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ABSTRACT 

 

A growing population and demand for food force agricultural leaders to look for 

alternative water sources. Wastewater reuse could be introduced into commercial 

operations, if regulations and measures are in place to ensure food safety. The objective 

of this project was to cultivate lettuce with wastewater to track the fate of Escherichia 

coli and AP205 during and after cultivation to assess their fate and transport. 

Quantitative microbial risk assessment (QMRA) was performed to estimate risk of 

illness to the public. Contamination levels in foliage, leachate, and soil were directly (P 

< 0.05) related to initial concentrations of microorganisms in the irrigation water. E. coli 

concentrations during post-harvest storage (14 days at 4 oC) of foliage increased 

significantly, while AP205 concentrations decreased more than 2 logs. From randomly 

selected E. coli colonies, in all four biomass types, 81% and 34% showed resistance to 

ampicillin and cephalothin, respectively. QMRA revealed significant health risks 

associated with lettuce consumption. E. coli concentrations were used as a fecal 

indicator bacteria to estimate levels of 6 common pathogens in wastewater and AP205 

concentrations were used to estimate norovirus and rotavirus levels. Norovirus and 

Giardia largely contributed to the 0.8 probability of illness developing from infection, 

while norovirus and rotavirus showed a 0.24-0.43 probability of illness developing from 

infection, when using E. coli and AP205 concentrations, respectively. Results show that 

non-traditional water usage for fresh produce cultivation can pose risks to humans, if 

standards are not in place to control pathogen contamination levels. 
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CHAPTER I 

INTRODUCTION AND RATIONALE 

 

The conservation of water is becoming increasingly important with the ever-

growing worldwide population. This is especially true for already arid climates such as 

the Lower Rio Grande Valley (LRGV) that is known for cyclic droughts. The LRGV is 

located adjacent to the Rio Grande River, which separates Mexico and the United States. 

(Robinson, 2002) There are many challenges involved in harnessing the use of this 

readily available water source. Many cities along the river have a population that is 

growing faster than the infrastructure can keep up with. Consequently, water treatment 

facilities simply cannot handle the volume, which leads to large amounts of untreated 

water draining directly into the Rio Grande River (Assadian, Di Giovanni, Enciso, 

Iglesias, & Lindemann, 2005b; Ribera & McCorkle, 2012). Without proper treatment, 

pathogens in the wastewater can ultimately contaminate the irrigation water that is being 

pumped out of the river downstream and used in agriculture. 

The LRGV is a region that includes Cameron, Hidalgo, Starr, and Willacy 

counties, which produced approximately $820 million of crops in 2012 (Ribera & 

McCorkle, 2012). Spinach, onions, watermelons, cantaloupes, and cabbage are important 

crops that the LRGV supplies to the United States. This area amasses 475,000 acres of 

crop producing land, which requires approximately 615,000 ac-ft. of water from the Rio 

Grande each year. The demand of water is variable and depends on the amount of 

rainfall in this very dry climate. It is important to understand the quality of the water that 
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is being diverted from the Rio Grande River for agricultural use. The contamination of 

microorganisms such as fecal coliforms and Escherichia coli can pose a risk to the 

contamination of the crops being irrigated with the river water. This risk directly affects 

the population that will eventually consume the goods.  

The water that is diverted from the Rio Grande was initially used for flood 

irrigation, in which nearby canals had to hold a large volume of water. This method of 

delivering water is still in practice today, but the irrigation practices have changed. 

Newer methods of irrigation such as drip and sprinklers require a lower volume and 

more frequent applications than the flood method (Knight, 2009). With technology 

evolving and more efficient irrigation practices being implemented, the old way of 

storing water is not as efficient and it introduces an environment for bacterial 

contamination and growth from wildlife, and other harmful microorganisms from the 

ground. 

Contamination of food with foodborne pathogens is highly sensitive today and 

poses dangerous risks to public health. Outbreaks of contamination are often random and 

hard to predict, so it is important to monitor and detect the levels of indicator organisms, 

such as fecal coliforms and E. coli so that the risk level to consumers can be determined. 

Furthermore, antibiotic resistance in these indicator organisms is also important to 

monitor in the transport of irrigation water to fresh produce, since the rapid spread of 

antibiotic resistant bacteria (ARB) threatens human health and has significant social and 

economic impacts. The selective pressure exerted by the overuse and misuse of 

antibiotics has been considered one of the major factors in the emergence of bacterial 
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resistance to antibiotics (IFT, 2006).  ARB can pose a significant threat to human health 

because society relies on the antibiotics to treat and prevent diseases. There is a limited 

number of antibiotics that doctors and scientists can use for treatment, so it is essential to 

minimize the growth and spread of the antibiotic resistant bacteria. These 

microorganisms are recognized by the industry, government agencies, and public health 

organizations to verify the effective implementation of Good Agricultural Practices 

(GAPs) (Hald & Baggesen, 2014; Tortorello, 2003; USFDA, 2008, 2013a). Coliforms 

and generic E. coli are used as indicators of fecal contamination and overall cleanliness. 

E. coli has been identified by the European Food Safety Authority (EFSA) to be suitable 

for hygiene criterion in the validation of GAPs and good hygiene practices (GHPs). 

Growers can adjust irrigation and handling process based on the levels of E. coli and 

fecal coliforms detected on their crops to reduce risks of diseases outbreak and ensure 

public health.  

The rationale of this research project was to better understand the fate and 

transport of pathogenic microorganisms in the use of wastewater in food crop irrigation 

and to measure the levels of antibiotic resistance in these microorganisms to assess the 

risk to human consumption of contaminated fresh produce.  
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CHAPTER II 

LITERATURE REVIEW 

 

About 48 million people (1 in 6 Americans) get sick, 128,000 are hospitalized, 

and 3,000 die each year from foodborne diseases, according to recent data from the 

Centers for Disease Control and Prevention. FDA has compiled from CDC data 

information regarding produce associated outbreaks which occurred between 1996 and 

2010 where contamination is likely to have happened early in the production chain, 

during growing, harvesting, manufacturing, processing, packing, holding, or 

transportation. This FDA data set demonstrates that from 1996 to 2010, approximately 

131 produce-related reported outbreaks occurred, resulting in 14,350 outbreak-related 

illnesses, 1,382 hospitalizations and 34 deaths. These outbreaks were associated with 

approximately 20 different fresh produce commodities. This is a significant public health 

burden that is largely preventable (USFDA, 2012). Of the foodborne pathogens and 

illnesses the CDC keeps a record of, Escherichia coli spp. (E. coli), especially 

serogroups O157, O121, and O145 are some of the more common typically associated 

with beef and fresh produce (CDC, 2013a, 2014). In 2009-2010, Shiga toxin-producing 

Escherichia coli (STEC) caused 58 confirmed outbreaks, with 53 being caused by 

serogroup O157 (CDC, 2013). 

Pathogenic strains of Escherichia coli can cause illness, either diarrhea or illness 

outside of the intestinal tract. The types of E. coli that can cause diarrhea can be 

transmitted through contaminated water or food, or through contact with animals or 
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person. The most recent outbreaks associated with pathogenic E. coli in 2016 were 

reported in flour and alfalfa sprouts (CDC, 2016). In fresh produce alone, outbreaks 

involving Escherichia coli, including E. coli O157:H7 have been reported in clover 

sprouts (CDC, 2015b), chicken salad (onions and celery)(CDC, 2015c), ready-to-eat 

salads (CDC, 2013b), spring mix blend (CDC, 2012b), romaine lettuce (CDC, 2012a), 

and spinach (CDC, 2012b) over the past 5 years.  Food and water supplies can become 

infected with E. coli due to contamination from fecal matter introduced by food 

handlers, cross contamination, improper washing of raw vegetables, and undercooked 

ground beef (Adams, 2007; WHO, 2011).  

Foodborne virus outbreaks are also of significant concern in recent years. For 

instance, since August 2016, there have been 1,037 norovirus outbreaks reported by nine 

states in the U.S. who use the National Outbreak Reporting System (NORS) (CDC, 

2017a). Norovirus is among the most abundant pathogen found in primary and 

secondary wastewater (McBride, Stott, Miller, Bambic, & Wuertz, 2013). Rotavirus has 

become more prevalent in tests conducted by participating laboratories that report to the 

National Respiratory and Enteric Virus Surveillance System (NREVSS), testing positive 

in over 20% of samples in April 2017 (CDC, 2017b). Norovirus and rotavirus were 

selected to perform the risk assessment because of their similar chemical composition, 

shape, and size to AP205, which is a direct surrogate to the MS2 bacteriophage. These 

viruses’ capsids are made up of proteins, enclose positive sense single stranded RNA, 

and have T=3 symmetry (180 proteins) (Shishovs et al., 2016). Though, rotavirus is 
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twice as large, it was assumed that observed AP205 concentration represented maximum 

viral load in the sample materials (CDC, 2015d). 

Contamination can be prevented through basic good manufacturing practices in 

the industry and food hygiene at home (WHO, 2011). The FDA has several guidance 

documents and regulatory information available online to producers. Contained within 

these documents are methods to help mitigate microbial food safety hazards in fresh-cut 

fruits and vegetables, from farm to table. Maintaining water quality is the first step 

toward achieving safer produce. Furthermore, FDA recommends the use of antimicrobial 

chemicals to help minimize the potential for microbial contamination of processing 

water and subsequent cross contamination of the product (USFDA, 2012). It is critical 

that the water supply for fresh-cut produce be of adequate quality, i.e., little to no E. coli 

colony forming units (CFU) per 100 mL water. Water is a capable carrier for bacteria 

and pathogens and should be tested regularly at its source and at the furthest distance 

from its source to comply with federal, state, and local requirements. If the quality does 

not meet requirements, methods can be implemented to negate the presence of bacteria 

and pathogens. Water quality should always be tested before and after treatment to 

ensure the antimicrobials are effective in killing the contaminants.  

In 2013, the FDA proposed rules for agricultural water standards in part of the 

FDA Food Safety Modernization Act (FSMA). The new rules were based upon practices 

already being implemented in farms that follow the standards of the California and 

Arizona Leafy Greens Marketing Agreement. The proposal considers the large diversity 

of growing conditions and practices so that the rules are adaptable and can make a 
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practical impact on food safety. Two standards for testing irrigation water have been 

proposed: no detectable E. coli present per 100 mL of water. This standard applies when 

using water for an activity both during and after harvest when there is a high likelihood 

that pathogens would survive. The second standard states: a statistical threshold value 

(STV) of no more than 410 CFU generic E. coli per 100 mL out of at least 20 samples 

over the first 2-4 years, providing a microbial water quality profile (MWQP) and a 

geometric mean (of five samples) of no more than 126 CFU/100 mL for the irrigation 

water. In subsequent years, five additional samples are collected and added to the most 

recent 15 samples to calculate a new MWQP. This standard applies to water used during 

growing produce covered by the proposed rule (other than sprouts) when it is applied in 

a manner that results in direct contact with the harvestable portion of the crop. 

Moreover, after testing in either case, if it is found there is more generic E. coli than the 

numerical standard prescribes, one would be required to immediately discontinue use of 

that source for the use subject to the standard and take specific follow up actions, 

including visually re-inspecting the water source and distribution systems, making 

changes to the system and re-testing; or treating the water to acceptable levels (USFDA, 

2015). 

