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ABSTRACT

A goodness-of-fit (gof) problem, i.e., testing whether observed data come from a

specific distribution is one of the important problems in statistics, and various tests

for checking distributional assumptions have been suggested. Most tests are for one

data set with a large enough sample sizes. However, this research focuses on the

gof problem when there are a large number of small data sets. In other words, we

assume that the number of data sets p increases to infinity and the sample size of

each small data set n is finite. In this dissertation, we will denote p and n as the

number of data sets and the sample sizes of each data sets, respectively.

Since the primary interest of this dissertation is testing whether every small data

set comes from a known parametric family of distributions with different parameters,

it is important to choose a gof test invariant to parameters of unknown distribution.

Hence, as a basic approach, we suggest applying empirical distribution function (edf)

based gof tests to every small data set and then combining P -values to obtain a

single test. Two P -value combining methods, moment based tests and smoothing

based tests, are suggested and their pros and cons are discussed. Especially, the

two moment based tests, Edgington’s method and Fisher’s method, are compared

with respect to Pitman efficiency and asymptotic power. We also find conditions

that guarantee that the asymptotic null distribution of moment based tests based

on empirical P -values is the same as that based on exact P -values. When the null

is a location and scale family, there is no difficulty in applying the suggested test

procedures. However, when the null is not a location and scale family, edf-based tests

may depend on unknown parameters. To handle such a problem, we suggest using

unconditional P -values and this requires an additional step of estimating the distri-
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bution of unknown parameters. Several issues related to estimating the distribution

of unknown parameters and obtaining unconditional P -values are also discussed. The

performance of suggested test procedures are investigated via simulations and these

procedures are applied to microarray data.
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1. INTRODUCTION

1.1 Statement of general problem

Many data sets in modern statistics have a large number of variables with small

sample sizes. For example, gene expression data can have hundreds or thousands of

genes with a low number of replications. When we have a large number of data sets

with few replications, it can be crucial to know whether every small data set comes

from a specific distribution, such as a normal distribution, because if we can verify

that every small data set follows a normal distribution, we may use the standard

t-test to perform tests about population means.

If we can combine all small data sets into a single data set, verifying distributional

assumptions for a large number of small data sets turns into a simple problem, which

is a classical goodness-of-fit (gof) problem. Such an approach, however, may not be

relevant under some situations. For example, if every small data set comes from

the same family of distributions but with different parameters, the approach is not

appropriate. In this case, it is clear that checking distributional assumptions for a

large number of small data sets is challenging, and this dissertation focuses on the

problem.

In the dissertation, it is assumed that we have data of the formXi = (Xi1, . . . , Xin),

i = 1, . . . , p, where vectors are independent of each other and for each i, Xi1, . . . , Xin,

are independent observations from a density function fi. We also assume that

there are hundreds or thousands of data sets with few replications, such as 5 or

10. The primary interest is to test the null hypothesis H0 : fi = f0(·|θi), where

F = {f0(·|θ) : θ ∈ Θ} is a known parametric family of distributions, but θ1, . . . , θp

are unknown.
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1.2 The basic approach

There may exist several viable solutions to the current problem. If θ1, . . . , θp

were known, one could apply empirical distribution function (edf) based tests to

every small data set, testing in each case the null hypothesis that F (Xij|θi) has a

uniform distribution on the interval [0, 1]. However, θ1, . . . , θp are not known, and

this leads to difficulties that will be dealt with subsequently.

Another possible solution is to cluster data sets based on proximity between pa-

rameters and exploit the clustered data sets to apply the probability integral trans-

formation or to estimate the density of residuals. This approach assumes that within

a cluster Xij are distributed as F (·|θ̂k) and hence F (Xij|θ̂k) follows the uniform dis-

tribution. Here, θ̂k is the parameter estimate of the k-th cluster. For example, if we

are interested in testing whether all small data sets are normally distributed with

different means µi, i = 1, . . . , p, and the same standard deviation σ, we can aggregate

many small data sets into a few data sets with large sample sizes. We can then test

uniformity after applying the probability integral transformations or test normality

of residuals. Such a method is problematic in the sense that it cannot guarantee

a large sample size in each cluster. This may happen when just a few clusters do

not suffice. Hence, the difficulties mentioned in the previous paragraph may happen

again when the probability integral transformation is used. If one is testing normal-

ity, a problem is that the density of residuals from an alternative distribution may

be very close to normality, as shown in Litton (2009). Another difficulty arises when

the alternative is local, i.e., when only a few data sets have different distributions

than those specified by H0. Such local alternatives could be masked if the small data

sets are grouped into clusters.

One approach which does not have difficulties as mentioned above is to apply a
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gof test to every small data set and combine P -values. In this dissertation gof tests

based on edf will be used. Let θ̂i be an estimate of θi based only on Xi1, . . . , Xin. If

the distribution of an edf-based test statistic does not depend on θi, as in the case

of a location-scale family, then a straightforward method based on simulation can

be used to produce p P -values that are approximately independent and identically

distributed as the uniform distribution under the null hypothesis. Specific P -value

combining methods and choice of edf-based gof tests will be discussed in Chapter 2.

1.3 Review of nonparametric goodness-of-fit tests

The gof problem, i.e., testing whether observed data come from a specific distri-

bution, is one of the important and classical problems in statistics, since even simple

statistical methodologies, such as the t-test, analysis of variance and linear discrim-

inant analysis, assume that data come from normal distributions. Of course, if this

distributional assumption is not satisfied, results obtained from statistical method-

ologies are not necessarily reliable. Hence, various tests for checking a distributional

assumption have been suggested. Pearson’s chi-squared test (Pearson, 1900) is a

popular test which can be used to test whether data come from a given distribution.

Also, Kyriakoussis et al. (1998) suggested gof tests for Poisson, binomial, and neg-

ative binomial distributions. Their test is based on the characteristics of the first

two moments of distributions. There exist a variety of tests for continuous variables.

The Shapiro-Wilk test (Shapiro and Wilk, 1965) is a test of normality based on the

ratio of the square of a linear combination of order statistics to the usual variance

estimate. There are tests based on kernel density estimation. For example, Fan

(1994, 1998) suggested a gof test exploiting L2 distance between a kernel density

estimate and a specified null distribution. Cao and Lugosi (2005) proposed a gof test

based on minimizing the L1 distance between a kernel density estimate and densities

3



belonging to the hypothesized class. Also, Rudzkis and Bakshev (2013) introduced

a test statistic based on the maximum of a normalized deviation of a kernel density

estimate from its expected value with respect to a hypothesized distribution. Song

(2002) suggested a test based on the Kullback-Leibler Information Criterion (KLIC).

In this paper, Song uses a sample entropy estimator due to Vasicek (1976) to esti-

mate the KLIC and derives the asymptotic distribution of the test statistic. The

smooth test, which is based on the probability integral transformation, to detect a

smooth departure from the null hypothesis was investigated in Inglot and Ledwina

(2006), Kallenberg and Ledwina (1997), Ledwina (1994) and Rayner et al. (2009).

The aforementioned tests are for one data set and most of the tests need a large

enough sample size to obtain good power. There exist a few articles that deal with

the gof problem of a large number of small data sets. Liang et al. (2009) proposed

a generalized Shapiro-Wilk test for high-dimensional normality by using the theory

of spherical distributions. Cox and Solomon (1986) proposed graphical and formal

procedures to detect departures from the assumption that many small samples are

distributed as the standard normal distribution. Their results may be applied to

test whether a large number of small data sets are drawn from normal distributions.

However, their test cannot be used to check if a large number of small data sets come

from distributions other than normal distributions. Zhan and Hart (2012) devised a

test based on the distance between kernel density estimates from small data sets and

the average of all density estimates to test equality of a large number of densities.

The test proposed by Zhan and Hart (2012) has the limitation that the test cannot

inform whether or not every small data set is drawn from a specific distribution.
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1.4 Importance of using goodness-of-fit test invariant to parameters of unknown

distribution

We shall refer to the test statistic applied to each small data set as T . The

test that combines all the P -values corresponding to different applications of T is

called T . Selecting the type of test for T is important because it will affect power

and computing time. One criterion that should be considered is whether a test is

invariant to parameters of unknown distributions. If T is not invariant to parameters

of the unknown distribution, then the distribution of parameter values from one small

data set to another will need to be inferred to obtain P -values that are identically

distributed as the uniform distribution under the null. This additional step, inferring

the distribution of parameters, may cause two problems. One problem is computing

time, and the other problem is possible losses in power or lack of control of the size

of tests. If the estimated distribution of parameters is not close to the true one, we

may lose power or obtain a size greater than the nominal significance level. It is

clear that finding the distribution of unknown parameters is unnecessary if a test

is invariant to parameters of the unknown distributions. Hence, using a test that

is location and scale invariant is crucial, and edf-based gof tests have this desirable

property. Also, these gof tests are easy to compute. Hence, in this dissertation, we

will focus on edf-based gof tests.

This dissertation is organized as follows: in Chapter 2, test procedures when the

null distribution is a location and scale family are proposed, and pros and cons of

the procedures are discussed. The power of the suggested test is investigated via

simulation in Chapter 3. In Chapter 4, the suggested test is applied to microarray

data. A test procedure when the null distribution is not a location and scale family

is suggested in Chapter 5. In the last chapter, we give a summary of the dissertation
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and discuss possible future study.
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2. METHODOLOGY FOR LOCATION AND SCALE FAMILY

It is assumed that we observe data of the form Xi = (Xi1, . . . , Xin), i = 1, . . . , p,

where the vectors are independent of each other and for each i, Xi1, . . . , Xin are

independent observations from a density function fi. The primary interest is to test

the null hypothesis H0 : fi = f0(·|θi), where F = {f0(·|θ) : θ ∈ Θ} is a known

parametric family of distributions, but θ1, . . . , θp are unknown. In this chapter, it is

assumed that the parametric family is a location and scale family.

2.1 Selection of Test Statistics

As we discussed in Section 1.4, we need to consider tests invariant to location

and scale parameters. Of many statistics with this desirable property, we apply

edf-based gof tests such as Kolmogorov-Smirnov test (KS), Anderson-Darling test

(AD), Cramér-von Mises test (CvM) and Watson test (Watson, 1961) to each small

data set and then use all P -values to obtain a single test of the null hypothesis.

Among these tests, the Watson test was originally devised as a gof test on a circle.

However, it can be applied to observations on the line, because the test statistic does

not depend on the fact that observations are on a circle. There are two reasons that

these edf-based gof tests may be preferred to many other location and scale free tests

under current setting, i.e., a large number of data sets with small sample sizes. First,

these methods are computationally efficient. The computational efficiency is crucial

because the test statistics are required to be computed for every small data set.

Second, these test statistics do not depend on parameters that must be arbitrarily

chosen by the user. For example, the KLIC based test (Song, 2002) is also invariant

to location and scale and its test statistic can be efficiently computed. To implement

the KLIC test, however, it is necessary to choose the order of spacings to estimate
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the entropy, which might affect the stability of test statistics. Hence, the edf-based

test statistics seem to be the most appropriate to the current problem.

Of the four edf tests mentioned, AD, CvM and Watson will be considered. These

three tests are selected due to their power. There exist modifications of AD and CvM

to increase their power. For example, Green and Hegazy (1976) suggested modified

KS, AD and CvM by using the fact that the mean of the i-th uniform order statistic

is i/(n + 1), and they showed that there were power improvements over the usual

KS, AD and CvM. However, these improvements were limited to some alternatives

and sample sizes. Especially, when the sample sizes are small such as 5 or 10, the

original AD and CvM tend to have better power than the modified tests. Since we

deal with the gof test for a large number of small data sets, it would be enough to

consider the usual AD or CvM.

There is research comparing the power of gof tests. For instance, Stephens (1974)

showed that the power of AD, when testing composite normality, was comparable to

that of the Shapiro-Wilk test (SW), which was primarily designed to test composite

normality. Also, D’Agostino and Stephens (1986, p.110) recommend AD because a

departure in the tails is often important to detect and AD is more powerful than

CvM, when an alternative distribution departs from the null distribution in the tails.

Also, Frain (2007) investigated power properties of six tests of normality, which are

Pearson’s chi-squared test, SW, AD, CvM, KS, and Jarque-Bera test (Jarque and

Bera, 1980), when the alternative is an α-stable distribution. Except for two tests,

SW and Jarque-Bera test, which are designed to test normality, AD has the best

power and CvM usually has better power than KS. Sürücü (2008) compares the

power of gof tests when testing whether data come from two-parameter exponential

distributions. He compared four tests, Tiku test using the sample spacing (Tiku,

1980), AD, Shapiro-Wilk test for exponential distributions (Shapiro and Wilk, 1972)
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and the correlation test (Filliben, 1975; Smith and Bain, 1976), and found that Tiku

test and AD were considerably more powerful than the other two tests. Since means

of order statistics are required to apply the Tiku test, AD has an advantage over the

Tiku test in its computational simplicity. Arshad et al. (2002) showed that AD and

CvM have better power than KS when testing whether data come from generalized

Pareto distributions. Quesenberry and Miller (1977) considered seven tests including

KS, AD, CvM, Pearson’s chi-squared test, Greenwood (1946), modified Greenwood

and Watson to test that data are from a uniform distribution on the unit interval and

suggested that Watson was a good choice if one test were to be used exclusively. Also,

Watson is expected to be more powerful than CvM when the alternative distribution

is shifted in variance, because it has the form of a variance while CvM has the form

of a second moment, as mentioned in Watson (1961). Gürtler and Henze (2000)

suggested a gof test for Cauchy distributions based on the integrated L2 distances

between the empirical characteristic function and the characteristic function of the

standard Cauchy distribution. Their simulation results show that three edf-based

tests, KS, AD, and CvM have stable and comparable powers to the suggested test

for some choice of weights. Since their test requires the integration and choice of

unknown weight, edf-based tests seem to be still preferable.

When edf-based tests are applied to small data sets, a bias issue arises. In other

words, their exist null distributions and alternatives such that the power of the test is

smaller than the size of the test. Even if it is well known that AD, CvM, and Watson

are consistent, this consistency is irrelevant to the current setting. For example,

Massey (1950) and Thompson (1966) showed that KS and CvM are biased for certain

sample sizes under some alternatives. Also, we can heuristically justify that the bias

of the tests may depend on the shape of null and alternative distributions. Table

2.1 shows the power of three tests, AD, CvM and Watson, when we test whether
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data come from the uniform distribution. Even though results of the size of three

tests are not shown in the table, all three tests attain the right size. From now on,

a beta distribution with parameters α and β will be denoted by beta(α, β). Two

tests except Watson are biased when the data are from beta(2,2), but all tests are

not biased when the data are from beta(1/2,1/2). These results accord with results

from Quesenberry and Miller (1977). In their simulations, Watson is unbiased for all

considered alternatives, while AD and CvM are biased for some alternatives. This

suggests that Watson may be unbiased for more alternatives than AD or CvM, and

this is another reason that Watson may be preferable to AD and CvM.

One possible explanation for the bias problem is the shape of distributions. Fig-

ure 2.1 shows the probability density function (pdf) and the cumulative distribution

function (cdf) of a beta distribution. In the plot, we notice that both beta distribu-

tions show more departures from the uniform distribution around the tails. Also, we

may expect more observations from the tails when the alternative is beta(1/2,1/2).

