect to the center of the tree with a scan resolution 

of 3.068 mm (i.e., ½ resolution as defined by FARO system settings), at a range of 10 m, 

with an average scanner distance of approximately 3 m and a quality setting of 2X.  The 

two SDTs at site 3 were spatially isolated in an area consisting primarily of manicured 

grass, resulting in minimal occlusion and were subsequently the highest quality point 

clouds collected in the study.  Each SDT for the final scans at sites 1 and 2, as well as 

both scans at site 4, was scanned from two positions, offset at approximately 180o from 

the center of each tree.  Exact scanner placement for each SDT was selected to minimize 

occlusion from nearby vegetation, ensure a clear view of the targets, and collect points 

on other SDTs in the plot.   

Five spherical laser scanning targets, with a diameter of 139 mm, were used to 

coregister the each plot’s scans into a unified point cloud using the FARO SCENE 5.5 

software package (FARO, 2015).  The location of each target was measured with a 
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Trimble GeoExplorer 6000 handheld GNSS unit with a Trimble Zephyr Model 2 

antenna and the coregistered point clouds were georeferenced with differentially 

corrected target positions using FARO SCENE. 

3.2.2.3 Terrestrial Lidar Preprocessing 

Following scanning procedures, coregistration, and georeferencing, the point 

cloud for each site consisted of an easting, northing, height, and intensity measurement 

(i.e., the amount of backscattered energy measured at the scanner) for each individual 

emitted laser pulse which resulted in a return of sufficient amplitude to be detected by 

the scanner.  The georeferenced, plot-level point clouds were analyzed in Quick Terrain 

Modeler (Applied Imagery, 2009) to manually delineate and extract the individual SDTs 

and scale the intensity values to a uniform range of 0 – 255. 

 Due to the use of two different generations of terrestrial laser scanners and 

varying site conditions, the SDT point clouds varied in their overall quality with respect 

to creating solid voxel models.  A high quality point cloud is one that has a very high 

point density and little to no occlusion, while a low quality point cloud exhibits the 

opposite characteristics.  A visual assessment and mean nearest neighbor distance 

calculation (i.e., the average Euclidean distance to each point’s nearest neighbor in 3D 

space) were used to assign a qualitative ranking of relative point cloud quality to each 

dataset (Table 6).  The SDTs in site 3, being scanned from four positions each with the 

FARO TLS and having a low mean nearest neighbor distance, were assessed as high 

quality point clouds while the SDTs in sites 1, 2, and 4 which were each scanned from 

two positions each with the FARO TLS, were considered to be of medium quality.  
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SDTs in sites 1 and 2 which were scanned with two plot-level scans using the Leica TLS 

were considered to be of low quality with respect to the other point clouds due to the 

reduced number of scanning positions and relatively high mean nearest neighbor 

distance. 

 To increase the modelling suitability of the lower quality point clouds collected 

during initial observations at sites 1 and 2, they were merged with the point clouds of 

improved quality from the final observations to increase point density and reduce 

occlusion effects, in the case of SDTs which were not downed upon the final scan.  The 

merging operations were conducted using the CloudCompare (Girardeau-Montaut, 2016) 

software package by first manually translating the final point cloud to align with the 

initial point cloud, achieving an approximate initial alignment, followed by a precise 

iterative closest point (ICP) alignment (Besl and McKay, 1992).  In the case of stem or 

branch sections which were imperfectly aligned as a result of tree decay or other 

discrepancies between the two point clouds, care was taken to select the highest quality 

section available which retained a faithful representation of the SDT’s initial condition 

and avoid errors that would be introduced by retaining duplicated, but non-spatially 

coincident, stem or branch sections.     

3.2.2.4 Reconstructed Tree Modelling 

3.2.2.4.1 Volume Estimation Algorithm Overview 

 The TreeVolX volume estimation algorithm, described in detail in section 2.2.5, 

was used to estimate the initial and final volume of each SDT with reconstructed, solid 

voxel models (Figure 24).  The algorithm voxelizes a point cloud into a sparse voxel 
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model and processes individual horizontal slices of one-voxel thickness, beginning by 

segmenting each slice into distinct segments which represent individual branches or stem 

sections.  Two segmentation methods are available to be selected depending on the 

quality and density of a point cloud.  A proximity-based clustering segmentation may be 

selected when a point cloud is of sufficiently high quality and density and an incremental 

ellipse fitting segmentation may be used for point clouds which exhibit lower point 

density and increased occlusion effects.  Each segment is then fitted with a direct least 

squares ellipse (Fitzgibbon et al., 1999) which is used to estimate the amount of negative 

voxel space along the segment’s perimeter with respect to the contour of the fitted 

ellipse.  Segments which have an adequate number of perimeter voxels to define their 

contour are processed with linear interpolation between each voxel to generate a closed 

contour form of the segment, while segments exhibiting moderate to severe occlusion 

are generalized to a voxelized representation of their best-fit ellipse, forming a closed 

contour.  Each closed contour segment is then filled with interior voxels lying within its 

perimeter and the steps are repeated for the next horizontal voxel slice until the entire 

tree has been processed.  The result of the algorithm is a solid voxel model 

reconstruction, referred to as a reconstructed tree model (RTM), of the original point 

cloud, whose volume is estimated by multiplying the number of voxels in the model by 

the volume of an individual voxel. 
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Figure 24: Flowchart of major volume estimation algorithm steps. 