Untreated surface water is the most vulnerable to external sources and 

contamination. Under the proposed rules, untreated surface water must be initially tested 

using a minimum of 20 samples. These samples must be taken as close to harvest as 

possible over a span of two to four years. After the initial survey, five samples per year 

are to be taken and combined with the latest 15 samples to comprise an ongoing dataset 
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of 20 samples. This is done to confirm that the water being used is safe to use and within 

the single point and average thresholds (USFDA, 2013b). 

Antibiotic resistant bacteria (ARB) also pose a threat to public health through the 

continuum of fresh produce production. One of the many vehicles for bacteria to become 

immune to antibiotics is the reuse of human wastewater. ARB can develop from the 

overuse of antibiotics in humans through wastewater systems. These effluents may have 

ARB and associated antibiotic resistance genes (ARG) along with other chemical 

contaminants, and if not treated properly, ARB, ARG and other contaminants may enter 

the food chain posing human health risk. It is important to quantify the risks to human 

health regarding the presence of foodborne pathogens and ARB in wastewater irrigation 

to be used in food crops, as well as their fate and transport to fresh produce, so that 

strategies to mitigate these risks can be implemented by disinfection methods, rules, 

regulations and good agricultural practices.  

In wastewater plants, there are several processes to effectively remove most 

contaminants from the water. The first process is often activated sludge treatment. In this 

process, air is pumped through pipes at the bottom of a large tank which the raw 

wastewater flows into. The air bubbles provide agitation and adequate oxygen to the 

bacteria in the water that eat the organic matter, which produces cellular biomass. In the 

next process, the cellular biomass is separated from the clear water in clarification tanks. 

These tanks allow the heavier biomass to fall to the bottom, and clear water flow on to 

the next phase. Wastewater treatment plants often use one of two methods for final 

sanitation and removal of microorganisms such as bacteria, fungi, and other pathogens. 
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Chlorine-based treatment can be used effectively against gram-positive and negative-

bacteria. Ultra violet (UV) bulbs are also a popular mitigation strategy, which effectively 

inactivate bacteria. In this process, water is passed through a chamber equipped with UV 

bulbs to supply adequate dosage, which destroys microorganisms’ nucleic acid and 

disrupts their DNA (Rao, 2012). However, only generic E. coli concentrations are 

required to be tested in accordance with Title 40 Code of Federal Regulations (USEPA, 

2017). There are currently no regulations to monitor pathogens. 

Quantitative microbial risk assessment (QMRA) is a framework and approach 

that brings information and data together with mathematical models to address the 

spread of microbial agents through environmental exposures and to characterize the 

nature of the adverse outcomes. Ultimately, the goal in assessing risks is to develop and 

implement strategies that can monitor and control the risks (or safety) and allow one to 

respond to emerging diseases, outbreaks and emergencies that impact the safety of 

water, food, air, fomites and in general our outdoor and indoor environments (Haas, Rose, 

& Gerba, 1999).  
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CHAPTER III 

HYPOTHESIS AND OBJECTIVES 

 

3.1 Hypothesis 

 

The concentration of pathogens and antibiotic resistance bacteria contained in 

irrigation water transferred to foliage, leachate, and soil in colony and plaque forming 

units per unit volume, is correlated to the initial concentration of the pathogens in 

irrigation water, and to the risk posed to human consumption. 

 

3.2 Objectives 

 

Grow and irrigate lettuce with wastewater effluent to track the fate of 

Escherichia coli, AP205, and antibiotic resistance through irrigation, cultivation, and 

postharvest storage. Determine risk to humans when wastewater was used to irrigate 

lettuce based on quantitative risk assessment analysis. The main objectives were 

achieved by completing the following tasks: 

1. Measure levels of E. coli and AP205 in wastewater to be used as 

irrigation water. 

2. Compare uptake of E. coli and AP205 by the foliage, leachate, and soil 

during lettuce cultivation. 
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3. Measure levels of sustained contamination of foliage in post-harvest 

storage. 

4. Observe antibiotic resistance of E. coli colonies found in wastewater 

effluent, leachate, soil and foliage. 

5. Complete statistical analysis to determine quantifiable risk level to 

human’s health from the consumption of leafy greens irrigated with wastewater 

effluent. 
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CHAPTER IV 

PREVALENCE OF FOODBORNE AND ANTIBIOTIC RESISTANT PATHOGENS 

DURING FRESH PRODUCE PRODUCTION UTILIZING NON-TRADITIONAL 

WATER SOURCES: FATE, TRANSPORT, AND RISK-ASSESSMENT STUDY  

 

4.1 Overview 

 

High demand for food and water mean new water reuse programs are being 

explored including treated municipal wastewater usage. However, these sources could 

contain high contaminant levels, and consequently pose risks to public health. The 

objective of this research was to grow and irrigate a leafy green with wastewater from a 

municipal wastewater treatment plant to track Escherichia coli and antibiotic resistant 

microorganisms through cultivation and post-harvest storage to assess their fate and 

transport.  Subsequently, quantitative microbial risk assessment was performed to 

estimate risk of illness to the public. Contamination levels found in the foliage, leachate, 

and soil were directly (P<0.05) related to E. coli concentrations in the irrigation water. 

Wastewater concentrations from 177-423 CFU/mL resulted in approximately 15-25% 

retention in the foliage. Leachate and soil had means of 231% and 116% retention, 

respectively. E. coli accumulation on the foliage was observed (P<0.05) and increased 

by over 400% during 14-days storage (4oC). From randomly selected E. coli colonies, in 

all four biomass types, 81% and 34% showed resistance to ampicillin and cephalothin, 

respectively. Intermediary resistant colonies, 9% and 10%, were between the susceptible 
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and resistant thresholds, which could evolve to fully resistant organisms. The risk 

assessment revealed significant cumulative risk of illness from lettuce consumption (up 

to 0.8 probability) from 6 pathogens commonly found in municipal wastewater. 

Norovirus and Giardia contributed the most to illness risks. Results show that non-

traditional water sources usage for leafy greens cultivation can pose risks to humans, 

especially considering the bacteria found have a high probability of being resistant to 

one or more antibiotics. 

 

4.2 Introduction 

  

As world population and demand for food increase, safe water for agricultural 

use has become increasingly scarce. The water footprint of humanity is estimated at 

9087 km3/year, of which agriculture accounts for 92% (Hoekstra & Mekonnen, 2012). In 

some areas, there may not be any readily available surface water, and other solutions, 

such as drilling a well are not a cost-effective. Many countries with arid climates are 

already forced to use treated wastewater. If farmers can safely use treated municipal 

wastewater for the irrigation of crops, it may be able to alleviate the growing concern for 

safe available water used in agriculture. There are several practices that already use 

irrigation techniques with treated wastewater to mitigate the risk of contamination, such 

as drip, flood, and subsurface irrigation (Pavione, Bastos, & Bevilacqua, 2013; Solomon, 

Potenski, & Matthews, 2002). Due to the morphology of plants, such as lettuce or 

spinach, though, commercial-scale production requires canopy (or spray) irrigation. This 
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process involves water coming into direct contact with the edible foliage, which poses a 

higher risk of contamination (Robinson, 2002). There is a lack of knowledge in the fate 

and transport of pathogens and antibiotic resistant bacteria in wastewater irrigation 

regarding precisely where pathogens accumulate during and after harvest, as well as 

their potential effect on future crops along with risks posed to human health. It is 

important to know the complete and lasting effects of wastewater irrigation, as it is 

becoming an increasingly popular alternative. 

Several studies have examined the effects and risks of using wastewater effluents 

to irrigate fresh produce such as lettuce, spinach, rocket, and tomato (Assadian, Di 

Giovanni, Enciso, Iglesias, & Lindemann, 2005a; Ribera & McCorkle, 2012). 

Throughout these studies, multiple factors have been tested to observe their effect on the 

prevalence of fecal indicator bacteria (FIB), which are often used to estimate the levels 

of harmful pathogens (Alam et al., 2014). However, it has been reported that there is a 

lack of correlation between FIB and pathogens in current microbiological monitoring 

standards (Alam et al., 2014; Orlofsky et al., 2016). Furthermore, many studies have 

reported contamination of crops, but there is no knowledge of how the entire system of 

foliage, soil, and leachate, is affected over time when using wastewater irrigation.  

 Consumption of fresh produce is on the rise, due to its associated health and 

nutritional benefits. At the same time, fresh produce is one of the leading causes of 

foodborne illnesses (Rai & Tripathi, 2007) with 377 outbreaks reported by the U.S. 

Center for Disease and Control from 2004 to 2012 (Callejon, 2015). Moreover, the 

overuse of antibiotics can be attributed to the propagation and occurrence of antibiotic 
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resistant bacteria (ARB), which have been increasing rapidly over the past several 

decades (Bitton, 2010; Edberg, Rice, Karlin, & Allen, 2000; WHO, 2006). Livestock 

production provides a direct path for antibiotics to watersheds and potential irrigation 

water via manure and rainfall runoff (Pepper, Gerba, & Brendecke, 1995). This issue has 

been identified by many global public health entities such as the World Health 

Organization (WHO) and U.S. Center for Disease and Control (CDC) as a critical 

concern (Bitsch, 2014). Conversely, there are no studies which quantify the risks to 

public health of using ARB contaminated wastewater as irrigation water. With a finite 

number of current antibiotics, it is important that practices be implemented to slow the 

advancement of resistant pathogenic bacteria. To help better understand ARB, analysis is 

needed to determine the fate of these bacteria and their potential effect on the 

environment and to the public safety.  

To safely consider treated wastewater in agriculture, public health standards need 

be in place to monitor levels of contamination in irrigation water and fresh produce. The 

ability to quantify inherent risk of consumption of pathogenic and AR bacteria is vital to 

this process. Quantitative microbial risk assessment (QMRA) is a four-step process that 

can be used for hazard identification, exposure assessment, dose-response assessment, 

and risk characterization (Jones et al., 2008). QMRA has been applied to management 

strategies regarding water quality and public health (Pruden, 2014), and can be applied 

to assess the public health risk of fresh produce irrigated with contaminated water (Mena 

& Pillai, 2008). In this study, lettuce was irrigated with secondary treated wastewater to 

track the fate and transport of E. coli and antibiotic resistance throughout the entire 
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system (foliage, soil, and leachate) during cultivation, and postharvest storage. We then 

analyzed the risk of human consumption throughout the process using QMRA. 

 

 
4.3 Materials and methods 

4.3.1. Escherichia coli prevalence  

 

4.3.1.1 Wastewater 

  

Wastewater was obtained weekly from the Texas A&M Wastewater Treatment 

Plant, College Station, TX, USA. The wastewater was collected with a beaker affixed to 

a dipping pole, after solids removal and secondary clarification processes. Three liters 

were collected using a beaker affixed to a pole and placed into sterile plastic jugs for 

transport to the laboratory.  

