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ABSTRACT 

 

Buruli ulcer (BU) is a globally recognized neglected tropical disease caused by 

Mycobacterium ulcerans. BU is the third most recurrent mycobacterial disease of humans 

globally after tuberculosis and leprosy. The disease results in dermal tissue necrosis exposing 

the tissues under the skin. Ulcers can reach 5 to 15 cm in diameter in some patients especially 

if they do not seek early treatment.  Most cases involve individuals between the ages of 4 to 

15 years. This disease was first noted in the late 1880’s in Africa and has since been reported 

worldwide. The exact mode of transmission in BU is unclear; however, it is hypothesized 

contact with slow-moving rivers and associated biting aquatic insects, such as mosquitoes 

results in pathogen transmission. Recent research from our group demonstrated mycolactone 

as an attractant for adult mosquitoes seeking a blood-meal as well as oviposition sites. In this 

study, the impact of mycolactone (0.05 µg/mL), (0.5 µg/mL), (1.0 µg/mL) on immature life-

history of Ae. aegypti (commonly occurs in same environment as M. ulcerans) was 

examined. We determined percent egg hatch was not significantly different across 

treatments. However, concentration did impact survivorship of larval mosquitoes to the adult 

stage. Future research will determine if development in the presence of mycolactone impacts 

decision-making by resulting mosquitoes seeking oviposition sites. If true, a synergistic 

effect with regards to the prevalence of BU and other Ae. aegypti associated diseases (e.g., 

Yellow Fever) may occur.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Buruli ulcer (BU), also known as Bairnsdale ulcer in Australia (Quek et al. 2007), is a 

neglected tropical disease impacting dermal tissue of human hosts. Most cases involve 

individuals between the ages of 4 to 15 years (Williamson et al. 2008, Organization 2012, 

Vincent et al. 2014). This disease was first noted in the late 1880’s in Africa and is now 

known to have global distribution (Williamson et al. 2008, Merritt et al. 2010). West Africa 

in particular is considered a highly endemic area (Fig. 1) (Johnson et al. 2005). BU was given 

its name in reference to a county in Uganda, where Sir Albert Cook first described ulcers 

consistent with M. ulcerans infections in 1897 in Uganda (Meyers 1995, Nakanaga et al. 

2013). Since then, the WHO has developed the Global Buruli Ulcer Initiative (GBUI) that 

focuses on the improvement of treatment provided to people with the disease and addresses 

the matter of community prevention and awareness (Williamson et al. 2014).  

Mycobacterium ulcerans and BU Pathology 

The pathology of BU has been well studied. Early onset of BU occurs in the 

subcutaneous tissue layers below the skin most-often on the arms and legs (Fig. 2A) 

(Nakanaga et al. 2013). M. ulcerans is a slow-growing environmental pathogen with a 

doubling time of 36-48 hours depending on the growth conditions (Johnson et al. 2005). In 

fact, incubation for 5-8 weeks at 30–32 °C under laboratory conditions is required to obtain 

visible colonies (Johnson et al. 2005). The ulcers are painless; however, if not treated, the 

ulcers will continue to expand and could result in secondary infection, bone deformation, and 

osteomyelitis (Johnson et al. 2005). Though mortality is low, there is a significant amount of 
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morbidity associated with infection that leads to a great socioeconomic burden (Barogui et al. 

2013, Yeboah Manu et al. 2013). The disease results in tissue necrosis expanding into 

healthy tissue resulting in damage to the dermal regions infected and exposing the tissues 

under the skin (Barogui et al. 2013). Ulcers can reach 5 to 15 cm in diameter in some patients 

especially if they do not seek early treatment. Those with larger ulcers may require surgery 

for treatment (Chauty et al. 2007). If not diagnosed quickly, development of ulcers could 

result in long and costly hospitalizations, disability or even death (Fig. 2B) (Organization 

2012). The WHO and some studies recommend antibiotic treatment of early onset of BU 

with rifampicin in combination with streptomycin for eight weeks (Merritt et al. 2010, 

Organization 2012, Friedman et al. 2016). While these antibiotics are appropriate for killing 

M. ulcerans and treatment of early lesions, surgical procedures might be needed in cases 

where the ulcers are deep, especially when the ulcers infect muscle tissues (Johnson et al. 

2007, Merritt et al. 2010). However, antibiotics are often scarce and still expensive in most 

third world nations. Additionally, many patients cease treatment prematurely as streptomycin 

FIGURE 1. A global map representing high and low endemic areas of  
BUdisease as of 2005 (Johnson et al. 2005). 
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requires injection by a trained administrator, and may require long distance travel to 

treatment centers leading to an increased familial burden (Henry and Lexchin 2002).  

 

Epidemiology 

Mycobacterium ulcerans, the causative agent of BU, is a long and slender rod-shaped 

acid-fast bacterium (Organization 2012). Bacteria comprising this genus are characterized by 

having a cell wall rich with mycolic acids, making them recalcitrant to antibiotics 

(Raghunathan et al. 2005). M. ulcerans disease is the third most recurrent mycobacterial 

disease of humans in the world after tuberculosis and leprosy (which cause tuberculosis and 

leprosy, respectively) (Johnson et al. 2005, Vincent et al. 2014). M. ulcerans is most 

commonly found in tropical subtropical countries, with West Africa being the main endemic 

zone as previously discussed.  In West Africa, M. ulcerans and BU occurs most frequently in 

rural locations (Johnson et al. 2005). A recent study by Kenu (2014), confirmed by using 

FIGURE 2.: A) A closer view, revealing deep undermining, is shown in 
the second panel. B) Long-Term Sequelae of M. ulcerans Infection 
(Johnson et al. 2005). 

A	 B	
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geographical information system (GIS) technology, the appearance of BU along the Densu 

River (Greater Accra region of Ghana) was especially high in areas where the flow of the 

water was slow, as well as where gentle slopes existed (Kenu et al. 2014a). In addition, a 

recent study by McIntosh, et al. investigated the associations between M. ulcerans and 

aquatic plant. Positive samples (ER, MU, and MPM) were found on multiple plant taxa in 

both lotic and lentic habitats (McIntosh et al. 2014). Slow flowing areas were determined 

based on prior knowledge of mountains in the region (Kenu et al. 2014a). Ultimately, 

Williamson (2012) reported M. ulcerans is often linked with a residence near an aquatic 

environment in Africa; however, fishermen who frequent the water for prolonged visits were 

not determined to be at a high risk for infection (Raghunathan et al. 2005, Pouillot et al. 

2007). 

 

Mycobacterium ulcerans and Mycolactone 

Mycolactone is produced by M. ulcerans. Mycolactone is considered a potent 

cytotoxic and immunosuppressive polyketide- derived macrolide (Mve-Obiang et al. 2003, 

Gama et al. 2014). Some macrolides have pharmacological properties (i.e. the antibiotic 

erythromycin and the immunosuppressive rapamycin) (Main 2014). In 1999, mycolactone 

was first isolated from M. ulcerans and determined to be cytopathic and thus responsible for 

the pathology observed in the ulcers (George et al. 1999, Raghunathan et al. 2005). The 

discovery was an interesting one as mycolactone was a cytotoxic lipid; unique to a bacterial 

pathogen. In most cases, bacterial pathogens are known for producing protein-based toxins 

(Merritt et al. 2010). 

 



	 5 

Transmission of BU 

The exact mode of transmission in BU is unclear, and is a reason BU is often referred 

to as a "mysterious disease"; however it is hypothesized to occur from contact with the 

environment such as slow-moving rivers (especially in areas prone to human-made 

disturbance and flooding) (Fig.3) (Johnson et al. 2005, Merritt et al. 2010, Williamson et al. 

2012).  

 

Since the late 19th century, researchers have been attempting to determine the mode 

of M. ulcerans transmission (Johnson et al. 2005, Quek et al. 2007, Merritt et al. 2010). 

Transmission of the pathogen from person-to-person is not common, with only one case 

being reported involving a human biting another human (Merritt et al. 2010). In this case, the 

patient’s skin surface was believed to have come into contact with the environment 

containing M. ulcerans resulting in the pathogen being driven into the skin (Merritt et al. 