 

 

3.2.2.4.2 Algorithm Parameters and Modelling Description 

 The point cloud of each SDT was first filtered to remove noise points prior to 

processing with the TreeVolX algorithm.  Point clouds collected with the Leica 

ScanStation 2 contained minimal amounts of noise and were thus filtered by manually 

removing erroneous points.  The point clouds obtained with the phase-based FARO 
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Focus3D X 330 were contained moderate to significant amounts of noise and were 

cleaned using a voxelized point density and k-means intensity clustering filter, described 

in detail in section 2.2.5.1, followed by a manual removal of remaining noise points, if 

necessary. 

 Due to the differences in point density and overall quality among the point cloud 

data, several options available in the TreeVolX algorithm which were designed to 

compensate for reduced quality point clouds were utilized.  The initial scans in sites 1 

and 2 were modelled using the vertical point cloud resampling (VPCR) technique, 

described in section 2.2.5.3, to compensate for the low point density and occlusion 

effects present as a result of lower scanner resolution and fewer scanner positions used 

for data collection.  These SDT point clouds were vertically-resampled using 5 cm 

voxels to construct a denser point cloud which was then modelled using 5 mm voxels.  

Point clouds from the final scans of sites 1 and 2 and both the initial and final scans from 

sites 3 and 4 were not resampled and were modelled using 5 mm voxels.  The final scan 

point clouds from sites 1 and 2, as well as all point clouds from sites 3 and 4, were 

modelled using 5 mm voxels and were not resampled.  All point clouds, both the initial 

and final scans, from sites 1, 2, and 4 were segmented using the incremental ellipse 

segmentation method, which is well-suited for trees which were scanned from fewer 

than four positions and thus contain areas of intermittent occlusion or reduced point 

density.  The initial and final scans from site 3, which were collected using four scans 

per tree, were segmented using the proximity-based clustering method which is 

appropriate for high quality point clouds (i.e., trees which have been scanned from at 
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least four positions at a high scanner resolution setting).  Six trees were downed between 

the initial and final scans and were therefore unable to be scanned for a final 

observation.  As such, two observations were possible for 23 trees while only a single 

observation was possible for six trees, resulting in a total of 52 RTMs, all at a 5 mm 

voxel size, characterizing the multitemporal observations of 29 SDTs.   

3.2.3 Change Detection 

 Several automated change detection methodologies were implemented to detect, 

quantify, and characterize the structural loss of each individual SDT.  These methods 

evaluate the multitemporal differences between each pair of initial and final RTMs and 

are categorized as either simple (i.e., a direct comparison of the two RTMs) or voxel-

based (i.e., volumetric changes are analyzed at the voxel-level to determine whether they 

are truly indicative of structural loss or are a result of various potential error sources).   

3.2.3.1 RTM Alignment 

 Due to the coordinate normalization that occurs during the voxelization process, 

resultant RTM pairs were often misaligned as structural losses resulted in different X 

and Y extents between the multitemporal scans.  Each pair of RTMs corresponding to a 

single SDT were aligned using the CloudCompare (Girardeau-Montaut, 2016) software 

package.  Using the RTM derived from the initial scan as the reference model, the final 

scan’s RTM was first manually translated to achieve a rough initial alignment.  

CloudCompare’s implementation of the ICP registration algorithm (Besl and McKay, 

1992) was then used to establish the final alignment between corresponding RTM pairs 

with a rigid, least squares transformation.     
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3.2.3.2 Simple Net Structural Loss 

 The simple net structural loss of each SDT was estimated by calculating the 

difference in total volume between the initial and final RTM of each SDT.  In this 

method, each RTM is presumed to provide an accurate and consistent reconstruction of 

the SDT and no additional steps were taken to detect or account for modelling errors 

with respect to one another. 

3.2.3.3 Simple Percentile Height Bins 

 Percentile height bins were used to describe the locations of simple structural 

loss within each pair of RTMs by comparing the number of voxels present in height bins 

along the entire SDT.  For each RTM pair, percentile height bins were calculated at 5% 

height increments based on the height of the initial RTM, such that each pair of RTMs 

was divided into 20 identical, equally sized height bins oriented along the Z axis.  The 

volumetric change in each height bin was calculated by multiplying the difference in 

voxel count by the volume of an individual voxel; downed trees were treated as having 

zero voxels in each bin.  The simple height bins illustrate where potential structural 

losses have occurred, as well as providing indications of potential modelling errors or 

other error sources (e.g., erroneous structural losses or volumetric growth detected along 

a SDT’s main stem due to modelling errors caused by occlusion which cause minor 

differences in main stem size and shape). 

3.2.3.4 Voxel-based Net Structural Loss 

 The voxel-based structural loss method consists of two primary steps: (1) a 

preliminary identification of potentially lost voxels from the initial RTM; and (2) an 
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evaluation of the potentially lost voxels to determine whether they depict actual 

structural loss.  The aligned initial and final RTMs were first downsampled from 5 mm 

voxels to 5 cm voxels, providing a more generalized set of models, reducing sensitivity 

to minor discrepancies between the two RTMs, and reducing the number of voxel-to-

voxel comparisons which were made for the sake of computational efficiency.  For each 

voxel in the initial RTM, the 3D Euclidean distance to its nearest neighbor in the final 

RTM was calculated and initial RTM voxels whose nearest neighbor distance was 

greater than 12 cm were classified as potentially lost voxels.   