This may explain the fact that tests are not biased when data are from beta(1/2,1/2).

On the contrary, only a few observations are expected to be from the tails when data

are from beta(2,2), implying difficulties to detect departures from the null. This sim-

ulation indicates the possibility that the test is biased, especially when we have data

sets with small sample sizes, since testing whether data come from a fully specified

distribution is equivalent to testing whether data come from the uniform distribution.

2.2 Methods of combining P -values and testing procedures

There are two ways to combine test results from small data sets. One is to use the

test statistic itself, and the other is to use the P -value. The latter seems preferable

since the distribution of the P -value under the null hypothesis is known whereas the

distribution of test statistics under the null hypothesis is unknown. One possible

10



Figure 2.1: This figure shows that the probability density functions and the cumu-
lative distribution functions of beta(1/2,1/2) and beta(2,2).

way to combine independent P -values is using methods like Fisher’s method, the

normal transformation method, the minimum P -value method, the maximum P -

value method, the mean of P -value method, i.e., Edgington’s method (Edgington,

1972), and the logit method (Mudholkar and George, 1977).

Of the possible combining methods, it seems best to choose one or two suitable

methods. There exists much research comparing or evaluating parametric methods.

For example, Birnbaum (1954) showed that if a combining method satisfies a general

condition for admissibility, then we can find some alternative hypothesis for which

the combining method gives the best test of the null hypothesis. The condition is
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Table 2.1: This table shows the power(%) of three tests, AD, CvM and Watson. The
numbers in parentheses are the means of P -values. Each number is obtained from
2,000 replications and the significance level α is 0.05.

AD CvM Watson
n beta(1/2,1/2) beta(2,2) beta(1/2,1/2) beta(2,2) beta(1/2,1/2) beta(2,2)

5
28.9 0.2 12.7 1.2 13.8 11.2

(0.26) (0.55) (0.38) (0.49) (0.40) (0.40)

10
36.3 1.0 12.4 2.3 23.9 20.0

(0.20) (0.46) (0.33) (0.43) (0.30) (0.30)

that if the null hypothesis is rejected for a vector (P1, . . . , Pp) then it should also be

rejected for a vector (P ∗1 , . . . , P
∗
p ) such that P ∗i ≤ Pi for each i, where Pi is the P -

value for the i-th data set. Lancaster (1961) developed a way to evaluate combining

methods at a specified alternative distribution by representing the distribution in

terms of orthonormal functions with respect to the null distribution. Littell and

Folks (1971) showed that Fisher’s method is asymptotically optimal in the sense of

the Bahadur efficiency among four methods, which are Fisher’s method, the normal

transformation method, the minimum P -value method and the maximum P -value

method. Berk and Cohen (1979) showed that the logit method is also asymptotically

Bahadur optimal. Cohen et al. (1982) showed that the method of weighted sum of

P -values has the same Bahadur slope as Fisher’s method if and only if all tests have

the same slope and the sample sizes for each data set satisfy the following condition:

ni =
n

p
+ o(n), where ni is the sample size for the i-th data set, p is the number of

combined tests, and n =
∑p

j=1 nj. In their analysis, they assumed that ni increases

without bound and p is fixed. Loughin (2004) investigated the power of methods

of combining P -values by simulation. In his simulation, distributions of the P -value

are modeled by beta distributions with parameters α = 1 and β ≥ 1 because these

distributions have appropriate properties, such as a non-increasing distribution with
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a support between 0 and 1 and the possibility to control the strength of evidence

against the null through β. He compared methods by using different numbers of

tests, and different patterns and strengths of evidence against the null hypothesis in

his simulations. The simulation results suggested that there is no uniformly most

powerful method and the power of combining methods depends on the number of

tests rejecting the null hypothesis and the strength of evidence against the null. For

instance, if few of the data sets depart from the null and the strength of evidence

is moderate, Fishers’ method would be preferable. He does not recommend to use

Edgington’s method or the maximum P -value method because these two methods

usually have very poor power. However, the simulation may not be valid if beta

distributions with parameters α = 1 and β ≥ 1 are not an adequate model for the

distribution of the P -value. Of course, the bias of tests may affect the shape of

the distribution of the P -value, and its shape may be different from the expected

non-increasing shape.

To investigate the effects of the bias on the shape of the distribution of the P -

value, P -values, when testing uniformity, are obtained from 100 data sets of sample

size 10 using CvM. To decrease the sampling variability, 100 iterations were used. The

distribution of the P -value, in Figure 2.2, is estimated by the median of 100 kernel

density estimates. For the beta(2,2) distribution, the P -value distribution is not

non-increasing, indicating that the results from Loughin (2004) may not be relevant

in the current problem. Thus, even though Loughin (2004) had not recommended

the use of Edgington’s method, we will still consider Edgington’s method.

To select combining methods, we need some criterion. The evaluation method

from Lancaster (1961) cannot be applied because the distribution of the P -value

under the alternative hypothesis is not specified and we need to consider a general

alternative hypothesis. Also, existing research on Bahadur efficiency may not be a
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Figure 2.2: This figure shows density estimates of the P -value when the null hypoth-
esis is false. The left and right plots are P -value distributions when the data come
from beta(1/2,1/2) and beta(2,2), and CvM is used. The solid line is the median
of kernel density estimates and dashed lines represent 0.025 and 0.975 percentiles of
kernel density estimates.

reasonable way to select a method in the current setting, because Bahadur efficiency

was computed under the assumption that the sample size for each data set increases

to infinity and the number of combined tests is finite. In this dissertation, however,

we need to combine tests whose number increases to infinity and the sample size

for each small data set is finite. Fisher’s method is selected because the simulation

of Loughin (2004) showed that it detects evidence against the null especially well

under local alternatives and it usually has at least 80% power under other patterns

of alternative hypotheses. Also, this method satisfies the admissibility condition and
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Table 2.2: This table shows the size(%) and power(%) of a nominal size 0.05 test
when testing whether data come from the uniform distribution. The numbers in
parentheses are local power when 90% of data sets come from the null distribution,
i.e., the uniform distribution. The size and power are computed based on the one-
sided critical value. CvM is used to compute the P -value, and each value is obtained
from 2,000 replications.

Edgington’s method Fisher’s method
n p uniform beta(1/2,1/2) beta(2,2) uniform beta(1/2,1/2) beta(2,2)
5 100 5.65 98.6 (11.1) 5.3 (5.3) 5.1 99.2 (12.8) 0.1 (3.3)

300 4.5 100.0 (15.2) 7.4 (4.8) 5.0 100.0 (18.3) 0.0 (3.3)
10 100 4.5 100.0 (14.7) 86.3 (7.7) 4.7 100.0 (16.0) 14.2 (4.9)

300 5.9 100.0 (21.5) 100.0(11.4) 5.2 100.0 (26.2) 40.6 (6.7)

is more easily handled in a mathematical sense than is the normal transformation

method, which is recommended for general use by Loughin (2004). Edgington’s

method is selected because it also satisfies the condition for admissibility and the

method effectively detects evidence against the null when all null hypotheses are

false (Edgington, 1972; Loughin, 2004). Also, the method can be handled easily in

a mathematical sense like Fisher’s method. Using the mathematical tractability of

both methods, we will compare them asymptotically in the next section.

Before comparing the two methods, we will heuristically investigate their per-

formance by a simple simulation when we have a finite number of data sets. The

simulation results in Table 2.2 show power for both local and non-local alternatives.

The local alternatives are such that 90% of data sets come from the null distribution

and 10% from a non-null distribution. In the non-local alternatives, all data sets

come from the same non-null distribution. For the non-local alternatives, Edging-

ton’s method has better power than Fisher’s method. This result is related to the

rejection regions of the combining methods. From Figure 2.3, we notice that Edging-

ton’s method may detect departures from the null better than Fisher’s method when
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Figure 2.3: These plots show rejection regions corresponding to Edgington’s method
and Fisher’s method when combining two P -values. The shaded area corresponds to
rejection region of each method.

both small data sets come from the same non-null distribution. On the contrary,

Fisher’s method is expected to perform well when only one of the data sets comes

from a non-null distribution because its rejection region in Figure 2.3 indicates that

the null hypothesis can be rejected even if just one of the two P -values is close to

0. In addition to simulation results of Loughin (2004), these rejection regions and

simulation results show that there does not exist a uniformly better method, and we

may need to use both Fisher’s method and Edgington’s method. Hence, the testing

procedure used will be as follows:

1. For every small data set, AD, CvM or Watson is applied.
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2. By using the P -values, P1, . . . , Pp , T1 = −2

p∑
i=1

logPi and T2 =

√
p(P̄ − 1/2)√

1/12
are computed.

3. The null hypothesis is rejected if T1 > χ2
α1

(2p) or T1 < χ2
1−α2

(2p), where χ2
α(2p)

denotes the (1− α) percentile of the chi-squared distribution with d.f. 2p and

α1+α2 = α. Similarly, the null hypothesis is rejected if T2 < Zα1 or T2 > Z1−α2 ,

where Zα denotes the (1− α) percentile of the standard normal distribution.

One important thing in the above test procedure is to apply two-sided tests.

These are suggested because the tests may be biased when data sets have small

sample sizes. The necessity of using two-sided tests after P -values are combined can

be justified for each method. For Fisher’s method, the method is uniformly most

powerful when the distribution of the P -value is F (z) = zk where 0 < z < 1, k > 0.

It can be shown that a likelihood ratio test of uniformity under these alternatives is a

two-sided test. If the distribution of the P -value is non-increasing, 0 < k < 1, the null

hypothesis of uniformity should be rejected when the test statistic is large. Similarly,

if the distribution of the P -value is not non-increasing, k > 1, the uniformly most

powerful test is to reject the null hypothesis of uniformity when the test statistic

is small. This result along with the fact that the distribution of the P -value under

alternatives does not have a non-increasing shape, especially when tests are biased,

suggests the use of two-sided tests. For Edgington’s method, the mean of the P -

value may still be smaller than 0.5 even if the test is biased for some alternatives.

However, Table 2.1 shows that the mean of the P -value can be greater than 0.5,

especially when the test is biased.

The idea of using the two-sided tests in gof problems is not a new idea. Seshadri

et al. (1969) compared the power of tests for exponential distributions based on

two transformations, J and K, of observations to uniform observations under the
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null hypothesis. They found that the J transformation is more likely to produce

superuniform observations, more evenly spaced than uniform observations, when

the original observations are from alternative distributions. Hence, they used the

lower tail to detect a departure from the null distribution when they used the J

transformation. Also, Fisher (1925, Section 20) wrote about the necessity of using

the lower tail when doing Pearson’s chi-squared test:

”The term Goodness of Fit has caused some to fall into the fallacy of believing

that the higher the value of P the more satisfactorily is the hypothesis verified.

Values over 0.999 have sometimes been reported which, if the hypothesis were true,

would only occur once in a thousand trials. Generally, such cases are demonstrably

due to the use of inaccurate formulae, but occasionally small values of χ2 beyond the

expected range do occur . . . In these cases the hypothesis considered is as definitely

disproved as if P had been 0.001.”

Similarly, Yule and Kendall (1950, section 20.20.) wrote about the necessity of using

the two-sided tests.

2.3 Comparison of Fisher’s method and Edgington’s method

In this section, two combining methods, Edgington’s method and Fisher’s method,

are compared based on Pitman efficiency and the asymptotic power under
√
p-

alternatives. Pitman efficiency is defined as the limiting ratio of the sample sizes

required to obtain the same limiting power when a parameter under alternatives is

different from what it is under the null by the amount of O(1/
√
p), where p is the

sample size. For example, if the Pitman efficiency of a test S relative to a test T is

2, it implies that we would need approximately twice as many samples for the test T

as for the test S to obtain the same asymptotic power. Since beta distributions have

been used to model the distribution of the P -value (Allison et al., 2002; Loughin,
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2004) and Parker and Rothenberg (1988) point out that any distribution on the in-

terval [0, 1] can be modeled as a mixture of beta distributions, Pitman efficiency is

obtained under the assumption that the distribution of the P -value is a beta distri-

bution with parameters α = 1 and β = θ. Since the distribution follows the uniform

distribution when θ = 1, the null and alternative hypotheses can be defined as

H0 : θ = 1 and HA : θ = 1 +
c
√
p

(2.1)

To obtain Pitman effciency, we use the Noether theorem, which is stated in the

appendix.

Proposition 2.3.1 The Noether theorem (Randles and Wolfe, 1979, p.147) can be

applied to tests that have upper-tailed rejection region and lower-tailed rejection region

when they have asymptotic normal distributions under the null and alternatives.

Proof This can be shown easily by using the fact that Φ(−x) = 1−Φ(x) where Φ(·)

is the distribution function of the standard normal distribution.

Proposition 2.3.2 The Pitman efficiency of Edgington’s method relative to Fisher’s

method under hypotheses (2.1) is 1.80 when tests are not biased.

Proof To prove the proposition, we need to verify the conditions of Noether’s theo-

rem. Define θ0 and θp to be the values of θ under the null and the alternative, respec-

tively. Let µ1(θ) =
1

1 + θ
and µ2(θ) = −2(ψ(1)−ψ(1+θ)) where ψ(·) is the digamma

function. Also, let σ2
1(θ) =

θ

p(1 + θ)2(2 + θ)
and σ2

2(θ) =
4(ψ1(1)− ψ1(1 + θ))

p
,

where ψ1(·) is the trigamma function. Here, µ1(θ) and σ1(θ) are the mean and stan-

dard deviation of beta(1, θ). Similarly, µ2(θ) and σ2(θ) are the mean and standard

deviation of −2 logX, where X is distributed as beta(1, θ). For Edgington’s method,
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P̄ − µ1(θ)√
σ2
1(θ)

converges to the standard normal distribution as p tends to ∞. Hence,

the conditions A1 and A2 are verified. Also,
σ1(θp)

σ1(θ0)
converges to 1 as p goes to ∞,

and by using the fact that µ
′
1(θ) = −(1 + θ)−2, we can show that

µ
′
1(θp)

µ
′
1(θ0)

converges

to 1 as p increases to ∞. Finally, we have

KE := lim
p→∞

µ
′
1(θ0)√
pσ2

1(θ0)
=
−1/4√

1/12
.

For Fisher’s method,
−2 logP − µ2(θ)

σ2(θ)
converges to the standard normal distribution

as p increases to ∞. Since µ
′
2(θ) = 2ψ1(θ), we can easily verify the conditions A4

and A5. Also,
σ2(θp)

σ2(θ0)
converges to 1 as p goes to ∞. Finally, we have

KF := lim
p→∞

µ
′
2(θ0)√
pσ2

2(θ0)
=

2ψ1(2)√
4(ψ1(1)− ψ1(2))

.

Hence, the Pitman efficiency of Edgington’s method relative to Fisher’s method is

K2
E

K2
F

= 1.80.

Proposition 2.3.2 implies that about a 1.8 times larger sample size is required by

Fisher’s method to obtain the same power, indicating that Edgington’s method is

slightly better in the sense of Pitman efficiency. This might imply that Edgington’s

method is preferable to Fisher’s method when there exists relatively weak evidence

against the null in the sense of power.