FIGURE 3. Slow-Moving Rivers: Typical Buruli ulcer riverine endemic 
sites in Ghana (Merritt et al. 2010). 
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2010). An alternate hypothesis for a mode of transmission of M. ulcerans is the skin of an 

individual being breached by puncture and allowing contamination with the pathogen 

(Williamson et al. 2014). 

Some researchers hypothesize that insects associated with environments containing 

the pathogen are potential vectors, such as black flies (Diptera: Simuliidae), mosquitoes 

(Diptera: Culicidae), March flies (Diptera: Tabanidae), and sandflies (Diptera: 

Ceratopogonidae)) (Luckhart et al. 1998, Quek et al. 2007, Merritt et al. 2010). A study 

reported that aquatic hemipterans, Naucoridae, infected with M. ulcerans, could bite mice 

and transmit M. ulcerans under laboratory conditions (Marsollier et al. 2002).  In 2004, a 

spike in BU cases in a small Australian town near Victoria, Australia, was recorded (Quek et 

al. 2007). Researchers also noted high activity of Aedes mosquitoes at that time. Real-time 

PCR was used to screen 11,000 mosquitoes in the area. Results indicated a M. ulcerans 

infection rate of 4.3 per 1,000 mosquitoes (Merritt et al. 2010). 

 

Aquatic Insects 

Although BU is a "mysterious disease" and the mode of transmission is unknown, 

many studies have hypothesized to occur by aquatic insects (Marsollier et al. 2002, Johnson 

et al. 2005, Quek et al. 2007, Merritt et al. 2010, Wallace et al. 2010). BU is thought to occur 

from contact with aquatic environments (Johnson et al. 2005, Merritt et al. 2010, Williamson 

et al. 2014), and aquatic insects have been investigated as potential reservoirs or vectors. In 

addition, Marsollier, 2012 reported the aquatic hemipterans, Naucoridae, infected with M. 

ulcerans could bite mice and transmit the pathogens under laboratory conditions (Marsollier 

et al. 2002). 
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Recently, Wallace (2016) tested healthy mice after dipping their tails in cultures of 

the causative agent, Mycobacterium ulcerans (Wallace et al. 2016). They study exposed the 

tails to two species of mosquitoes, Aedes notoscriptus and Aedes aegypti. Two of 11 mice get 

infected after mosquitoes fed on them (Wallace et al. 2016). Therefore, mosquitoes (Aedes 

notoscriptus and Aedes aegypti that were used in the study) could act as atypical mechanical 

vectors of M. ulcerans (Wallace et al. 2016). Furthermore, Wallace et al. (2016) reported that 

Aedes aegypti is known as closely associated with humans worldwide (Wallace et al. 2016). 

Aedes aegypti (Diptera: Culicidae) is the primary vector of the pathogens responsible 

for yellow fever and dengue fever viruses. Aedes aegypti adults are easily recognized by the 

white-banded patterns on their legs. This mosquito species has a known distribution 

throughout the tropical and subtropical regions of the world (Rozeboom 1960). The 

metamorphism in Ae. aegypti is a holometabolous, which characterized by complete 

metamorphosis. Aedes aegypti deposits eggs around the edges of standing, or slow-moving 

water sources (Rozeboom 1960). If the environment dries, the eggs are stable for months 

without losing vitality. Once the eggs come in contact with water, they hatch in about 2-7 

days (Rozeboom 1960). Based on the preliminary experiments we did in our lab, the average 

in eggs hatching time was 2-6 hs (unpublished data). Larvae pass through four instars prior to 

becoming pupae. Pupae need 2-4 days for adult emergence at 23-27 °C. Resulting 

mosquitoes lay eggs inside containers holding water between 2-3 days after a blood-meal 

(Rozeboom 1960). 

Because Ae. aegypti occurs in habitats endemic to M. ulcerans, there is a possibility 

that ecological interactions could occur between the two (Demangel et al. 2009). Recently, 

Sanders (2016) demonstrated mycolactone serves as an attractant of the mosquito, Aedes 
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aegypti aegypti (L.) the yellow fever mosquito (Diptera: Culicidae) to blood-meal sources 

(Sanders et al. 2016). In fact, he determined the response was dose dependent. The high dose 

(1.0 µg/mL) attracted mosquitoes to the blood-feeder by 29.1% compared to the control. This 

indicates the dose of mycolactone can serve as an attractant of mosquitoes to hosts, which 

can potentially result in M. ulcerans transmission and BU infection (Sanders et al. 2016). In 

contrast, low (0.05 µg/mL) and middle doses (0.5 µg/mL) served as repellents. As Ae. 

aegypti larvae develop in aquatic habitats containing M. ulcerans, the resulting adult 

mosquitoes could potentially use mycolactone as a signal for locating appropriate oviposition 

sites (Rozeboom 1960). But, while mosquitoes have demonstrated a preference for 

ovipositing in areas containing mycolactone, its impact on the development of resulting Ae. 

aegypti immature, and adults is not known.  

 

Aedes aegypti and Pathogen Global Reliance 

Mosquitoes are infected with, and transfer, pathogens during blood-feeding 

(Tabachnick et al. 1985, Gubler 1989, Beerntsen et al. 2000). Aedes aegypti (Diptera: 

Culicidae) is the primary vector of the pathogens responsible for yellow fever, dengue, and 

recently in the news, Zika (Rozeboom 1960, Nene et al. 2007, Zupanc et al. 2016).  

 

Globally Important Viral Diseases Transmitted by Ae. aegypti 

The virus responsible for yellow fever is an arbovirus of the Flavivirus genus and is 

transmitted in Africa by multiple species belonging to Aedes genus (Tabachnick et al. 1985, 

Gould and Solomon 2008). Thirty-four countries are either endemic for, or have regions that 

are endemic for yellow fever (Timoshevskiy et al. 2013). In the 17th to 19th centuries, yellow 
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fever was transported to many other continents, such as North America and Europe (Gould 

and Solomon 2008, Timoshevskiy et al. 2013) The World Health Organization reported an 

estimation that there are 200,000 cases of yellow fever annually, including 30,000 deaths, of 

which over 90% occur in Africa (Vainio and Cutts 1998, Mutebi and Barrett 2002).  

Dengue on the other hand is actually considered the most important vector-borne 

arboviral disease of the 21st century (Gubler 2012, Timoshevskiy et al. 2013). This disease is 

a risk to 3.6 billion people resulting in 21,000 deaths per year in the world (Beerntsen et al. 

2000, Gubler 2012). The disease became endemic in over 100 countries in Africa, West Asia 

and America (Gubler 2012, Halasa et al. 2012).  

Since 2015, Zika virus has become a growing threat to the United States, originating 

from Brazil (Zupanc et al. 2016). This disease was first isolated in 1947 in Uganda and was 

distributed in Africa and Asia (Gould and Solomon 2008). Zika virus is transmitted to people 

through an infected mosquito, mainly Ae. aegypti (Zupanc et al. 2016). During human 

infection, vertical transmission, from mother to fetus, has been most frequently described, 

with negative outcomes in babies, presenting with congenital brain abnormalities, including 

microcephaly or fetal death (Zupanc et al. 2016). 

 

Other Diseases of Human and Animals 

Other viruses transmitted to humans by Ae. aegypti include Bwamba fever, West Nile 

virus (WNV), Semliki Forest virus, Bunyamwera and Flavivirus (Christophers 1960). In 

many cases these diseases are also transmitted by other Aedes species (Christophers 1960). 

For example, WNV, which causes disease primarily in children, has been isolated from the 

species of Culex and transmitted by Ae. aegypti (Taylor and Hurlbut 1953, Work 1955). 
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Furthermore, a study conducted in Colombia, Venezuelan, reported equine encephalitis 

transmitted by Ae. aegypti in 687 out of 2295 houses (Sanmartin Barberi 1954, Christophers 

1960). 