 

4.3.1.2 Leafy greens 

  

Twelve young 15-cm romaine lettuce plants (Lactuca sativa var. longifolia, 

Bonnie Plants, Union Springs, AL, USA) were purchased from local nursery and placed 

into 20-cm diameter plastic pots and filled with EcoScraps moisture retaining potting 

soil (EcoScraps Co., South Jordan, UT), leaving a 2-cm lip to the top. The potting soil 

was sterilized in an autoclave for 90 minutes at 121 ºC and analyzed by the Texas A&M 

Department of Soil and Crop Sciences laboratory (College Station, TX) which generated 
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the following results: pH: 7.2, Nitrate: 0 ppm, Phosphorus: 95 ppm, and Potassium: 441 

ppm. A suggested supplement of nitrogen was applied in the amount of 0.68 g/cm2. 

Lettuce plants were transplanted and grown using Reverse Osmosis (RO) water 

for 14 days prior to the irrigation experiment. Supplemental RO water was examined by 

aerobic plate counting method (J. B. Rose, Haas, & Regli, 1991) and determined to be 

free of any bacterial contamination. Each row of six plants were grown under two 2-

Light T12 fluorescent shop lights (Lithonia Lighting, Conyers, GA) containing four 1.22 

m 40-watt fluorescent tube light bulbs (General Electric, Fairfield, CT). The bulbs 

provided 2900 lumens each and consisted of two 6,500 K and two 3,000 K color 

temperature bulbs to more closely resemble natural daylight. The lighting fixtures were 

plugged into a wall outlet timer that allowed 14 hours of continuous light located 15 cm 

above the plants. 

 

4.3.1.3 Inoculation 

  

Once per week for three weeks, approximately 15 mL of wastewater was applied 

directly to each plant’s foliage, thoroughly covering each side of all leaves from a 15-cm 

distance. This was carried out by transferring wastewater to a 150-mL sterile spray bottle 

(Apothecary Products, Inc., Minneapolis, MN) and setting the nozzle on mist position. 

Then, 150 mL of the wastewater was poured into each plant’s pot, completely soaking 

all the soil. All wastewater application to the plants was carried out inside a biosafety 

cabinet following biohazard safety level 2 standard procedures. Plants were also 
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supplemented 50 mL of RO water each day the rest of the week to prevent drying out 

and wilting. Table 1 shows the timeline for sample pre-harvest irrigation and post-

harvest storage at 4 oC.  

 

Table 1: Timeline for sample pre-harvest irrigation and post-harvest storage at 4 

oC. 
Day 0 Day 7 Day 14 Post-Harvest 

Day 7  
Post-Harvest 
Day 14 

Foliage, Leachate, 
Soil, & Wastewater  

Foliage, Leachate, 
Soil, & Wastewater 

Foliage, Leachate, 
Soil, & Wastewater 

Foliage Foliage 

 

 

4.3.1.4 Sample collection and analysis 

  

A 10-mL sample of the wastewater was taken and placed into a sterile conical 

centrifuge tube (VWR International, Radnor, PA). After wastewater irrigation, leachate 

from each plant was immediately collected from the pot saucer by pipetting 10 mL into a 

sterile conical centrifuge tubes (VWR International). 

Foliage samples were collected 1 hour after irrigation, by cutting the outermost 

leaves from their stems with sterile scissors. Leaf blades were removed from the vein 

and cut into 2.5 cm strips. From each plant, 5 g of foliage was weighed and placed into 

Whirl-Pak® bags (eNasco, Fort Atkinson, WI). Then, 10 mL of buffered peptone water 

(BPW, Becton, Dickinson and Company, Franklin Lakes, NJ, USA) was added to each 

foliage sample to create a 1:2 ratio of foliage to buffer suspension. The bags were then 

massaged by hand for 2 min to homogenize the material. Postharvest foliage samples 
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were collected at the same time as the Day 14 samples and stored at 4 ºC for 7 and 14 

days where BPW was then added and samples were processed accordingly. 

Soil samples were collected 6 hours after irrigation to allow adequate drainage. 

From each pot, a sterile 2-cm diameter core tube was inserted 5 cm deep to collect and 

place 2 g of soil into sterile conical centrifuge tubes (VWR International). Then, 8 mL of 

BPW was added to create a 1:4 ratio of soil to buffer suspension. The tubes were then 

vortexed for 30 seconds to homogenize the contents. Subsequently, these samples were 

allowed to settle for 10 min to separate the soil from buffer. 

 Aliquots of the samples were then plated on MacConkey Agar (Hardy 

Diagnostics, Santa Maria, CA) by spread plating method. MacConkey Agar is a media 

selective to lactose fermenting gram-negative and enteric bacteria. Several serial 

dilutions of all samples were plated to ensure samples were within the limits of 

detection. Plates were incubated overnight at 37 ºC. Two plates per dilution of each 

sample were plated, counted, and reported in CFU/g-mL of sample (Shuval, Lampert, & 

Fattal, 1997). 

  

4.3.2 Antibiotic resistant bacteria 

  

Ten presumed E. coli colonies from each of the four materials collected (i.e., 

wastewater, soil, leachate, and foliage) were randomly selected and inoculated for a total 

of forty E. coli isolates per pre-harvest sampling time, and ten E. coli colonies from 

foliage per postharvest sampling time. Individual colonies were collected with a sterile 
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inoculation loop, streaked on Tryptic Soy Agar (TSA, Becton, Dickinson and Company, 

Franklin Lakes, NJ, USA), and incubated overnight at 35 ºC in accordance with the 

Kirby-Bauer Method (USDA, 1998). Briefly, E. coli cell suspensions were then prepared 

by placing two isolates into tubes containing 5 mL of Tryptic Soy Broth (TSB, Becton, 

Dickinson and Company, Franklin Lakes, NJ, USA) and incubating at 35 ºC for three 

hours while shaking at 150 rpm in a 12 L water bath (VWR International). Tubes were 

checked for appropriate turbidity by comparing them to 0.5 McFarland standard, which 

corresponds to a 107 – 108 CFU/mL bacterial cell count (USDA, 1998).  

 E. coli suspensions were then re-streaked onto Muller Hinton Agar (MHA, 

Becton, Dickinson and Company, Franklin Lakes, NJ, USA) plates using sterile swabs. 

Antibiotic resistance of the colonies was determined by the Kirby-Bauer method for 

antibiotic susceptibility. Eight antibiotic susceptibility discs (Becton, Dickinson and 

Company, Franklin Lakes, NJ) of ampicillin (10 µg), cefoperazone (75 µg), cephalothin 

(30 µg), ciprofloxacin (5 µg), gentamicin (120 µg), imipenem (10 µg), 

sulfamethoxazole/trimethoprim (23.75/1.25 µg), and tetracycline (30 µg) were stamped 

onto each MHA plate using a BBL® Sensi-Disc® 8-place Dispenser (Becton, Dickinson 

and Company, Franklin Lakes, NJ, USA). The stamped MHA plates were incubated for 

16-24 hours at 35 ºC. Then, the zones of inhibition (ZOI) were measured to determine 

resistance, intermediate resistance, or susceptibility to each antibiotic, according to the 

Clinical and Laboratory Standards Institute (CLSI) standards (Bauer, Kirby, Sherris, & 

Turck, 1966). 
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4.3.3 Quantitative microbial risk assessment 

  

Quantitative microbial risk assessment (QMRA) was performed to determine 

inherent quantitative risk to human consumption of produce irrigated with contaminated 

irrigation water.  QMRA is an evolving framework that has been used for the past 30 

years to evaluate the relationship between humans and environmental microorganisms, 

including those associated with fresh produce, with the goal of developing management 

regimens that mitigate exposures to pathogens. The four-step QMRA paradigm of 

hazard identification, exposure assessment, dose-response characterization, and risk 

characterization can be applied to comprehensively review produce quality data and 

characterize the host–hazard relationship (Bauer et al., 1966). 

For this experiment E. coli concentrations were measured, therefore, in order to 

determine health risk the E. coli concentrations were converted into a pathogen dose. 

Schoen and Ashbolt (2010) developed an equation to determine reference pathogen (rp) 

dose (number of pathogens) that is derived from the concentration of FIB in the 

waterbody from a specific source (S), expressed as ( S
rpµ ). Equation 1 was modified to 

calculate the reference pathogen dose ( S
rpµ ) in CFU for each sample time on the foliage.  
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Equation 1: 
 

MxRx
xR

C S
rpS

FIB

FIBS
rp 100
=µ  

     

where: 

FIBC  is the concentration of E. coli (FIB) on the foliage (CFU/g) 

S
FIBR  is the concentration of bacterial indicators in sewage (CFU/L) 

S
rpR is the concentration of pathogen species in sewage (number of pathogens or 

genomes/L) 

M  is the mass of foliage ingested (29 g) 

 

Risk estimation was based on a potential situation where irrigation water 

contaminated with pathogen was directly applied to lettuce foliage, harvested, and 

consumed without any intervention (antimicrobial treatment) step. Average daily 

consumption of lettuce for the general public was estimated as 29 g (Chun, 2005). The 

calculated pathogen dose for each reference pathogen was then input into the 

corresponding dose response model (Table 2) to estimate the health risk. 
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Table 2: Reference pathogen dose response models. 
Reference 
Pathogen 

Dose-
Response 
Model 

Reference Model 
Parameters 

Parameter 
Values 

Morbidity 

Norovirus Beta 
Binomial 

McBride et 
al. (2013); 
Peter F. M. 
Teunis et al. 
(2008) 

alpha 
beta 

0.04 
0.055 

60% 

Cryptosporidium Exponential McBride et 
al. (2013); 
USEPA 
(2005) 

r 0.05 50% 

Giardia lamblia Exponential Haas et al. 
(1999) 

r 0.0199 45% 

Campylobacter Beta-
Poisson 

Medema, 
Teunis, 
Havelaar, 
and Haas 
(1996); 
USEPA 
(2010a) 

alpha 
beta 

0.145 
7.59 

60% 

Salmonella Beta-
Poisson 

Joan B. Rose 
and Gerba 
(1991) 

alpha 
beta 

0.3126 
139.9 

100% 

E. coli O157:H7 Beta-
Poisson 

Teunis, 
Ogden, and 
Strachan 
(2008) 

alpha 
beta 

0.248 
48.8 

60% 

 

 

4.3.4 Statistical analysis 

  

A fractional factorial design with equal replications was used in this study. All 

experiments were performed in triplicate as independent experiments and results are 

expressed as mean ± standard deviation. Differences among variables were tested using 
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one-way analysis of variance ANOVA and statistical significances were expressed at the 

P < 0.05 level, significantly different means were separated by the Tukey HSD test. All 

data was analyzed using JMP®Pro statistical software (SAS, Cary, NC 27513). Due to 

the rain event prior to day 14, large input (wastewater) variability of E. coli 

contamination levels in foliage, soil, and leachate were normalized by transforming 

CFU/mL to percentage of E. coli retention. Response material E. coli concentration 

(CFU/mL) was divided by wastewater E. coli concentration (CFU/mL) to yield retention 

as a percentage. Beginning with pre-harvest data, statistical analysis was performed 

using a Tukey HSD Post-hoc test to compare E. coli prevalence over time among all 

materials (wastewater, leachate, foliage, and soil). Then differences in means were 

analyzed among materials for each sampling time. Finally, post-harvest foliage samples 

were analyzed to detect mean differences over storage time.  