Another criterion to compare the two methods is to investigate the asymptotic

power. The asymptotic power is obtained under hypotheses (2.1) and another hy-

potheses defined as

H0 : f = I(0,1)(P ) and HA : f = (1− p−1/2)I(0,1)(P ) + p−1/2g, (2.2)
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where IA(x) =

 0 if x /∈ A

1 if x ∈ A
and g is a density function with support (0,1).

Proposition 2.3.3 The asymptotic powers of Edgington’s method and Fisher’s method

under hypotheses (2.1) are Φ

(
−zα +

c

4
√

1/12

)
and 1−Φ(zα − cψ1(2)), respectively,

where ψ1(·) denotes the trigamma function.

Proof For Edgington’s method,

Pr

(√
p(P̄ − 1/2)√

1/12
< −zα

)

= Pr

(√
p(P̄ − EHA

(P ))√
VarHA

(P )
<

√
1/12√

VarHA
(P )

(
−zα −

√
p(EHA

(P )− 1/2)√
1/12

))
.

Under the considered alternatives, VarHA
(P ) =

1 + c/
√
p

(2 + c/
√
p)2(3 + c/

√
p)

and EHA
(P )

=
1

2 + c/
√
p
. By using these facts, we can easily show

1/12

VarHA
(P )

= 1 + op(1) and

√
p(EHA

(P ) − 1/2) = −c/4 + op(1). This implies that the asymptotic power of

Edgington’s method under hypotheses (2.1) is equal Φ

(
−zα +

c

4
√

1/12

)
.

For Fisher’s method,

Pr

(√
p(−2 logP − 2)

√
4

> zα

)

= Pr

(√
p(X̄ − EHA

(X))√
VarHA

(X)
>

√
4√

VarHA
(X)

(
zα −

√
p(EHA

(X)− 2)
√

4

))
,

where X denotes −2 logP .

Under considered alternatives,

EHA
(−2 logP ) = −2

(
ψ(1)− ψ

(
2 +

c
√
p

))
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= −2

(
ψ(1)− ψ(2)− c

√
p
ψ1(2) +O

(
1

p

))
,

where the second equation holds by Taylor’s expansion. Similarly,

VarHA
(−2 logP ) = 4

(
ψ1(1)− ψ1

(
2 +

c
√
p

))
= 4

(
ψ1(1)− ψ1(2)− c

√
p
ψ
′

1(2) +O

(
1

p

))
.

By using these facts, the asymptotic power of Fisher’s method is equal to 1−Φ(zα−

cψ1(2)).

From Proposition 2.3.3, we notice that the asymptotic power of both Fisher’s

method and Edgington’s method depends on the constant c. Figure 2.4 shows the

asymptotic power of the two methods at the significance level α = 0.05. The figure

indicates that Edgington’s method has better power than Fisher’s method under

all considered constants. The difference between the power is maximized when the

constant c is 2.81 and the difference is less than 0.001 when the constant c is less

than 0.04 or greater than 7.35. We also notice that both methods have asymptotic

power 1 as c increases.

Remark 2.3.1 Proposition 2.3.3 implies that Edgington’s method is more asymptot-

ically powerful than Fisher’s method if zα−
c

4
√

1/12
is less than zα− cψ1(2). Hence,

under hypotheses (2.1), Edgington’s method has better power than Fisher’s method

regardless of the value c because
1

4
√

1/12
is greater than ψ1(2).

Remark 2.3.2 If considering the alternative hypothesis HA : θ = 1 + cp−a, we

cannot asymptotically detect departures from the null when a > 1/2 and would have

asymptotic power 1 when 0 < a < 1/2 and c is positive.
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Figure 2.4: This figure shows the asymptotic power of Edgington’s method and
Fisher’s method under hypotheses (2.1). The solid and dashed lines represent Edg-
ington’s method and Fisher’s method, respectively.

Proposition 2.3.4 The asymptotic powers of Edgington’s method and Fisher’s method

under hypotheses (2.2) are Φ

(
−zα −

Eg(P )− 1/2√
1/12

)
and 1−Φ

(
zα −

Eg(−2 logP )− 2√
4

)
, respectively, where Eg denotes expectation under the density function g.

Proof By following the proof of Proposition 2.3.3, for Edgington’s method, we

just need to consider EHA
(P ) and VarHA

(P). Under the considered alternatives,

EHA
(P ) = EH0(P ) + p−1/2(Eg(P )− EH0(P )) and VarHA

(P ) = VarH0(P ) + op(1).

By using these facts,

√
1/12√

VarHA
(P )

(
−zα −

√
p(EHA

(P )− 1/2)√
1/12

)
= (1 + op(1))

(
−zα −

(Eg(P )− 1/2)√
1/12

)
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Hence, asymptotic power of Edgington’s method under the considered alternatives

is equal to Φ

(
−zα −

Eg(P )− 1/2√
1/12

)
. Similarly, for Fisher’s method, EHA

(−2 logP )

and VarHA
(−2 logP ) are necessary to be computed.

Under the considered alternatives,

EHA
(−2 logP ) = EH0(−2 logP ) + p−1/2(Eg(−2 logP )− EH0(−2 logP )) and

VarHA
(P ) = VarH0(−2 logP ) + op(1).

By using these,

√
4√

VarHA
(−2 logP )

(
zα −

√
p(EHA

(−2 logP )− 2)
√

4

)
= (1 + op(1))

(
zα −

(Eg(−2 logP )− 2)√
4

)
.

Hence, the asymptotic power of Fisher’s method is 1−Φ

(
zα −

(Eg(−2 logP )− 2)√
4

)
.

Remark 2.3.3 For Edgington’s method, the asymptotic power under hypotheses (2.2)

increases as
Eg(P )− 1/2√

1/12
decreases. For Fisher’s method, on the contrary, the

asymptotic power increases as
Eg(−2 logP )− 2√

4
increases.

Remark 2.3.4 Proposition 2.3.4 indicates that Edgington’s method is more powerful

than Fisher’s method when 1 − 2Eg(P ) is greater than
√

1/12(Eg(−2 logP ) − 2)

when the one-sided test is used. For future reference, we will call 1 − 2Eg(P ) and√
1/12(Eg(−2 logP )− 2) mean differences.

Remark 2.3.5 From Propositions 2.3.3 and 2.3.4, we notice that the power of both

Fisher’s method and Edgington’s method depends on the first two moments of P -

values. Hence, we will call these methods ”moment based tests”.

Remark 2.3.6 Similarly to Remark 2.3.2, we notice that if we have an alternative

hypothesis, HA : f = (1− p−a)I(0,1)(P ) + p−ag, moment based tests cannot asymptot-
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Figure 2.5: This figure shows mean differences and asymptotic power under
√
p-

alternatives in hypotheses (2.2) when g is beta distributions with parameters α = 1
and β > 1. The solid and dashed lines represent the power of Edgington’s method and
Fisher’s method, respectively. The horizontal dotted line in the right plot represents
the level of tests 0.05.

ically detect departures from the null when 0 < a < 1/2 and would have asymptotic

power 1 when a > 1/2 and there is no bias problem.

Remark 2.3.7 Even if the bias problem exists, a moment based test has asymptotic

power 1 when a > 1/2 as long as the two-sided test is used.

To compare the power of the two methods under hypotheses (2.2), beta distribu-

tions with parameters α = 1 and β > 1 are considered. Note that we do not have

the bias problem by considering such beta distributions, and we will not consider the

two-sided test at this point. Figure 2.5 shows the mean differences and the power
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Figure 2.6: This figure shows the density of the two alternative hypotheses when there
are 1,000 data sets. The solid line represents the density of alternative distribution
under hypotheses (2.1). The dashed line represents the mixture of uniform and
beta(1,c), which corresponds to alternative distribution under hypotheses (2.2).

of the two methods for various parameters β from 1.1 to 10 at the significance level

α=0.05. In the figure, the solid and dashed lines denote the power of Edgington’s

method and Fisher’s method, respectively. When β is less than 3.45, Edgington’s

method is slightly better than Fisher’s method. Fisher’s method has higher power

than Edgington’s method when β is greater than 3.45 and the difference in the power

gets bigger as β increases. Such a phenomenon suggests that Fisher’s method might

be preferable to Edgington’s method when there exists strong evidence against the

null. However, when we have data sets with small sample sizes, it may be difficult

to expect that we have strong evidence against the null. Hence, this result may
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imply that Edgington’s method is preferable to Fisher’s method in the setting of this

dissertation. This result agrees with the Pitman efficiency result from Proposition

2.3.2.

Under hypotheses (2.1), both Edgington’s method and Fisher’s method have

asymptotic power 1 as the constant c increases. However, under hypotheses (2.2),

the two methods do not have asymptotic power 1 even if the evidence against the null

gets stronger. Such a difference in behavior of the two methods might be explained

by the shape of the two alternative distributions. Figure 2.6 shows the density of

alternative distributions. From the figure, we notice that the alternative distribution

under hypotheses (2.1) shows more deviations from uniformity than those under

hypotheses (2.2). Especially, the density of alternative distributions from hypotheses

(2.1) tends to approach 0 for large P -values, indicating a severe departure from

uniformity. This may be the reason that the asymptotic power of both methods under

hypotheses (2.1) is 1 as c increases, unlike the asymptotic power under hypotheses

(2.2).

It is clear that power would decrease if we apply the two-sided tests when tests

are not biased. The relative power decrease, defined as the ratio of the power of two-

sided tests subtracted from that of the one-sided test to the power of the one-sided

test, are investigated. Hence, negative values of the relative power decrease imply

that power increases as the result of applying the two-sided test. Figures 2.7 and 2.8

show the relative power decrease at various significance levels α2 under hypotheses

(2.1) and (2.2), respectively. Under hypotheses (2.1), Fisher’s method tends to lose

more power when the constant is greater than 1 at all considered significance levels

α2. Under hypotheses (2.2), as β and the significance level α2 increases, the amount

of relative power decrease tends to get larger. Especially, the decrease in power is at

least 2%, 4%, 6% and 9% when α2 is 0.005, 0.01, 0.015, and 0.02, respectively.
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On the contrary, power would increase if we apply the two-sided tests when tests

are biased. To consider the bias of test, for hypotheses (2.1), negative constants c

are used and, for hypotheses (2.2), beta distributions with parameters α > 1 and

β = 1 are used as the density g. Figures 2.9 and 2.10 show power of the two methods

under hypotheses (2.1) and (2.2), respectively. We notice that the power of both

methods are less than the size of the test 0.05 when the one-sided test is used. We

also notice that there exists a serious bias problem as parameter α increases or the

constant c decreases. To investigate the effect of the two-sided tests, power of the

two-sided tests at significance level α2 is obtained. Figures 2.11 and 2.12 show the

asymptotic power of the two-sided tests. Under both considered alternatives, when

there exists a serious bias problem, we notice that the bias is corrected at a small α2,

such as 0.005. Especially, under hypotheses (2.1), the power is close to 1 regardless

the significance level α2. However, under both hypotheses, the bias problem is not

resolved at relatively large α2, such as 0.15 and 0.20 when there is a mild bias problem.

We notice that Fisher’s method tends to have lower power than Edgington’s method

when the two-sided test is applied. This might suggest that Edgington’s method is

better when tests are biased and the two-sided test is used.

We investigate the effects of the two-sided tests from Figures 2.7 to 2.12. This

suggests that we need to consider both possible decrease in power and the chance of

the bias correction which result from applying two-sided tests. Clearly, these results

depend on the significance level α2, and a cautious choice of the significance levels is

essential. Even if there is no obvious solution regarding the choice of the significance

levels, it might be safe to use α2 less than or equal to 0.015 by considering the effects

of two-sided tests.
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Figure 2.7: This figure shows the relative decrease in the asymptotic power under
hypotheses (2.1) when tests are not biased and the two-sided test is used. The solid
and dashed lines represent the relative power decrease of Edgington’s method and
Fisher’s method, respectively.

29



Figure 2.8: This figure shows the relative decrease in the asymptotic power under
hypotheses (2.2) when tests are not biased and the two-sided test is used. The solid
and dashed lines represent the relative power decrease of Edgington’s method and
Fisher’s method, respectively.
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Figure 2.9: This figure shows the asymptotic power under hypotheses (2.1) when
tests are biased and one-sided test is used. The solid and dashed lines represent the
power of Edgington’s method and Fisher’s method, respectively.
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Figure 2.10: This figure shows the asymptotic power under hypotheses (2.2) when
tests are biased and one-sided test is used. The solid and dashed lines represent the
power of Edgington’s method and Fisher’s method, respectively.
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Figure 2.11: This figure shows asymptotic power of the two-sided tests under hy-
potheses (2.1) when tests are biased. The solid and dashed lines represent the power
of Edgington’s method and Fisher’s method, respectively. The dotted line denotes
the significance level α = 0.05.
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Figure 2.12: This figure shows asymptotic power of the two-sided tests under hy-
potheses (2.2) when tests are biased. The solid and dashed lines represent the power
of Edgington’s method and Fisher’s method, respectively. The dotted line denotes
the significance level α = 0.05.
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2.4 Other methods of combining test results

In addition to methods of combining P -values using Fisher’s method or Edging-

ton’s method, other possible ways to combine results from small data sets is to apply

the order selection test (Hart, 1997; Kim, 2000) or the smooth test (Kallenberg and

Ledwina, 1997; Ledwina, 1994; Inglot and Ledwina, 2006) by using the fact that the

distribution of the P -value under the null hypothesis follows the uniform distribution.

The smooth test (Neyman, 1937) postulates an alternative hypothesis that in-

cludes the uniform distribution as a special case. An order k alternative probability

density function gk(x) is defined by

gk(x) = C(θ) exp

{
k∑
i=1

θihi(x)

}

where C(θ) is a normalizing constant and {hi(x)} is a set of orthonormal functions.

When considering an order k alternative hypothesis, the smooth test is equivalent

to testing the null hypothesis, H0 : θ1 = · · · = θk = 0. Neyman recommended using

a score test statistic, Sk =
k∑
i=1

U2
i where Ui =

1
√
p

p∑
j=1

hi(Xj). He also suggested

that four components would be enough. Kallenberg and Ledwina (1997) suggested

a data-driven smooth test which selects the order using BIC. Hence, the data-driven

smooth test is composed of two parts; one is a selection rule to choose an appropriate

sub-model and the other is the score test statistic corresponding to the selected order.

The performance of the test depends on characteristics of the selection rule. When

BIC is used, the test will have poor power for ”high frequency” alternatives, i.e.,

alternatives for which all θi are 0 except those at large values of i. This is due to

the relatively large penalty that BIC imposes on models with k large. If AIC is used

instead of BIC, the test is better at detecting high frequency alternatives since AIC
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penalizes models less severely than does BIC. To compromise between these two

selection rules, Inglot and Ledwina (2006) suggested a test which uses AIC when

the distribution is far from the null and BIC when the distribution is not far from

the null. Specifically, they considered the distribution to be far from the null when

max1≤i≤d(p) |Ui| is greater than
√

2 log p where p and d(p) denote the sample size and

the maximum of considered orders, respectively. Their simulation shows that the

power of their test is between the power of the test based on AIC and that of the

test based on BIC. For example, if an alternative distribution is close to the null

distribution, the test based on AIC tends to have lower power than the test based

on BIC. The suggested test has power between those two powers, indicating that

this test cannot have the best power. On the other hand, the test depending on the

modified selection rule has an advantage over the test which merely uses AIC or BIC

since it has better power than the worst of the AIC and BIC based tests.