Due to various potential sources of error (e.g., trees and branches shifting over 

time, modelling error, noise points, scanner error, and alignment error) some voxels 

which were classified as potentially lost may in fact still be present in the final RTM and 

must be identified to prevent an overestimation of volume loss.  Potentially lost voxels 

were first clustered by applying a single-linkage hierarchical clustering procedure to the 

Euclidean distance matrix of the potentially lost voxels and cutting the resultant 

hierarchical tree at heights of 30 cm.  For each cluster, the number of unique first, 

second, and third nearest neighbor voxels from the final RTM were calculated and 

averaged to roughly characterize the relationship between each potentially lost cluster 

and the final RTM, as clusters with many unique nearest neighbors are potentially 

indicative of a branch which has shifted positions between scanning observations.  

Clusters which had an average unique nearest neighbor count of nine voxels or fewer 

were considered to be truly lost, while those with an average of 10 or more unique 
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nearest neighbor voxels were considered to be potentially lost and subjected to further 

analysis. 

The remaining potentially lost clusters were then assessed, with respect to the 

initial and final RTMs, using a combination of ICP alignments and metrics to identify 

actual structural losses.  Clusters whose voxel count was greater than or equal to 20% of 

the number of voxels in the initial RTM were considered to represent structural losses of 

significant stem sections, as opposed to potentially shifted branches, and were omitted 

from the ICP alignment while being flagged as truly lost.  An ICP implementation with a 

rigid transformation, available in the R package “Morpho” (Schlager, 2017) was then 

used to align each remaining distinct, potentially lost cluster with the final RTM to 

classify the voxels of that cluster as being truly lost or the result of a shifted branch 

position.  To prevent the clusters from being erroneously aligned with distant branches 

or stems in the final RTM, three ICP alignments, each operating on the aligned cluster 

from the previous ICP alignment, were conducted with decreasing maximum distance 

thresholds (i.e., the maximum allowable distance, from a potentially lost voxel to its 

nearest voxel in the final RTM, to be considered a valid closest point) and an increasing 

number of iterations.   

The first, second, and third ICP registrations were constrained with maximum 

distance thresholds of 30 cm, 10 cm, and 5 cm and were conducted with 1, 2, and 10 

iterations, respectively.  Any cluster which was unable to be aligned, due to a lack of 

sufficiently close voxels in the final RTM, was considered to be truly lost.  Two final 

checks were performed to detect erroneous alignments for each cluster, such that: (1) 
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any aligned cluster whose mean nearest neighbor distance, with respect to its original 

cluster position, exceeded 75 cm was considered to be erroneously aligned and thus 

representing a true structural loss; and (2) any aligned cluster which had more than 2.8 

times its own voxel count within a distance of 12 cm in the final RTM was considered to 

be erroneously aligned with a larger branch or stem and representative of a true 

structural loss.  Any remaining aligned clusters were presumed to be properly registered 

with a shifted branch in the final RTM and voxels from the aligned cluster which were 

greater than 12 cm away from the final RTM were considered to be lost voxels.  Finally, 

all of the 5 mm voxels from the initial RTM which corresponded to each downsampled 5 

cm voxel determined to represent real structural losses were identified and summed to 

reach a final volume loss estimation.  

3.2.3.5 Voxel-based Percentile Height Bins 

 Percentile height bins were also used to characterize the structural loss estimates 

obtained using the voxel-based methodology and provides a precise quantitative 

description of where, with respect to the vertical structure of a SDT, volumetric loss 

occurred.  Each respective RTM pair was divided into the same 5% height bin intervals 

as defined during the simple percentile height bin approach.  The 5 mm voxels from the 

initial RTM, which were determined to be lost by the voxel-based structural loss method, 

were thus used to quantify the amount of volumetric loss occurring in each 5% height 

bin.  In the case of downed trees, for which a final RTM was not possible, the entire 

initial RTM was considered to represent voxel-based structural losses. 

3.2.3.6 Structural Loss Rate Characterization 
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 Structural loss rates were calculated based on the volumetric losses observed 

over the elapsed time between the initial and final scan of each SDT.  The rate of each 

SDT’s structural loss was determined both with respect to the net volumetric loss of the 

entire tree as well as within each 5% height bin.  By calculating the volumetric loss rate 

in each height bin, variable structural loss rates, with respect to relative height within a 

SDT, could be calculated for the Pinus and Quercus genera.   

 The structural loss rate of each height bin was defined in two ways: (1) with 

volume loss in each height bin being calculated as a percentage of the total initial 

volume of the entire SDT, and (2) with volume loss in each height bin being calculated 

as a percentage of the initial SDT’s volume in that same height bin.  Each structural loss 

rate method was applied to the 5% height bin losses calculated with both the simple and 

voxel-based approaches. 

