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ABSTRACT

To take advantage of the processing power in the Chip Multiprocessors design,

applications must be divided into semi-independent processes, that can run concur-

rently on multiple cores within a system. Therefore, programmers must insert thread

synchronization semantics (i.e. locks, barriers, and condition variables) to synchro-

nize data access between processes. Indeed, threads spend long time waiting to

acquire the lock of a critical section. In addition, a processor have to stall execution

to wait for load data accesses to complete. Furthermore, there are often independent

instructions which include load instructions beyond synchronization semantics that

could be executed in parallel while a thread waits on the synchronization semantics.

The conveniences of the cache memories come with some extra cost in Chip Multi-

processors. Cache Coherence mechanisms address the Memory Consistency problem.

However, Cache Coherence adds considerable overhead to memory accesses. Having

aggressive prefetcher on different cores of a Chip Multiprocessor, can definitely lead

to significant system performance degradation when running multi-threaded appli-

cations. This result of prefetch-demand interference when a prefetcher in one core

ends up pulling shared data from a producing core before it has been written, the

cache block will end up transitioning back and forth between the cores and result

in useless prefetch, saturating the memory bandwidth and substantially increase the

latency to critical shared data.

We present a hardware prefetcher that enables large performance improvements

from prefetching in Chip Multiprocessors by significantly reducing prefetch-demand

interference. Furthermore, it will utilize the time that a thread spends waiting on syn-

chronization semantics to run ahead of the critical section to speculate and prefetch
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independent load instruction data beyond the synchronization semantics.
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1. INTRODUCTION

The increasing difference between processor and memory speed is known as

“Memory Wall” [35]. Due to this difference, memory latencies have become a critical

bottleneck for processor performance. To mitigate this bottleneck, current architec-

tures adopt multi-level cash hierarchy that trade off capacity for lower latency at

each level. The goal of the hierarchy is to improve the apparent average memory

access time by frequently handling a memory request at the cache, avoiding the

comparatively long access latency of Main Memory. Even with multi-level cash hi-

erarchies the latency of misses can still be quite high. Prefetching is an approach

that tries to reduce cache misses by predicting future memory accesses and issue

requests for the corresponding memory blocks in advance of explicit accesses. To be

effective, prefetcher must be accurate when predicting the correct address of future

memory access and timely so that the prefetched data arrives at its destination be-

fore cache miss occurs. Despite these challenges, hardware prefetching can improve

overall program execution time by overlapping computation with memory accesses.

Since the end of the frequency scaling era [33], there is a clear trend towards Chip

Multiprocessors architectures. Current mobile phone already have multiple cores,

other aggressive architectures such as Intel’s TeraScale and Tilera’s TILE-Gx100 use

80 and 100 cores respectively [7]. the scalability of these aggressive architectures

are limited by the cache coherent overhead[14]. To take advantage of the process-

ing power in the CMPs design, applications must be divided into semi-independent

processes that can run concurrently on multiple cores within a system.

Writing parallel programs that fully exploit parallel architecture is more diffi-

cult than writing sequential programs due to coordination complexity. Coordination
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arranged access to shared-data, manage parallelism, and handel inter-process com-

munication. To enable parallel execution computation needs to be partitioned. To do

so, programers frequently insert thread synchronization semantics (i.e. locks, barri-

ers, and condition variables) to synchronize data access between threads, to ensuring

correctness and avoid races condtions. Usually theses semantics lead to perfomance

degrdations. Many progarming languages were designed with parallelism in mind.

For example, the model of threads explicitly share memory and allow programmers

to employ mechanisms such as locks to ensure mutually exclusive access to shared

resources. To ensure mutual exclusion to shared resources, modern architectures

provide instructions capable of updating (i.e. reading and writing) a memory loca-

tion as a single atomic operation viz. Load Linked /Store Conditional (LL/SC) in

Alpha, IBM PowerPC and ARM; and test-and-set and SWP in x86 and SPARC to

construct locks, condition variables, barriers and spinlocks.

Chip Multiprocessors architectures are increasingly hierarchical regarding mem-

ory access. Multi-level caches are used to reduce the frequency of accesses to the

relatively slow main memory to increase memory bandwidth and to hide access la-

tency [24]. By sharing the same cache, cores may communicate more efficiently [24].

On the other hand, the advantage of having cache memories comes with some extra

cost when the system has multiple processors. Copies of data which have been re-

trieved and modified by a processor in its local cache become inconsistent with the

original copy in main memory. When another processor accesses the same data item

it should receive the latest up-to-date copy and not an older version of it. Cache

coherence mechanisms address the memory consistency problem. It ensures that the

value of an item retrieved by any processor in the system is the most up-to-date one.

However, Cache coherence adds considerable overhead in accessing memory in Chip

Multiprocessors. Cache coherence logic is in the critical path of accessing memory
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and can easily become the main bottleneck, exacerbating the processor and memory

speed gap, leading to significant performance degradation.

Thread synchronization semantics (i.e. locks, barriers, and condition variables)

are used to synchronize access to shared data between threads. Fatehi at el. [15]

observed that there is as much as a 6x slowdown due to these synchronization se-

mantics. The overheads of thread synchronization semantics scales with core count,

dramatically reducing the overall scalability of the application. Furthermore, there

are often independent instructions which include load instructions beyond a syn-

chronization semantic that could be executed in parallel while a thread waits on the

synchronization semantic. In Chip Multiprocessors, cache coherence is achieved by

means of an invalidation-based coherence protocol.