The order selection test postulates an alternative distribution represented by the

Fourier series

g(x) = 1 + 2
∞∑
i=1

φj cos (πjx), where φj =

∫ 1

0

g(x) cos (πjx)dx, j = 1, 2, . . .

The Fourier coefficient φj may be estimated by φ̂j = 1
p

∑p
i=1 cos (φjPi), j = 1, 2, . . .

Defining Sp by

Sp = max
1≤m≤p

1

m

m∑
j=1

2pφ̂2
j ,

the order selection test rejects the null for large values of Sp. Kim (2000) shows that,

under the null, the test statistic has the limiting distribution

FOS(γ) = exp

{
−
∞∑
j=1

P (χ2
j > jγ)

j

}
,
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where χ2
j is a chi-squared random variable with j degrees of freedom. He also found

γ which guarantees the right size of test by simulations. At the significance level

0.05, γ is 4.18. Hence, the suggested test is asymptotically equivalent to rejecting

the null hypothesis when Sn ≥ 4.18.

Both order selection test and data-driven smooth test detect smooth departures

from the null. Hence, we will call these tests smoothing based tests. Even if both

tests detect smooth departures from the null, each one has its advantages. For

example, the smooth test may be more powerful than the order selection test when

the alternative distribution deviates little from the null because the score test is

the most powerful test for small deviations. Such a property of score tests follows

from the fact that, when h is small, L(θ0 + h) ' L(θ0) + hL
′
(θ0), where L is the

log-likelihood function and θ0 is the true parameter value under the null. On the

contrary, the order selection test tends to have higher power than the smooth test

when the alternative distribution is of high frequency type.

The smoothing based tests have an advantages over moment based tests in the

sense that they detect any sort of departure of the P -value distribution from unifor-

mity. For example, assume that the distribution of the P -value is beta(1.11,1.11).

The density in Figure 2.13 shows only a small departure from the null. Under

this distribution for the P -value, Edgington’s method cannot consistently detect the

alternative because the mean of the beta distribution is the same as that of the

uniform distribution. If the two-sided test is used, Fisher’s method will have better

power than Edgington’s method under the alternative distribution since the mean

of −2 logP under the beta distribution is 1.936, which is different from 2. However,

the method still does not have good power. For example, when there are 500 small

data sets and a two-sided test is applied by using two significance levels, α1 = 0.04

and α2 = 0.01, the power of Fisher’s method is just 0.066. This indicates that even if
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Figure 2.13: This figure shows the density of the beta(1.11,1.11).

there exists a departure from the null, moment based tests do not have good power

against the null as long as the first two moments under the alternative are close to

those under the null. In this case, smoothing based tests might have better power

than moment based tests. However, moment based tests may have an advantage

over smoothing based tests for selected alternatives, especially when the first two

moments of the distribution of P -values are quite different from the moments of the

uniform distribution. It is clear that both kinds of tests have their desirable prop-

erties, and hence, we will use both tests and compare the power instead of choosing

one test.
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2.5 Asymptotic distribution theory for moment based test

When sample size is small, the exact null distributions of edf-based gof test statis-

tics are unknown. To obtain the P -value, the null distribution of the test statistic can

be approximated via simulation. It is well-known that the edf converges uniformly to

the true distribution function with probability 1 by the Glivenko-Cantelli theorem.

However, this theorem cannot guarantee that the asymptotic null distribution based

on empirical P -values is equivalent to that based on the true P -value. In this sec-

tion, we will show that these two asymptotic null distributions are the same. Also,

the effect of the number of bootstrap replications and data sets will be discussed for

Edgington’s method.

We assume that T1, . . . , Tp and Y1, . . . , YN are test statistics from small data

sets and from simulations, respectively. Under the null, both are independent and

identically distributed as F , where F is the null distribution of the test statistic.

Theorem 2.5.1 Under the null, SN,p and Up + VN − 1
2

have the same asymptotic

distribution as N → ∞ and p → ∞, where SN,p =
1

p

p∑
i=1

(1 − F̂N(Ti)), F̂N(x) =

1

N

N∑
j=1

I(Yj ≤ x), Up =
1

p

p∑
i=1

(1− F (Ti)) and VN =
1

N

N∑
j=1

F (Yj).

Proof It is sufficient to show that
E
[(
SN,P − Up − VN + 1

2

)2]
Var(SN,p)

converges to 0 as

N →∞ and p→∞.

E

[(
SN,p − Up − VN +

1

2

)2
]

= E[(SN,p − Up)2]− 2E[(SN,p − Up)(Vn −
1

2
)] + E[(VN −

1

2
)2]

= A1 − 2A2 + A3
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where A1 := E[(SN,p − Up)2], A2 := E[(SN,p − Up)(VN −
1

2
)] and A3 := E[(VN −

1

2
)2].

By the law of total expectation,

A1 = E[(SN,p − Up)2]

= E

E
(1

p

p∑
i=1

F̂N(Ti)−
1

p

p∑
i=1

F (Ti)

)2
∣∣∣∣∣∣T1, . . . , Tp


= E

[
Var

(
1

p

p∑
i=1

F̂N(Ti)

∣∣∣∣∣T1, . . . , Tp
)]

= E

[
F (T1)(1− F (T1))

Np
+
p− 1

p

F (min (T1, T2))− F (T1)F (T2)

N

]
=

1

12N
+

1

12Np
.

The last equation can be obtained by direct calculation of expectation under the

null and by using the fact that the density of the minimum of two uniform random

variables is 2(1 − u), where 0 < u < 1. Therefore, E[F (T1)(1 − F (T1))] =
1

6
and

E[F (min (T1, T2))] =
1

3
.

Similarly, we can also use the law of total expectation to obtain A2, which is

A2 = E

[
E

[
(SN,p − Up)(VN −

1

2
) | Y1, . . . , YN

]]
= E

[
(VN −

1

2
){E(SN,p | Y1, . . . , YN)− 1

2
}
]

= E

[
(VN −

1

2
)(VN −

1

2
)

]
= E

[
(VN −

1

2
)2
]

=
1

12N
.
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Immediately above we have used

E(SN,p|Y1 . . . YN) =
1

N

N∑
j=1

E

(
1

p

p∑
i=1

I(Yj > Ti))|Y1, . . . , YN

)

=
1

N

N∑
j=1

F (Yj).

Since A3 =
1

12N
, we obtain that E

[(
SN,p − Up − VN +

1

2

)2
]

=
1

12Np
.

Now, we need to find the order of Var(SN,p), which is

Var(SN,p) = E[Var(SN,p|T1, . . . , Tp)] + Var[E(SN,P |T1, . . . , Tp)]

=
1

12Np
+

1

12N
+

1

12p
.

E[Var(SN,p|T1, . . . , Tp)] is obtained from A1 and Var[E(SN,p|T1, . . . , Tp)] can be com-

puted easily by using E(SN,P |T1, . . . , Tp) =
1

p

p∑
i=1

(1− F (Ti)). Hence,

E

[(
SN,P − Up − VN +

1

2

)2
]

is of smaller order than Var(SN,p).

The next corollary shows that the asymptotic null distribution of Edgington’s statis-

tic using empirical P -values is the same as that using the true P -values whenN →∞,

p→∞ and p = o(N).

Corollary 2.5.2 Under the null, if
p

N
→ c, where c > 0 is a constant when N →∞

and p → ∞ then

√
p
(∑p

i=1(1− F̂N(Ti))− 1
2

)
√

1/12
converges to a normal distribution

with mean 0 and variance 1 + c as N →∞ and p→∞.

Proof Let σN,p be the standard deviation of SN,p. Then,
SN,p − 1

2

σN,p
and

Up − 1
2

σN,p
+

VN − 1
2

σN,p
have the same asymptotic distribution by Theorem 2.5.1. We know that
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σN,p =

√
1

12Np
+

1

12N
+

1

12p
. By using this, we can show that

√
1/12p

σN,p
and√

1/12N

σN,p
converge to

1√
1 + c

and

√
c

1 + c
, respectively. Since

Up − 1
2

σN,p
can be writ-

ten as

√
p(Up − 1

2
)√

1/12

√
1/12p

σN,p
, Slutsky’s theorem implies that

Up − 1
2

σN,p
converges to a

normal distribution with mean 0 and variance
1

1 + c
. Similarly,

VN − 1
2

σN,p
converges

to a normal distribution with mean 0 and variance
c

1 + c
. Since Up and VN are in-

dependent,
SN,p − 1

2

σN,p
converges to the standard normal distribution. The corollary

now follows from Slutsky’s theorem.

Corollary 2.5.2 shows the necessity of adjusting a critical value when the number

of bootstrap replications is not large enough relative to the number of data sets. For

example, when we have 1,000 data sets and 2,000 bootstrap replications, Corollary

2.5.2 suggests that the actual level of a nominal 0.05 test is 0.09. If the critical value is

not adjusted, the test tends to reject the null more frequently than its predetermined

significance level. The next theorem provides conditions under which Fisher’s method

based on the empirical P -values has the same asymptotic null distribution as that

based on the true P -values.

Theorem 2.5.3 If
p√
N

converges to 0 as N and p tend to∞, −2
∑p

i=1 log (1− F̂ (Ti))

and −2
∑p

i=1 log (1− F (Ti)) have the same asymptotic null distribution.

Proof Let P̂i be 1− F̂ (Ti) and Pi be 1−F (Ti), where F̂ and F are the empirical and

true distribution functions of test statistics under the null. By Taylor’s expansion,

log P̂i = logPi + P̃−1i (P̂i − Pi), where P̃i is between Pi and P̂i.

We have

∣∣∣∣∣
p∑
i=1

log
P̂i
Pi

∣∣∣∣∣ =

∣∣∣∣∣
p∑
i=1

P̃−1i (P̂i − Pi)

∣∣∣∣∣ ≤ (min P̃i)
−1

p∑
i=1

|P̂i − Pi| ≤
p

P̃(1)

sup
i
|P̂i − Pi|,
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where P̃(1) = mini P̃i. Let r be such that P̃(1) is between P̂r and Pr. There are two

cases; one is P̂r < P̃(1) < Pr and the other is Pr < P̃(1) < P̂r.

For the first case,

P̃(1) = Pr + P̃(1) − Pr ≥ P(1) − sup
i
|P̃i − Pi| = P(1) −Mp,

where P(1) = mini Pi and Mp = supi|P̃i − Pi|. This implies that

∣∣∣∣∣
p∑
i=1

log
P̂i
Pi

∣∣∣∣∣ ≤ p

P(1) −Mp

sup
i
|P̂i − Pi|.

For the second case, P̃(1) > P(1). For this case,

∣∣∣∣∣
p∑
i=1

log
P̂i
Pi

∣∣∣∣∣ ≤ p

P(1)

sup
i
|P̂i−Pi|. Hence,

we need to choose N so large that

(i) P(1) −Mp is asymptotic to P(1), and

(ii)
p

P(1)

sup
i
|P̂i−Pi| is of smaller order than p, which is the order of −2

∑p
i=1 logPi.

To show (i), the order of P(1) is obtained first. By noting that P (pP(1) < x) =

1 − P (P(1) > x/p) = 1 − (1 − x/p)p, it is easily shown that the order of P(1) is
1

p

because P (pP (1) < x) converges to an exponential random variable with rate α = 1.

Since supi|P̃i−Pi| ≤ supi|P̂i−Pi| and the order of supi|P̂i−Pi| is
1√
N

by Donsker’s

theorem, we see that P(1) − supi|P̃i − Pi| is asymptotic in probability to P(1) if
p√
N

converges to 0 as N and p increase without bound. To show (ii), it is enough to verify

that
1

P(1)

sup
i
|P̂i − Pi| converges to 0 under the given condition, and this holds by

the Glivenko-Cantelli theorem. This implies that −2
∑p

i=1 log P̂i and −2
∑p

i=1 logPi

have the same asymptotic distribution under the null as long as the given condition

is satisfied.
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The condition in Theorem 2.5.3 is strong, especially when we have a large number

of data sets. For example, when we have 1,000 data sets, the number of bootstrap

replications N should be of the order 106 log 103. Too many bootstrap replications

require excessive computing time. However, while the condition is sufficient, it may

not be necessary to obtain the result in Theorem 2.5.3. Through simulations in

Chapter 3, we find that 100,000 is usually enough to obtain a good approximation

of the null distribution when we have 1,000 data sets.

2.6 Asymptotic power for local alternatives

In this section, we will show that Edgington’s method using the empirical P -

values can detect
√
p-alternatives asymptotically. As in the previous section, T1, . . . , Tp

and Y1, . . . , YN are test statistics from data sets and simulated statistics, respectively.

We assume that, T1, . . . , Tp are independent and identically distributed as

F1(t) = (1− 1
√
p

)F (t) +
1
√
p
G(t), (2.3)

where F is the null distribution of the test statistic and G is a distribution different

than F . Of course, Y1, . . . , YN are independent and identically distributed as F .

Theorem 2.6.1 If each Ti, i = 1, . . . , p has distribution F1 defined in (2.3) then the

statistic SN,p and Up +VN − 1
2

have the same asymptotic distribution as N →∞ and

p→∞, where SN,p, Up and VN are defined in Theorem 2.5.1.

Proof As in Theorem 2.5.1, it is sufficient to show that
E
[(
SN,P − Up − VN + 1

2

)2]
Var(SN,p)

converges to 0 as N → ∞ and p → ∞. A1, A2 and A3 are defined in the proof of

Theorem 2.5.1.

44



By the law of total expectation,

A1 = E[(SN,p − Up)2]

= E

[
F (T1)(1− F (T1))

Np
+
p− 1

p

F (min (T1, T2))− F (T1)F (T2)

N

]

Expectations can be found by direct computations:

E[F (T1)(1− F (T1)] =
1
√
p

∫
F (t)(1− F (t))dG(t) +

1

6
(1− 1

√
p

),

E[F (T )] =

∫
F (t)dG(t)

=
1
√
p

∫
F (t)dG(t) +

(
1− 1
√
p

)
1

2

and

E[F (min (T1, T2))] = 2

∫
F (u)(1− F1(u))dF1(u)

=
2
√
p

∫
F (u)dG(u)− 2

p

∫
F (u)G(u)dG(u)

− 2
√
p

∫
F (u)G(u)dF (u)− 2

√
p

(1− 1
√
p

)

∫
F (u)2dG(u)

+
1

3
+

1

3
√
p
− 2

3p
.

Therefore, A1 =
1

12N
+O

(
1

N
√
p

)
.