3.3 Results and Discussion 

Volume and structural loss estimates for each of the 29 SDTs are presented in 

Table 7.  Height and DBH were estimated from the TLS point clouds and decay class 

assignments use the USFS FIA five class system (Woudenberg et al., 2010), with a class 

of “D” signifying a tree that was downed upon the final site visit.  The average runtime 

per tree, to create the reconstructed tree model, was approximately 5.1 minutes, with the 

larger, more complex trees being slower to process than smaller, simpler trees.  By 

visually comparing the SDT point clouds to their respective RTMs, the TreeVolX 

algorithm was considered to provide generally accurate volume estimations, with higher 

model quality being closely related to point cloud quality. 
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Table 7: Volume estimation and structural loss results. 

SDT 

ID 
Genusa 

Elapsed 

Time 

(Days) 

HeightI(F) 

(m) 

DBHI 

(cm) 

Decay 

ClassI(F) 

VolumeI(F) 

(L) 

Net 

Volume 

LossSMP 

(L) 

Net 

Volume 

LossVB 

(L) 

Vol. 

Loss 

Method 

Diff.b 

(%) 

Relative 

PC 

QualityI(F) 

1 O 554 14.4 (0) 26.22 2 (D) 460 (0) 460 460 - L 

2 O 554 6.15 (0) 20.06 2 (D) 155 (0) 155 155 - L 

3 O 171 11.59 (10.42) 37.32 2 (2) 1844 (1828) 16 53 2 H (H) 

4 O 171 14.3 (14.3) 56.49 2 (2) 2433 (2424) 9 7 0.07 H (H) 

5 O 71 6.47 (2.1) 17.76 3 (4) 139 (50) 90 85 3.12 M (M) 

6* O 71 8.6 (8.59) 39.54 2 (2) 617 (619) -2 0 0.29 M (M) 

7 O 71 10.11 (10.11) 32.13 2 (2) 837 (822) 15 2 1.54 M (M) 

8 O 71 9.4 (9.4) 33.44 3 (3) 600 (597) 3 9 0.99 M (M) 

9 O 753 11.12 (0.82) 20.59 2 (4) 336 (34) 302 311 2.55 L (M) 

10 O 753 11.75 (6.5) 22.03 2 (3) 303 (235) 69 92 7.83 L (M) 

11 O 753 11.13 (9.86) 32 2 (2) 802 (795) 7 24 2.05 L (M) 

12 O 753 9.93 (8.97) 31.34 2 (3) 540 (472) 67 19 8.94 L (M) 

13* O 753 7.43 (7.43) 17.86 3 (3) 156 (167) -11 0 7.37 L (M) 

14 P 588 14.45 (0) 19.82 3 (D) 258 (0) 258 258 - L 

15 P 588 7.97 (0) 19.24 3 (D) 172 (0) 172 172 - L 

16 P 588 21.58 (8.12) 26.76 1 (3) 1233 (402) 831 840 0.68 L (M) 

17 P 588 21.26 (17.35) 34.92 1 (2) 1332 (1089) 244 159 6.37 L (M) 

18 P 588 21.32 (21.13) 34.11 1 (2) 1814 (1103) 711 497 11.75 L (M) 

19 P 588 19.52 (1.64) 27.55 2 (4) 519 (104) 415 408 1.43 L (M) 

20 P 588 21.22 (18.58) 24.37 2 (3) 540 (475) 65 25 7.47 L (M) 

21 P 588 22.09 (20.05) 30.4 2 (3) 867 (791) 76 14 7.18 L (M) 

22 P 554 32.23 (18.99) 67.75 1 (3) 4804 (4126) 679 506 3.59 L (M) 

23 P 554 32.51 (2.86) 58.55 1 (4) 3630 (453) 3177 3236 1.63 L (M) 

24 P 554 22.19 (0) 45.48 2 (D) 1933 (0) 1933 1933 - L 

25 P 516 25.94 (0) 47.3 1 (D) 2396 (0) 2396 2396 - L 

26 P 516 24 (24) 45.75 2 (2) 2772 (2430) 342 45 10.72 L (M) 

27 P 516 27.15 (14.76) 45.73 1 (3) 2472 (1853) 620 600 0.8 L (M) 

28 P 516 28.09 (3.49) 65.36 1 (4) 3713 (118) 3595 3221 10.07 L (M) 

29 P 516 26.56 (23.5) 58.15 2 (3) 3275 (2730) 546 31 15.73 L (M) 

a O = oak, P = pine 

I initial scan 

F final scan 

SMP simple structural loss method 

VB voxel-based volume loss method 

b volume loss method difference calculated as % of initial volume 

* no structural loss 
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The most common modelling errors observed were incorrect segmentations due 

to occlusion effects in some point clouds, resulting in either void spaces where the model 

should have been filled or the erroneous filling of true negative spaces when tree 

components were in close proximity.  The volume of SDT28 was initially significantly 

underestimated along a 12.5 m long stem section, due to severe occlusion caused by 

surrounding trees and understory vegetation.  This RTM was manually corrected by 

filling the upper and lower half of the void stem area with 10 cm thick replications of the 

nearest correctly-modelled stem section above or below the problem area, respectively.  

A visual analysis of the structural losses detected using the voxel-based approach found 

that this technique provided more accurate volumetric loss estimations than simply 

calculating the difference between initial and final volume estimates for each SDT.  

Assessing the impact of relative point cloud quality and the associated modelling 

parameters designed to reduce volume estimation error in low and medium quality data, 

the absolute difference between each structural loss method was calculated and 

presented as a percentage of each SDT’s initial volume. 