Many hardware prefetchers with diverse prefetching strategies have been pro-

posed in literature [30, 10, 32, 31, 34, 27, 4, 19, 29, 22]. Most existing prefetchers

prefetch future memory block based on current cache misses. For example, sequential

prefetchers prefetch the lines sequentially following the current miss [30] and stride

prefetchers monitor memory accesses generated by memory instructions in order to

identify constant-stride references. Then, prefetch lines show the strided pattern

with respect to the current miss [10]. Region based prefetchers like Spatial Mem-

ory Streaming (SMS) [31] makes use of code-based correlation to take advantage

of spatial locality over larger regions of memory in the applications. SMS records

access patterns over spatial regions over a period of time called the spatial region

generation. Then use the information to preftech future memory block in spatial

region around a miss. One potential issue with SMS is that it cannot predict the

first misses into a region. Branch-predictor-directed prefetchers like B-Fetch [26]

use the core branch predictors to explore future control flow. These techniques use

the branch predictor to recursively make future predictions to find instruction block

3



addresses for prefetch. Because branch predictors are decoupled from the rest of

the pipeline, predictors can theoretically advance ahead of execution to an arbitrary

extent to predict future control flow.

Data prefetchers [30, 32] are ineffective for parallel programs, due to the fact that

they use local knowledge to decide which memory block to prefetch. The problem

with parallel programs, they regularly to use the same data at almost the same

time. Another well-known problem in parallel programs is that a finite-size buffer

or producer/consumer in which one thread will generate data that will be consumed

by another thread. Coherence protocol maintains agreement between all replicated

copies when the data are modified by threads running on diffrent cores on the system.

Having a prefetcher that does not pay attention to this buffering strategy and the

coherence protocol ultimately leads to significant system performance degradation.

In particular, when a prefetcher ends up pulling data from a producing core before its

been written back, such a prefetcher will increase the number of useless prefetches.

In addtion, threads may have to wait for a long time to acquire a lock of a critical

section. Furthermore, a processor may have to stall for a long time waiting for all of

its load data accesses to complete before releasing the lock.

B-Fetch [17] presents a novel idea that combineds branch prediction with prefetch-

ing. It can achieve high accuracy with low hardware overhead. B-Fetch, uses looka-

head mechanism that reuses branch prediction to predict the future execution path.

Detailed simulation using gem5[6] shows a geometric mean speedup of 23.4% for

single-threaded workloads and 28.6% for multi-application workloads over a baseline

system without prefetching. The current implementation of B-Fetch [17] operates on

spinloop while a thread is waiting on a lock.

The contribution of this project is to develop a hardware prefetcher that uses the

information about synchronization semantics to identify when a thread is spinning,
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waiting on the lock or barrier. The spin time can be utilized to run ahead of the

execution to speculate and prefetch data beyond synchronization semantics. The

prefetcher will take into account the effect of coherence protocol. It will include

learning mechanisms to minimize the number of invalidated prefetch memory block.

To implement the proposed prefetcher we will extentd the current implementation

of B-Fetch [17]. To do so, first, we need to add a trace cache to the decode stage

in the Out-of-Order core to help identify synchronization semantics in the dynamic

instruction stream. When a thread is spinning, waiting at a barrier or waiting to

acquire a lock, and the core is not being used for any other purpose, B-Fetch [17]

can run ahead the excution and prefetch data that can be useful in the future to all

threads. The second component is the learning queue, which includes the prefetch

memory block that were invalidated because of coherence protocol. Once a memory

block is inserted into the queue, the prefetcher will never prefetch it again and ensure

that the prefetch memory block will not result in coherence invalidation.

Detailed simulation using gem5 [6] simulator for the implementation and the

PARSEC Benchmark Suite[5] compiled for the Alpha ISA shows a geometric mean

speedup of 9.3% for multi-threaded workloads over a baseline system without prefetch-

ing.

1.1 Thesis Statement

This thesis proposes a hardware data prefetching mechanism to target multi-

threaded workloads. The prefetcher leverages the synchronization primitives in the

dynamic instructions stream. The prefetcher identify when a thread is waiting to

acquire the lock, and utilize the time run ahead of the critical section to speculate and

prefetch independent load instruction data beyond the synchronization semantics.

The proposed prefetcher outperforms the best in class lightweight prefetcher,
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and chieves a geometric average speedup of 9.3% speedup over baseline with a low

hardware impact.

To the best of our knowledge, we are not aware of existing prefetcher design which

uses the waiting time on synchronization semantics, to ahead of the critical section to

speculate and prefetch independent load instruction data beyond the synchronization

semantics.

1.2 Document Organization

The rest of the thesis is organized as follows. Chapter 2 gives the required back-

ground which includes the programming model for shared memory, architectural

support for shared memory synchronization, cache implementation for shared mem-

ory then review of data prefetching techniques. Chapter 3 reviews the orignal B-fetch

then it describes the proposed prefetcher architecture in detail. Chapter 4 discusses

our methodology and evaluation of results. Finally, Chapter 5 concludes this thesis

and discusses future work.