Antibiotic resistant bacteria (ARB) samples were analyzed, focusing on the three 

most common resistance patterns observed from ARB analysis: ampicillin (10 µg), 

cephalothin (30 µg), and ciprofloxacin (5 µg). According to (CAMRA, 2015; Haas et al., 

1999), bacterial resistance to antibiotics is broken down into three categories: 

susceptible, intermediate , and resistant. An organism is categorized by its zone of 

inhibition (ZOI), which is unique to each antibiotic. This means the antibiotic was 

successful in preventing bacterial growth (USFDA, 1998). In this analysis, intermediate 

resistant and resistant bacteria were combined and expressed as ‘resistant’ to simplify 

the results. Resistance among samples was expressed as a percentage of each sampling 

population. ARB were compared over time among all materials. Then, mean differences 
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were analyzed among materials for each sampling time. All analyses were performed by 

using Tukey HSD Post-hoc test to separate differences in means, and Levene’s test to 

test for equal variance.  

 

4.4 Results and Discussion 

4.4.1 Escherichia coli prevalence  

  

The concentration of E. coli present in the irrigation water varied and was 

recorded in Log CFU/mL as 2.3 ± 0.0, 2.6 ± 0.2, and 5.1 ± 0.1 Log CFU/mL for days 0, 

7, and 14, respectively (Figure 1). There was a large rain event of 32.8 mm 

(Underground, 2016) in the Bryan/College Station area on November 6th, 2016, one day 

prior to the collection of the Day 14 sample. It was also observed that the WWT plant 

was not operating at full effectiveness because of a failure in the aeration system, which 

provides oxygen to microorganisms in the solids removal tank. The WWT plant reported 

an E. coli concentration of 2.5 ± 0.6 Log CFU/100 mL in UV-treated effluent on day 14 

and an average of 2.6 ± 2.0 Log CFU/100 mL in the four days following the rain event 

and system failure. These are significantly higher concentrations than the average for the 

rest of the month which was 1.0 ± 0.7 Log CFU/100 mL, which consequently affected 

the results by introducing very large concentrations of E. coli that were significantly 

different (P <0.05) than the previous two irrigations. The EPA standard for final effluent 

discharge is a geometric mean of 2.1 Log CFU/100 mL (USEPA, 2017).  
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Figure 1: Comparison of E. coli concentration (a, b, and c) in Log CFU/g-mL, and 
retention (d, e, and f) in %, for sampling days per material. Retention was 
calculated by dividing E. coli sample concentration (CFU/mL-g) by weekly E. coli 
irrigation water concentration (CFU/mL). Error bars denote standard deviation 
for arithmetic mean (n=6 for day 0 foliage and n=12 for all others). Connecting 
letters reported using Tukey-Kramer HSD, a=0.05. 
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Initially, soil and leachate displayed higher concentrations of E. coli than foliage, 

until day 14 when foliage surpassed (P < 0.05) soil concentrations (Figure 1 c). Overall, 

each material showed an increase in E. coli concentration from the previous sampling 

time except for soil on day 7, as seen on Figure 2 a, b, & c. Foliage consistently 

increased concentration throughout cultivation and post-harvest storage. Leachate 

samples had the largest concentrations at each sampling time (Figure 1 a, b, and c). 

Foliage displayed a positive trend in retention with 16%, 31%, and 43% on days 0, 7, 

and 14, respectively (Figure 2 d). This shows that there was accumulation of E. coli on 

the foliage throughout the cultivation process. The bacteria were able to survive and 

persist on foliage for more than one week, similar to the findings of Alam et al. (2014), 

which studied cessation of irrigation prior to harvest, and how the elapsed time affected 

E. coli concentration.  

Soil and leachate retention rates were often higher than 100% (Figure 2 e, f) 

which shows that the soil was not completely sterile prior to the first irrigation of 

wastewater on day 0. It is likely that the soil in the lettuce transplants was contaminated 

with E. coli, which propagated during the first two weeks of sterile irrigation prior to day 

0. Orlofsky et al. (2016) studied the correlation of fecal indicator bacteria and pathogens 

found on fresh crops irrigated with different types of water, potable, secondary TWW, 

and tertiary TWW, and found E. coli in soil, which had only been irrigated with potable 

water. Contrary to Orlofsky et al. (2016) , soil concentrations in this study were 

relatively consistent, but displayed a negative trend in retention with 188%, 53%, and 

2% on days 0, 7, and 14, respectively. E. coli concentration in soil plateaued, while input 
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concentration increased, yielding the negative retention trend (Figure 2 b, e). This could 

suggest that soil has a maximum contamination load and excess E. coli will stay in the 

irrigation water to become leachate. Contaminated soil could affect low growing crops 

that have direct contact with the ground, (Pavione et al., 2013) and future generation of 

crops. 

 

 
Figure 2: Comparison of E. coli concentration (a, b, and c) in Log CFU/g-mL, and 
retention (d, e, and f) in % for foliage, soil, and leachate samples over time. 
Retention was calculated by dividing E. coli sample concentration (CFU/mL-g) by 
weekly E. coli irrigation water concentration (CFU/mL). Error bars denote 
standard deviation for arithmetic mean (n=6 for day 0 foliage and n=12 for all 
others). Connecting letters reported using Tukey-Kramer HSD, a=0.05. 
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Leachate exhibited the largest retention rates among response materials during 

the cultivation process (Figure 2 a, b, c). The leachate picked up existing E. coli in the 

soil in addition to the concentration introduced by the irrigation water, yielding a 

retention rate greater than 100%. The retention rate for days 0 and 7 were 197% and 

265%, respectively. As stated by Dwivedi, Mohanty, and Lesikar (2016), the saturated 

water content of the soil is an important parameter in subsurface E. coli transport. The 

size of the pots could have been a contributing factor to soil saturation prior to 

wastewater irrigation, as they were required sterile supplemental water often to avoid 

drying out and wilting of the lettuce. Similar to soil, day 14 leachate retention was 

affected by large input concentration and was significantly less than the previous two 

sampling times, dropping to 80%, even though accumulation increased over time. Our 

results show that contaminated water can penetrate through 15 cm of soil, but further 

investigation is needed to determine E. coli’s fate as water percolates down to 

groundwater reservoirs. It has been shown by Stall, Amoozegar, Lindbo, Graves, and 

Rashash (2014) that depth of soil has a positive effect on reducing E. coli concentrations 

in water.  

E. coli concentration in foliage increased during post-harvest storage at 4 ºC 

(Figure 2 a), similar to what was found by the study of Lopez-Velasco, Davis, Boyer, 

Williams, and Ponder (2010), which studied the effect of post-harvest storage 

temperatures (4 ºC and 10 ºC) and times (5, 10, & 15 days) on E. coli contaminated 

spinach. E. coli counts increased from 4.6±0.37 Log CFU/g on the harvest day to 

4.9±0.66 Log CFU/g after 7 days of refrigerated storage, a 200% increase. After 14 days 
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of storage, 5.2±0.54 Log CFU/g was observed, a 172% increase from day 7 of post-

harvest storage. Days 7 and 14 were significantly different than day 0, but not 

significantly different from each other (P < 0.05, Figure 2 a). These results support the 

importance of fresh produce being free of any pathogenic microbial contamination 

during cultivation and processing, as E. coli left on the surface can quickly propagate at 

recommended storage temperature (4 ºC), and pose health risks to consumers (Lopez-

Velasco et al., 2010).  

 

4.4.2 Antibiotic resistant bacteria 

 

A total of 140 E. coli isolates across all sampling times and materials were tested 

for antibiotic resistance against eight antibiotics. Ampicillin had the highest recorded 

resistance among isolates at 81%, followed by cephalothin at 34% (Figure 3). It has been 

found by Silva (2006) that wastewater treatment plants have generally been ineffective 

at removing certain strains of resistant bacteria, specifically enterococcus isolates 

resistant to the antibiotics ciprofloxacin, erythromycin, and tetracycline, and that the 

prevalence of ciprofloxacin resistance increased throughout the treatment process. 

Gentamicin and imipenem displayed the lowest rate of resistance, with 1% and 0%, 

respectively. Several antibiotics including, ampicillin, cefoperazone, cephalothin, and 

ciprofloxacin displayed larger intermediate rates of resistance, ranging from 8-9% of all 

isolates. These findings are important because there is a high probability that these 

organisms will adapt to their environment and become more resistant, as suggested by 
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Lagacé-Wiens et al. (2013). Because of this, isolates displaying intermediate resistance 

were categorized as resistant for the remainder of analysis, similar to Laird (2016).  

 

 

Figure 3: Distribution of antibiotic resistance (resistant, intermediate, and 
susceptible) among all materials (wastewater, foliage, leachate, and soil) for eight 
different antibiotics tested throughout fresh produce production (days 0, 7, 14, 
postharvest 7, and postharvest 14). 
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disc. As seen in Figure 4 (a), ampicillin had the highest overall resistance prevalence in 

foliage. There was no distinct trend or significant differences in antibiotic resistance over 

the duration of the experiment, but one could hypothesize that antibiotic resistance 

would increase over time according to historical data and observations (Capita & 

Alonso-Calleja, 2013). Of the 20 postharvest foliage samples, 17 (85%) were resistant to 

ampicillin. Conversely, only 5% of postharvest foliage isolates were resistant to 

cephalothin and 0% for ciprofloxacin. In the U.S., ampicillin and ciprofloxacin are two 

of the top 5 antibiotics prescribed to adults (Shapiro, Hicks, Pavia, & Hersh, 2014). 

These antibiotics have been found in WWTPs in varying concentrations and treatment 

plant designs (Batt, Kim, & Aga, 2007) due to their frequent use in the past and today’s 

society, which suggests that treatment plants may be contributing to the prevalence of 

antibiotic resistant bacteria found downstream.  
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Figure 4: Distribution of antibiotic resistant bacteria (ARB) over time (day 0, 7, 14 
and post-harvest (P.H.) day 7 and 14) for three antibiotics that displayed the 
highest prevalence of resistance (ampicillin, cephalothin, and ciprofloxacin) among 
response materials a) foliage, b) leachate, c) soil, and d) wastewater source. 
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to foliage because ultimately, those bacteria can make their way back into water sources 
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like rivers and creeks, via runoff and leaching. Prior to any wastewater application there 

were no detectable E. coli on the foliage, and the sterilized soil had 13 ± 10 CFU/g of E. 

coli, and 332 ± 358 CFU/g after first irrigation. Moist soil provides an optimal 

environment for resistant bacteria to propagate and pass along resistant genes (Orlofsky 

et al., 2016). The water systems are a key vehicle for these bacteria containing antibiotic 

resistant traits to propagate, multiply, and transfer their resistant genes (Pei, Kim, 

Carlson, & Pruden, 2006). There has been extensive research of the fate in transport of 

antibiotic resistant bacteria in water sources resulting from livestock production, but 

there is little information available on the risks involved of using water with human 

source antibiotic resistant bacteria for fresh produce production (Gunther, 1984), 

(Humphrey, 2005). 
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Figure 5: Comparison of antibiotic resistant bacteria (ARB) for three antibiotics 
that displayed the highest prevalence of resistance (ampicillin, cephalothin, and 
ciprofloxacin) among materials over sampling times during cultivation a) day 0, b) 
day 7, and c) day 14. 
 