We have

A2 = E[(SN,p − Up)(VN −
1

2
)]

= E[(VN −
1

2
)E[SN,p|Y1, . . . , YN ]]
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= E

[
(VN −

1

2
)

1

N

N∑
j=1

F1(Yj)

]

=
1
√
p
E

[
1

N

N∑
j=1

F (Yj)
1

N

N∑
j=1

G(Yj)

]
+

(
1− 1
√
p

)
E

( 1

N

N∑
i=1

(
1

2
− F (Yi))

)2


− 1

2
√
p
E[G(Y )]

=
1

12N
+O

(
1

N
√
p

)
.

The second equation can be obtained by using E[(VN −
1

2
)UP ] = 0, and the third

equation uses E[SN,p|Y1, . . . , Yn] =
1

N

N∑
j=1

E[I(Yj > T1)] =
1

N

N∑
j=1

F1(Yj). Since A3 is

1

12N
, E
[(
SN,p − Up − VN + 1

2

)2]
is of order

1

N
√
p

. Now, we need to find the order

of Var(SN,p). To obtain it, we need to obtain Var[E(SN,p|T1, . . . , Tp)], which is

Var[E(SN,p|T1, . . . , Tp)] =
1

p
Var(F (T1))

=
1

p
[E(F 2(T1))− {E(F (T1))}2]

=
1

p

∫
F 2(T )dF1(t)−

1

p

(
1

2
+O(

1
√
p

)

)2

=
1

p

(
1− 1
√
p

)∫
F 2(t)dF (t) +

1

p
√
p

∫
F 2(t)dG(t)

− 1

p

(
1

2
+O(

1
√
p

)

)2

=
1

p

(
1− 1
√
p

)
1

3
+O

(
1

p
√
p

)
− 1

4p

=
1

12p
+O

(
1

p
√
p

)
. (2.4)

By using (2.4) and the result from A1, we can obtain

Var(SN,p) = E[Var(SN,p)|T1, . . . , Tp] + Var[E(SN,p|T1, . . . , Tp)]
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=
1

12N
+

1

12p
+O

(
1

p
√
p

)
+O

(
1

N
√
p

)
(2.5)

Hence, E

[(
SN,P − Up − VN +

1

2

)2
]

is of smaller order than Var(SN,p).

Corollary 2.6.2 If
p

N
→ c, where c > 0 is a constant as N → ∞ and p → ∞,

then

√
p
(∑p

i=1(1− F̂N(Ti))− 1
2

)
√

1/12
converges to a normal distribution with mean µ̃

and variance 1 + c as N →∞ and p→∞, where µ̃ =

∫
(1− F (t))dG(t)− 1

2√
1
12

(1 + c)
.

Proof Let σ2
N,p in (2.5) be the variance of SN,p. Let σ2

p and σ2
N be the variance of Up

and VN , respectively. Note that σ2
p was found in (2.4), and σ2

N is trivially (12N)−1.

The random variables
SN,p − 1

2

σN,p
and

Up − 1
2

σN,p
+
VN − 1

2

σN,p
have the same asymptotic

distribution by Theorem 2.6.1. We can easily show that
σp
σN,p

and
σN
σN,p

converge to

1√
1 + c

and

√
c√

1 + c
, respectively, and

Up − 1
2

σN,p
can be written as

Up − E(1− F (T ))

σp

σp
σN,p

+
E(1− F (T ))− 1

2

σN,p
.

It can be shown that
E(1− F (T ))− 1

2

σN,p
converges to

∫
(1− F (t))dG(t)− 1

2√
1
12

(1 + c)
, by using

the fact E(1− F (T )) =

(
1− 1
√
p

)
1

2
+

1
√
p

∫
(1− F (t))dG(t). Hence, by Slutsky’s

theorem,
Up − 1

2

σN,p
converges to a normal distribution with mean µ̃ and variance

1

1 + c
.

Similarly, we can show that
VN − 1

2

σN,p
converges to a normal distribution with mean 0

and variance
c

1 + c
. Since

Up − 1
2

σN,p
and

VN − 1
2

σN,p
are independent,

SN,p − 1
2

σN,p
converges

to a normal distribution with mean µ̃ and standard deviation 1. By using the fact

that
σN,p√
1/12p

converges to
√

1 + c, we can prove the result through applying Slutsky’s
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theorem.

Corollary 2.6.2 implies that
√
p-alternatives can be detected using Edgington’s method

based on the empirical P -values, as long as

∫
(1 − F (t))dG(t) is less than 1/2 and

we do the one-sided test. This result makes sense because we expect that the expec-

tation of a P -value under the alternative is less than 1/2 when the gof test is not

biased.
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3. SIMULATIONS

In the simulation study, three null distributions, normal, Laplace and Weibull,

are considered. Since the exact null distribution of AD, CvM or Watson is unknown,

100,000 bootstrap replications were used to obtain empirical P -values. The empirical

power and size presented in this section are obtained from 2,000 replications at the

significance level α=0.05.

3.1 Testing whether data come from normal distributions

The normal distribution is one of the most widely used and important distribu-

tions in statistics. Its popularity comes from both the central limit theorem and the

fact that many natural phenomena, such as height and lengths of items produced

from machines, follow normal distributions. Also, many simple statistical methods

like the t-test, linear discriminant analysis and analysis of variance assume normality.

Hence, it is often essential to verify that data sets come from normal distributions,

especially when we have data sets with few observations, because we cannot use the

central limit theorem in this case. In our simulations, two alternative distributions,

t-distribution with 10 degrees of freedom and chi-squared distribution with 10 de-

grees of freedom are considered since these are relatively close to normality and hence

difficult to detect. Two alternative distributions which are further from normality,

Cauchy, and Laplace distributions, are also selected. Since AD, CvM and Watson

use a distance between Fn, the empirical cdf, and Φ

(
x− µ
σ

)
, the theoretical cdf

under the null, we need to estimate location and scale parameters, µ and σ, and

these are estimated by maximum likelihood estimators (MLE) in our simulations.

Tables 3.1, 3.3 and 3.5 show the empirical power and size of the one-sided moment

based tests and smoothing based tests when every data set comes from the same
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distribution. Of the two moment based tests, Fisher’s method has higher power than

Edgington’s method, and smoothing based tests perform similarly to each other. For

all considered alternatives, there exists no bias problem. This implies that the power

would decrease when the two-sided test is applied. Tables 3.2, 3.4 and 3.6 show the

power of two-sided tests when significance level α2=0.01 is used. From these tables,

we notice that the power of the two-sided moment based tests tends to be between

the power of the one-sided moment based tests and that of smoothing based tests,

showing little loss in power.

Since both the power itself and the relative decrease in power depend on the

significance levels α2, the effects of the significance levels α2 are investigated. The

relative decrease in power is defined as the ratio of the power of two-sided moment

based tests subtracted from that of the one-sided moment based test to the power of

the one-sided moment based test, and it has positive values when power decreases as

the result of applying the two-sided tests. Figures 3.1, 3.2 and 3.3 show the power

and the relative power decrease as a function of the significance level α2 when we

have 100 data sets with 5 observations. This case is selected because the effects of

the two-sided tests might be more severe than in other cases. Since the power is

always 100% when the alternative is a Cauchy distribution, this alternative is not

considered. In each figure, the left and right plots show changes and the relative

decrease in power as a function of α2. From these plots, we notice that when there

is no bias problem, the relative decrease in power increases as the significance level

α2 increases. Except for Laplace alternatives, the power tends to decrease more

than 30% when evenly divided significance levels are used. When the alternative

is the t-distribution or a Laplace distribution, the power decreases more than when

Edgington’s method is used. The amount of decrease in the power is similar for both

methods under the chi-squared distribution.
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Tables 3.7 to 3.12 show the local power of tests, i.e., 90% of data sets come from

normal distributions and the remaining data sets are from alternative distributions.

When the alternative is the t-distribution, the power of both moment based tests

and smoothing based tests is just a little bit above the significance level, 0.05. This

may not be a surprising result because t-distributions with large degrees of freedom

are close to normal distributions. Effects of the two-sided tests are investigated

in Figures 3.4 to 3.7. When the alternative is a Cauchy distribution, Edgington’s

method shows more decrease in the power. In Figure 3.4, we notice that the power

of the two-sided tests is below the size of the test when the significance level α2 is

greater than 0.018. This indicates that selecting the two significance levels is crucial,

and both the figure and the results in Section 2.3. suggest that it might be best to

use the significance level α2 less than 0.015.

Under local alternatives, we notice that Fisher’s method tends to have higher

power than Edgington’s method. The difference in the power between these two

methods tends to be large when the alternative is a Cauchy or a Laplace distribution.

The reason can be explained by the density of P -values. Figure 3.8 shows the density

of the P -value when the sample size is 5 and CvM is applied to every small data set.

When the alternative is a Laplace distribution, there is stronger evidence against the

null. The density of the P -value under Cauchy distributions, which is not shown

here, exhibits much stronger evidence against the null. In Section 2.3. we found that

Fisher’s method is asymptotically more powerful than Edgington’s method when

there exists stronger evidence against the null. Both higher power of Fisher’s method

and the density of the P -value support findings in this section.

We might obtain more insights about the performance of test procedures if the

power is investigated when several different proportions of data sets are from the

null. Only two alternatives, the t-distribution, and the chi-squared distribution are
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selected for illustration purposes. Since results for CvM, Watson and AD are similar,

only the results for AD are shown here.

Figures 3.9 and 3.10 show the empirical power when the alternative is a mixture

of normal and t-distributions. In the plots, the proportion denotes the proportion

of data sets which are from the null distribution, and Figures 3.9 and 3.10 represent

the empirical power when the sample sizes are 5 and 10, respectively. Regardless of

the sample size, moment based tests dominate smoothing based tests. Especially,

Fisher’s method has better power than Edgington’s method. Also, under both sample

sizes, the power of smoothing based tests is just around the size when at least 70%

of data sets are from the null. On the contrary, the power of moment based tests

when more than 70% of data sets are from the null is above the size.

Figures 3.11 and 3.12 show the empirical power when the alternative is a mixture

of normal and chi-squared distributions. From Figure 3.11, we notice that Fisher’s

method is the best regardless of the considered number of data sets when the sample

size is 5. However, when the sample size is 10, it is hard to tell which method is

the best. Especially, when less than 50% of data sets are from the null and there

are 500 or 1,000 data sets, the power of each method is approximately 1, indicating

little effect due to the method of combining P -values. We still notice, however, that

Fisher’s method outperforms the others when at least 50% of data sets are from the

null and there are 100 or 300 data sets.

When testing normality, moment based tests are generally better than smoothing

based tests, and Fisher’s method has higher power than Edgington’s method. We

can see little difference between the power of the three tests, AD, CvM, and Watson.

Hence, we might conclude from the simulation results that when we test normality,

moment based tests using P -values from AD, CvM or Watson are more desirable

than smoothing based tests.
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Table 3.1: This table shows the size(%) and power(%) of the test. The null hypothesis
is that data come from normal distributions and AD is applied to every small data
set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 5.5 9.6 27.5 43.1 100.0 6.4 11.6 31.4 59.7 100.0

300 5.2 14.0 55.5 80.8 100.0 5.5 17.8 62.2 94.5 100.0
500 4.5 15.3 74.4 93.5 100.0 5.1 22.1 80.6 99.2 100.0
1000 5.8 23.9 94.7 99.7 100.0 6.2 33.3 97.1 100.0 100.0

10 100 5.4 20.3 86.1 97.5 100.0 5.1 30.9 92.6 99.9 100.0
300 3.8 40.6 100.0 100.0 100.0 4.1 60.8 100.0 100.0 100.0
500 5.6 53.4 100.0 100.0 100.0 4.4 78.7 100.0 100.0 100.0
1000 5.1 82.5 100.0 100.0 100.0 4.3 95.8 100.0 100.0 100.0

Smooth Test Order Selection Test
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 5.0 6.4 14.7 29.6 100.0 5.3 5.5 16.8 29.6 100.0

300 4.8 9.5 38.1 75.3 100.0 4.3 8.6 39.0 70.5 100.0
500 4.8 9.0 59.1 92.0 100.0 4.8 8.5 57.6 88.5 100.0
1000 5.5 15.8 89.3 99.9 100.0 5.5 14.6 87.2 99.5 100.0

10 100 4.4 12.6 72.7 96.1 100.0 4.4 12.1 74.7 94.3 100.0
300 4.0 31.4 99.8 100.0 100.0 3.9 28.0 99.7 100.0 100.0
500 4.3 45.1 100.0 100.0 100.0 4.0 39.6 100.0 100.0 100.0
1000 4.8 76.3 100.0 100.0 100.0 4.5 72.3 100.0 100.0 100.0

Table 3.2: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from normal distributions and AD
is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 5.1 8.2 23.9 39.4 100.0 6.0 10.7 27.1 56.0 100.0

300 4.8 11.9 51.0 77.6 100.0 5.2 15.3 58.2 93.1 100.0
500 5.0 13.0 70.5 92.3 100.0 5.0 18.9 77.8 99.1 100.0
1000 5.6 21.6 93.2 99.7 100.0 6.3 30.1 96.3 100.0 100.0

10 100 4.9 17.9 83.5 96.7 100.0 5.1 26.9 91.5 99.8 100.0
300 3.9 36.6 99.9 100.0 100.0 4.1 57.4 100.0 100.0 100.0
500 5.1 48.8 100.0 100.0 100.0 4.1 75.8 100.0 100.0 100.0
1000 5.0 79.3 100.0 100.0 100.0 4.6 95.2 100.0 100.0 100.0

53



Table 3.3: This table shows the size(%) and power(%) of the test. The null hypothesis
is that data come from normal distributions and CvM is applied to every small data
set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 5.4 10.2 25.4 46.6 100.0 6.3 12.0 29.0 61.9 100.0

300 5.4 14.6 51.9 83.8 100.0 5.4 18.2 59.3 95.6 100.0
500 4.9 16.9 70.4 95.5 100.0 5.4 23.2 77.6 99.6 100.0
1000 5.8 25.8 92.8 100.0 100.0 6.4 35.8 96.0 100.0 100.0

10 100 5.3 18.9 80.8 97.4 100.0 5.2 26.5 89.4 99.9 100.0
300 4.2 37.5 99.9 100.0 100.0 4.1 55.5 99.9 100.0 100.0
500 5.0 50.2 100.0 100.0 100.0 4.2 73.8 100.0 100.0 100.0
1000 4.9 78.3 100.0 100.0 100.0 4.6 93.9 100.0 100.0 100.0

Smooth Test Order Selection Test
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 4.5 7.2 14.1 32.3 100.0 5.0 6.6 15.5 32.3 100.0

300 4.6 9.3 35.8 79.1 100.0 5.0 8.3 35.9 74.9 100.0
500 4.7 10.3 55.1 93.7 100.0 5.0 9.2 53.8 91.0 100.0
1000 5.5 17.1 85.5 99.9 100.0 5.5 15.8 83.1 99.9 100.0

10 100 4.2 11.0 64.7 96.2 100.0 3.9 10.5 67.8 94.8 100.0
300 4.3 27.4 99.3 100.0 100.0 4.0 25.4 99.1 100.0 100.0
500 4.2 40.7 100.0 100.0 100.0 4.0 36.2 100.0 100.0 100.0
1000 4.7 70.5 100.0 100.0 100.0 4.4 66.9 100.0 100.0 100.0