Aedes aegypti has been reported to transmit diseases in animals such as equine 

encephalitis, haemorrhagic septicaemia of buffales, fowlpox and Rift Valley fever (enzootic 

hepatitis) (Christophers 1960). In Africa, Ae. aegypti has been implicated in the transmission 

of equine encephalitis in animals (Christophers 1960). This vector is also responsible for 

transmission of equine encephalitis among birds (Kelser 1933, Christophers 1960). In Asia 

and sub-Saharan Africa, Aedes aegypti caused haemorrhagic septicaemia, a disease infecting 

buffaloes and cattle, particularly during the wet season (Benkirane 2002).  Another viral 

disease in animals is fowlpox that is the worldwide disease of poultry, caused by a prototypic 

virus of the Avipoxvirus genus (Taylor and Paoletti 1988). And, Rift Valley fever, is an 

important disease of sheep and to a less extent of cattle in Africa (Christophers 1960). This 

disease causes abortion in cattle, where human could become infected by contact with 

infected animals (Smithburn et al. 1948, Smithburn 1949, Miller et al. 2002). In 2000, Rift 

Valley fever was reported for the first time in the Kingdom of Saudi Arabia and Yemen, 

outside Africa (Miller et al. 2002). 

 

Vector Competency 

Mosquitoes are arthropod vectors for pathogens leading to many diseases. The ability 

to transmit these pathogens depends on the vector competency of the species. Competency 

refers to the ability of the vectors to successfully acquire a disease agent microorganism (e.g., 

arbovirus) from the reservoir host and subsequently transmit the infectious agent to another 
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susceptible host (Gubler et al. 1979, Hardy et al. 1983, Collins and James 1996, Beerntsen et 

al. 2000, Weiss and Aksoy 2011). Vector competency depends on the ability of an infectious 

pathogen to survive and potentially replicate in arthropod tissue. Intrinsic and extrinsic 

variables have an impact on the vector competence of mosquitoes (Hardy et al. 1983, Sanders 

et al. 2016). If a mosquito interacts with a host that is susceptible to transmission of a 

particular pathogen, there are intrinsic and extrinsic factors to consider. For example, an 

extrinsic factor includes when mosquito will come in contact with a host that is appropriate 

for the pathogen or virus being transmitted; however, the intrinsic factors is the ability of the 

mosquito to get infected with the pathogen itself (Hardy et al. 1983). These variables play a 

part in order for the mosquito to be infected with the pathogen itself (Hardy et al. 1983). The 

impact that microbes have on the mosquito vector will influence the capability to transmit a 

pathogen by decreasing or increasing the ability of the vector to transmit the pathogens. A 

study was conducted to investigate different common gut microbes in Anopheles albimanus 

(Wiedemann) (Diptera: Culicidae) and their impact on the mosquito’s vector ability using 

both wild and laboratory breed populations.  Results showed that microorganisms in the gut 

of Ae. albimanus could diminish the ability of the vector to transmit Plasmodium (Weiss and 

Aksoy 2011). 

Mosquitoes are indisputably the most important arthropod vectors of many diseases 

(Beerntsen et al. 2000). The maintenance and transmission of the pathogens depend on the 

availability of competent mosquito vectors (Beerntsen et al. 2000). Aedes Aegypti affects 

millions of people annually, and approximately 2.5 billion people are at risk of dengue, with 

approximately 50 million cases per year (Beerntsen et al. 2000, Nene et al. 2007). The 

salivary glands in mosquitoes secrete powerful antihemostatic agents that facilitate 
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hematophagy by counteracting the effects of vertebrate wounding responses (Beerntsen et al. 

2000). In Aedes aegypti, these antihemostatic molecules include sialokinins, apyrases and 

anticoagulants that prevent platelet aggregation, vasoconstriction, and coagulation, 

respectively when they pierce the skin for blood-meal (James 1994, Ribeiro 1995, Beerntsen 

et al. 2000). Immune system molecules provide the mosquitoes with an innate defense 

system against invading pathogens that is both discriminatory and efficient. The figure below 

shows the mosquito immune responses to pathogens including melanotic encapsulation, 

phagocytosis, and production of antibacterial compounds and immune peptides (Fig. 4) 

(Paskewitz and Christensen 1996,  

 

Beerntsen et al. 2000). In the female mosquito, immunocytochemistry was found to be at its 

highest level before and 24 h after blood-meal (Brown et al. 1999, Stanek et al. 2002). 

 

FIGURE 4. A figure shows the mosquito immune responses to 
pathogens contain melanotic encapsulation, phagocytosis, and 
production of antibacterial compounds and immune peptides 
(Beerntsen et al. 2000).  
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Examples of Chemical Legacy and HHSP 

Chemical legacy can be defined as changes in the chemosensory responses in insects 

where a new generation may inherit from parents in aspects of host association (Corbet 1985, 

Barron 2001). In insects, a chemical legacy from the larval environment is possible to induce 

a host preference in the adult (Corbet 1985, McCall and Eaton 2001). The possibility of egg-

borne on semiochemicals might influence larval chemosensory development, and is 

important in female oviposition (Ganesan et al. 2006). For example, mosquitoes can be 

induced to oviposit on unmodified substrates from natural larval habitats containing live 

microorganisms such as bacteria. Many species of mosquitoes have shown strong oviposition 

preferences for sites with bacterial colonization (Corbet 1985, Trexler et al. 2003, Sumba et 

al. 2004, Albeny-Simões et al. 2014). Recent studies have revealed this behavior, in part, to 

be controlled by semiochemicals (Verhulst et al. 2009, Verhulst et al. 2011). Chemical 

legacy assumes the existence of chemicals at sensitive periods (i.e., adult emergence) can 

reduce peripheral sensitivity, causing modifications in adult behaviors (McCall and Eaton 

2001).  

Also, the larval chemical legacy can affect the adult oviposition-site selection, which 

would be of great ecological significance (Bush 1992, Barron 2001). Prior to the term 

chemical legacy, Hopkins' Host Selection Principle (HHSP) was proposed (Hopkins 1916, 

Barron 2001, Rietdorf and Steidle 2002). HHSP can be defined as oviposition site selection 

by an adult being partially dependent on the memory of their larval development site (Corbet 

1985). For example, it has been reported that Ae. aegypti gains genetic preferences during the 

aquatic period (Barron 2001, Chow et al. 2005). 
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Hopkins' Host Selection Principle (HHSP) refers to the observation that many adult 

insects demonstrate a preference to the habitat on which they developed as larvae (Hopkins 

1916, Barron 2001, Rietdorf and Steidle 2002). HHSP assumed that behavior of adult insects 

is conditioned by larval experience (Barron 2001, McCall and Eaton 2001, Rietdorf and 

Steidle 2002, Davis 2008). However, there is still very little convincing evidence for imago 

(pre-imagine) conditioning of host choice in insects (Surendran et al. 2012). Chow et al 

(2005) determined that some insects such as Culicidae (Diptera), Agromyzidae (Diptera), and 

Noctuidae (Lepidoptera) might gain oviposition preferences from larval-feeding experience 

as qualified by HHSP or through chemical legacy (Jaenike 1983, McCall and Eaton 2001, 

Chow et al. 2005). In mosquitoes, females use chemical cues to locate suitable water pools 

for oviposition that contain compounds to which they become susceptible to conditioning as 

their parents (McCall and Eaton 2001, Hamilton et al. 2011). Furthermore, feeding and 

oviposition gained from the parents, as well as adaptation to the behaviors and habitat in 

which they developed may also support the HHSP (Rietdorf and Steidle 2002, Hamilton et al. 

2011). For example, if mosquitoes lay eggs in a habitat containing mycolactone, following 

these definitions and ideas, this characteristic will then impact adult decision-making with 

regards to oviposition in environments with or without mycolactone. However, chemical 

legacy and HHSP have not been explored yet with mosquitoes on mycolactone; therefore, it 

is the objective of this study to investigate the impacts of mycolactone on mosquito behaviors 

and life histories. Mosquitoes are known to be influence by chemical cues, with CO2 being 

one of the most important (Verhulst et al. 2009). However more recent studies have shown 

that other volatiles released by bacteria can cause a change in mosquito behavior (Verhulst et 

al. 2009, Sanders et al. 2016). 
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Vector Control 

Mosquito control is an important public-health practice throughout the world, 

especially in tropic countries where mosquitoes spread diseases, such as malaria and Zika 

virus. Controlling mosquitoes employs many methods, such as chemical adulticides and 

larvicides, non-chemical control and genetic manipulation (Raghavendra et al. 2011). Since 

early nineteenth century, the application of insecticides was the primary agent for the 

mosquito control programs in many parts of the world (Breman 2001). During the nineteenth 

century, many compounds were discovered, such as mercuric chloride, Paris green, phenol 

and cresols, naphthalene, Bordeaux mixture, rosin-fish oil soap, calcium arsenate and 

nicotine sulfate (Raghavendra et al. 2011). After the discovery of the insecticidal potential of 

dichlorodiphenyltrichloroethane (DDT) in the 20th century, a new era of vector control 

began. 