 

  

Day 0 sampling time displayed the largest resistance in isolates from ampicillin, 

followed by cephalothin and ciprofloxacin, for all four materials tested (Figure 5). There 

were no instances throughout sampling times, where ampicillin did not show the most 

prevalent isolate resistance among each material. Ciprofloxacin showed the least 

resistance, of the three selected antibiotics, for all materials for each sampling day, 
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except for day 7 for soil samples, where both cephalothin and ciprofloxacin showed 0% 

isolate resistance. For overall ampicillin resistance, soil and wastewater were 

significantly different from each other, however; no significant differences were 

observed from foliage nor leachate. There were no other significant differences among 

sample materials for cephalothin and ciprofloxacin.  

Cephalothin was first introduced in 1964 and was a first-generation 

cephalosporin antibiotic and ciprofloxacin was introduced in 1987. Both antibiotics are 

still widely prescribed to stop bacterial growth and treat infections (NCBI, 2017). The 

mechanism of resistance to ampicillin is identical to that of penicillin (beta-lactamase), 

and has been evolving for as long as antibiotics have been used. Beta-lactamases are 

enzymes that cause antibiotic resistance in the beta-lactam family of antibiotics such as 

penicillins, including ampicillin and cephalosporin. These enzymes catalyze the 

hydrolysis of the amide bond of four-membered beta-lactam rings and render the 

antibiotic inactive against its original cellular target, the cell wall transpeptidase (Bajpai, 

Pandey, Varma, & Bhatambare, 2017). Penicillin was the first antibiotic discovered, and 

heavily overprescribed (Arendrup, Knudsen, Jensen, Jensen, & Frimodt-Møller, 2001). 

Consequently, penicillin resistance in bacteria rose quickly in the few decades after its 

discovery, in particular, 80% of Staphylococcus aureus became penicillin resistant by the 

late 1960’s (Lowy, 2003). As previously studied, antibiotic resistant genes can be 

transferred among different bacteria species via transduction, conjugation, and 

transformation (Capita & Alonso-Calleja, 2013; Hleba, Kmeť, Tóth, & Kačániová, 

2017). With a similar mechanism of resistance, it can be assumed that most of the 



 

 37 

antibiotic resistance to ampicillin can be attributed to the phenomenon of widespread 

resistance to penicillin (Lobanovska, 2017).  

 

4.4.3 Risk assessment 

  

Six pathogens were chosen to perform the quantitative microbial risk assessment 

based on the eight waterborne reference pathogens established by the Environmental 

Protection Agency (EPA): norovirus, rotavirus, adenovirus, Cryptosporidium spp., 

Giardia lamblia, Campylobacter spp., Salmonella, and E. coli O157:H7. These 

pathogens are present in both human and animal fecal waste, and can be found in 

municipal wastewater (USEPA, 2010b). Furthermore, E. coli O157:H7 serotype is the 

most common cause of E. coli food poisoning, and is dangerous at low dosages (CDC, 

2015a). Adenovirus was removed because there is currently no published dose-response 

relationship established for ingestion (Haas et al., 1999). Rotavirus was excluded from 

consideration for its lack of established concentration levels based on FIB (Soller, 

Schoen, Bartrand, Ravenscroft, & Ashbolt, 2010). These reference pathogens have been 

observed and concentrations recorded in primary sewage and secondary chlorinated 

effluents (Soller et al., 2010). A concentration level was estimated in secondary clarified 

wastewater (an intermediary step in WWTP) by taking the mean of primary sewage and 

secondary chlorinated effluents, which were obtained from (Soller et al., 2010). Three 

reference concentrations in microorganisms/L were created: low, mean, and high. These 

concentrations were used along with the ratio of E. coli (FIB) found on foliage and 
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original concentration in the secondary clarified wastewater to calculate dosage levels. 

An average consumption level of lettuce was concluded to be 29 g (Chun, 2005), which 

gave a final dosage levels for each pathogen (Table 1). Then, dosages were used in dose-

response models, along with corresponding parameters as established by Haas et al. 

(1999) to yield risk of infection for each pathogen and sampling time (Table 3). Illnesses 

resulting from infection varied by pathogen and ranged from 45-100% with Giardia 

being the lowest, and Salmonella the highest (Soller, 2015), (McBride et al., 2013). The 

risks of illness to the public from all pathogens were combined within sampling time, to 

create a total risk of illness for each sampling time among low, mean, and high 

concentrations (Figure 6).  
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Table 3: Low, mean, and high pathogen dosages of microorganisms (Log Dosage), 
based on estimated concentrations (microorganisms/L) and average consumption of 
lettuce (29 g). 
Log Dosage Pathogen Day 0 Day 7 Day 14 P.H. 7 P.H. 14 
 Norovirus 0.4 0.6 0.7 1.2 1.3 
 Giardia lamblia -1.8 -1.6 -1.5 -1.0 -0.8 

Low Cryptosporidium spp. -2.9 -2.7 -2.5 -2.0 -1.9 
 Campylobacter spp. -2.3 -2.1 -2.0 -1.5 -1.4 
 Salmonella -1.8 -1.6 -1.5 -1.0 -0.9 
 E. coli O157:H7 -2.3 -2.1 -2.0 -1.5 -1.4 

Mean 

Norovirus 3.1 3.3 3.4 3.9 4.0 
Giardia lamblia 1.1 1.3 1.4 1.9 2.0 
Cryptosporidium spp. -0.3 -0.1 0.1 0.6 0.7 
Campylobacter spp. -0.3 -0.1 0.0 0.5 0.7 
Salmonella 0.1 0.3 0.5 1.0 1.1 
E. coli O157:H7 0.1 0.3 0.4 0.9 1.1 

High 

Norovirus 3.4 3.6 3.7 4.2 4.3 
Giardia lamblia 1.4 1.6 1.7 2.2 2.4 
Cryptosporidium spp. 0.0 0.2 0.3 0.8 1.0 
Campylobacter spp. 0.0 0.2 0.3 0.8 0.9 
Salmonella 0.7 0.9 1.0 1.5 1.6 
E. coli O157:H7 0.7 0.9 1.0 1.5 1.7 

 

  

Among all concentration levels and sampling times, norovirus had the largest 

dosages, as it was far more abundant that the other reference pathogens in primary and 

secondary sewage, according to Soller et al. (2010). Cryptosporidium and 

Campylobacter had the lowest dosages largely because of their lack of abundance in 

secondary chlorinated effluent with means of 40 and 100 microorganisms/L. As levels of 

E. coli (FIB) increased over the sampling times, dosages of reference pathogens and 

their inherent risks increase, accordingly. The largest total risk came from day 14 of 

post-harvest storage total risk of illness at 30%, 70%, and 78% for low, mean, and high 
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concentrations, respectively. Conversely, the lowest levels of FIB were recorded on day 

0 of pre-harvest, displaying total risk of illness at 27%, 42%, and 49% for low, mean, 

and high concentrations, respectively. 

 It should be noted that norovirus and Giardia accounted for the largest 

contributions to the total risk, ranking as the top two individual risks among all sampling 

days and concentration levels. In all low concentration risks, norovirus comprised nearly 

all the risk, ranging from 27-30%, with Giardia contributing 0.1% or less for each 

sampling day. All other pathogens were under 0.05% risk for all sampling days. It is 

apparent that total risk of consumption of contaminated food is directly related to levels 

of contamination in irrigation water. In this experiment, FIB was recorded and used as a 

reference to estimate pathogens potentially on foliage to be consumed. The baseline risk 

of illness at any sampling time was over 25%, with norovirus being the largest 

contributor.  
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Figure 6: Low, mean, and high cumulative risks of illness from six reference 
pathogens (norovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter spp., 
Salmonella, and E. coli O157:H7) over time, using average consumption of lettuce 
(29 g). The mean value is the line separating the low and high areas. Days 0, 7, and 
14 are for pre-harvest lettuce samples, and P.H. 7 and 14 are the post-harvest 
lettuce samples kept at 4 ºC. 
 
  
  

During post-harvest storage, risk increased as FIB concentrations increased, 

reaching nearly 80% on the final sampling day. This suggests that preemptive measures 

are vital to ensure the safety of fresh produce products, as without proper treatment, 

there is a serious threat to public safety. Municipal WWTPs effectively remove 

contaminants from human waste in accordance with the EPA to meet defined effluent 

standards for recreational water (USEPA, 2017). However, this water is not suitable to 

apply in fresh produce irrigation practices at the tested microbial load. If the 
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contamination level is reduced, the risks of illness will likely decrease accordingly. 

Furthermore, microflora in WWTPs is mostly from human sources, which poses a larger 

risk of infection and illness than the equivalent FIB level of contamination in water 

polluted by wildlife and other sources (Brooks JP, 2015). Pathogens in effluent derived 

from human wastewater can be especially dangerous, because WWTP sludge has been 

suspected to foster an ideal environment for the exchange and development of resistant 

genes, providing additional advantages not available to microbes in the natural 

environment (Nicholls, 2003). This potentially provides a quicker avenue for 

microorganisms to become multi-drug resistant, which poses a dangerous threat to 

society. These finding stress the significance of controlling overuse of antibiotics and 

other drugs, as they find their way to wastewater and contribute to adaptation of 

antibiotic resistant pathogens (Isturiz, 2000). 

 

4.5 Conclusions 

 

There is a direct relationship between the bacterial contamination of irrigation 

water and the contamination levels of subsequent biomass such as foliage, soil, and 

leachate. Contaminated soil and leachate can have health risks for future generations of 

crops, especially those with low growing foliage that have direct contact with the 

ground. Significant growth of E. coli on lettuce foliage occurred during 14 days of post-

harvest storage at 4 ºC. Of the tested E. coli isolates, resistance to ampicillin displayed 

the largest prevalence, at 81%. Moreover, 75% of antibiotics tested showed intermediate 
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resistance. Herein, lies a dangerous situation where public health is placed at risk, if 

overall levels of resistance are not closely monitored. There are potential public health 

risks from using non-disinfected wastewater effluent to irrigate crops. Under the worst-

case scenario, 8 out of 10 people consuming the crop have the potential to become ill, if 

reuse of wastewater, at the tested level of contamination, is present in fresh produce 

production. This is especially true if levels of antibiotic resistance continue to increase 

and spread, without being closely monitored and held in check.  If wastewater effluent is 

to be used as an alternative source for fresh produce production, it is highly 

recommended that the water proceeds through disinfection processes with either chlorine 

or UV treatment to mitigate the public health risks.  
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CHAPTER V 

ENTERIC VIRUS PREVALENCE DURING FRESH PRODUCE PRODUCTION 

USING NON-TRADITIONAL WATER SOURCES: FATE, TRANSPORT, AND RISK 

ASSESSMENT STUDY 

 

5.1 Overview 

 

High demand for food and water mean water reuse programs are being explored 

including treated municipal wastewater usage in agriculture. However, these sources 

could contain high contaminant levels, and pose risks to public health. The objective of 

this study was to grow and irrigate leafy greens with inoculated wastewater effluent to 

track AP205 bacteriophage prevalence through cultivation and post-harvest storage to 

assess fate and transport. AP205 is a bacteriophage that infects Acinetobacter 

baumannii, and was used as a surrogate for enteric viruses, norovirus and rotavirus. 