The mean method difference values were 1.03%, 1.48%, and 5.06% for relative 

quality class combinations of high/high, medium/medium, and low/medium, 

respectively.  These distinctions can be explained by both the various combinations of 

point cloud quality as well as the differing algorithm parameters utilized with respect to 

each relative quality class.  Examining the high/high quality combination SDT3, the 

volumetric loss method difference of 2% was primarily caused by an underestimation of 

stem volume in the initial RTM along two sections approximately 70 cm and 50 cm in 
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length, respectively.  This error was due to occlusion effects of nearby stems which 

resulted in an erroneous segmentation and subsequently left void interior spaces which 

should have been filled with voxels.  The remaining error was mostly due to variations at 

the base of the stem, in the vicinity of the ground, where the final RTM contained 

significantly more voxels than the initial RTM.  This area may be problematic in general 

for multitemporal comparisons as the process of extracting an individual tree from a 

larger point cloud on two occasions is likely to result in slightly different levels of data 

loss, when attempting to precisely remove ground points while retaining all of the laser 

returns from the target tree.  Since the base of a tree stem can often take a complex shape 

and represent a significant amount of woody volume, small modelling errors in this 

region can result in significant volumetric differences when using the simple structural 

loss methodology.   

 In SDT5, an example of the medium/medium quality combination with a 3.12% 

volume loss method difference, the majority of the volume loss method difference was 

caused by the 12 cm distance threshold step in the voxel-based approach.  The stem of 

SDT5 had snapped approximately 1.9 m above ground level, leaving a section of true 

structural loss along the stem unaccounted for by the voxel-based method since the 

voxels in the initial RTM which were within 12 cm of the remaining stem section in the 

final RTM were not classified as being potentially lost during the initial distance 

threshold step (Figure 25). 
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Figure 25: a) SDT5 initial RTM; b) SDT5 final RTM after stem was snapped near 

ground level; c) Void area between lost voxels and final RTM due to distance 

threshold used during change detection procedure; red – 5 mm voxels identified as 

structural losses using voxel-based method, yellow – SDT5 final RTM. 
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In the case of SDT7, another medium/medium quality combination with a 

method difference of 1.54%, this difference was accounted for by minor differences in 

occlusion effects, affecting the simple volume loss method, as well as the loss of several 

small branches which were too close to the stem or other branches to be classified as 

initial potentially lost voxels therefore underestimating the true amount of structural loss 

with the voxel-based method. 

 The volume loss method difference among the low/medium relative quality 

combination point clouds was mostly accounted for by the moderate to significant 

occlusion effects, occurring more frequently in the initial scans, and the subsequent 

usage of the VPCR technique to minimize the resultant modelling error of the initial 

RTMs.  Examining the two SDTs with the largest method difference, SDT18 and 

SDT29, the VPCR process resulted in systematic overestimation of volume along the 

stem and horizontal branches.  By vertically-resampling the initial SDT point clouds to 

compensate for occlusion effects, the initial RTMs were essentially modelled in 5 cm 

thick horizontal slices with 5mm voxels, tending to overestimate stem volume in 

comparison to the final RTMs which were modelled without VPCR using 5 mm voxels. 

If a tree’s stem was a perfectly vertical circular cylinder, the VPCR process 

would theoretically not cause any modelling errors, however, as the trees’ stems vary in 

diameter, shape, and relative orientation with respect to the ground, the vertical-

resampling process overestimates stem volume by modelling each 5 cm slice as if the 

points contained in that slice were all in the same horizontal Z plane and thus modelling 

each 5mm slice as the largest possible 5 mm slice present in that 5 cm interval.  The 
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volumes of branches which were nearly horizontal to the ground were also susceptible to 

being systematically overestimated as these were modelled in increments of 5 cm 

thickness, naturally overestimating the volume of branches which were less than 5 cm in 

diameter.  While these modelling discrepancies resulted in structural loss estimation 

errors with the simple method, the voxel-based method was generally not affected by 

such minor RTM differences and provided more accurate structural loss estimations for 

the low/medium relative quality combination point clouds (Figure 26). 

The voxel-based change detection approach provided a more accurate structural 

loss estimation in most cases as it was generally less susceptible to classifying modelling 

errors as volumetric loss.  For example, if a portion of a SDT’s stem was left hollow due 

to occlusion effects in the initial RTM but was correctly filled in the final RTM, this 

would cause an erroneous volumetric increase using the simple change detection 

method.  However, the voxel-based method generally avoided this type of error as the 

final RTM would likely have some voxels present within the distance threshold of the 

poorly-modelled initial RTM section, thus correctly disregarding the apparent change in 

volume.  The generalized set of models provided by the use of 5 cm voxels, while 

evaluating the 12 cm distance threshold, also reduced sensitivity to minor differences in 

the shape and size of branch or stem sections caused by noise points, scanner error, or 

modelling error. 
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Figure 26: a) SDT18 initial RTM; b) SDT18 final RTM showing branch structural 

loss; c) dropped branches correctly identified while avoiding erroneous structural 

loss detections caused by model discrepancies; red – 5 mm voxels identified as 

structural losses using voxel-based method, yellow – SDT18 final RTM. 
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 The voxel-based change detection method also allows for the identification of 

individual branches or stem sections that have been lost over time, which could be 

further analyzed in future studies, as opposed to the simple method which only estimates 

net volumetric loss.  A hypothetical basic voxel-based method could function by directly 

comparing RTM pairs to identify particular voxels which were present in the initial 

model but absent in the final model, but in addition to an increased sensitivity to 

modelling error occurring with this hypothetical approach, this basic approach would 

also fail to account for the shifting positions of tree components as decay occurs over 

time.  Three general forms of positional shifts were observed among the 29 SDTs: (1) 

branches sagging as decay progresses, (2) branch stubs rising in response to the loss of 

the branch’s terminal end, and (3) stems leaning away from their original axis, 

occasionally in different directions in the case of a forked SDT.  The ICP alignment 

procedures and associated metrics enabled the voxel-based change detection to generally 

avoid misclassifying shifted branches as having been lost (Figure 27).   