The first synthetic organic insecticide used for effective vector control was DDT with 

credible success (Raghavendra et al. 2011). However, due to health and environmental 

effects, some countries negotiated a treaty to enact global ban for DDT use. In addition, non-

chemical control methods also have been used in vector control. Bacillus thuringiensis 

israelensis (Bti) and Bacillus sphaericus (Bs) are two bacterial species that have been widely 

demonstrated to be efficient against mosquitoes (Raghavendra et al. 2011). Currently, genetic 

manipulation, which is also called genetic modification, has been used as a vector control 

strategy (Raghavendra et al. 2011). However, transgenesis genetic of all the vector 

mosquitoes would be highly challenging. Also, the spread of transgenes through wild 

populations will be the limitation due to the big population (Raghavendra et al. 2011). 

Genetic manipulation is the direct manipulation of an organism's genome using 
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biotechnology (Alphey 2002). These molecular technological advances started only after the 

complete genome sequences were made available (Alphey 2002). Gene drive, a technique 

which prevents the spread of insects that carry diseases by adding, disrupting or modifying 

genes (Esvelt et al. 2014, Adelman and Tu 2016), was used by Hall (2015)  to convert female 

mosquitoes into harmless males (Hall et al. 2015). Although these techniques are expensive 

andtime consuming, the results are very promising, and will potentially help in vector 

control. 

Morphometric of Aedes aegypti Adults 

The sex of the adult Ae. aegypti can be distinguished by the naked eye along with 

some microscopic characteristics. In general, the Ae. aegypti female is larger than the male 

due to the need to have blood-meal for reproduction (Christophers 1960). The other main 

characteristics used to distinguish between sexes are the wings, antennas and legs (Roth 

1948, Christophers 1960, Gopfert et al. 1999, Sendaydiego 2013). 

The wings of Ae. aegypti are flat, rigid structures with an intrinsic venation pattern. 

The venationis used to distinguish it from other species (Sendaydiego 2013). Additionally, 

the wings of Ae. aegypti are covered with scales. Gender can be differentiated based on the 

length of the wings. Females have a mean length of 35 mm, while in males the wing is only 

25 mm (Christophers 1960) and the wing in a female is wider in proportion to that of the 

male. Gender can also be distinguished by the naked eye through observations of the antenna. 

Both sexes have a ring-like antenna with thirteen-segmented flagellum (Christophers 1960); 

however, males have thicker flagellum hairs (plumose) than females (Gopfert et al. 1999). 

Finally, three pairs of legs, the fore-leg, mid-leg and hind-leg, attach to the prothorax, 

mesothorax and metathorax segments, respectively (Christophers 1960) and can be used to 
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differentiate the sexes microscopically. Males have a hole on one side of the front and middle 

legs of the last tarsal segment that is used to seize the female and they have shorter front legs 

than the female (Roth 1948, Christophers 1960). 

 

Objectives and Hypotheses 

Objective 1:  

Determine if the toxin, mycolactone, produced by Mycobacterium ulcerans, influences larval 

growth and survivorship of adult Aedes aegypti aegypti at different exposure concentrations 

(0, 0.05, 0.5 and 1.0 µg/mL). 

Hypothesis 1: 

Ho: Aedes aegypti does not demonstrate a dose response, with regard to larval growth and 

survivorship to the adult stage, to mycolactone. 

Ha: Aedes aegypti does demonstrate a dose response with regard to larval growth and 

survivorship to the adult stage, to mycolactone. 
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CHAPTER II 

RESEARCH, RESULTS, AND DISCUSSION 

Buruli ulcer (BU) is a globally recognized neglected tropical disease caused by 

Mycobacterium ulcerans (Johnson et al. 2005, Merritt et al. 2010) with most cases occurring 

in West Africa (Williamson et al. 2008, Merritt et al. 2010). Buruli ulcer is the third most 

recurrent mycobacterial disease of humans globally after tuberculosis and leprosy (Johnson 

et al. 2005, Vincent et al. 2014). Most cases involve individuals between the ages of 4 to 15 

years (Williamson et al. 2008, Organization 2012, Vincent et al. 2014). This disease was first 

noted in the late 1880’s in Africa and has since been reported worldwide (Williamson et al. 

2008, Merritt et al. 2010). 

Mycobaterium ulcerans produces mycolactone, which is a potent cytotoxic and 

immunosuppressive polyketide-derived macrolide (Mve-Obiang et al. 2003, Gama et al. 

2014) responsible for manifestation of skin ulcerations, which are the primary disease 

symptoms. The ulcers are painless; however, if not treated, they will continue to expand and 

could result in secondary infection, bone deformation, and osteomyelitis (Johnson et al. 

2005). Though mortality due to this disease is low, there is a significant amount of morbidity 

associated with secondary infection that leads to a great socioeconomic burden (Barogui et 

al. 2013, Yeboah Manu et al. 2013). Lastly, late diagnosis could result in long and costly 

hospitalizations with significant morbidity and disability (Organization 2012). 

The exact mode of transmission of M. ulcerans is unclear; however, some 

hypothesize that transmission occurs through contact with environments where the pathogen 

is known to reside, such as slow-moving rivers (especially in areas prone to human-made 

Introduction
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disturbance and flooding) (Johnson et al. 2005, Merritt et al. 2010, Williamson et al. 2012). 

Others suggest aquatic insects in these environments may serve as vectors (Marsollier et al. 

2002, Johnson et al. 2005, Quek et al. 2007, Merritt et al. 2010, Wallace et al. 2010, Kenu et 

al. 2014b). Insects, such as black flies (Diptera: Simuliidae), mosquitoes (Diptera: Culicidae), 

March flies (Diptera: Tabanidae), and sand flies (Diptera: Ceratopogonidae), associated with 

these environments are thought to be potential vectors (Luckhart et al. 1998, Quek et al. 

2007, Merritt et al. 2010). Furthermore, PCR was used to identify M. ulcerans in aquatic 

insects obtained from endemic areas in Africa (Naucoridae and Belostomatidae) (Johnson et 

al. 2005). In fact, under laboratory conditions, aquatic hemipterans belonging to the 

Naucoridae that were infected with M. ulcerans and allowed to bite mice were found to 

transmit the pathogens (Marsollier et al. 2002). 

In insects, a chemical legacy from the larval environment is possible to induce a host 

preference in the adult (Corbet 1985, McCall and Eaton 2001). Many species of mosquitoes 

have shown strong oviposition preferences for sites with bacterial colonization (Corbet 1985, 

Trexler et al. 2003, Sumba et al. 2004, Albeny-Simões et al. 2014).  

Recent studies have revealed this behavior, in part, to be controlled by 

semiochemicals (Verhulst et al. 2009, Verhulst et al. 2011). In addition, mosquitoes are 

known to be influence by chemical cues, with CO2 being one of the most important (Verhulst 

et al. 2009). However more recent studies have shown that other volatiles released by 

bacteria can cause a change in mosquito behavior (Verhulst et al. 2009, Sanders et al. 2016). 