6



2. BACKGROUND AND PRIOR WORK

This section reviews some related concepts before embarking on the specifics of

the thesis. It presents shared memory programming models, shared memory synchro-

nization, then hardware support for memory synchronization. Finally, it discusses

the different data prefetching techniques that have been proposed in literature and

compares our proposed solution against a few prefetchers.

2.1 Programming Model for Shared Memory

The Chip Multiprocessors revolution has cause the issue of parallel programming

to be in the forefront of application development. Chip Multiprocessors replaced

the conventional computational model with a parallel programming model due to

the fact that multiple processors on a CMP are aailable to programmers as separate

processing units. To take advantage of the processing power in the CMPs design,

applications need to be written using different programming paradigms, in which

applications must be divided into independent threads that can run simultaneously

across the cores within a system. Once multi-threading has been implemented, pro-

grams can take advantage of thread-level parallelism (TLP) by running the separate

threads in at the same time.

Transforming the algorithmic solution into a correct and efficient parallel pro-

gram to fully exploits the proceesing power in the parallel architecture is a difficult

task. Due to the coordination needed to manages access to shared-data, parallelism,

and inter-process communication[18]. The two primary shared memory program-

ming models are Pthreads and OpenMP. Pthreads or Portable Operating System

Interface (POSIX) Threads is a set of C programming language types and procedure

calls and is typically accessed via run-time library and operating system calls [8].
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OpenMP extends the programming language (C, C++ or Fortran) with compiler di-

rectives to make parallelism and data privacy explicit. OpenMP annotations change

the semantics of loops and data persistence and it is possible for OpenMP annota-

tions to assert incorrect program transformations which manifest themselves as race

conditions or deadlocks [9].

Figure 2.1: Shaere memory

In the POSIX model , the dynamically allocated heap memory and the global

variables are shared among the threads. Moreover, sharing memory is the fastest

interprocess communication mechanism between multiple threads. The operating

system maps a memory segment in the address space of several threads. As figure

2.1 shows, by sharing the same memory, threads can communicate to coordinate their

execution by using only the basic memory read and write operations without calling

operating system functions. When multiple threads access the shared data, program-
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mers have to be aware of race conditions and deadlocks. To protect critical section,

i.e., the portion of code where only one thread must reach shared data, Pthreads pro-

vides mutex Mutexes and Condition Variables POSIX Mutexes, Condition Variables

and Semaphores as primary means of implementing thread synchronization [2, 20].

OpenMP is a shared memory application programming interface that provides

a portable, scalable model for programmers of shared memory parallel applications

[9]. OpenMP is a set of compiler directives, pragmas, and a runtime that provide

management of the thread pool and library routines [9]. The directive instruct the he

compiler to create threads, perform synchronization operations, and manage shared

memory. OpenMP provides a variety of Synchronization primitives that control how

the execution of each thread proceeds relative to other team threads [9].

Regardless of the syntax of the parallel programming model, both of these models

ultimately have shared memory and synchronization primitives that can be leveraged

by our preftecher to identify when a thread is waiting to acquire the lock, and utilize

the time to run ahead of the critical section to speculate and prefetch independent

load instruction data beyond the synchronization semantics.

2.1.1 Shared Memory Synchronization

Synchronization is a central operation in parallel applications. The two major

forms of explicit synchronization operations in shared memory multiprocessors are

barriers and locks. A barrier used to ensure no process within a group cooperating

processes can move beyond a certain point in the execution before all processes have

reached the barrier. Barriers are commonly used to enforce such waiting.
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Figure 2.2: Ideal barrier synchronizes

Figure 2.2 illustrates how a barrier works. A task executes its code until it

reaches a barrier. Then it waits until all other tasks have reached that barrier before

proceeding. Ideally, all tasks start at the same time and reach the barrier at the

same time , then start new phase of execution.

Figure 2.3: Critical threads in the execution phases.

Due to load imbalance between threads, different threads can be critical threads
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during the execution phases. As figure 2.3 show other threads need to wait untill the

critical thread get to the barrier before resume execution.

Figure 2.4: A barrier makes the fastest task wait for the slowest task before it can

proceed

Implementing barrier synchronization is quite complex and often proves to be a

performance bottleneck. A barrier is an expensive synchronization mechanism since

the semantics of barriers require the computation to wait for the slowest task to

arrive before the rest can proceed. Figure 2.4 shows how barrier synchronization can

cause performance degradation by making all tasks wait for the slowest.

A lock is just a variable that holds the state of the lock at any instant in time.

Locks can be used to provide individual threads with exclusive access to shared

data and a critical section of code. The exclusive access applicable to fine-grained

many shared memory parallel applications. To mininmize serialized processing and

maximized parallelism fine-grained share littel data or code between threads.

POSIX also provides Mutexes which allow only one thread to lock a mutex vari-

able at any given time. When multible threads try to lock a mutex, only one will
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successed. Also, Condition Variables used to allows synchroniztion based on data

value [25].

2.2 Architectural Support for Shared Memory Synchronization

There are different ways of supporting synchronization primitives in hardware.

A widely known practice is to implement the lowest level of synchronization in the

form of atomic instructions in hardware and to implement all other synchronization

primitives on top of that in software. This section outline how synchronization

semantics are implemented in shared memory Chip Multiprocessors.