Although the voxel-based method necessarily underestimates the volume of each 

lost branch in proportion to the distance threshold used, it is considered to provide a 

more accurate and consistent estimate in comparison to the hypothetical basic voxel-

based approach which would only consider the presence or absence of each voxel 

without any spatial considerations. 
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Figure 27: Example of shifting branch positions as decay progresses. a) detail of 

branches sagging and a branch stub rising after losing its terminal end; blue – 

initial RTM, yellow – final RTM; c) voxel-based structural loss method correctly 

identified lost branches, avoiding errors caused by branch shift; red – lost voxels. 

 

 

 Two oak trees, SDT6 and SDT13, did not experience any structural losses over 

their observation period and presented a chance to examine the repeatability of the 

volume estimation algorithm when applied to point clouds of structurally identical trees 

collected at different times.  SDT6 was a medium/medium relative quality combination 

dataset, using the same FARO scanner for each observation with a time interval of 71 
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days and a net volume difference of 1.78 L and 0.0 L for the simple and voxel-based 

change detection methods, respectively.  The erroneous volumetric increase detected 

using the simple method was due to occlusion effects and associated modelling errors at 

the base of the stem and represents a 0.29% deviation from the initial volume estimate, 

while the voxel-based method correctly determined that no structural losses had 

occurred.  SDT13 was a low/medium relative quality combination dataset which was 

initially scanned with the Leica and finally scanned with the FARO with an elapsed time 

between observations of 753 days.  An erroneous volume increase of 11.48 L, using the 

simple method, was estimated due to errors caused by minor occlusion effects and the 

generalizations resulting from vertically-resampling the initial point cloud, while the 

voxel-based method correctly estimated that no volumetric change had taken place. 

 The height bin analyses were aggregated by genus to investigate the potential of 

percentile height bins to identify and characterize structural loss patterns.  The voxel-

based structural loss height bins were used for analysis as they were found to provide 

more accurate change detection capability than the simple method.  SDT5, an oak which 

lost approximately 85% of its volume over an elapsed time of 71 days due to a snapped 

stem near the ground, was excluded from the following height bin analysis as it was 

found to have a profound effect on the results when scaling its structural loss rate to an 

annual basis.  It must be noted that due to the wide range of decay classes and sizes 

present in each genus’ sample group, along with the small sample size of each genus, 

these height bin results are presented as an example of potential future applications of 

this study’s methodologies.  The focus of this study was the design and implementation 
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of detailed structural loss detection and quantification; the current height bin results are 

not yet considered suitable to be generalized for forestry applications until larger studies 

focused on this analysis may be conducted, although they offer a valuable opportunity to 

quantify and describe structural loss in a detailed manner.  Figure 28 shows the average 

annual relative structural loss rate of pines and oaks in 5 % height bins, where the 

volume loss of each height bin was calculated as a percentage of the total volume of 

each SDT at the initial observation (e.g., if a particular height bin lost 10 L of volume 

over one year and the initial volume of the entire SDT was 800 L, this would be 

represented as an annual structural loss rate of 1.25% in that bin). 

The average annual height bin structural loss rates are shown in Figure 29, where 

the volume loss of each height bin is represented as a percentage of the volume present 

in that same height bin as estimated in the initial RTMs (e.g., a particular height bin 

which had an initial volume of 100 L and a final volume of 20 L over a one year 

observation interval would result in an annual bin loss rate of 80%).  The pines observed 

in this study had relative bin loss rates greater than oaks in each percentile height bin, 

with the exception of the 95 – 100% bin (Figure 29). 
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 Figure 28: Average annual structural loss rates of oaks and pines detected using 

the voxel-based method; calculated as the mean percent volume loss in each height 

bin as a percentage of each tree’s initial volume.  
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Figure 29: Average annual structural loss rates of oaks and pines detected using the 

voxel-based method; calculated as the mean percent volume loss in each height bin. 

 

 

It is difficult to ascertain if this represents a regional trend, due to the 

aforementioned study limitations with regards to this height bin analysis, and may be 

potentially explained by a variety of factors such as the height and mass of large pines 
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making them more vulnerable to wind-induced stress and fragmentation, variation in site 

conditions between oaks and pines (e.g., soil moisture availability, occurrences of heavy 

storms), cause of mortality, time since mortality, variation in wood decay rates, and the 

effects of site conditions on tree morphology.  Both oaks and pines show a generally 

increasing trend in the rate of relative bin structural loss with respect to increasing bin 

height, presumably due to branch drop in the upper crown and snapped stems.  The 

relative bin structural loss rate of oaks tends to increase more rapidly than pines above 

the 70 – 75% bin, possibly due to the more complex branching structure generally 

observed among oaks in the upper crown area, which tend to drop prior to the tree being 

downed.   