Table 3.4: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from normal distributions and
CvM is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 4.7 7.7 21.3 40.6 100.0 5.3 10.3 24.9 57.5 100.0

300 4.5 11.8 46.0 80.5 100.0 5.0 14.9 53.7 94.2 100.0
500 4.8 13.3 65.3 94.3 100.0 4.6 18.2 72.3 99.3 100.0
1000 5.2 22.1 90.3 99.8 100.0 5.9 29.8 94.6 100.0 100.0

10 100 4.8 15.4 76.4 96.5 100.0 4.7 22.6 86.8 99.9 100.0
300 4.0 32.6 99.6 100.0 100.0 4.1 49.8 99.8 100.0 100.0
500 4.6 44.8 100.0 100.0 100.0 3.7 69.0 100.0 100.0 100.0
1000 4.4 73.2 100.0 100.0 100.0 4.2 92.0 100.0 100.0 100.0
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Table 3.5: This table shows the size(%) and power(%) of the test. The null hypothesis
is that data come from normal distributions and Watson is applied to every small
data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 5.3 9.4 24.8 44.0 100.0 6.4 11.9 29.3 60.2 100.0

300 5.1 13.8 50.0 81.5 100.0 5.6 18.1 59.1 95.0 100.0
500 4.8 14.8 68.2 94.2 100.0 5.5 22.9 77.5 99.4 100.0
1000 5.5 23.4 91.7 99.8 100.0 7.0 34.1 96.1 100.0 100.0

10 100 5.1 16.3 75.9 96.5 100.0 5.5 24.1 86.6 99.8 100.0
300 3.8 32.3 99.2 100.0 100.0 4.3 50.1 99.8 100.0 100.0
500 4.2 42.2 100.0 100.0 100.0 4.5 68.0 100.0 100.0 100.0
1000 3.8 67.7 100.0 100.0 100.0 5.2 90.8 100.0 100.0 100.0

Smooth Test Order Selection Test
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 4.8 7.3 13.9 29.8 100.0 5.2 6.2 14.9 29.5 100.0

300 5.1 8.8 34.7 75.8 100.0 4.8 8.2 34.5 72.0 100.0
500 5.0 9.6 53.1 91.8 100.0 5.1 8.6 51.9 89.1 100.0
1000 5.4 14.8 83.8 99.8 100.0 5.5 13.9 81.8 99.6 100.0

10 100 3.8 9.6 58.6 95.2 100.0 4.2 8.6 61.3 92.9 100.0
300 4.2 22.0 98.4 100.0 100.0 4.3 19.9 98.0 100.0 100.0
500 4.3 32.6 99.9 100.0 100.0 4.2 28.9 99.9 100.0 100.0
1000 4.6 58.6 100.0 100.0 100.0 4.6 53.8 100.0 100.0 100.0

Table 3.6: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from normal distributions and
Watson is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Normal t(10) χ2(10) Laplace Cauchy Normal t(10) χ2(10) Laplace Cauchy
5 100 4.6 7.3 20.3 37.9 100.0 5.6 10.5 24.4 55.2 100.0

300 4.5 10.9 44.4 77.6 100.0 4.9 14.7 53.3 93.3 100.0
500 4.6 11.6 62.5 92.2 100.0 4.7 18.2 72.0 99.1 100.0
1000 5.0 19.4 88.2 99.5 100.0 6.2 29.1 94.5 100.0 100.0

10 100 4.6 13.0 71.2 95.4 100.0 5.1 20.7 83.5 99.8 100.0
300 3.8 27.3 98.9 100.0 100.0 4.3 44.1 99.8 100.0 100.0
500 3.8 36.8 100.0 100.0 100.0 4.0 62.7 100.0 100.0 100.0
1000 3.8 61.9 100.0 100.0 100.0 4.8 88.0 100.0 100.0 100.0
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Figure 3.1: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels α2, when there
are 100 data sets with 5 observations. In both plots, black, blue and red lines
represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level α=0.05.
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Figure 3.2: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels α2, when there
are 100 data sets with 5 observations. In both plots, black, blue and red lines
represent AD, CvM, and Watson, respectively. Also, solid and dashed lines represent
Edgington’s method and Fisher’s method, respectively. The dotted line in the left
plot denotes the significance level α=0.05.
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Figure 3.3: The left and right plots show the power of the two-sided tests and the
relative power decrease over various significance levels α2, when there are 100 data
sets with 5 observations. In both plots, black, blue and red lines represent AD, CvM,
and Watson, respectively. Also, the solid and dashed lines represent Edgington’s
method and Fisher’s method, respectively. The dotted line in the left plot denotes
the significance level α=0.05.
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Table 3.7: This table shows the local power(%) of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from normal
distributions and AD is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 6.2 6.3 6.6 15.8 6.1 7.0 7.6 42.6

300 6.0 7.8 8.3 33.2 6.6 7.5 10.5 79.8
500 6.2 8.2 9.6 42.9 5.6 8.9 12.8 92.6
1000 7.3 9.9 13.5 67.2 7.4 11.6 17.6 99.4

10 100 5.9 8.5 10.8 34.1 6.1 9.5 16.7 96.0
300 6.2 13.2 15.2 69.7 7.8 16.1 27.2 100.0
500 8.2 15.6 21.2 86.1 9.1 21.9 36.2 100.0
1000 9.9 25.1 31.5 98.2 11.1 33.9 54.6 100.0

Smooth Test Order Selection Test
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 5.5 4.8 5.1 15.3 4.5 5.1 4.9 8.8

300 5.1 5.5 5.1 29.7 5.3 5.3 5.5 20.5
500 4.6 5.3 6.0 44.0 5.0 5.2 5.8 30.5
1000 4.8 7.1 7.8 73.4 5.0 6.8 7.5 57.4

10 100 4.9 5.5 7.1 59.4 4.8 5.5 6.6 22.1
300 4.9 8.8 10.9 95.0 5.2 8.6 8.8 63.0
500 6.2 9.7 14.6 99.9 6.4 9.8 13.1 89.2
1000 6.8 16.8 22.2 100.0 7.0 15.6 19.1 100.0

Table 3.8: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distribution. The null hypothesis is that
data come from normal distributions and AD is applied to every small data sets.
The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 5.2 5.5 5.8 12.9 5.1 6.3 7.1 38.6

300 5.8 6.6 7.1 29.0 6.1 6.8 8.7 77.3
500 6.0 7.2 8.1 38.9 5.0 7.8 10.6 90.8
1000 6.6 9.3 11.8 63.2 6.9 9.8 15.4 99.4

10 100 5.3 7.6 8.8 29.8 5.3 8.2 14.0 95.4
300 5.7 11.3 13.2 65.9 7.1 14.2 23.9 100.0
500 7.8 13.2 19.1 83.2 7.8 18.8 32.4 100.0
1000 8.5 21.7 27.3 97.9 9.2 29.6 50.6 100.0
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Table 3.9: This table shows the local power(%) of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from normal
distributions and CvM is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 6.4 6.2 6.8 16.3 5.9 6.6 8.1 42.8

300 6.2 8.0 8.3 34.2 6.3 7.6 10.7 80.5
500 6.6 8.6 10.4 45.4 5.8 8.5 13.0 92.8
1000 7.7 10.6 15.6 70.2 7.4 11.2 18.2 99.5

10 100 5.7 8.5 11.3 33.7 6.2 9.0 16.2 96.2
300 5.9 12.6 15.2 68.5 6.8 14.3 25.7 100.0
500 8.3 14.2 22.1 85.5 8.2 18.6 35.7 100.0
1000 10.3 22.6 31.6 98.6 9.6 29.1 53.3 100.0

Smooth Test Order Selection Test
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 5.6 4.8 5.4 15.2 4.5 5.3 5.3 9.4

300 5.2 5.3 5.2 30.9 5.8 5.3 5.2 20.9
500 4.5 5.4 6.6 44.8 5.0 5.0 6.3 31.6
1000 4.8 7.2 8.6 74.4 5.1 6.8 8.2 60.0

10 100 4.8 5.1 6.6 58.2 5.1 5.4 6.6 21.4
300 5.1 7.5 10.6 95.3 5.2 7.4 9.2 62.6
500 6.8 8.5 14.7 99.9 6.8 8.6 12.6 88.8
1000 7.0 14.5 20.9 100.0 6.8 13.9 19.1 100.0

Table 3.10: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distribution. The null hypothesis is that
data come from normal distributions and CvM is applied to every small data set.
The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 5.7 5.4 6.3 13.3 5.1 5.9 7.4 38.9

300 6.1 6.9 7.5 30.1 6.2 6.8 8.9 77.2
500 6.0 7.0 8.8 40.6 5.0 7.3 11.1 90.8
1000 6.7 9.3 13.2 65.8 6.6 9.1 16.2 99.4

10 100 5.4 7.5 9.4 29.5 5.5 8.0 14.1 95.8
300 5.5 11.2 13.8 64.6 6.6 12.6 22.9 100.0
500 7.4 11.8 18.8 83.7 7.4 16.2 31.4 100.0
1000 8.7 20.0 28.3 97.9 8.6 25.6 49.4 100.0

60



Table 3.11: This table shows the local power(%) of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from normal
distributions and Watson is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 6.2 6.2 6.7 15.2 5.8 6.7 8.2 42.6

300 5.2 7.0 9.1 34.2 5.9 7.9 11.1 79.3
500 5.9 9.2 11.1 43.4 7.5 10.2 13.2 92.5
1000 7.4 10.2 12.5 67.1 8.4 12.7 18.3 99.5

10 100 5.5 7.5 9.3 32.2 6.2 10.5 14.9 96.0
300 6.4 10.6 14.7 62.8 8.1 14.7 25.8 100.0
500 5.1 12.4 18.1 84.5 7.5 18.6 35.5 100.0
1000 5.9 17.2 26.9 98.4 9.4 27.2 54.9 100.0

Smooth Test Order Selection Test
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 5.6 4.8 5.4 15.2 4.5 5.3 5.3 9.4

300 5.2 5.3 5.2 30.9 5.8 5.3 5.2 20.9
500 4.5 5.4 6.6 44.8 5.0 5.0 6.3 31.6
1000 4.8 7.2 8.6 74.4 5.1 6.8 8.2 60.0

10 100 4.8 5.1 6.6 58.2 5.1 5.4 6.6 21.4
300 5.1 7.5 10.6 95.3 5.2 7.4 9.2 62.6
500 6.8 8.5 14.7 99.9 6.8 8.6 12.6 88.8
1000 7.0 14.5 20.9 100.0 6.8 13.9 19.1 100.0

Table 3.12: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distribution. The null hypothesis is that
data come from normal distributions and Watson is applied to every small data set.
The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p t(10) χ2(10) Laplace Cauchy t(10) χ2(10) Laplace Cauchy
5 100 5.3 5.4 6.0 12.8 5.3 6.3 7.4 39.0

300 5.3 6.2 7.7 29.6 6.2 7.2 9.0 76.9
500 5.4 7.9 9.1 39.6 6.5 8.8 11.3 91.0
1000 7.2 8.8 11.0 63.6 7.6 10.7 15.6 99.3

10 100 5.1 6.4 8.2 28.1 5.5 8.9 13.6 95.5
300 6.2 8.7 12.9 59.0 7.0 13.0 22.4 100.0
500 5.3 10.7 15.8 82.1 6.6 16.2 31.9 100.0
1000 5.5 14.4 22.9 98.1 8.0 24.3 50.8 100.0
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Figure 3.4: The left and right plots show the local power of two-sided moment
based tests and the relative power decrease over various significance levels α2, when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level α=0.05.
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Figure 3.5: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels α2, when
there are 100 data sets with 5 observations. In both plots, black, blue and red lines
represent AD, CvM, and Watson, respectively. Also, solid and dashed lines represent
Edgington’s method and Fisher’s method, respectively. The dotted line in the left
plot denotes the significance level α=0.05.
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Figure 3.6: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels α2, when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level α=0.05.
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Figure 3.7: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels α2, when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level α=0.05.
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Figure 3.8: This figure shows the density of the P -value when CvM is applied to
every small data set with sample sizes 5. The solid line is the median of 100 kernel
density estimates and the dashed lines are 0.025 percentiles and 0.975 percentiles of
kernel density estimates.
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Figure 3.9: This figure shows the empirical power at the significance level 0.05 when
testing whether data come from normal distributions, and the alternative is a mixture
of normal and the t-distribution. The number of data sets considered are 100, 300,
500 and 1000, and cross, plus, triangle and circle represent the number of data sets,
respectively. AD is applied to every small data with sample sizes 5.
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Figure 3.10: This figure shows the empirical power at the significance level 0.05
when testing whether data come from normal distributions, and the alternative is a
mixture of normal and the t-distribution. The number of data sets considered are
100, 300, 500 and 1000, and cross, plus, triangle and circle represent the number of
data sets, respectively. AD is applied to every small data set with sample sizes 10.
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Figure 3.11: This figure shows the empirical power at the significance level 0.05 when
testing whether data come from normal distributions, and the alternative is a mixture
of normal and the chi-squared distribution. The number of data sets considered are
100,300, 500 and 1000, and cross, plus, triangle and circle represent the number of
data sets, respectively. AD is applied to every small data set with sample sizes 5.
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Figure 3.12: This figure shows the empirical power at the significance level 0.05
when testing whether data come from normal distributions, and the alternative is a
mixture of normal and the chi-squared distribution. The number of considered data
sets are 100, 300, 500 and 1000, and cross, plus, triangle and circle represent the
number of data sets, respectively. AD is applied to every small data set with sample
sizes 10.
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3.2 Testing whether data come from Laplace distributions

The Laplace distribution, also known as the double exponential distribution, has

been used in a variety areas. Marks et al. (1978) and Dadi and Marks (1987) dis-

cussed the detection of constant signals when Laplace noise is present. Hsu (1979)

considered a Laplace distribution for position errors in navigation. Easterling (1978)

considered a double exponential measurement error to study steam generator inspec-

tion. Other applications in communication theory, finance or environment sciences

can be found in Kotz et al. (2001) and references therein. Most applications ex-

ploited a Laplace distribution due to its tails being heavier than those of a normal

distribution. As mentioned in Gel (2010), it is necessary to consider broader alterna-

tive distributions than normal distributions and to include heavy-tailed alternative

distributions. Hence, in the simulation, five location/scale families are considered:

normal distributions, t-distributions with 10 degrees of freedom, Gumbel distribu-

tions, Cauchy distributions and logistic distributions. Of the five distributions, the

Gumbel distribution is asymmetric and the remaining distributions are symmetric.

To apply AD, CvM or Watson to every small data set, MLE of location and scale

parameters is used as in Section 3.1.

Tables 3.13, 3.15 and 3.17 show the empirical power and size of the one-sided

moment based tests and smoothing based tests when all small data sets come from

the same distribution. When the alternative is Gumbel or Cauchy, both moment

based tests and smoothing based tests have good power for all three edf-based gof

tests. On the contrary, when all small data sets of size 5 are from the t-distribution,

logistic or normal distributions, we notice that the moment based tests are biased.

Especially, AD has the bias problem even if the sample size increases to 10. This

phenomenon seems to be contrary to the usual expectation that AD is more powerful
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than other edf-based gof tests.