2.2.1 Atomic Operations

Atomic operations are defined as operations whose execution is not interfered

with by other concurrent activities. To facilitate the construction of synchronization

primitives, most architectures provide read-modify-write instructions that are capa-

ble of updating (i.e., reading and writing) a memory location as a single atomic op-

eration. Both RISC and CISC include atomic operations to support synchronization

primitives. The compare and swap primitive was originally introduced in IBM 370

architecture [16]. It also exists in modern x86, IA-64, and SPARC machines. The

load linked/store conditional primitive can be found in modern POWER, MIPS,

and ARM machines. ALPHA ISA support Load Linked (LL) and Store Conditional

(SC), a Load Linked (LL) instruction loads a block of data into the cache. The

following Store Conditional (SC) instruction attempts to write to the same block.

It succeeds only if the block has not been referenced since the preceding LL. Any

memory reference to the block from another processor between the LL and SC pair

causes the SC to fail. To implement an atomic primitive, library routines typically

retry the LL/SC pair repeatedly until the SC succeeds [12].

The problem with atomic read-modify-write instructions is that they result in in-
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terprocessor communication in every atomic operation. When a core wants to modify

a shared variable, it sends a message to the variable’s home core to acquire exclusive

ownership. In response, the home core typically sends invalidation messages to other

cores sharing the data. The resulting latency severely impacts the performance of

synchronization operations.

2.2.2 Barriers

Memory Barrier (MB) enforces a perceived ordering of memory operations, it en-

sures that all following loads or stores will not access memory until after all previous

loads and stores have accessed memory, as observed by other processors. Memory

barriers can be store or load barriers, store barriers ensure that all the store opera-

tions specified before the barrier will appear to happen before all the store operations

specified after the barrier with respect to the other components of the system. On

the other hand load barriers ensure that all the load operations specified before the

barrier will appear to happen before all the load operations specified after the barrier

with respect to the other components of the system [1].

[1]

Figure 2.5 shows how pairing barrier is used to ensure safe access to the critical

section. Conceptually, it includes three steps 1) Acquire software lock; 2) Critical

section - read/write shared data; 3) Clear software lock.
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Figure 2.5: Barrier in shared memory

The first barrier in the code above prevents any reads from being prefetched

before the lock is acquired. The second barrier prevents any writes and reads in the

critical section being delayed past the clearing of the lock. Such delay may impcat

the other users of shared data[12].

2.2.3 Spinlocks

A spinlock is a lock that make a thread wait in a spin loop while constantly

checking if the lock is available. Because thread remains active but is not doing a

useful task, the use of such technique is busy waiting. When the thread get hold of

the spinlock, it will hold it, untill it finish executing the critical section then explicitly

release it. Spinlocks are efficient if threads are going to be blocked for only short

periods avoiding rescheduling or context switching from the operating system. Figure

2.6 shows an example using ALPHA assembly language to implement a spinlock.

Spinlocks are useful if threads will be blocked for only short periods avoiding

rescheduling or context switching from the operating system. Figure 2.6 shows an

example using ALPHA assembly language to implement a spinlock.

14



Figure 2.6: Lock in shared memory

Form the code above we can see, if the lock variable is already set, the loack

is already set and no stores will execute. If not the store will be executed. This

loop use regulare load. This code increase the possibility that LDQ L hits in the

cache and the LDQ L/STQ C sequence is completed quickly and successfully. The

lock variable is actually being changed from 0 to 1, and the STQ C fails due to an

interrupt. Both conditional branches are forward branches, so they are most likly

predicted not to be taken. Finally, an ordinary STQ instruction is used to clear the

lock variable.

2.3 Cache implementation for Shared Memory

This section presents the required hardware support to guarantee the correctness

of exectuting shared memory program on Chip Multiprocessors. It highlights Cache

Coherence and Synchronization Problem.
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2.3.1 Cache Coherence

In Chip Multiprocessors, a coherent cache allows multiple copies of the same

memory location to exist in multiple processors. It is critical to ensure that these

copies are consistent by having processors broadcast the values of updates or in-

validation, otherwise application errors will occur. Due to sharing data blocks,

cache misses and memory traffic are a performance bottleneck for parallel comput-

ing in Chip Multiprocessors. Cache coherence becomes a significant problem when

parallel applications make local replicas of shared data to improve scalability and

performance.

The two main classes of coherence protocols are snooping and directory. Snoopy-

based protocols used interconnection network to broadcast messages to all cores. A

cache controller send a request for a block by broadcasting a request message to all

other coherence controllers. The coherence controllers send back data in response

to the request. The shared wire become a performance bottleneck as the number

of processors increases. In directory-based, no broadcast is necessary. In directory-

based, no broadcast is necessary. A directory will maintain the required information

for coherence. A cache controller communicates with a common directory whenever

the processor’s action may cause an inconsistency between its cache and the other

caches or memory.

The improvement of cache design becomes more and more complex due to the

impact of super-pipelining, super-scaling, prefetching, speculation, etc. Cache Co-

herence logic is in the critical path of accessing memory and can easily become the

main bottleneck, exacerbating the processor and memory speed gap leading to sig-

nificant performance degradation. Having aggressive prefetching on different cores

of a Chip Multiprocessors is very beneficial for memory latency tolerance on many
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applications, but it can lead to significant system performance degradation and band-

width waste. This result of prefetch-demand interference happens when a prefetcher

in one core ends up pulling data from a producing core before its been written. The

cache block will end up transitioning back and forth between the cores and result in

useless prefetch and saturating the memory bandwidth.