Furthermore, Davis et al. (2013) indicated that microbial volatile organic compounds 

(MVOCs) elicit mating and oviposition behaviors from responding insects; also, insect 

behaviors, especially across species, can be affected by MVOC (Davis et al. 2013). 
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A study by Sanders et al. (2016) demonstrated mycolactone serves as an attractant of 

the yellow fever mosquito, Aedes aegypti aegypti (L.) (Diptera: Culicidae), which inhabits 

many of the same locations as M. ulcerans, to blood-meal sources (Sanders et al. 2016). In 

fact, they determined the response was dose dependent with the blood-feeder treated with 1.0 

µg/mL mycolactone attracting 29% more mosquitoes than a control blood-feeder. In contrast, 

the low (0.05 µg/mL) and middle doses (0.5 µg/mL) were repellent. With regards to the 0.5 

µg/mL dose was the lowest odds of response. These results indicate the dose of mycolactone 

can serve as an attractant of mosquitoes to hosts, which can potentially result in M. ulcerans 

transmission and BU infection (Sanders et al. 2016). With regards to oviposition, mosquitoes 

demonstrated a preference for ovipositing in areas containing mycolactone at the highest 

concentration (Sanders et al. 2016). 

Recently, Wallace et al. (2016) examined the response of mosquitoes (i.e., Aedes 

notoscriptus and Aedes aegypti) seeking blood-meals to the tails of healthy mice dipped in 

M. ulcerans (Wallace et al. 2016). They demonstrated mosquito feeding on contaminated 

sites (i.e., tails coated with M. ulcerans), while low (2 of 11 mice), resulted in infection 

(Wallace et al. 2016). Consequently, they demonstrated mosquitoes (Ae. notoscriptus and Ae. 

aegypti that were used in the study) could act as atypical mechanical vectors of M. ulcerans 

(Wallace et al. 2016). However, to date, ecological interactions between the toxin and 

mosquito development and corresponding behavior of resulting adults has not been 

examined. The objectives of the current study were to determine if immature Ae. aegypti 

development and survivorship demonstrate a dose response to mycolactone. Second, will Ae. 

aegypti adults select oviposition sites similar to those (e.g., containing specific amount of 

mycolactone) in which they were reared? 
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  The objectives of the current study were to determine if immature Ae. aegypti 

development and survivorship demonstrate a dose response to mycolactone, and second, to 

determine whether Ae. aegypti adults select oviposition sites similar to those (e.g., containing 

specific amount of mycolactone) in which they were reared. 

 

Materials and Methods 

Insect Colonies 

An Aedes aegypti (Liverpool strain) colony was maintained in a room at 25.0°C ± 

2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH in a walk-in growth chamber at the Forensic 

Laboratory for Investigative Entomological Sciences (FLIES) Facility (Texas A&M 

University, College Station, TX, USA). Eggs from a Liverpool strain maintained by Dr. 

Michel Slotman (Texas A&M University, College Station, TX, USA) were used to initiate a 

colony in the FLIES Facility. Eggs were placed in 1 L of distilled water held in containers 

(17.5cm x 12cm x 4.5cm) at room temperature. Resulting larvae were separated into similar 

containers at a density of 100-200 larvae/L (Clements 1995). Larvae were provided a diet of 

fish food (TetraMin diet by Tetra Blacksburg, VA, USA) (Sanders 2015). Based on 

preliminary experiments and published literature, the food amount was changed depending 

on the age and number of surviving larvae, so that larvae were fed ad libitum to avoid 

overfeeding (Tsuda and Takagi 2001, Imam et al. 2014). Distilled water was added to the 

containers as needed. Containers were checked every 12 h for pupae. Resulting pupae were 

partitioned into 60 ml cups (containing 40 ml of distilled water) at a density of 50 pupae/cup. 

These cups were placed individually inside a cage (30 × 30 × 30 cm) and pupae monitored 

for adult emergence. Sugar-feeding is a necessity for survival in adult of mosquito (Sanford 

and Tomberlin 2011). Therefore, newly emerged adults were provided with a 10% sucrose 
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solution via a damp cotton ball placed on top of the cage. Mating takes place approximately 

within the first 2-3 h after emergence with the greatest activity of copulation usually 

occurring between 1600 and 1800 h (Roth 1948). 

Mycolactone 

Mycolactone at 1.0 µg/ml, 0.5 µg/ml, and 0.05 µg/ml was received from Dr. Heather 

Jordan, Mississippi State University. Mycolactone was prepared by Dr. Jordan using methods 

described by Mve-Obiang et al (Mve-Obiang et al. 2003) with slight modifications; 

specifically, M. ulcerans Agy99 was grown on M7H10 plates. Bacteria were scraped from 

the plates, dried and weighed. Mycolactone was isolated and the concentration was 

calculated from M. ulcerans cell weight and corresponded to the colony count. Previous 

work has shown that one cell produces approximately 1 pg of mycolactone. Concentrations 

were selected based on qPCR values of M. ulcerans from environmental samples 

(Williamson et al. 2012, Williamson et al. 2014, Sanders 2015). Mycolactone solutions were 

stored in amber vials placed in the dark at room temperature to prevent degradation due to 

ultraviolet light (Marion et al. 2012). Prepared mycolactone was solubilized with 95% 

ethanol serving as the solvent. 

Blood-Feeding 

The blood-feeder design was adapted from Sanders (Sanders et al. 2016). Mosquitos 

were 5-10-day-old and starved for 24 h prior to use in the experiments to ensure they would 

be receptive to blood-feeding (Sanford and Tomberlin 2011). A 4.5 x 3 x 9 cm, 45 ml cell 

culture flask covered with parafilm on the top surface (Corning Incorporated, NY, USA) 

(Fig. 6) was used as the blood-feeder. Approximately 1 ml rabbit blood (HemoStat 
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Laboratories, Dixon, CA, USA) was injected between the parafilm and cell culture flask.  

The blood-feeder was connected to a water bath maintained at approximately 37°C - 39°C in 

order to simulate the temperature of human blood. Mosquitoes were allowed to feed for 

approximately 3-4 h; females were then allowed 72 h to digest the blood (Ruktanonchai et al. 

2015). After the 72 h period, a filter paper (11 cm in diameter) placed in a cup located in the 

corner of the cage was provided as an oviposition site. Approximately 30 ml of water was 

added to the cup to saturate the exposed filter paper. Females were allowed 72 h to lay eggs 

on the filter paper, which then was removed and dried for four days prior to storage in the 

incubator as previously described (Imam et al. 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. The blood-feeder (A. without blood, B, with blood) 
used to feed the adults Ae. aegypti  (Liverpool strain) mosquitoes 
for approximately 3-4 h. The feeder is wrapped with parafilm and 
pumped with 1 ml of rabbit blood (Sanders 2015, Zhang et al. 
2015).  
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Larval Growth and Survivorship to the Pupae and Adult Stage 

All experiments were conducted under the laboratory conditions previously described 

by (Sanders et al. 2016). For the experiments, 40 Ae. aegypti (Liverpool strain) eggs 

representing multiple females from the colony were placed in a round glass jar (236 ml) (Fig. 

7) (Packaging Options Direct, Louis, MO, USA) containing 55 ml of distilled water. This 

density was selected based on preliminary experiments, which yielded the greatest level of 

survivorship to the adult stage. Approximately 0.03 - 0.05 g of Tetramin fish food (Zeichner 

and Perich 1999) were placed in the water at the time the eggs were introduced. Tetramin 

served as food for the resulting mosquito larvae. Food was provided to the larvae ad libitum 

to avoid overfeeding (Tsuda and Takagi 2001, Imam et al. 2014). This feed rate was 

validated in the lab as well. 

Mycolactone 1.0 µg/ml, 0.5 µg/ml, and 0.05 µg/ml with 95% ethanol serving as the 

solvent were the treatments. Two controls were used, Ethanol alone and an additional control 

adding nothing. The jars previously described were used as the containers for each replicate 

FIGURE 6. The glass container jar used in rearing larvae of Ae. aegypti. 
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during the experiment. Each mycolactone treatment was added to a glass jar prior to the 

introduction of mosquito eggs. Doing so would allow the eggs to be laid in a simulated 

mycolactone contaminated environment (Williamson et al. 2012). Each treatment was in 

triplicate. The glass jar was placed in a mosquito-breeder (21 x 12 cm) (BioQuip, CA, USA) 

to capture emerging adults. Time to pupation and emergence of adults was recorded. 

Resulting adults were kept in mosquito-breeders in the freezer until sex ratio of adult 

mosquitoes was recorded. Percent data of pupae and adults were adjusted based on number 

of eggs to hatch. 