Tables 3.14, 3.16 and 3.18 show the empirical power and size of the two-sided

moment based tests when a significance level α2=0.01 is used. From these tables,

we notice that the bias problem is not completely solved. The effects of selecting

the two significance levels are investigated through Figures 3.13 to 3.16. As in the

previous section, the case of 100 data sets with 5 observations each is considered. We

notice that, when tests are biased, the power of the two-sided moment based tests

is higher than that of the one-sided moment based tests. Especially, the amount of

relative increases in the power is the biggest when Fisher’s method is applied to P -

values from Watson. However, large relative increases in the power cannot guarantee

higher power than the level of tests. For example, Fisher’s method using P -values

from Watson still has power less than 0.05 at most of the considered significance

levels α2. Also, we notice that the bias problem is not resolved even if evenly divided

significance levels are used. Such an examination suggests that it may be better to

use smoothing based tests rather than the two-sided moment based tests to handle

the bias.

When smoothing based tests are applied to P -values from AD, there is an odd

decrease in the power under the t-distribution as the sample size increases from 5 to

10. Such a decrease in the power does not exist, when CvM or Watson is used. This

can be explained by the density of the P -value. Figures 3.17, 3.18 and 3.19 show

the density of the P -value when data sets are from the t-distribution. When the

sample size is 10, the density of the P -value from CvM or Watson has an increasing

shape and shows a relatively bigger departure from uniformity. This is the reason

that CvM or Watson has better power as the sample size increases. However, the

density of the P -value from AD, when the sample size is 10, still does not show much

difference from uniformity, indicating a possible decrease in the power.
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We may expect that the power increases as the number of data sets increases

because we have more information. This may not be true when tests are biased. For

example, when Watson is applied to small data sets, with 5 observations, from logistic

distributions, the power of moment based tests decreases as the number of data sets

increases. This reflects an asymptotic failure of the one-sided moment based tests

due to the bias. When smoothing based tests are used, however, the power increases

as the number of data sets increases, indicating that these tests detect any departure

from uniformity.

Under fixed alternatives, Edgington’s method attains slightly better power than

Fisher’s method. The performance of smoothing based tests depends on alternative

distributions and the type of edf-based gof tests. For example, when Watson is used,

and data sets come from normal or logistic distributions, the smooth test is better

than the order selection test, especially for sample sizes 5. However, when Watson is

used, and data sets are from Gumbel distributions, the order selection test is better

than the smooth test. If we compare the power of smoothing based tests and moment

based tests, there is no clear winner. When tests are not biased, moment based tests

perform better than smoothing based tests. On the other hand, smoothing based

tests may be preferable when the tests are biased. Of the three edf-based gof test,

CvM and Watson show better performance than AD.

Tables 3.19 to 3.24 show the local empirical power, i.e., the power when 90% of

data sets are from Laplace distributions. Except for two distributions, Cauchy and

Gumbel distributions, the local power of both moment based tests and smoothing

based tests is just around the size of tests regardless of the type of gof tests used.

Such results are interesting especially when we consider normal local alternatives.

In Section 3.1, we notice that both moment based tests and smoothing based tests

detect departures from normality well when either all or a few data sets are from
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Laplace distributions. On the contrary, when the null is Laplace and 10% of data

sets are from normal distributions, both moment based tests and smoothing based

tests have the power around the level of tests 0.05, indicating that both tests cannot

detect a departure from the null. Such a result implies that, when we consider two

distributions and perform a gof test, different power can be obtained depending on

which one of the two is considered as the null. The effects of the significance levels

α2 are investigated through Figures 3.20 to 3.24. When 10% of data come from the

t-distribution, Gumbel distributions, or logistic distributions, there does not exist

much difference between the power at significance levels α2. When 10% of data

come from a normal distribution and Fisher’s method is applied to P -values from

AD or CvM, the power is above the size of tests when the significance level α2 is

about 0.014.

Under local alternatives, the smooth test tends to attain better power than the

order selection test. The performance of the two moment based tests depends on the

distribution from which 10% of data sets come. For example, when 10% of small data

sets with sample sizes 10 are from Gumbel distributions, Edgington’s method has

slightly higher power than Fisher’s method. Fisher’s method is more powerful than

Edgington’s method when 10% of data sets are from Cauchy distributions. Figure

3.25 indicates the reason of the reversal in performance of the two moment based

tests. We notice that evidence against the null is much stronger when the alternative

is Cauchy. In Section 2.3, we found that Edgington’s method performs better when

there exists slight or moderate evidence against the null. The empirical power and

the density of the P -value agree with this finding.

In addition to considering the local alternative where 90% of data sets are from

the null, the empirical power is obtained under local alternatives where other than

90% of data sets are from the null. Only two alternative distributions, Gumbel and
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logistic distributions, are considered. These are selected because we might obtain

different insights according to whether tests are biased. Note that tests are biased

when the alternative is a logistic distribution, and tests are not biased when the

alternative is a Gumbel distribution.

Figures 3.26, 3.27 and 3.28 show the empirical power at the significance level

α = 0.05 when the alternative is a mixture of Laplace and Gumbel distributions.

When the sample size is 5, the results from CvM are similar to those from AD. The

results are similar regardless of the type of gof tests when the sample size is 10.

From Figure 3.26, we notice that when AD or CvM is applied to data sets with 5

observations and less than 50% of data sets are from the null, moment based tests

are slightly better than smoothing based tests. However, when more than 50% of

data sets are from the null, both moment based tests and smoothing based tests

have power that is close to the size of tests. Interestingly, Figure 3.27 shows that

Fisher’s method attains the worst power when Watson is applied to data sets with

5 observations. When there are at least 300 data sets with sample sizes 10, from

Figure 3.28, we notice that the power of smoothing based tests is close to that of

moment based tests. Also, there is no clear winner between the two moment based

tests or between the two smoothing based tests. However, when we have 100 data

sets with 10 observations and 10% or 20% of data sets are from the null, Edgington’s

method seems to be the best.

When the alternative is a mixture of Laplace and logistic distributions and we

have data sets with sample sizes 5, we need to consider the bias problem. Figures

3.29 and 3.30 show the empirical power when AD and Watson are applied to data

sets with sample sizes 5. The result when CvM is used is not shown here because

the empirical power is just around the size of tests for all combining methods. To

deal with the bias, the two-sided moment based test at significance level α2=0.01 is
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applied. When AD is used, smoothing based tests dominate moment based tests. In

contrast, when Watson is used, Fisher’s method and the smooth test have similar

power and dominate the remaining two. Edgington’s method has the worst power.

Figures 3.31 and 3.32 show the empirical power when AD or Watson is applied to

data sets with sample sizes 10. Since only AD is biased under logistic alternatives,

the two-sided moment based tests are used for Figure 3.31. From the figure, we notice

that smoothing based tests are superior to moment based tests, and the smooth test

is better among the two smoothing based tests. When Watson is used, the result

is quite different. From Figure 3.32, we notice that Edgington’s method is the best

and the power of Fisher’s method is just around the size of tests. Even if the result

from CvM is not shown here, it is similar to that from Watson.

It is clear that, from the empirical power under local alternatives, the performance

of tests depends on the number of data sets, the sample sizes, the alternatives, and

the type of edf-based tests. It may almost be impossible to find the one best method.

However, we notice that AD is biased under the logistic alternative when the sample

size is 10, unlike CvM or Watson. This indicates that CvM or Watson may be

preferable to AD. Also, under the logistic local alternatives, Watson seems to have

more reliable power than CvM. Even if moment based tests are more powerful than

smoothing based tests when we do not have the bias issue, smoothing based tests

are better when we have the bias problem. Also, the power of smoothing based tests

is just a little bit inferior to moment based tests when tests are not biased. Hence,

when testing whether data come from Laplace distributions, applying smoothing

based tests to P -values from Watson might be preferable.
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Table 3.13: This table shows the size(%) and the power(%) of the test. The null
hypothesis is that data come from Laplace distributions and AD is applied to every
small data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p Laplace t(10) Gumbel Cauchy Logistic Normal Laplace t(10) Gumbel Cauchy Logistic Normal
5 100 5.3 2.2 14.6 98.9 1.8 2.3 5.9 2.2 14.8 100.0 2.5 3.3

300 5.4 1.0 29.8 100.0 1.4 1.0 4.8 1.6 26.7 100.0 1.9 2.2
500 4.6 0.8 39.8 100.0 0.9 1.2 4.7 1.4 38.2 100.0 1.5 2.0
1000 4.8 0.1 61.8 100.0 0.2 0.3 4.6 0.4 60.1 100.0 0.5 0.8

10 100 4.8 3.4 77.1 100.0 1.9 6.2 5.0 2.3 67.2 100.0 1.3 4.2
300 4.6 2.4 99.5 100.0 1.4 7.8 4.3 0.9 98.1 100.0 0.5 3.1
500 4.8 2.2 100.0 100.0 1.4 8.8 4.0 0.4 99.9 100.0 0.4 3.2
1000 5.4 1.8 100.0 100.0 0.2 11.5 4.4 0.3 100.0 100.0 0.0 2.1

Smooth Test Order Selection Test
n p Laplace t(10) Gumbel Cauchy Logistic Normal Laplace t(10) Gumbel Cauchy Logistic Normal
5 100 5.1 4.3 6.9 99.1 5.4 5.8 5.1 5.6 8.6 97.8 6.1 6.4

300 5.8 7.7 16.9 100.0 8.1 8.8 5.3 8.8 17.4 100.0 8.7 8.5
500 5.2 11.1 27.1 100.0 11.2 11.2 5.0 11.5 26.7 100.0 11.3 12.2
1000 4.8 19.4 48.1 100.0 19.1 16.2 4.3 19.4 46.2 100.0 19.1 16.2

10 100 4.4 6.3 52.3 100.0 5.8 6.3 5.8 5.2 62.8 100.0 5.1 5.2
300 5.2 8.0 98.2 100.0 8.8 8.6 5.0 6.3 98.2 100.0 7.9 6.8
500 5.1 11.6 100.0 100.0 12.2 12.6 4.8 9.0 100.0 100.0 11.4 10.5
1000 5.2 17.2 100.0 100.0 22.4 18.4 5.5 14.1 100.0 100.0 20.6 15.8

Table 3.14: This table shows the size(%) and the power(%) of the two-sided moment
based test. The null hypothesis is that data come from Laplace distributions and
AD is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Laplacet(10)GumbelCauchyLogisticNormalLaplacet(10)GumbelCauchyLogisticNormal
5 100 5.1 3.5 12.9 98.7 3.3 4.0 6.3 4.0 12.6 100.0 3.9 4.8

300 5.5 4.8 26.4 100.0 5.6 4.8 5.1 4.0 23.2 100.0 5.1 5.0
500 4.7 7.0 36.1 100.0 6.4 6.3 5.0 6.5 34.6 100.0 6.2 5.9
1000 4.5 11.6 57.6 100.0 11.4 8.9 4.5 9.4 56.4 100.0 9.8 7.0

10 100 4.9 4.3 74.2 100.0 3.0 5.6 5.5 3.7 63.2 100.0 3.4 4.5
300 4.4 3.8 99.2 100.0 4.0 6.6 4.2 4.0 97.4 100.0 5.5 4.0
500 4.9 3.8 100.0 100.0 4.6 7.9 4.2 4.9 99.9 100.0 8.2 3.5
1000 5.8 4.2 100.0 100.0 8.2 10.1 4.8 8.9 100.0 100.0 17.5 3.6
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Table 3.15: This table shows the size(%) and the power(%) of the test. The null
hypothesis is that data come from Laplace distributions and CvM is applied to every
small data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p Laplacet(10)GumbelCauchyLogisticNormalLaplacet(10)GumbelCauchyLogisticNormal
5 100 5.4 3.8 17.4 96.9 3.4 5.1 6.0 3.6 15.8 99.9 3.1 5.1

300 5.1 3.6 35.9 100.0 3.4 4.6 4.5 3.2 30.1 100.0 3.6 5.1
500 5.4 3.2 48.8 100.0 3.4 5.9 5.0 2.9 42.6 100.0 3.0 4.6
1000 5.6 2.9 72.6 100.0 1.7 5.5 4.5 2.4 66.8 100.0 1.3 4.5

10 100 5.3 11.2 74.8 100.0 6.9 23.6 5.3 6.6 64.2 100.0 3.8 14.4
300 4.4 18.1 99.0 100.0 12.2 47.1 4.0 7.4 97.2 100.0 5.1 23.6
500 4.8 22.1 100.0 100.0 13.2 66.8 3.6 8.7 99.9 100.0 5.3 35.3
1000 4.6 39.5 100.0 100.0 17.2 88.5 4.3 13.6 100.0 100.0 4.8 52.8

Smooth Test Order Selection Test
n p Laplacet(10)GumbelCauchyLogisticNormalLaplacet(10)GumbelCauchyLogisticNormal
5 100 4.8 3.8 8.4 96.8 5.2 5.2 4.3 4.3 10.2 94.8 5.0 5.5

300 5.3 4.8 20.1 100.0 5.2 5.1 5.0 5.0 22.3 100.0 5.7 4.9
500 5.4 5.7 32.6 100.0 4.8 5.6 5.1 5.3 33.0 100.0 5.3 5.8
1000 4.6 6.2 60.6 100.0 7.0 5.5 5.1 5.8 57.6 100.0 6.8 5.8

10 100 5.1 6.2 49.4 100.0 5.5 10.3 5.4 6.6 59.4 100.0 5.2 15.2
300 5.0 10.3 97.4 100.0 8.8 31.0 5.1 11.6 97.5 100.0 8.8 34.8
500 5.2 15.4 100.0 100.0 10.6 51.5 5.1 15.6 100.0 100.0 10.5 55.0
1000 4.8 28.9 100.0 100.0 14.4 80.2 5.1 31.2 100.0 100.0 14.8 81.8

Table 3.16: This table shows the size(%) and the power(%) of the two-sided moment
based test. The null hypothesis is that data come from Laplace distributions and
CvM is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Laplacet(10)GumbelCauchyLogisticNormalLaplacet(10)GumbelCauchyLogisticNormal
5 100 5.1 3.8 14.9 96.4 4.2 4.6 6.4 3.8 14.1 99.8 3.5 5.5

300 5.2 3.9 32.1 100.0 4.0 4.4 4.8 4.0 26.9 100.0 4.3 5.2
500 5.0 4.0 44.1 100.0 4.0 5.4 5.1 4.5 39.1 100.0 4.0 4.2
1000 5.7 3.5 69.1 100.0 3.5 5.1 4.8 4.0 62.5 100.0 3.8 4.3

10 100 4.8 9.6 71.0 100.0 5.9 20.5 5.2 5.6 59.8 100.0 3.8 11.6
300 4.0 15.3 98.8 100.0 10.6 43.5 3.8 6.2 96.3 100.0 4.7 20.0
500 4.8 19.5 100.0 100.0 11.2 63.2 3.4 7.3 99.9 100.0 4.6 30.7
1000 5.0 34.9 100.0 100.0 14.5 85.7 5.0 11.8 100.0 100.0 4.4 48.9
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Table 3.17: This table shows the size(%) and the power(%) of the test. The null
hypothesis is that data come from Laplace distributions and Watson is applied to
every small data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p Laplacet(10)GumbelCauchyLogisticNormalLaplacet(10)GumbelCauchyLogisticNormal
5 100 4.7 3.1 12.6 98.3 2.5 4.0 5.1 1.4 5.4 100.0 0.9 0.8