2.4 Data Prefetching Techniques

Hardwar data prefetching has earned much attention as means to bridge the per-

formance gap between processor and memory system. Several hardware prefetchers

with diverse prefetching strategies have been proposed in the literature. In the follow-

ing sections, several hardware prefetching strategies will be presented and examined

by comparing their relative strengths and weaknesses.

1. History-based prefetching is the most commonly used among hardware prefetch-

ing strategies. In these strategies, a prefetch engine is used to predict future

data references and to issue prefetching instructions. The prefetch engine cap-

tures the history access patterns or the history of cache misses to predict future

accesses by a processor. Spatial Memory Streaming (SMS) prefetcher [32] is

one of the current top-performing, light-weight, history based prefetchers. SMS

predicts the future access pattern within a spatial region around a miss, based

on a history of access patterns initiated by that missing instruction. SMS intro-

duces the notion of a spatial region generation that begins with the first miss

to access a block within a region and ends with the eviction or invalidation

of any block from that region. Spatial prefetchers are ineffective for pointer-

based data structures with arbitrary memory layouts and have shown limited

effectiveness for some workloads with many pointer-chasing access patterns[32].

2. Address-correlating prefetching is a class of prefetchers that exploits the fact
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that algorithms tend to traverse data structures in the same way repeatedly,

leading to recurring cache miss sequences. Correlation between accesses to

pairs of memory locations was suggested as early as 1976 [3]. Cooksey et al.

proposed Content Directed Prefetcher (CDP), a type of address-correlating

prefetching, [11] to target pointer-intensive applications. CDP examines each

address-sized word of the fetched or subsequently prefetched data in order to

find likely pointer addresses. Then, it initiates prefetch requests for those data

that are identified as potential addresses. Due to this aggressive approach,

CDP has the potential to run many instances ahead of the current execution

sequence and prefetch data, pointed by likely pointer addresses, into the cache.

CDP does not require any state information and also does not require any

training. However, it tends to generate a lot of useless prefetches.

3. Runahead-based prefetching uses the execution resources of a core that would

otherwise be stalled on a long-latency event like off-chip cache miss to pre-

execute a set of instructions speculatively, then using the results obtained to

issue prefetching. Run-ahead was originally proposed in the context of in-order

cores by Dundas and Mudge [13]. Mutlu et al. proposed an implementation

to support runahead execution in out-of-order processors [23], in the imple-

mentation, when a memory operation misses in the second-level cache, the

processor enters runahead mode and speculatively pre-executed future instruc-

tions to initiate prefetching. Although the prefetcher is effective in the event

of second-level cache miss, it suffers from a few drawbacks. First, there is a

large overhead in restarting normal execution after restoring the checkpoint,

when the miss returns. Also, because of this overhead, the effectiveness of this

mechanism to handle shorter latencies like the first-level cache miss latencies
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is reduced. Additionally, since the same hardware is used for runahead mode

execution, computation cannot be overlapped with a second-level cache miss.

4. Machine learning based prefetchers, several studies have employed machine

learning technique to enhance microarchitectural components. Peled et al.

proposed context-based memory prefetcher[27], which approximates semantic

locality using reinforcement learning. The prefetcher identifies access patterns

by applying reinforcement learning methods over machine and code attributes

that provide hints on memory access semantics. The prefetcher consists of three

units 1) collection unit to track context history and, using the current memory

address, to create context-address pairs. 2) prediction unit looks up the cur-

rent context in the context table to generate prefetches. 3) feedback unit closes

the reinforcement learning loop by updating the scores of previously encoun-

tered contexts, if the current memory access hits any prefetches they issued.

Context-based prefetcher makes it possible for naive, pointer-based implemen-

tations of irregular algorithms to achieve performance comparable to that of

spatially optimized code. Rahman et al. [28] used machine-learning technique

to predict the optimal combination of prefetchers for a given application, based

on program characterization and utilized hardware performance events in con-

junction with a pruning algorithm to obtain a concise and expressive feature

set.

5. Branch-predictor-directed prefetchers reuse existing branch predictors to ex-

plore future control flow. These techniques use the branch predictor to recur-

sively make future predictions to find instruction-block addresses for prefetch.

Because branch predictors are decoupled from the rest of the pipeline, pre-

dictors can theoretically advance ahead of execution to an arbitrary extent
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to predict future control flow. Liu at el. [21] proposed branch-based data

prefetching, which associated the history of data references to the previous

branch instructions in the Branch Target Buffer (BTB). The BTB is then used

to issue prefetches for load instructions following the branch instruction in the

program flow. Pinter at el. proposed Tango prefetcher for superscalar imple-

mentations, to further improve the quality of stride-based reference prediction

table approach proposed by Chen at el. [10]. B-Fetch [17, 26] is a data cache

prefetcher that employs two speculative components. It speculates on the ex-

pected path through future basic blocks, using a lookahead mechanism that

relies on branch prediction, to predict the future execution path, and the effec-

tive addresses of load instructions along that path. By recording the variation

of register contents at earlier branch instructions and exploits, B-Fetch uses

this knowledge to predict the effective address. B-Fetch is a light-weight and

very accurate prefetcher, but it requires a very complex hardware and a lot of

hooks to the microarchitecture.