 

Statistical Analysis 

Each concentration was replicated three times and analyzed using methods described 

by Tomberlin al. (Tomberlin et al. 2012). Data was analyzed by using commercially 

available statistical software (JMP® Pro 12.0.1, Cary, NC, USA) An analysis of variance 

was used to assess the data. Tukey’s (multiple comparison procedure and statistical test) was 

used to separate means following a significant F test. The alpha was set at P < 0.05. 

 

Results 

Eggs hatch. No significant (F = 0.781; df = 4, 59; P = 0.5444) difference in egg hatch 

was determined across treatments. Furthermore, no significant (F = 0.738; df = 12, 59; P = 

0.7067) interaction was determined between trial and treatment. However, a trial effect (table 

1) was determined (F = 9.099; df = 3, 59; P <0.0001). Trials 1 and 2 were significantly (P < 

0.05) different from trials 3 and 4. The average egg hatch in trial one and two was 97.50% ± 

0.01% (Figure 8a) and 80.10% ± 0.03% (Figure 8b) in trials three and four. When trials were 
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analyzed based on groupings from the initial analysis, significant model effects (Tables 2 and 

3) still were not determined. 

Survival from egg to pupal stage. Significant (F = 10.085; df = 4, 53; P < 0.0001) 

difference in survival from egg to the pupal stage was determined across treatments (Table 

4). No significant (F = 1.070; df = 12, 53; P = 0.4142) interaction was determined between 

trial and treatment. Furthermore, no trial effect was determined (F = 1.436; df = 3, 53; P < 

0.2494). The average survival of eggs to the pupal stage for the controls was 81% or greater. 

Survival of those exposed to the different mycolactone treatments was greatest for the middle 

dose (68%), which was not significantly different from the controls; however, survival when 

exposed to this treatment was almost double of what was observed for those assigned the 

high and low dose treatments (41%) (Figure 9a).  Survival for those exposed to the high dose 

was significantly different from all other treatments and had the lowest survival 35%. 

Survival from egg to adult stage. Significant (F = 10.085; df = 4, 53; P < 0.0001) 

difference in survival from egg to the adult stage was determined across treatments (Table 4). 

No significant (F = 1.070; df = 12, 53; P = 0.4142) interaction was determined between trial 

and treatment. Furthermore, no trial effect was determined (F = 1.436; df = 3, 53; P < 

0.2494). The average survival of eggs to the adult stage for the controls was 81% or greater. 

Survival of those exposed to the different mycolactone treatments was greatest for the middle 

dose (68%), which was not significantly different from the controls; however, survival when 

exposed to this treatment was almost double of what was observed for those assigned the 

high and low dose treatments (41%) (Figure 9b).  Survival for those exposed to the high dose 

was significantly different from all other treatments and had the lowest survival 35%. 
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Time from egg to pupal stage. Significant (F = 4.837; df = 4, 52; P = 0.0035) 

differences in development time to the pupal stage were determined across treatments (Table 

5). No significant (F = 1.711; df = 12, 53; P = 0.1095) interaction was determined between 

trial and treatment. However, a trial effect was determined (F = 3.750; df = 3, 53; P < 

0.0202). Therefore, the results for development time from egg to the pupal stage were 

grouped by trial. The average time from egg to pupa ± SEM is shown in (Table 7). Trials 1, 3 

and 4 were significantly (P < 0.05) different from trials 2, 3 and 4 when thery were grouped 

separately. For trials 1, 3 and 4, significant (F = 6.1293; df 4, 37; P < 0.0016) difference in 

development time from egg to the pupal stage was determined across treatments. Individuals 

in the controls needed 7.35 day or less to become pupae. Development time for those 

exposed to the high dose was significantly greater (~eight days) than for individuals (~seven 

days) in other treatments (i.e., controls, low and middle doses). Furthermore, a significant (F 

= 2.7961; df = 8, 37; P = 0.0255) interaction was determined between trial and treatment. For 

trials 2, 3 and 4, treatment did not significantly (F = 1.8203; df 4, 40; P < 0.1552) impact 

development time from egg to the pupal stage. Interestingly, results were consistent with 

those recorded for the previous trial grouping (trials 1, 3 and 4). Those exposed to the high 

dose took the longest, while those assigned the middle dose were more similar to the 

controls. 

Time from egg to adult stage. Significant (F = 5.3318; df = 4, 52; P = 0.0020) 

differences in development time to the adult stage were determined across treatments (Table 

6). No significant (F = 0.8441; df = 12, 52; P = 0.6071) interaction was determined between 

trial and treatment. However, a trial effect was determined (F = 760.306; df = 3, 53; P < 

0.0001) in development time to the adult. Therefore, the results for development time from 
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egg to the adult stage were grouped by trial. The average time from egg to adult ± SEM is 

shown in (Table 7). Trial 1 was significantly (P < 0.05) different from trials 2, 3 and 4. For 

trial 1, significant (F = 5.5869; df 4, 11; P < 0.0243) difference in development time from 

egg to the adult stage was determined across treatments. Individuals in the controls needed 

9.55 day or less to become adults. Development time for those exposed to the high dose was 

significantly greater (~9.33 days) than for individuals (~9.12 days) in other treatments (i.e., 

controls, low and middle doses). For trial 3, treatment did not significantly (F = 1.9105; df 4, 

10; P < 0.2280) impact development time from egg to the adult stage. Also, for trials 2 and 4, 

treatment did not significantly (F = 1.4864; df 4, 29; P < 0.2438) impact development time 

from egg to the adult stage. Furthermore, no significant (F = 0.0137; df = 4, 29; P = 0.9996) 

interaction was determined between trial and treatment.  
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Table 1. Analysis of Variance for egg hatch for Ae. aegypti eggs exposed to different 
concentration of mycolactone, as well as negative control and ethanol control at 25.0° 
± 2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH. 
Source Sum 

Of 
Squares 

df Mean 
square 

F P 

Model 2.2230421 19 0.117002 3.3458 0.0006* 
Error 1.3988062 40 0.034970   
C. Total 3.6218483 59    
Trial 1.8041918 03  17.1974 <0.0001* 
Treatment 0.1092024 13  0.7807 0.5444 
Trial*Treatment 0.3096479 04  0.7379 0.7067 

Table 2. Analysis of Variance for egg hatch for Ae. aegypti eggs (trials 1 and 2) 
exposed to different concentration of mycolactone, as well as  negative control and 
ethanol control at 25.0° ± 2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH. 
Source Sum 

Of Squares 
df Mean 

square 
F P 

Model 0.25792181 09 0.028658 1.7992 0.1313 
Error 0.31856005 20 0.015928   
C. Total 0.57648187 29    
Trial 0.02385552 01  17.1974 0.2352 
Treatment 0.16507339 04  0.7807 0.0678 
Trial*Treatment 0.06899290 04  0.7379 0.3915 

Table 3. Analysis of Variance for egg hatch for Ae. aegypti eggs (trials 3 and 4) 
exposed to different concentration of mycolactone, as well as  negative control and 
ethanol control at 25.0° ± 2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH. 
Source Sum 

Of Squares 
df Mean 

square 
F P 

Model 0.1864913 09 0.020721 0.3836 0.9293 
Error 1.0802461 20 0.054012   
C. Total 1.2667375 29    
Trial 0.00170734 01  17.1974 0.8607 
Treatment 0.13388551 04  0.7807 0.6537 
Trial*Treatment 0.05089847 04  0.7379 0.9150 
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Table 4. Analysis of Variance for pupae and adult emergence of Ae. aegypti eggs 
exposed to different concentration of mycolactone, as well as  negative control and 
ethanol control at 25.0° ± 2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH. 
Source Sum 

Of 
Squares 

df Mean 
square 

F P 

Model 6.227290 19 0.327752 2.9398 0.0030* 
Error 3.790593 34 0.111488   
C. Total 10.017883 53    
Trial 0.4802333 03  1.4358 0.2494 
Treatment 4.4972321 04  10.0846 <0.0001* 
Trial*Treatmen
t 

1.4308014 12  1.0695 0.4142 

Table 5. Analysis of Variance for time to pupae for Ae. aegypti eggs exposed to of 
different concentration of mycolactone, as well as  negative control and ethanol control at 
25.0° ± 2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH. 
Source Sum 