Based on the relative bin structural loss rates, pine and oak snags were estimated 

to have a mean longevity of approximately six years and nine years, respectively (Figure 

30), as determined by loss rates of the lowest bin which, when completely lost, would 

signify a complete transition from SDT to downed woody debris.  Alternatively, the 

longevity of each genus may be considered with respect to their observed average net 

structural loss rate.  Pines and oaks were found to lose 32.8% and 17.7% of their initial 

volume per year, respectively, resulting in respective longevity estimates of 3.04 and 

5.64 years.  
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Figure 30: Average estimated longevity of oaks and pines SDTs in 5% height bins. 

   

 

The discrepancy in longevity estimates was likely caused by short stumps 

remaining after a stem snapped near ground level, which were able to be scanned and 

still considered standing.  A larger sample size in future studies would be needed to 

refine these longevity estimates.  In previous studies, large loblolly pine snags (mean 

DBH of 49 cm) were found to have an average longevity of approximately six years in 
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eastern Texas (Conner and Saenz, 2005) with 15.4% of the snags still standing 10 years 

post-tree death.  Hardwoods were found to have an average longevity of approximately 

five years in eastern Texas and Arkansas (Cain, 1996; Dickson et al., 1995).  Harmon 

(1982) sampled fire-killed standing dead trees ranging from 5 – 15 cm DBH and found 

that Quercus prinus and Quercus coccinea both decayed more rapidly than Pinus 

virginiana and Pinus rigida in the southern Appalachian Mountains.  The Harmon 

(1982) study used reductions in wood density over time to quantify rate of decay, but it 

is not clear if these trends in wood decay are consistent across various species and 

regions, nor if they are the primary driver of structural loss rates among standing dead 

trees.  Bull and Partridge (1986) found that the longevity of Pinus ponderosa snags in 

eastern Oregon was related to the cause of mortality and Conner and Saenz (2005) 

observed that beetle-killed pine snags fell more rapidly than those killed by wind-snap.  

Although the snags observed in this study were believed to have been killed by drought 

stress, the severe drought conditions may have also facilitated other causes of death such 

as disease or insect damage (Moore et al., 2016), which may affect structural loss rates. 

  As the SDTs observed in this study were likely dead for three to four years prior 

to the initial scan, these longevity estimates are possibly underestimated since they had 

generally experienced structural losses prior to the first observation.  Longevity 

estimates may also be biased depending on the true time of death for each tree as well as 

by survivor bias since some trees killed during the 2011 drought had likely been downed 

already and were thus unable to be included in this study. 
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Seen in Figure 28, pines in this study were observed to generally lose more 

volume, as a percentage of their initial total volume, in the lower height bins, while the 

oaks do not seem to follow a particular pattern.  As softwoods tend to have a greater 

proportion of their volume contained in the stem, in comparison to hardwoods (Jenkins 

et al., 2003), the bulk of pine structural loss occurring in lower height bins is accounted 

for by snapped stems or downed trees, while the sporadic effect seen in the oaks may 

possibly be explained by variations in branching patterns among the oak sample group 

and the tendency for oak branches to represent a larger proportion of a tree’s volume.   

3.4 Conclusions 

To the best of the author’s knowledge, no prior studies have attempted to 

characterize the structural loss of SDTs in terms of quantified volumetric loss using 

terrestrial lidar.  Several studies have investigated the longevity or transition dynamics of 

snags, sometimes including qualitative snag descriptions or height loss measurements 

(Aakala et al., 2008; Cain, 1996; Cline et al., 1980; Conner and Saenz, 2005; Corace et 

al., 2010; Dickson et al., 1983; Landram et al., 2002; Vanderwel et al., 2006) or 

estimated the decay rate of SDTs via reductions in wood density as decomposition 

occurs (Harmon, 1982; Krankina and Harmon, 1995) but the relationship of quantified 

structural loss rates to these studies is not well-documented.  In this study, a novel 

methodology for detecting, quantifying, and characterizing the structural loss of standing 

dead trees was presented.  Operating on voxelized reconstructed tree models created 

using the TreeVolX algorithm, a voxel-based change detection approach was able to 

provide generally more accurate change detection capabilities than simply comparing the 
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total volume of each respective reconstructed model pair.  Height bin analyses found that 

pines tended to lose volume more rapidly than oaks, but significant variation among tree 

size and initial decay class, as well as a small sample size for each genus, make it 

difficult to determine if these findings may be generalized to broader forestry 

applications.  Ideally, future studies focusing on applications of this, or similar, 

methodologies to estimate quantitative structural loss rates should design experiments 

which include larger sample sizes among DBH, height, and decay classes for each 

species or genus being studied and conduct multiple scans with a TLS from the time of 

initial mortality to a complete transition to downed woody debris.  Even though 

successful volume and change detection estimates were possible for all combinations of 

relative point cloud quality in this study, future studies should strive to scan each tree 

from at least four positions at high resolution to maximize point cloud and RTM quality, 

although dense forest conditions can often make this challenging or even impossible.  