6. Sequential Pattern Prefetchers are limited in extent to prefetch only blocks at

consecutive addresses. Best-Offset prefetcher select the prefetch offset auto-

matically and dynamically, trying to adapt to the application behavior, which

may vary over time, it tests several different offsets to find the best prefetch

offset [22]. Without using the program counter or other core registers Signa-

ture Path Prefetcher can learn how to preftech complex data access patterns.

SPP use compresses history signature, and it can achive a balance between

aggressive prefetching and accuracy[19].
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3. MULTITHREADING B-FETCH FOR CHIP MULTIPROCESSORS

This chapter reviews B-Fetch[17, 26], a branch directed, lightweight data prefetcher

to improve performance in CMPs. Then, it presents Multithreading B-Fetch (MTB-

Fetch) . The architecture of the prefetcher and details of the proposed design are

also presented.

3.1 B-Fetch for Chip Multiprocessors

Progams construction can be mapped into a control flow graph as shown in figure

3.1. The outcome of the branch determines which basic block will be executed. In

case of taken path on the right, it leads to one of the load instructions and the

not taken path leads to the other load instructions. The prediction of the branch

outcome can be used to determine which load instructions will be excuted in the

basic block subsequently following a branch instruction.

Figure 3.1: Data Access and Control Flow.
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In a program future data execution depends on the branch instruction results

along the execution path and the per-block register transformations along that path.

B-Fetch uses a lookahead mechanism that predicts the likely path of execution start-

ing from the current non-speculative branch and issues prefetches for the memory

references down that path [17, 26] . B-Fetch relies on the idea that register values

at the time of effective address generation are correlated in a predictable way from

their corresponding values at a time when their preceding branch instructions were

executed and the transformations that occur to them over the course of the blocks

to that point [17, 26]. B-Fetch uses two speculative microarchitecture components.

Frist, it speculates on the expected excution path through a future basic blocks, this

speculation is directed by a lookahead mechanism that depends on branch prediction

to predict the future execution path. Second, it speculates on the effective addresses

of load instructions along that path. To do so, B-Fetch records the variation of regis-

ter contents at earlier branch instructions and exploits this knowledge to predict the

effective address [17, 26]. Since B-Fetch uses the variation of register values rather

than the effective address history, it can issue useful prefetches even for instructions

that with irregular control flow and data access patterns.

Figure 3.2 shows the overall system architecture of a B-Fetch in an out-of-order

core. It shows the main core execution pipeline and the auxiliary hardware for B-

Fetch preftecher. The base line design include an out-of-order pipeline with a 4-wide

issue width.
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Figure 3.2: B-Fetch microarchitecture

The B-Fetch hardware compose of 3-stage pipline parallel to the core pipeline.

The Decoded Branch Register (DBR) connect B-Fetch to the cors’s Fetch stage.

When branch instuctions are decoded in the the main execution pipeline, the PCs

value of the branch instuctions are added to the DBR. For B-Fetch to sart prefetching

it needs the branch branch PCs and target addresses, after that B-Fetch engine starts

to predict future execution path, memory instructions, and their effective addresses

[17].

The following stages form the B-Fetch pipeline:

• Branch Lookahead Stage is similar to the fetch stage in the main pipeline branch

lookahead functions. The duty of this satage is to generate the speculative

exception path from the currently decoded branch. Due to the accuracy of the

branch predictor, branch lookahead stage uses confidence path estimator as

required along with the lookahead mechanism that stops the lookahead from
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going down too deep along a speculative path[17, 26]. This stage includes two

main components. First, Branch Trace Cache trace the branch instructions in

the dynamic instruction stream to create set of pointers in the progam control

flow marked by branch instructions to allow jumps between basic blocks and

skip the branch instuctions in between. An entry in the branch trace cache

include the branch address and the following branch address and two state

bits. The branch trace cache is indexed by a hash of the current branch PC,

predicted branch direction, and the target address. When the branch trace

cache is indexed using the hash, then the next branch passd to branch predictor

to predict its target and direction, which then used to index the he trace cache

again to check if a valid path forward exists for this branch [17]. By doing

so, the branch trace cache help guide lookahead stage forward and the branch

predictor and target buffer to help maneuver it in the right direction. To save

space, the lower 32 bits of the 43 bit addresses are used. The second component

is Path Confidence Estimator which used to prevent looking down the wrong

execution path, which can lead to useless prefetches and cache pollution in L1

data cache. The second component is Path Confidence Estimator used to avoid

looking ahead down the wrong excution path, which can lead to cache pollution

in the L1 data cache. B-Fetch engine will stop prefeching when the confidence

of the path falls below a certain preset threshold, lookahead mechanism stalls

to wait for the confidence to improve.

• Register Lookup Stage looks up information about the registers form loads in

a basic block to to generate effective addresses within a given block. This

stage includes two main components. First, Alternate Register File (ARF)

to maintain a copy of the register file contents for use in generating predicted
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prefetch effective addresses. To ensure timly updates to Alternate Register File,

a sampling-latch delayed copy of execution stage generated register values is

used to perfom the updates. To keep track of the modifying instruction order

each register in the Alternate Register File is augmented with an instruction

sequence. This design provide accuracy when generating prefetch effective ad-

dresses and improve performance significantly [17, 26]. The second component

is the Memory History Table (MHT) which maintains source register indices,

current register values, and offset values to calculate effective addresses for

prefetch candidates. Each entry is indexed by the hash of the current branch

PC, predicted branch direction, and the target address generated in the Branch

Lookahead Stage.