Of Squares 
df Mean 

square 
F P 

Model 0.37955264 19 0.019976 2.8512 0.0040* 
Error 0.23120771 33 0.007006   
C. Total 0.61076035 52    
Trial 0.07881210 03  3.7496 0.0202* 
Treatment 0.13556272 04  4.8372 0.0035* 
Trial*Treatment 0.14381549 12  1.7106 0.1095 

Table 6. Analysis of Variance for time to adult for Ae. aegypti eggs exposed to of 
different concentration of mycolactone, as well as negative control and ethanol control 
at 25.0° ± 2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH. 
Source Sum 

Of Squares 
df Mean 

square 
F P 

Model 1.0085035 19 0.053079 139.6295 <0.0001* 
Error 0.0125447 33 0.000380   
C. Total 1.0210483 52    
Trial 0.86707488 03  1.4358 <0.0001* 
Treatment 0.00810734 04  10.0846 0.0020* 
Trial*Treatment 0.00385046 12  1.0695 0.6071 
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Table: 7. Mean ± SEM of time (d) from egg to pupae and adult of Ae. aegypti exposed 
to of different concentration of mycolactone, as well as  negative control and ethanol 
control at 25.0° ± 2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH 

Mean time from egg to pupae (d) Mean ± SEM 
Treatment Trial 1, 3 and 4 Trial 2, 3 and 4 
Negative control 7.35 ± 0.15 b 7.57 ± 0.06 a 
Ethanol control 6.87 ± 0.20 b 7.57 ± 0.41 a 
1 µg/ml 8.07 ± 0.46 a 8.33 ± 0.40 a 
0.5 µg/ml 7.33 ± 0.18 b 7.58 ± 0.10 a 
0.05 µg/ml 7.48 ± 0.29a,b 7.63 ± 0.30 a 

Mean time from egg to adult (d) Mean ± SEM 
Treatment Trial 1 Trial 3 Trial 2 and 4 
Negative control 
Control (Ethanol) 
1 µg/ml 
0.5 µg/ml 
0.05 µg/ml 

9.53 ± 0.09 a 
9.55 ± 0.07 a 
9.33 ± 0.00a,b 
9.24 ± 0.24a,b 
9.00 ± 0.00 b 

13.70 ± 0.06 a 
13.80 ± 0.00 a 
13.30 ± 0.30 a 
13.80 ± 0.00 a 
13.80 ± 0.35 a 

12.77 ± 0.05 a 
12.63 ± 0.08 a 
12.48 ± 0.11 a 
12.55 ± 0.13 a 
12.50 ± 0.13 a 



	 32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 7. The percentage of egg hatch (n = 4
1
) of Ae. aegypti ± SEM 

exposed to three concentrations of mycolactone, as well as negative control 
and ethanol control at 25.0°C ± 2.5°C, 12:12 L:D, and 70.0% ± 5.0% RH for 
(A) trials 1 and 2 for (B) trials 3 and 4 combined. 1n = number of trials 
conducted.  
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FIGURE 8. The percentage of survival from egg to the pupal and adult stages 
(n = 4

1
) of Ae. aegypti ± SEM exposed to three concentrations of mycolactone, 

as well as negative control and ethanol control at 25.0°C ± 2.5°C, 12:12 L:D, 
and 70.0% ± 5.0% RH. (A) pupae (B) adults.

1
n = number of trials conducted. 
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FIGURE 9. The time (d) from egg to the pupal and adult stages (n = 41) of Ae. 
aegypti ± SEM exposed to three concentrations of mycolactone, as well as 
negative control and ethanol control at 25.0°C ± 2.5°C, 12:12 L:D, and 70.0% 
± 5.0% RH (A) time (d) from egg to pupae (B) to adult 1n = number of trials 
conducted. 
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Discussion 

Since the late 19th century, researchers have been attempting to determine the mode 

of M. ulcerans transmission (Johnson et al. 2005, Quek et al. 2007, Merritt et al. 2010). Some 

speculate the skin of an individual might be breached by sharp objects and allow 

contamination by the pathogen (Williamson et al. 2014). Recently, as mentioned in the 

introduction, Sanders et al. (2016) demonstrated mycolactone produced by M. ulcerans 

serves as an attractant of the yellow fever mosquito, Ae. aegypti, which inhabits many of the 

same locations as M. ulcerans, to blood-meal sources as well as oviposition sites. More 

recently, Wallace et al. (2016) determined the response of mosquitoes (i.e., Ae. notoscriptus 

(Skuse) and Ae. aegypti (L.) blood-feeding from the tails of healthy mice dipped in M. 

ulcerans resulted in infection with the pathogen in 2 of 11 cases (Wallace et al. 2016). Given 

the pathogen occurs in environments where Ae. aegypti develop and the recent discovery of 

M. ulcerans and its toxin as an attractant of adult Ae. aegypti to host and oviposition sites, 

questions regarding the ecological implications of this interaction beg to be asked, especially 

as related to the impact of mycolactone on mosquito biology. 

The work presented here determined that mycolactone impacts larval development of 

Ae. aegypti. Furthermore, the response, while not statistically significant, varied by dose with 

the high and low dose reducing survivorship from egg to pupa and adult (Figures 9a-b), while 

the middle dose appeared to be optimal (Figure 10a). Survival of eggs to the pupal stage in 

the controls was above 80%, while those exposed to the high and low dose was between 35 

and 40%. In contrast, those exposed to the middle dose, while still lower than the control, had 

a 68% survivorship.  

With regards to development to the pupal stage, a similar response was observed. 
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Immature mosquitoes in the controls needed approximately 7.2 d to reach the pupal stage, 

which is similar to results from past studies conducted under similar conditions (Christophers 

1960). However, those exposed to the high dose needed approximately 15% more time to 

reach the pupal stage (Figure 10a), while those exposed to the middle and low dose were 

more similar to the control. Similarly, development (Figure 10b) from egg to adult exhibited 

a treatment effect (Table 7, Figure 10b); however, this difference was never more than half a 

day and was most likely due to observer bias (e.g., observations every 24 h) rather than 

biological significance. Additional studies with more refined observation periods should be 

conducted to determine if the response is statistically different. Furthermore, fieldwork 

should be conducted to determine if these data are actually biologically relevant. 

Throughout the course of these experiments, immature mosquitoes exposed to the 

middle dose, rather than the high or low dose, consistently produced similar survival rates to 

the adult stage as the control possibly indicating a concentration window (i.e., Goldilocks’ 

zone) of suitability. This finding is biologically interesting as this concentration has been 

detected in environments where M. ulcerans occurs (Williamson et al. 2012). However, these 

results were not statistically significant thus warranting additional research on this topic. 

Such a response to an abiotic factor by immature mosquitoes is not a surprise as such 

responses by mosquitoes has been determined for a number of abiotic conditions. For 

example, arthropod development optimally occurs within a given temperature range. If the 

temperature is too high, the immature die and if too low, development stalls. TunLin (2000) 

determined such a response for Ae. aegypti larvae (TunLin et al. 2000). Room temperatures 

above 30°C resulted in larval mortality, while temperatures between 20-30°C resulted in 

optimal development and survivorship. An additional example of such a window of optimal 
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response has been recorded for pH. Clark et al. (2004) determined Ae. aegypti larvae died 

when the pH of the aquatic habitat was below 4 or above 11 (Clark et al. 2004). Similar 

responses to biotic factors have also been recorded for mosquito larvae. Couret et al. (2014) 

tested the impact of four larval densities on development and survivorship. Threshold 

development occurred when the density was approximately 80 larvae/ 250 ml water; 

however, high density caused long development and mortality (Couret et al. 2014) 

One explanation for the impact of mycolactone on mosquito larval development 

being dose dependent could relate to shifts in the availability of nutrients. As previously 

indicated, M. ulcerans occurs in lentic habitats where Ae. aegypti larvae also occur (Wallace 

et al. 2010). And, bacteria in these habitats are known to breakdown organic matter, which 

then serve as a primary food substrate of the mosquito larvae (Walker et al. 1988, Merritt et 

al. 1992, Kaufman et al. 1999). A role of mycolactone in these environments at certain 

concentrations it inhibits other microbes (i.e., bacteria) competing with M. ulcerans for 

similar resources. At the right concentration (i.e., low or high), mycolactone could suppress 

bacteria populations crucial to larval mosquito development thus impacting the availability of 

nutrients for mosquitoes. Such interactions have been demonstrated for other systems.  