Subsequently, quantitative microbial risk assessment (QMRA) was performed to 

estimate risk of illness to the public. Low and high dosages of AP205 at 4.77 ± 0.39 Log 

PFU/mL and 6.63 ± 0.21 Log PFU/mL, respectively, were prepared to examine viral 

load influence on contamination levels and risk of illness.  Foliage, leachate, and soil 

contamination levels were directly (P < 0.05) related to AP205 concentrations in the 

effluent. AP205 concentrations increased throughout cultivation for foliage and leachate, 

suggesting bacteriophage accumulation. During post-harvest storage (14 day at 4 oC), 

there was a significant decrease in AP205 concentration present on the foliage. QMRA 
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results revealed significant chance of illness for norovirus and rotavirus with a 30-40% 

probability of illness developing from infection. Risk of illness varied between dosages 

by only 5% and 1% for norovirus and rotavirus, respectively. Results show that non-

traditional water usage for fresh produce cultivation can pose risks to humans, if 

standards are not in place to control pathogen contamination levels. 

 
5.2 Introduction 

  

Fresh produce production provides a direct vehicle for enteric pathogens such as 

norovirus (NoV) and hepatitis A virus (HAV) to human hosts via irrigation and minimal 

sanitation during the farm-to-fork continuum (Li, De Keuckelaere, & Uyttendaele, 

2015).  This issue is especially prevalent when treated wastewater effluent enters the 

irrigation system. Wastewater is becoming more commonly used in arid regions of the 

world to increase water sources for irrigation (Pachepsky, 2011). Finding alternative 

water sources provides more water for the ever-growing demand for food and leaves 

more potable water for direct human consumption. Links between enteric viruses in 

irrigation water and fresh produce have been studied and established as a health risk 

(Cheong, 2009; López-Gálvez et al., 2016). However, the complete fate and transport of 

enteric viruses during cultivation and post-harvest storage of fresh produce are still 

unclear.  

Generally, bacterial indicators such as fecal coliforms are used as a guideline for 

the quality of irrigation water (Steele, 2004; USFDA, 2013a). Although, it has been 

observed that relationships of enteric viruses with indicator organisms, such as 
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Escherichia coli, are not correlated (López-Gálvez et al., 2016). This lack of direct 

relationship is apparent throughout  the primary, secondary, and tertiary wastewater 

treatment stages, as reported by Hijnen, Beerendonk, and Medema (2006). Moreover, 

this study also showed  that enteric viruses are very resistant to UV light, which kills 

98.9% of E. coli and is part of the final stage in many wastewater treatment plants (La 

Rosa, 2010). This effluent is often discharged into creeks and tributaries of major rivers 

in which agricultural irrigation water is pumped out of. It is important to understand how 

these viruses impact public health when present in fresh produce irrigation water.  

Viruses are resilient and can survive much longer in agricultural environments 

than bacteria. They are also much smaller, which enables them to matriculate down into 

the water table. There have been studies that track the prevalence of enteric viruses, in 

general, from irrigation water to crop surfaces (Cheong, 2009; López-Gálvez et al., 

2016). These have been helpful in establishing that enteric viruses preside on crops after 

irrigation, and bear health risks to human consumption. To completely understand how 

these viruses persist and the risks they pose to public health, we need to know how the 

entire system, foliage, soil, and leachate, are impacted when using contaminated water 

for irrigation at different contamination levels.   

Treated wastewater in agriculture creates new opportunities for water usage 

efficiency, but public health standards need to be established to monitor levels of 

contamination in irrigation water and fresh produce and ensure public safety. Being able 

to quantify inherent risk of consumption of enteric viruses is vital to this process. 

Quantitative microbial risk assessment (QMRA) is a four-step process that can be used 
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for hazard identification, exposure assessment, dose-response assessment, and risk 

characterization (Jones et al., 2008). QMRA has been applied to management strategies 

regarding water quality and public health (Pruden, 2014) and can be applied to assess the 

public health risk of fresh produce irrigated with contaminated water (Mena & Pillai, 

2008). In this study, lettuce was cultivated with wastewater effluent with different initial 

concentrations of a surrogate enteric bacteriophage (AP205). The fate and transport of 

the virus was tracked in foliage, soil, and leachate, during irrigation and postharvest 

storage. We then analyzed the risk of human consumption throughout the process using 

QMRA analysis.  

 

5.3 Materials and methods  

5.3.1 Enteric virus prevalence 

 

5.3.1.1 Microorganisms 

  

All isolates in this study were obtained from Dr. Ry Young’s (Department of 

Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University) 

culture collection. Bacteriophage AP205 is a single stranded RNA bacteriophage that 

has a unique protein sequence among all known single stranded RNA phages.(Shishovs 

et al., 2016). AP205 was selected as surrogate organism for an enteric bacterial virus that 

infects Acinetobacter bacteria. Thus, Acinetobacter baumannii genotype 16 (ATCC 
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17988) was selected as a host organism to propagate AP205. A. baumannii is a gram-

negative opportunistic coccobacilli. (Cherkaoui, Emonet, Renzi, & Schrenzel, 2015) 

 Initial concentration of the AP205 isolate was determined to be 109 PFU/mL 

(plate forming units per mL) by spot titration on a bacterial lawn containing Tryptic Soy 

Agar (TSA, Becton, Dickinson and Company, Franklin Lakes, NJ) and the host bacteria 

(Klovins, Overbeek, van den Worm, Ackermann, & van Duin, 2002). Standard operating 

procedures (SOPs) were followed to produce enough lysate (raw phage) as provided by 

the Center for Phage Technology, Texas A&M University (CFPT, 2011a). Briefly, 100 

µL of an overnight culture of A. baumannii and 100 µL AP205 was combined with 4 mL 

of molten TSA top agar in a sterile glass tube. The mixture was briefly vortexed and 

poured onto a TSA plate. The mixture was allowed to set for five minutes and then 

inverted and incubated at 30 ºC for 24 hours. Then, the top agar was scraped off the 

firmer bottom agar layer using buffered peptone water (BPW, Becton, Dickinson and 

Company, Franklin Lakes, NJ) as a lubricant and placed into sterile 50 mL Falcon tubes 

(VWR International) and centrifuged at 8000 g for 10 min. The supernatant was then 

filtered through 0.45 µm and 0.22 µm syringe filters (VWR International). The final 

concentration of the lysate stock after propagation was examined and determined to be 

1010 PFU/mL using the same procedure as the initial concentration analysis. The AP205 

stock (suspended in BPW) was stored under 4 ºC refrigeration throughout the 

experiment (for less than a month).  

A. baumannii was cultivated by isolating a single colony from a stock TSA plate, 

and inoculating in 9 mL sterile tryptic soy broth (TSB, Becton, Dickinson and Company, 
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Franklin Lakes, NJ) and incubating at 30 ºC for 24 hours in a shaking water bath (12 L, 

VWR International,). A. baumannii culture tubes were then stored at 4 ºC for no longer 

than one week, in which a new culture would be cultivated by transferring 100 µL of the 

old culture into a new TSB tube and incubating as before. 

 

5.3.1.2 Effluent 

  

Effluent sample was obtained weekly from the Texas A&M Wastewater 

Treatment Plant, College Station, TX, USA. The effluent was collected after solids 

removal, two clarification processes, and UV light sterilization. Three liters were 

collected using a beaker affixed to a pole and placed into sterile plastic jugs for transport 

to the lab for further analysis. 

 

5.3.1.3 Leafy greens 

  

Ten young 15-cm romaine lettuce plants (Lactuca sativa var. longifolia, Bonnie 

Plants, Union Springs, AL, USA) were purchased from local nursery and placed into 20-

cm diameter plastic pots and filled with EcoScraps moisture retaining potting soil 

(EcoScraps Co., South Jordan, UT 84095), leaving a 2-cm lip to the top. The potting soil 

was sterilized in an autoclave for 90 minutes at 121 ºC and analyzed by the Texas A&M 

Department of Soil and Crop Sciences laboratory (College Station, TX), which 

generated the following results: pH: 7.2, Nitrate: 0 ppm, Phosphorus: 95 ppm, and 
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Potassium: 441 ppm. It was recommended that supplemental nitrogen be applied in the 

amount of 0.68 g/cm2, which was followed accordingly. 

Plants were watered in and grown using Reverse Osmosis (RO) water for 14 days 

prior to testing. Supplemental RO water was examined and determined to be free of any 

detectable bacterial contamination by aerobic plate counting method (USDA, 1998). 

Each row of five plants were grown under two 2-Light T12 fluorescent shop lights 

(Lithonia Lighting, Conyers, GA) containing four 1.22 m 40-watt fluorescent tube light 

bulbs (General Electric, Fairfield, CT). The bulbs provided 2900 lumens each and 

consisted of two 6,500 K and two 3,000 K color temperature bulbs to more closely 

resemble natural daylight. The lighting fixtures were plugged into a wall outlet timer that 

allowed 14 hours of continuous light located 15 cm above the plants. 

 

5.3.1.4 Bacteriophage inoculation 

 

Once a week, for three weeks, AP205 stock was combined with freshly collected 

effluent to make two approximate dilution levels: 108 and 106 PFU/mL. Each dilution 

level of effluent was applied to the corresponding plants, first by spraying 15 mL of fine 

mist through sterile 147.9 mL spray bottle (Apothecary Products, Inc., Minneapolis, 

MN), completely covering all sides of the foliage from 15 cm distance. Then, 150 mL of 

the effluent was poured into each pot, completely soaking all the soil. Plants were 

supplemented 50 mL of RO water each day for the rest of the week to prevent drying out 
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and wilting. Table 4 shows the timeline for sample pre-harvest irrigation and post-

harvest storage at 4 oC. All procedures were carried out inside a biosafety cabinet. 

Table 4: Timeline for sample pre-harvest irrigation and post-harvest storage at 4 
oC. 
Day	0 Day	7 Day	14 Post-Harvest	

Day	7 
Post-Harvest	
Day	14 

Foliage,	Leachate,	
Soil,	&	Effluent	 

Foliage,	Leachate,	
Soil,	&	Effluent 

Foliage,	Leachate,	
Soil,	&	Effluent	 

Foliage Foliage 

5.3.1.5 Sample collection and analysis 

A 10-mL sample of the effluent was taken after phage inoculation for further 

analysis. After effluent irrigation, a 10-mL leachate sample from each plant was 

immediately collected from the pot saucer. Each type of samples was collected by 

pipetting 10 mL into a sterile conical centrifuge tubes (VWR International, Radnor, PA). 

Foliage samples were collected 1 hour after irrigation, by cutting the outermost 

leaves from their stems with sterile scissors. Leaf blades were removed from the vein 

and cut into 2.5 cm strips. From each plant, 5 g of foliage was weighed and placed into 

sterile Whirl-Pak® bags (eNasco, Fort Atkinson, WI). Then, 10 mL of BPW was added 

to each foliage sample to create a 1:2 ratio of foliage to buffer suspension. The bags 

were then massaged by hand for 2 min to homogenize the material (USDA, 2015). 