• Prefetch Calculate Stage is responsible for generating the prefetch addresses

that are issued to the prefetch queue, after filtering by a per-load confidence

estimator [17].

Offset = [∆RegisterV alue] + StaticOffset (3.1)

PrefetchAddress = [RegisterV alue] + Offset (3.2)

Using equation 3.2 B-Fetch generates the effective prefetching address based on

the current value of the linked register (RegVal) added with the Offset value.

The Offset is computed as the difference between the effective address and

RegVal. when a memory instruction executes in the main pipeline, the MHT

is indexed using the prior branch PC and the Offset is updated[17].
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3.2 MTB-Fetch for Chip Multiprocessors

The insight behind Multithreading B-Fecth (MTB-Fetch) is to use the decode

stage in the actual processor pipeline to trace the synchronization primitives and

identify when a thread is spinning on a lock. Figure 3.3 shows the implementation

of a lock using ALPHA ISA. For a thread to acquire the lock, it needs to load the

lock and check if no other thread is holding the lock. After that it needs to own

the lock. If the thread fails to acquire the lock, it will stay in a spin loop until

it successfully acquires it. Once a thread acquires the lock it is safe to execute the

critical section. The thread needs to release the lock to allow other threads to execute

the critical section as well. Acquiring and releasing a lock involves executing primitive

instructions. To implement MTB-Fetch on top of B-Fetch framework, we need to add

two components : Synchronization Primitives Trace Cache and Invalidation Filter

to keep track of all prefetches that were invalidated due to coherence protocol.

Figure 3.3: ALPHA code for lock implementation.
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3.2.1 System Architecture

To implement MTB-Fetch on top of B-Fetch framework, we need to solve two

problems. First, identify when a thread is trying to acquire and release a lock

in the instruction stream, then feed the first branch instruction after releasing the

lock to B-Fetch engine to start prefetching. The second problem is to deal with

invalidation due to cache coherence mechanisms. If a prefetch memory block ends

up invalidated, the prefetcher needs to keep track of this information and to learn

not to prefetch it again. Figure 3.4 shows the MTB-Fetch microarchitecture. We

added Synchronization Primitives Trace Cache and Invalidation Filter to the original

B-Fetch microarchitecture.

Figure 3.4: MTB-Fetch microarchitecture.
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3.2.2 System Components

We shall now go through descriptions of each component used in MTB-Fetch. All

the hardware structures are important in realizing an accurate and flexible branch

directed prefetching scheme.

• Synchronization Primitives Trace Cache (SPTC): The SPTC captures

the dynamic atomic primitives that were used to construct the synchronization

semantics. Each entry acts as a state machine to indicate where the beginning

and the end is of critical section. A LDQ L is followed by a STQ C to the

same effective address, indicating the beginning of a critical section . Once a

second STQ C is detected, it indicates the end of a critical section. Then the

first branch address after the critical section will be passed to branch lookahead

in B-Fetch pipeline, so B-Fetch can predict execution path starting from the

current branch in order to prefetch data in the next basic block.

Figure 3.5: Single Synchronization Primitives Trace Cache (SPTC) entry.

Figure 3.5 shows an entry in SPTC. Each entry in the SPTC includes 64 bits

of the load effective address and 2 state bits.
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• Invalidation Filter To avoid useless prefetches, wasted bandwidth and energy,

it is crucial to reduce the impact of cache coherence mechanisms on prefetches

data blocks. Filtering prefetch requests that were invalidated from outside the

core by the cache coherence mechanisms is very important for systems that

prefetch directly into the L1 cache, and those that run multiple threads on

different cores. Basically, the branch confidence mechanism might be thought

of as a prefetch filtering mechanism. However in multi-core system, one core

may end up pulling data from a producing core before it has been written. To

deal with invalidated prefetches, our invalidation filter measures the confidence

of prefetches launched from a given load PC.

Figure 3.6: Invalidation filter table.

Similar to the pre-load filter, invalidation filter consists of three different tables

which contain 3-bit up-down saturating counters for corresponding prefetch

loads. Figure 3.6 shows an invalidation table. Each table is indexed, using

29



the PC of the load instruction by different hash function, and the counter

is incremented when the prefetch address was not invalidated by coherence

protocol. If the prefetch address was invalidated, the counter is decremented.

3.2.3 Hardware Cost

The additional hardware storage requirements for MB-Fetch, B-Fetch and SMS

are summarized in Table 3.1. Two additonal components have been added to B-

Fetch. In term of hardware budget Primitives Trace Cache (PTC) costs 2.06KB and

the Invalidation Filter costs 2.25KB. To optimize the performance of SMS, we used

the configuration used by Somogyi, et al. [32] and 2KB spatial regions, a 64-entry

accumulation table, and a 16K-entry pattern history table.
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Table 3.1: Hardware storage overhead in KB, adopt from B-Fetch[17].
Prefetcher Component # Entries Size (KB)

MB-Fetch Branch Trace Cache 256 2.06
Memory History Table 128 4.5
Alternate Register File 32 0.156

Per-Load Prefetch Filter 2048 2.25
Additional Cache bits - 1.37

Prefetch Queue 32 0.156
Path Confidence Estimator 32 0.156

Primitives Trace Cache 256 2.06
Invalidation Filter 2048 2.25

TOTAL SIZE : 17.15
B-Fetch Branch Trace Cache 256 2.06

Memory History Table 128 4.5
Alternate Register File 32 0.156

Per-Load Prefetch Filter 2048 2.25
Additional Cache bits - 1.37

Prefetch Queue 32 0.156
Path Confidence Estimator 32 0.156
TOTAL SIZE : 12.84

SMS Active Generation Table 64 0.57
Pattern History Table 16k 36

TOTAL SIZE : 36.57
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4. EVALUATION

In this chapter, we present the experimental methodology used to evaluate MTB-

Fetch. We compare our results against three prefetchers.