For example, bacteria use quorum sensing (QS) to coordinate gene expression 

according to the density of their local population (Luo et al. 2000, Miller and Bassler 2001). 

This process allows for coordinated physiological shifts by the bacterial population resulting 

in enhanced survivorship. Mycolactone could potentially disrupt this process thus reducing 

the likelihood of survivorship and proliferation by competing bacteria. Such QS- digesting 

enzymes have been found in many bacteria, such as Bacillus, Pseudomonas, Rhodococcus, 

Comamonas, Agrobacterium tumefaciens, Actinobacter, Arthrobacter, Klebsiella pneumonia, 
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Ochrobactrum, Microbacterium, Brucella melitensis and Ralstonia (Leadbetter and 

Greenberg 2000, Dong et al. 2002, Khan and Farrand 2009, Helman and Chernin 2015).  

Mycolactone could impact gut bacteria in the mosquito larvae, which play a crucial 

role in mosquito development. In many insects, symbiotic bacteria can play an important 

role. These bacteria can produce nutrients essential for arthropod development (Dale and 

Moran 2006, Chouaia et al. 2012). Furthermore, mycolactone could impact the beneficial 

bacteria to mosquito. For example, Chouaia et al. (2012) determined Asaia symbionts 

bacteria are beneficial in the development of immature Anopheles stephensi (L.) (Diptera: 

Culicidae) (Chouaia et al. 2012). Develoment of An. stephensi larvae reared in an habitat 

with rifampicin was impacted. In fact, development was delayed two to four days comparing 

with control (Chouaia et al. 2012). In the current study, mycolactone could have a similar 

impact; however, the associated bacterial community was not measured in this study. 

This research showed that mycolactone impacted the survivorship of eggs to the 

pupal and adult stages as well as development time from egg to pupae and adults. Such 

results demonstrate a potential ecological link between M. ulcerans and Ae. aegypti in 

endemic environments where both species occur. Such results could prove crucial for 

understanding the etiology of the pathogen and its mode of transmission as discussed by 

Sanders et al. (2016) and Wallace et al. (2016). However, additional research is needed with 

the actual bacterium to determine if in fact its presence and ability to produce mycolactone 

impact mosquito development and oviposition site selection. If these results remain true, a 

synergism between the incidence of Buruli ulcer and yellow fever could be possible in these 

endemic areas. 
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CHAPTER III 

FUTURE STUDIES, LIMITATIONS, AND CONCLUSIONS

In this study, the impacts of mycolactone on the Ae. aegypti life cycle was 

determined. Mycolactone did not impact egg hatch. However, larval development was 

reduced significantly by the present of mycolactone especially at the high (35%) and low 

(41%) doses. Interestingly, survivorship when exposed to the middle dose was similar to 

control (i.e., Goldilocks’ zone). Furthermore, development time from egg to pupae and adult 

stages were impacted. A slight difference in both development times to pupae (15%) and 

adult stages was determined. 

How mycolactone impacts mosquito development and survivorship is not known. 

One possibility is that mycolactone could kill bacteria in the environment essential for 

mosquito development. As an example, the development was delay in An. stephensi in the 

present of Asaia bacteria (Chouaia et al. 2012). Mycolactone produced by M. ulcerans could 

also impede communication (i.e., quorum sensing- cell-to-cell coordinated physiological 

shifts) of competing bacteria thus resulting in additional resources for M. ulcerans.  

While this research is informative as to the ecology of mycolactone and its impact on 

Ae. aegypti development and behavior, future research should utilized the actual pathogen 

(M. ulcerans) in laboratory studies. Doing so will allow for experiments to be designed 

exploring the pathogen response to abiotic (e.g., temperature, pH) and biotic (e.g., competing 

bacteria) conditions, and corresponding production of mycolactone.  As a result, it would tie 

together the pathogen responses to such environmental factors, production of mycolactone, 

and mosquito ecology. 

Furthermore, field research is critical for accurate elucidation of these interactions. In 
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the lab, some insects respond in ways they otherwise they would not, such as feeding or 

ovipositing on items they will rarely or never be exposed to in the field. Additionally, the 

field conditions and experiments might not work exactly as they do in the lab. Factors such 

as other organisms (bacteria) might also play a role in the responses of female with 

mycolactone. 

Additional future studies could focus on the molecular aspects of mycolactone 

interactions with mosquito larvae. Specifically, researchers should examine the physiological 

and histopathological impact of mycolactone on developing larvae. Bacteria can cause 

damage to midgut of larval Ae. aegypti. For example, a study by Singh et al. (1986) found 

Bacillus thuringiensis var. israelensis (Bti) ingested by Ae. aegypti larvae caused damage to 

midgut circular and longitudinal muscles (Singh et al. 1986). After six hour of Bti treatment, 

the midgut was ruptured; however, paralysis of larvae occurred at advanced stages of Bti 

poisoning (Singh et al. 1986).  

Also, morphology and morphometric (i.e., length and width of wing and tibia of legs) 

of resulting adults should be examined. Size has been shown to correlate with fecundity 

(Agnew et al. 1999). Immature female Culex pipiens (L.) (Diptera: Culicidae) infected with 

the microsporidian parasite Vavraia culicis (Agnew et al. 1999) pupated faster and resulting 

adults were smaller which were less fecund (Agnew et al. 1999). Mycolactone could have the 

same impact on Ae. aegypti females.  

Given mycolactone negative impact on mosquito development, it could potentially be 

developed as a biological control agent. Other examples of such toxins being used in 

integrated pest management (IPM) include, Bti for mosquitoes (Singh et al. 1986) that impact 

human and other vertebrate populations as well as herbivore populations in row crops 
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(Federici 2003). However, additional research is needed to determine appropriate dose that 

will kill mosquitoes while not impacting beneficial or non-target arthropods or vertebrates 

(Federici 2003, Poulin et al. 2010). Furthermore, proper application methods (e.g., 

encapsulation, granule, ultra-volume spray) would need to be developed as well. 

Furthermore, reduced size of resulting adults could impact their ability to disperse. 

For example, due to the energy, larger female (3.1 mm) can disperse (0.64 km/hr) more than 

smaller femele (2.8 mm) (0.47 km/hr) (Briegel et al. 2001). Not only dispersal, but also the 

ability of locating hosts can be impacted by their size. A study by Nasci (1986) found larger 

females (2.64 mm) were more successfully in looking for hosts and seek for a second blood 

meal comparing with smaller females (2.47 mm) avaergae wing length (Nasci 1986). This 

inability could partially explain the endemicity of Buruli ulcer in a given location especially 

if adults resulting from environments contaminated with mycolactone are in fact smaller. 

Other concentrations of mycolactone should be investigated. In the current study, the 

highest dose did not result in 100% mortality; therefore, whether increasing the dose of 

mycolactone would result in more mortality or not, should be considered. The higher dose 

should be in high concentration, meaning higher than the current dose (1.0 µg/mL). 

Furthermore, behavior can be examined to see whether mycolactone affect the adult 

decision-making with regards to host selection. We know from previous study by Platt 

(1997), that female Ae. aegypti infected with a virus or bacterium could slow feeding or 

result in multiple host feedings (Platt 1997). In fact, Ae. aegypti females infected with dengue 

virus take longer to feed compared with uninfected female (Platt 1997). Slow feeding would 

increase the chance of the female to feed on additional hosts, in which female will transmit 

pathogens to numerous hosts (Platt 1997). 
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In summary, results determined mycolactone impacts larval survivorship and 

development. Larvae of Ae. aegypti have survived in the presence of middle does, which has 

been indicated in the environment, but high mortality were recorded at highest and lowest 

dose. Since larvae of Ae. aegypti have survived in the present of middle does, this could 

result a great activity of mosquitoes in that area of mycolactone where eventually may lead to 

spread of other diseases (e.g., Yellow Fever). 
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