Postharvest foliage samples were collected at the same time as the Day 14 samples and 



52 

stored at 4 ºC for 7 and 14 days where BPW was then added and samples were processed 

accordingly. 

Soil samples were collected 6 hours after irrigation to allow adequate drainage. 

From each pot, a sterile 2-cm diameter core tube was inserted 5 cm deep to collect 2 g of 

soil which was placed in sterile conical centrifuge tubes (VWR International). Then, 8 

mL of BPW was added to create a 1:4 ratio of soil to buffer suspension. The tubes were 

then vortexed for 30 seconds to homogenize the contents. Subsequently, these samples 

were allowed to settle for 10 min to separate the soil from buffer. 

All samples were then filtered through sterile 0.22 µm syringe filters (VWR 

International, Radnor, PA) to remove all bacterial agents per SOP’s provided by the 

Center for Phage Technology, Texas A&M University (CFPT, 2011b). Then seven serial 

dilutions per sample were made by transferring 100 µL into micro centrifuge tubes 

containing 900 µL BPW. First, A. baumannii (100 µL) from an overnight culture, was 

combined with 4 mL molten TSA containing 0.5% (w/v) agar, poured onto TSA plates, 

and cooled to form a bacterial lawn. Next, 10 µL of each sample dilution was spotted on 

the corresponding label of the bacterial lawn. Two plates per sample, containing 7 

dilution spots were counted. Plates were incubated overnight at 30 ºC, then plaques were 

counted and results were reported as PFU/g-mL of sample according to (CFPT, 2011b). 
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5.3.2 Quantitative microbial risk assessment 

Quantitative microbial risk assessment (QMRA) was performed to determine 

inherent quantitative risk to human consumption of produce irrigated with contaminated 

irrigation effluent.  QMRA is an evolving framework that has been used for the past 30 

years to evaluate the relationship between humans and environmental microorganisms, 

including those associated with fresh produce, with the goal of developing management 

regimens that mitigate exposures to pathogens. The four-step QMRA paradigm of 

hazard identification, exposure assessment, dose-response characterization, and risk 

characterization can be applied to comprehensively review produce quality data and 

characterize the host–hazard relationship (NRC, 1983). 

Specifically, bacteriophage concentrations at various points along the produce 

production chain were translated to potential human health infection risk(s) assuming 

different exposure scenarios constructed by incorporating information obtained from 

peer-reviewed literature. The measure bacteriophage concentration was assumed to 

correlate with a one to one ratio to the two reference pathogens, rotavirus and 

norovirus. The pathogen dose ( D ) in PFU  for both rotavirus and norovirus were 

calculated from Equation 2.1.  
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Equation 2: 

VxCD =

where: 

C is the concentration of pathogen species on the foliage (number of pathogens/g) 

V is the volume of foliage ingested (29 g) 

Risk estimation was based on a potential situation where irrigation water 

contaminated with virus pathogens was directly applied to lettuce foliage, harvested, and 

consumed without any intervention (antimicrobial treatment) step. Average daily 

consumption of lettuce for the general public was estimated as 29 g (Chun, 2005). The 

calculated pathogen dose for each reference pathogen was then input into the 

corresponding dose response model (Table 5) to estimate the health risk. 

Table 5: Reference pathogen dose response models. 
Reference 
Pathogen 

Dose-
Response 
Model 

Reference Model 
Parameters 

Parameter 
Values 

Morbidity 

Norovirus Beta 
Binomial 

McBride et al. 
(2013); Peter F. 
M. Teunis et al. 
(2008) 

alpha 
beta 

0.04 
0.055 

60% 

Rotavirus Beta 
Poisson 

Greenberg and 
Estes (2009) 

alpha 
N50

0.25 
6.17 

26% 
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5.3.3 Statistical analysis 

A fractional factorial design with equal replications was used in this study. All 

experiments were performed in triplicate as independent experiments and results are 

expressed as mean ± standard deviation. Differences between variables were tested using 

one-way analysis of variance ANOVA and statistical significance were expressed at the 

P < 0.05 level, significantly different means were separated either by the Tukey HSD or 

student’s t-test. All data was analyzed using JMP®Pro statistical software (SAS, Cary, 

NC). Beginning with pre-harvest data, statistical analysis was performed using a two-

sample t-test test to compare bacteriophage contamination between the two effluent 

inoculation levels (high and low) of different materials (effluent, foliage, soil, and 

leachate) over time. Then, mean differences were analyzed among materials for each 

sampling time by performing a Tukey HSD Post-hoc test. Finally, post-harvest foliage 

samples were analyzed to test mean differences over storage time.  

5.4 Results and discussion 

5.4.1 AP205 bacteriophage prevalence 

The concentration of AP205 present in inoculated irrigation effluent varied 

slightly over time and was recorded in Log PFU/mL. The low dosage effluent was 

significantly different on day 14, from the previous two sampling times (day 0 and day 

7), as shown in Figure 7. The inoculum concentrations were prepared based on 



56 

preliminary lysate testing data. The lysate was kept in four sterile Falcon tubes (50 mL), 

which may have caused the variance corresponding to 4.77 ± 0.39 Log PFU/mL for low 

dosage, and 6.63 ± 0.21 Log PFU/mL for high dosage. The high dosage effluent samples 

were not significantly different over time (Figure 7). Both dosage concentrations were 

lower than the theoretical concentrations of 6 and 8 Log PFU/mL for low and high 

dosages, respectively. This might have been due to  natural reduction during storage 

(Cooper, Denyer, & Maillard, 2014) and after mixing with WW effluent. Even though 

final effluent dosages were lower than targeted concentrations, there was still a two logs 

difference between the dosages and the experiment could still be conducted with 

statistical significance as expected.  

Figure 7: Comparison of AP205 effluent concentration (Log PFU/mL) over 
sampling time. Error bars denote standard error for arithmetic mean (n=10). 
Connecting letters limited to comparison of each dosage and reported using Tukey-
Kramer HSD, a=0.05. 
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Foliage and leachate contamination levels increased each sampling time among 

both dosage levels, while soil did not show any trend, nor have significant differences 

among any sampling time for both dosage levels, as seen in Figure 8. The low dosage 

treated foliage samples on days 7 and 14 were significantly higher than day 0, but not 

from each other (Figure 8). The high dosage foliage showed a steady increase in 

concentration, where days 0 and 14 were significantly different, but day 7 was not 

significantly different from either 0 or 14 (Figure 8). These results suggest that there is 

accumulation of AP205 bacteriophage on the plant foliage throughout the cultivation 

process. The bacteriophage was able to survive and persist for more than one week. 

Although, alternative irrigation, such as subsurface drip, could prevent contamination 

of plant foliage, as previously reported in a study on bacteriophage transport in 

wastewater sub-irrigated soil during spinach production by Assadian et al. (2005b). 

This study also shows that bacteriophage did persist in the soil for 28 days, which 

suggests that virus inactivation strategies may be a necessary step in treating reclaimed 

wastewater for crop irrigation.  

For the soil samples, both dosage levels did not display any accumulation over 

time, remaining at levels similar (P > 0.05) to the day 0 concentrations for the rest of 

the study. This lack of accumulation might suggest that there is a maximum viral load 

carrying capacity in the soil. It was concluded by Fongaro et al. (2017), which studied 

the fate and transport of enteric pathogens (phiX174, mengovirus, Salmonella 

enterica Typhimurium, and E. coli O157:H7) soil, that there are multiple factors 

including pH, 
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organic matter content, soil texture and moisture that affect the survival and persistence 

of viruses in soil. 

 

 

Figure 8: Comparison of AP205 concentration (Log PFU/g-mL) within response 
materials (foliage, soil, and leachate) by dosage over sampling time. Error bars 
denote standard error for arithmetic mean (n = 10). Connecting letters limited to 
comparison of each dosage within response material and reported using Tukey-
Kramer HSD, a=0.05. 
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linked to the consistency and maximum carrying load of the soil. The irrigation effluent 

running through the soil was neither picking up nor depositing bacteriophage from the 

soil, which could be related to the soil being already at its upper limit of contamination, 

and the irrigation effluent was not significantly changing concentration over sampling 

time. As observed by Fongaro et al. (2017), the soil and leachate contamination levels of 

bacteriophage are dependent upon the characteristics of the soil. Assadian et al. (2005b) 

found that the coarseness of soil was a major factor in determining if using wastewater 

effluent in subsurface drip irrigation was microbiologically safe, concluding that coarser 

soil was less contaminated when compared to finer soils. 

 

 

Figure 9: Comparison of AP205 concentration (Log PFU/g-mL) for a) low dosage 
and b) high dosage among response materials (foliage, soil, and leachate) within 
sampling time. Error bars denote standard error for arithmetic mean (n=10). 
Connecting letters limited to comparison of response materials within sampling day 
and reported using Tukey-Kramer HSD, a=0.05. 
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There were significant differences in AP205 concentrations observed in all low 

dosage response materials per sampling time, as shown in Figure 9 AP205 

concentrations were (P < 0.05) lowest in foliage, second highest in soil, and highest in 

leachate for each sampling time (Figure 9). These results could be explained by the 

potential load carrying capacities of the foliage and soil. Of the two, soil was able to 

retain more AP205 than the foliage, but not enough to strike an equal balance between 

leachate. It was found by Seo (1999) that attachment of pathogens to leaf surfaces was 

often closer to the stomata and other cracks in the cuticle. In a separate study, DiCaprio 

et al. (2015) found that different pathogens (norovirus and Tulane virus) vary in 

localization patterns on fresh produce according to the surface roughness of the foliage, 

aggregating in and around stomata as well. These findings suggest that pathogens are 

more likely to attach to rougher portions of foliage, and not smooth waxy surfaces. 

Similarly, with more surface area, crevices, and places to attach, it is reasonable to 

conclude that soil retains more AP205 than the smooth foliage of lettuce. 

 The high dosage samples for all response materials showed similar results to the 

low dosage samples on day 0 in terms of AP205 concentration levels and significant 

differences. However, on days 7 and 14, the foliage and soil AP205 concentrations were 

not significantly different, and soil was slightly less contaminated than foliage. 

Leachate’s AP205 concentration was significantly higher than foliage and soil on all 

three sampling days for the high dosage.  As suggested by Iriarte (2007), there are 

several factors that affect bacteriophages’ ability to survive, such as temperature, relative 
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humidity, and light within the UV spectrum. These and many other unaccounted factors 

may explain the difference in concentration levels between response materials. 

 

 

Figure 10: Comparison of AP205 concentration (Log PFU/g) for foliage by dosage 
(high and low) over sampling time. Error bars denote standard error for arithmetic 
mean (n=10). Connecting letters limited to comparison of each dosage and reported 
using Tukey-Kramer HSD, a=0.05. On day 14, 90% of low dosage foliage samples 
were below the detection limit (297 PFU/g), thus value of 297 PFU/g was assumed 
for each instance to compare AP205 concentration over time. 
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(2013) found that low growing crops could be more susceptible to contamination than 

taller growing crops. Furthermore, a fate and transport study by Vergine et al. (2015), 

who used different treatment levels of wastewater for subsurface drip irrigation, found 

that there was natural die-off and leaching of pathogens from the irrigation source, 

where less than 1% of initially 8.3 Log CFU/mL pathogens (Escherichia coli) were 

present in leachate at 36 cm below the soil surface. Leachate contamination also plays a 

major role as the runoff may enter water tables or tributaries where further propagation 

is possible and can pose public health concerns (Smolders, Rolls, & Ryder, 2015). 