The presented methodology could potentially be applied to future studies, at a 

species, genus, or broader level, with objectives of: estimating quantified structural loss 

rates, providing quantitative assessments of current qualitative decay class systems, 

deriving new quantitative decay class systems, assessing structural loss rates in response 

to various mortality events, providing precise estimates of carbon or nutrient fluxes as 

trees lose volume over time, assessing the effect of various environmental factors on 

structural loss rates, validating or implementing structural loss adjustments used in 

component ratio techniques for broad sampling schemes without relying on generalized 

allometric equations, and characterizing the morphological aspects of structural loss. 
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4. CONCLUSIONS 

This study presents an automated voxel-based technique for accurately 

estimating the volume of standing dead trees with terrestrial lidar data.  Using an 

adaptive contour interpolation approach, the method is capable of precisely modelling 

complex shapes with linear interpolation when a branch slice contains sufficiently dense 

point coverage as well as compensating for areas of occlusion or reduced point density 

by applying an elliptical contour generation.  The incremental ellipse segmentation 

method offers an ability to more-accurately segment point clouds characterized by 

moderate, intermittent occlusion and the presented VPCR technique is capable of 

modelling point clouds with significant occlusion effects or consistently low point 

density.  These features offer a robust solution to estimating the volume of standing dead 

trees as dense forest systems present a challenging scanning environment with respect to 

the objective of collecting very high quality point clouds. 

 Although this study focused on modelling standing dead trees, the volume 

estimation method is expected to provide similar results when applied to live trees 

scanned in leaf-off conditions.  With the addition of a foliage filtering step, it could also 

presumably be applicable to live trees in leaf-on condition, although the presence of 

leaves may cause significant levels of occlusion with regards to laser returns from the 

tree’s woody structure, leaving some branches difficult or impossible to model 

accurately and increasing the overall error of volume estimation.  With the inclusion of 

density measurements or species-specific parameter estimates, accurate volume 

estimations could be used to estimate biomass, carbon content, or other biogeochemical 
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parameters of interest.  The voxel-based modelling technique also facilitates accurate 

volume estimations of individual tree components, as branches or other areas of interest 

may be manually extracted from the reconstructed tree models and estimated by simply 

multiplying the number of voxels present by the volume of an individual voxel.  Other 

potential applications of this modelling technique include evaluating or refining 

allometric equations, particularly with respect to standing dead trees in various states of 

decay, conducting change detection analysis to precisely monitor the decay or growth of 

individual trees over time, using TLS to validate or calibrate regional biomass 

estimations, and the automated estimation of morphological tree parameters. 

 Future volume estimation studies could focus on developing techniques to reduce 

the overall error of volume estimation, further refining methods intended to minimize 

errors caused by imperfect point clouds, testing the presented method on additional tree 

species, and investigating the potential to model individual tree point clouds derived 

from unmanned aerial systems lidar sensors or structure from motion techniques. 

To the best of the author’s knowledge, no prior studies have attempted to 

characterize the structural loss of SDTs in terms of quantified volumetric loss using 

terrestrial lidar.  Several studies have investigated the longevity or transition dynamics of 

snags, sometimes including qualitative snag descriptions or height loss measurements 

(Aakala et al., 2008; Cain, 1996; Cline et al., 1980; Conner and Saenz, 2005; Corace et 

al., 2010; Dickson et al., 1983; Landram et al., 2002; Vanderwel et al., 2006) or 

estimated the decay rate of SDTs via reductions in wood density as decomposition 

occurs (Harmon, 1982; Krankina and Harmon, 1995) but the relationship of quantified 
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structural loss rates to these studies is not well-documented.  In this study, a novel 

methodology for detecting, quantifying, and characterizing the structural loss of standing 

dead trees was presented.  Operating on voxelized reconstructed tree models created 

using the TreeVolX algorithm, a voxel-based change detection approach was able to 

provide generally more accurate change detection capabilities than simply comparing the 

total volume of each respective reconstructed model pair.  Height bin analyses found that 

pines tended to lose volume more rapidly than oaks, but significant variation among tree 

size and initial decay class, as well as a small sample size for each genus, make it 

difficult to determine if these findings may be generalized to broader forestry 

applications.  Ideally, future studies focusing on applications of this, or similar, 

methodologies to estimate quantitative structural loss rates should design experiments 

which include larger sample sizes among DBH, height, and decay classes for each 

species or genus being studied and conduct multiple scans with a TLS from the time of 

initial mortality to a complete transition to downed woody debris.  Even though 

successful volume and change detection estimates were possible for all combinations of 

relative point cloud quality in this study, future studies should strive to scan each tree 

from at least four positions at high resolution to maximize point cloud and RTM quality, 

although dense forest conditions can often make this challenging or even impossible.  

The presented change detection methodology could potentially be applied to 

future studies, at a species, genus, or broader level, with objectives of: estimating 

quantified structural loss rates, providing quantitative assessments of current qualitative 

decay class systems, deriving new quantitative decay class systems, assessing structural 
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loss rates in response to various mortality events, providing precise estimates of carbon 

or nutrient fluxes as trees lose volume over time, assessing the effect of various 

environmental factors on structural loss rates, validating or implementing structural loss 

adjustments used in component ratio techniques for broad sampling schemes without 

relying on generalized allometric equations, and characterizing the morphological 

aspects of structural loss. 
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