4.1 Methodology

We use gem5 [6], a cycle accurate simulator, to evaluate MTB-Fetch. The base-

line configuration is summarized in Table 4.1. We used a set of nine multithreaded

programs from PARSEC benchmark suite [4]. The benchmark applications repre-

sent widely used parallel workload suits PARSEC, which use Pthreads libraries to

handle synchronization. The benchmark applications are cross-compiled for ALPHA

ISA with the O3CPU CPU model (Out-of-Order) and the detailed (classic) memory

model with caches. We ran the benchmarks in Full System (FS) mode. The baseline

hardware is a 4 cores CMP, ALPHA ISA machine with three level cache hierarchy

as specified in table 4.1. Each core’s private cache is split into Icache (32KB) and

Dcache(62KB), 256KB second level cache and 1024KB per core third level shared

cache.

Table 4.1: Target Microarchitecture Parameters

Simulator Gem5 Simulator, ALPHA ISA, Full System Simulation

Architecture O3 processor, 4-wide, 192-entry ROB

ICache / DCache 32KB, 8-way set-associative

L2Cache 256KB, 8-way set-associative

Shared L3Cache 1024KB per core, 16-way set-associative

32



First, we created checkpoints at the Region of Interest (ROI) and then stopped

executing. Then we restore simulation at the checkpoints (i.e. the beginning of the

ROI) using the out-of-order processor model O3CPU. We present the performance

as the speedup compared to the baseline configuration (i.e. ExecutionT ime baseline
ExecutionT ime MTB−Fetch

).

The execution time is the time spent in the ROI.

MTB-Fetch results are compared against two light-weight prefetcher designs, the

Stride prefetcher and the SMS prefetcher, configured as described in Section 4.1 and

the orignal B-Fetch. For Stride prefetcher we used prefetching the next 8 strided

addresses [17].

4.2 Results and Analysis

We first present results for MTB-Fetch versus the competing light-weight prefetch-

ers on shared-memory, multithreaded application workloads.

Figure 4.1: Multi-threaded workload speedups.
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Figure 4.1 shows the speedup for multi-threaded workloads. We notice that

Stride and B-Fetch perform poorly, compared to other prefetchers, across all the

benchmarks. Thus, we focus on comparing MTB-Fetch and SMS. Each column refer

to the geometric mean across four cores. The Geomean refers to the geometric

mean across the entire set of benchmarks. MTB-Fetch achieves a geometric average

speedup of 9.3% compared to 4.1% for SMS.

MTB-Fetch outperforms SMS in all but freqmine and achieves the perfomance on

blackscholes. MTB-Fetch were able to achieve maxmuim speeedup of 30% on ferret

and outperformed all prefetchers. Considering the speedup and hardware costs,

MTB-Fetch offer the best solution for data prefetching in multi-threaded workloads.

Figure 4.2: Normalized Geomean if IPC.

Figure 4.2 demonstrates the impact of four diffrent preftechers on the system

performance (IPC) as compared to a baseline (no-prefetching) system. The figure

shows for blackscholes all preftecher achieved normalized IPC graterer than one,
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but in fact, there is no improvement in the execution time. Therefore, we believe

using the time spent in the ROI is more accurate to find the overall speedup.

Figure 4.3: Number of useful and useless prefetches issued.

Figure 4.3 shows the number of useful and useless prefetch issues by all preftechers

for all the workloads. Useful prefetch are used by demand miss, while useless prefetch

are evicted before demand miss. The figure shows that MTB-Fetch has the least

useless prefetch due to the use of invalidation filter. The use of invalidation filter

reduced the useless prefetches by more than 50% across the entire set of workloads.
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5. CONCLUSION AND FUTURE WORK

Thread synchronization overhead is a performance bottleneck for multi-threaded

shared-memory applications. This overhead scales with core count and dramatically

reducing the overall scalability of the application. Indeed, threads spend long time

waiting to acquire the lock of a critical section. In addition, a processor have to stall

execution to wait for load data accesses to complete. Furthermore, there are often

independent instructions which include load instructions beyond synchronization se-

mantics that could be executed in parallel while a thread waits on the synchronization

semantics.

We proposed a prefetcher that leverages the synchronization primitives in the

dynamic instructions streams. MTB-Fetch outperforms the best in class lightweight

prefetcher. MTB-Fetch achieves a geometric average speedup of 9.3% speedup over

baseline with a low hardware impact.

For this study we have considered a 4 core machine and used PARSEC benchmark

suite [4]. Future work includes working with 8 and 16 cores to see how much more

beneft we can achieve. We also wish to work with other shared-memory applications,

such as SPLASH.
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