Additionally, the low and high dosage samples displayed the same general 

contamination trends over time. This implies that the contamination trends between 

response materials is not affected (P < 0.05) by the initial concentration of AP205 (2 

order of magnitude difference) in the irrigation effluent. These results are important to 

begin understanding  enteric viruses and pathogens fate and transport during crop 

irrigation. 

 AP205 concentration in foliage decreased during post-harvest storage at 4 ºC 

(Figure 10). Low dosage post-harvest foliage significantly decreased in AP205 

concentration from day 0 to 7. Day 14 data was supplemented due to limits of detection 

(100 PFU/g as tested), and worst-case-scenario concentration of 297 PFU/g was 

assumed. This was not significantly different from day 7. High dosage foliage samples 

also decreased in concentration, and were significantly different in days 7 and 14. Due to 

a large observed variance (6.4 ± 6.4 Log PFU/g), day 0 was not significantly different 

from day 7. These results are interesting, as they differ from typical behavior of bacterial 
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pathogens in the same circumstances (Lopez-Velasco et al., 2010). These results 

implicate that enteric viruses do not thrive and propagate on foliage during post-harvest 

storage. It is possible that there was inadequate host organisms for the bacteriophage to 

survive or that other, naturally present microorganism were propagating, which forced 

the competitive exclusion of AP205 (Haerter, Mitarai, & Sneppen, 2014). It has also 

been observed that some bacteriophage (phiXV3-16 and phiXacm) have natural die-off 

over time due to desiccation, which could have happened in this study, but that should 

not be assumed for all bacteriophage (Iriarte, 2007). There is still much to learn about 

how different pathogens, specifically bacteriophage and viruses, persist on fresh produce 

throughout handing and processing, and how they threaten human health.   

 

5.4.2 Risk assessment 

 

AP205 was used as a surrogate for other pathogenic viruses and its concentration 

throughout this study used to correlate with quantitative microbial risk assessment 

(QMRA) of the respective pathogenic viruses. Two viruses were chosen to perform the 

QMRA based on the eight waterborne reference pathogens established by the 

Environmental Protection Agency (EPA): norovirus, rotavirus, adenovirus, 

Cryptosporidium spp., Giardia lamblia, Campylobacter spp., Salmonella, and E. coli 

O157:H7 (USEPA, 2010b). These pathogens are present in both human and animal fecal 

waste, and can be found in municipal wastewater (USEPA, 2010b). Norovirus and 

rotavirus were selected to perform the risk assessment because of their similar chemical 
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composition, shape, and size to AP205, which is a direct surrogate to the MS2 

bacteriophage. These viruses’ capsids are made up of proteins, enclose positive sense 

single stranded RNA, and have T=3 symmetry (180 proteins) (Shishovs et al., 2016). 

Though, rotavirus is twice as large, it was assumed that observed AP205 concentration 

represented maximum viral load in the sample materials (CDC, 2015d). Consequently, 

norovirus and rotavirus concentrations throughout the analysis were taken from AP205 

concentration. Low and high dosages were used to analyze if inherent risk of illness was 

affected by concentration. An average consumption level of lettuce was assumed to be 

29 g (Chun, 2005), which gave us final dosage levels for each pathogen (Table 6). 

 

 
Table 6: Low and high pathogen dosages (Log PFU/g) for norovirus and rotavirus 
based on observed concentrations (PFU/g) of AP205, and average consumption of 
lettuce (29 g). Post-harvest days written as P.H. 7 and 14. 

Pathogens Dosage (Log 
PFU/g) 

Day 
0 

Day 
7 

Day 
14 

P.H. 
7 

P.H. 
14 

Norovirus and rotavirus 
Norovirus and rotavirus 

Low 4.8 5.0 5.2 4.2 3.9 
High 7.1 7.8 8.0 6.5 5.9 

  

 

Dosages were used in dose-response models, along with corresponding 

parameters as established by (Haas et al., 1999) to yield risk of infection for each 

pathogen and sampling time. Illness resulting from infection was 60% and 26% for 

norovirus and rotavirus, respectively (Greenberg & Estes, 2009; McBride et al., 2013). 

The risk of illness from each pathogen and sampling time were displayed as a bar graph, 

with the upper limit showing the high dosage risk, and lower limit for low dosage risk 
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(Figure 11 a, b). Worldwide, vaccines are used as preventive measures for many viruses, 

currently RotaTeq™ and Rotarix™ are the two available 2nd generation vaccines to prevent 

illness from rotavirus, with 3rd generation vaccines in development (Greenberg & Estes, 

2009). There is currently no vaccine available for norovirus, though one has reached 

human trials, in its development process (Flynn, 2016). 

 

 

 

Figure 11: Risk of illness range for a) norovirus and b) rotavirus, with lower limit 
as low dosage risk, and upper limit as high dosage risk for all sampling days, 
including post-harvest (P.H. 7 and P.H. 14). Norovirus risk of illness is based on 
60% of infection rate, whereas rotavirus risk is based on 26% chance of illness 
from infection. 
 
  

 

Norovirus displayed more risk of illness than rotavirus for each sampling time. 

This difference is largely due to the rate of manifesting clinical symptoms post-infection. 

Since each pathogen has its unique dose response curve, probability of infection varied 

significantly between viruses, even though the dosage concentration was identical. 
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Norovirus displayed its largest probability of infection equal to 73% on day 14 for the 

high dosage scenario, whereas rotavirus was 99%. These findings show that while the 

probability of infection is larger with rotavirus than norovirus, the probability of an 

illness is less because of the available vaccines, which are 74% effective in preventing 

symptoms such as diarrhea (Greenberg & Estes, 2009).  

Throughout the sampling days, risk of illness directly mirrored the trend in 

concentration of AP205, climbing to day 14 and descending during post-harvest storage. 

Even though, there was a 2-log decrease in concentration during post-harvest storage, 

the risk associated with each pathogen was not significantly affected. The largest 

difference in risk of illness for norovirus was from day 14 (pre-harvest) to post-harvest 

day 14, decreasing less than 4%. This lack of direct correlation can be attributed to the 

dose-response curve. In many cases, once a specific dosage is reached the rate at which 

risk increases eventually plateaus (Haas et al., 1999). 

In accordance with EPA standards, only FIB concentrations are required to be 

monitored in effluents leaving the WWTP, not viral loads (USEPA, 2017). Water quality 

standards should be in place to evaluate pathogen prevalence in wastewater effluent and 

irrigation water if reused wastewater is used for fresh produce production. These tests 

are vital to ensure the safety of fresh produce products, as without proper treatment, 

there is a serious threat to public safety. Moreover, wastewater reuse for fresh produce 

should not be recommend as an alternative irrigation source, based on the observed 

results, unless steps are taken to ensure the water is safe to use and will not threaten 

public health.   
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5.5 Conclusions 

 

A direct relationship exists between the viral contamination of irrigation water 

and the contamination levels of subsequent biomass such as foliage, soil, and leachate. 

Soil and leachate that become contaminated can pose health risks for future generations 

of crops, especially those with low growing foliage that have direct contact with the 

ground. Low and high dosages of effluent provided similar results, both causing foliage 

contamination to increase throughout cultivation, and decrease in post-harvest storage. 

However, the 2-log difference in dosages, only slightly decreased the risk of illness from 

norovirus and rotavirus by 5% and 1%, respectively. There was a significant drop in 

level of viral contamination of foliage during post-harvest storage at 4 ºC. There are 

potential public health risks from using non-disinfected wastewater effluent to irrigate 

crops. The EPA does not require WWTP’s to monitor virus concentration in effluent, 

only FIB, which based on this study’s results, could potentially compromise public 

health if similar viral concentrations were observed. Under worst-case scenario slightly 

more than 4 out of 10 people consuming the studied crop have the potential to become ill 

from norovirus, and just under 3 out of 10 can become ill from rotavirus. If wastewater 

effluent is to be used as an alternative source of fresh produce production, it is highly 

recommended that the water pass through disinfection processes with either chlorine or 

UV treatment and its quality tested to mitigate the public health risks. As more is learned 

about the fate and transport of viruses in crop irrigation, methods of water treatment may 

allow for wastewater irrigation to be a safe and viable alternative in the future. 
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CHAPTER VI 

OVERALL CONCLUSIONS 

 

In this thesis, generic E. coli and AP205 were used to track the fate and transport 

of related microorganisms in the wastewater irrigation of romaine lettuce. Levels of 

contamination in lettuce foliage were used to estimate the inherent risk of illness from 

related pathogens found in wastewater using QMRA analysis. Contamination levels of 

both E. coli and AP205 in foliage, leachate, and soil were correlated with the initial 

levels of contamination in irrigation water. Post-harvest storage displayed contrasting 

results, with E. coli concentrations increasing over time, while AP205 decreased. This 

shows that microorganisms behave differently when subjected to extended periods of 

storage at 4 ºC, and can increase the level of illness risk. Significant antibiotic resistance 

of E. coli isolates was observed to ampicillin, and 75% of antibiotics had levels of 

intermediate resistance. The levels of intermediate resistance in bacteria of antibiotics 

are important to monitor in the future, as these organisms can evolve to become fully 

resistant, and pass along resistant genes. This experiment proves that wastewater reuse 

for irrigation of lettuce and other ready-to-eat crops can pose a significant risk to humans 

if contamination levels are similar to the ones in this study. Contaminated soil and runoff 

can potentially influence future generations of crops and any use of water downstream. 

While FIB can provide a reference for other pathogens in wastewater, it is important to 

determine actual levels of microorganisms such as antibiotic resistant bacteria and 

norovirus, which displayed the greatest health risk in this study. To be considered safe to 
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use, stringent regulations should be in place to require the testing of reclaimed water for 

pathogen presence. 



 

 70 

CHAPTER VII 

FUTURE RECOMMENDATIONS 

 

Future studies should consider the following: 

• Grow lettuce from seed to minimize levels of initial contamination in soil. 

• Control E. coli concentrations in irrigation water by inoculating specific 

concentrations into sterile wastewater effluent prior to each irrigation. 

• Compare low and high concentrations of E. coli contamination for fate and 

transport to determine differences in fate, transport, and risk of illness from 

consumption. 

• Evaluate effectiveness of microbial inactivation for different dosage levels of 

UV-irradiation and chlorine treatment to wastewater prior to irrigation.  

• Irrigate with contaminated water several times per week to more closely 

simulate standard irrigation practices. 

• Implement intervention strategies (“kill step”), such as a chlorine rinse or 

UV-irradiation treatment pre and post-harvest, to determine their effects on 

pathogen load and inherent risk of consumption of foliage  

• Test the effect of direct presence of antibiotics in the water at different 

concentrations on the ARB fate and transport.  

• Monitor how all experiment changes affect antibiotic resistance bacteria 

prevalence and transport.  
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• Select the most prevalent antibiotics and quantify the resistant 

microorganisms using metagenomics analysis and their fate and transport.  
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