300 4.8 2.4 25.1 100.0 2.2 2.6 5.0 0.2 10.2 100.0 0.7 0.4
500 5.4 1.6 32.9 100.0 2.1 3.9 5.0 0.2 10.5 100.0 0.2 0.1
1000 5.8 1.2 53.8 100.0 0.8 2.6 5.5 0.0 15.2 100.0 0.0 0.1

10 100 5.1 15.1 71.0 100.0 8.9 33.2 4.8 7.8 54.8 100.0 5.0 21.6
300 4.9 27.0 98.8 100.0 16.3 66.2 4.7 12.8 93.0 100.0 6.6 42.7
500 4.6 35.6 100.0 100.0 19.1 84.2 4.5 15.4 99.4 100.0 7.6 62.1
1000 4.2 59.3 100.0 100.0 28.7 97.6 4.2 25.9 100.0 100.0 7.5 85.0

Smooth Test Order Selection Test
n p Laplacet(10)GumbelCauchyLogisticNormalLaplacet(10)GumbelCauchyLogisticNormal
5 100 5.2 5.9 6.8 100.0 6.2 6.6 4.3 5.2 8.1 98.8 5.3 6.1

300 5.1 11.6 16.6 100.0 9.8 13.8 5.1 7.2 18.6 100.0 7.8 8.8
500 5.2 14.8 22.9 100.0 12.6 19.8 5.0 9.7 24.6 100.0 9.8 13.3
1000 5.2 24.8 43.2 100.0 21.1 36.3 5.4 18.4 45.8 100.0 16.4 27.2

10 100 5.1 7.6 45.4 100.0 5.6 14.1 5.4 8.9 56.5 100.0 5.7 20.8
300 5.1 15.3 95.7 100.0 8.7 45.9 4.8 16.6 96.3 100.0 9.8 50.7
500 5.0 21.8 99.8 100.0 12.2 70.5 5.1 23.8 99.7 100.0 13.6 72.0
1000 5.6 43.6 100.0 100.0 19.5 94.5 5.5 44.6 100.0 100.0 20.7 94.3

Table 3.18: This table shows the size(%) and the power(%) of the two-sided moment
based test. The null hypothesis is that data come from Laplace distributions and
Watson is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Laplacet(10)GumbelCauchyLogisticNormalLaplacet(10)GumbelCauchyLogisticNormal
5 100 4.6 3.2 10.4 97.9 3.5 4.4 5.5 3.5 5.1 100.0 3.5 2.9

300 5.2 4.2 22.2 100.0 4.0 3.2 5.5 6.3 8.6 100.0 6.6 5.7
500 5.1 3.2 29.0 100.0 4.2 4.2 4.8 10.4 9.3 100.0 10.3 10.5
1000 6.0 4.7 48.8 100.0 4.6 3.0 5.4 21.9 13.1 100.0 20.8 22.2

10 100 4.8 12.7 67.2 100.0 7.5 30.0 4.7 6.5 50.0 100.0 3.9 18.6
300 5.2 23.5 98.2 100.0 14.2 62.0 5.0 10.7 92.0 100.0 6.0 37.9
500 4.6 31.4 100.0 100.0 16.2 81.5 5.0 13.2 99.1 100.0 6.6 58.3
1000 4.7 54.6 100.0 100.0 25.3 96.8 5.1 22.8 100.0 100.0 6.9 82.7
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Figure 3.13: The left and right plots show the power of the two-sided tests and the
relative power decrease over various significance levels α2, when there are 100 data
sets with 5 observations. In both plots, black, blue and red lines represent AD,
CvM, and Watson, respectively. Also, solid and dashed lines represent Edgington’s
method and Fisher’s method, respectively. The dotted line in the left plot denotes
the significance level, 0.05.

80



Figure 3.14: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels α2, when there
are 100 data sets with 5 observations. In both plots, black, blue and red lines
represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Figure 3.15: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels α2, when there
are 100 data sets with 5 observations. In both plots, black, blue and red lines
represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Figure 3.16: The left and right plots show the power of the two-sided moment tests
and the relative power decrease over various significance levels α2, when there are
100 data sets with 5 observations. In both plots, black, blue and red lines represent
AD, CvM, and Watson, respectively. Also, the solid and dashed lines represent
Edgington’s method and Fisher’s method, respectively. The dotted line in the left
plot denotes the significance level, 0.05.
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Figure 3.17: This figure shows the density of the P -value when AD is applied and
the alternative distribution is the t-distribution with 10 degrees of freedom. The
solid line is the median of kernel density estimates and the dashed lines are 0.025
and 0.975 percentiles of kernel density estimates.
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Figure 3.18: This figure shows the density of the P -value when CvM is applied and
the alternative distribution is the t-distribution with 10 degrees of freedom. The
solid line is the median of kernel density estimates and the dashed lines are 0.025
and 0.975 percentiles of kernel density estimates.
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Figure 3.19: This figure shows the density of the P -value when Watson is applied
and the alternative distribution is the t-distribution with 10 degrees of freedom. The
solid line is the median of kernel density estimates and the dashed lines are 0.025
and 0.975 percentiles of kernel density estimates.
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Table 3.19: This table shows the local power of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from Laplace
distributions and AD is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 5.2 4.8 11.3 4.4 4.2 4.2 5.1 17.2 4.8 4.1

300 4.2 5.9 16.4 4.7 5.2 4.8 6.3 31.3 4.4 5.1
500 4.0 5.8 23.2 4.0 3.7 3.7 6.2 43.6 3.6 3.8
1000 3.3 6.4 35.2 3.6 3.6 3.6 6.2 65.5 3.8 3.8

10 100 4.5 7.3 19.9 4.4 6.0 4.2 7.3 58.5 4.8 5.1
300 3.8 10.3 39.8 4.2 4.4 2.8 9.6 91.3 3.4 3.1
500 4.6 13.6 53.7 4.0 5.5 3.6 11.2 98.0 3.1 4.0
1000 4.3 17.8 80.0 4.2 4.6 2.9 14.2 100.0 2.7 3.4

Smooth Test Order Selection Test
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 5.50 4.05 7.75 4.70 5.30 5.20 4.60 7.45 4.75 5.05

300 4.95 4.85 11.05 5.35 4.95 4.65 4.70 9.30 4.95 4.70
500 4.65 4.80 16.85 5.50 5.65 4.75 4.60 13.65 5.65 5.60
1000 5.35 5.50 25.00 5.35 5.20 5.50 5.20 21.90 5.10 4.45

10 100 4.85 4.90 19.90 5.00 5.40 4.75 5.15 11.75 4.75 5.25
300 5.40 6.50 40.90 5.65 5.05 5.20 6.65 26.05 5.60 5.05
500 5.00 7.65 56.80 5.00 5.25 5.10 7.75 37.80 4.75 5.50
1000 6.15 10.30 86.70 5.10 4.70 6.00 9.95 69.60 5.30 4.60

Table 3.20: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distribution. The null hypothesis is that
data come from Laplace distributions and AD is applied to every small data set. The
significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 5.1 4.2 10.2 4.7 4.8 4.2 4.6 15.4 4.8 4.9

300 4.1 5.5 13.3 4.6 5.1 5.2 5.9 27.3 4.8 4.6
500 4.5 4.6 20.2 5.1 3.8 4.3 5.2 39.9 4.5 4.5
1000 4.3 5.6 31.4 4.4 3.9 4.8 5.3 61.8 4.5 4.0

10 100 5.1 6.6 17.1 4.3 5.5 4.8 6.6 55.0 5.1 4.8
300 4.7 9.0 35.7 4.8 4.5 3.8 7.8 89.3 4.1 4.0
500 4.3 12.0 49.1 4.3 5.0 4.6 9.3 97.5 4.0 4.2
1000 5.2 15.2 77.3 4.5 4.3 4.3 11.6 100.0 4.0 4.1
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Table 3.21: This table shows the local power of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from Laplace
distributions and CvM is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 5.3 5.0 10.4 5.1 4.2 4.7 5.0 15.5 4.5 4.4

300 4.3 6.0 15.0 4.7 5.7 5.2 6.2 26.1 4.8 5.1
500 4.6 6.2 21.2 5.1 5.1 4.2 6.2 36.2 4.0 4.5
1000 4.9 7.1 31.9 5.0 5.2 4.0 7.2 55.5 4.8 4.6

10 100 5.6 7.6 17.7 5.1 6.0 4.9 7.1 55.4 4.8 5.6
300 5.3 10.3 34.2 5.2 6.3 3.7 8.8 88.2 4.0 4.6
500 5.5 12.6 46.9 5.4 6.6 4.7 10.8 97.4 3.8 5.6
1000 6.5 16.9 72.5 4.8 8.0 4.2 13.5 99.9 3.6 5.4

Smooth Test Order Selection Test
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 5.7 5.3 7.8 4.9 5.1 5.3 4.4 6.6 4.5 4.8

300 4.8 5.0 10.1 4.7 5.1 4.3 4.5 8.6 4.5 4.8
500 4.8 4.4 14.0 5.9 5.1 5.1 4.3 12.3 5.9 4.8
1000 4.2 5.1 22.1 5.2 5.0 4.6 5.1 19.6 5.0 4.8

10 100 4.8 4.4 19.1 4.3 4.2 4.6 5.6 10.3 4.8 5.7
300 5.7 5.9 35.9 5.3 5.2 5.6 6.2 20.8 5.3 5.4
500 5.0 7.3 50.0 5.0 5.5 4.7 7.2 30.8 4.9 5.7
1000 6.2 9.6 81.5 5.1 5.4 6.8 9.8 61.9 4.4 6.0

Table 3.22: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distribution. The null hypothesis is that
data come from Laplace distributions and CvM is applied to every small data set.
The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 5.3 4.3 9.0 5.0 4.6 4.3 4.4 14.1 4.8 4.7

300 4.2 5.5 12.3 4.8 5.4 5.1 6.0 22.4 4.8 5.1
500 4.7 5.4 18.9 5.3 4.9 4.7 5.6 33.2 4.6 4.0
1000 4.3 6.4 28.1 5.0 5.3 4.8 6.1 50.8 4.8 4.6

10 100 5.4 7.2 15.2 4.8 5.7 5.3 6.8 52.0 5.1 5.4
300 5.2 8.6 30.6 5.4 5.4 4.4 7.2 86.2 4.2 4.8
500 4.7 10.5 42.1 5.2 6.0 4.8 9.3 96.9 4.2 5.4
1000 6.3 14.3 68.7 4.8 6.7 5.2 11.0 99.9 4.0 4.7
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Table 3.23: This table shows the local power of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from Laplace
distributions and Watson is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 4.9 5.2 11.4 5.2 4.5 4.2 5.1 27.6 4.6 3.5

300 4.3 5.6 17.2 4.4 5.1 4.3 5.4 51.6 3.4 3.8
500 3.8 5.8 25.1 5.1 5.0 3.3 4.8 70.0 3.8 3.1
1000 4.6 6.9 36.3 4.5 5.4 3.5 5.7 90.5 3.6 4.2

10 100 6.0 7.6 18.9 5.5 6.4 4.7 6.6 70.7 5.0 5.3
300 5.8 10.2 37.5 5.8 6.3 4.0 7.7 96.8 4.4 5.4
500 6.6 11.3 50.5 5.7 7.0 5.0 9.6 99.6 4.2 6.3
1000 7.0 14.9 76.0 5.2 8.5 4.5 10.6 100.0 4.0 5.9

Smooth Test Order Selection Test
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 4.8 5.2 10.0 5.5 5.2 5.5 5.1 6.8 5.4 5.0

300 4.8 4.3 15.4 5.5 4.8 4.3 4.8 10.4 5.2 4.4
500 5.3 5.2 21.3 5.4 4.5 5.2 5.3 14.6 5.5 5.2
1000 5.3 5.4 34.6 4.8 5.1 5.0 5.4 23.7 5.1 5.1

10 100 5.2 5.1 25.1 4.8 4.9 5.7 5.2 9.6 4.8 5.0
300 5.2 6.1 52.5 4.6 5.3 4.6 6.1 24.8 5.2 5.0
500 5.1 6.2 70.4 6.0 5.6 4.8 6.8 36.0 5.5 5.3
1000 5.3 8.5 96.6 5.0 6.1 4.8 8.8 72.4 4.9 5.8

Table 3.24: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distributions. The null hypothesis is that
data come from Laplace distributions and Watson is applied to every small data set.
The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p t(10) Gumbel Cauchy Logistic Normal t(10) Gumbel Cauchy Logistic Normal
5 100 4.8 5.4 9.2 5.0 4.7 4.8 5.1 24.4 4.9 4.1

300 4.3 5.0 15.2 4.3 5.0 4.5 5.2 48.3 4.1 4.5
500 4.2 5.4 22.1 5.2 5.1 3.9 4.5 66.1 4.0 3.6
1000 4.6 6.3 32.7 4.6 5.3 4.4 5.3 88.6 4.3 4.7

10 100 5.5 7.0 15.8 5.3 5.7 5.4 6.1 68.0 4.9 4.5
300 5.6 9.0 33.9 5.8 5.7 4.2 6.6 96.4 4.8 5.5
500 5.9 10.0 45.3 5.5 6.6 5.1 8.6 99.6 4.6 5.4
1000 6.0 12.6 72.4 4.6 7.3 5.1 9.0 100.0 4.0 5.3
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Figure 3.20: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels α2, when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05..
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Figure 3.21: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels α2, when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Figure 3.22: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels, α2, when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Figure 3.23: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels α2, when there
are 100 data sets with 5 observations. In both plots, black, blue and red lines
represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Figure 3.24: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels α2, when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Figure 3.25: This figure shows the density of the P -value when CvM is applied to
every small data set with sample sizes 10. The solid line is the median of kernel
density estimates and the dashed lines are 0.025 percentiles and 0.975 percentiles of
kernel density estimates.
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Figure 3.26: This figure shows the empirical power at the significance level 0.05
when testing whether data come from Laplace distributions, and the alternative is a
mixture of Laplace and Gumbel distributions. The numbers of data sets considered
are 100, 300, 500 and 1000, and the cross, plus, triangle and circle represent the
number of data sets, respectively. AD is applied to every small data with sample
sizes 5.
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Figure 3.27: This figure shows the empirical power at the significance level 0.05
when testing whether data come from Laplace distributions, and the alternative is a
mixture of Laplace and Gumbel distributions. The numbers of data sets considered
are 100, 300, 500 and 1000, and the cross, plus, triangle and circle represent the
number of data sets, respectively. Watson is applied to every small data with sample
sizes 5.
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Figure 3.28: This figure shows the empirical power at the significance level 0.05
when testing whether data come from Laplace distributions, and the alternative is a
mixture of Laplace and Gumbel distributions. The number of data sets considered
are 100, 300, 500 and 1000, and the cross, plus, triangle and circle represent the
number of data sets, respectively. AD is applied to every small data with sample
sizes 10.
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Figure 3.29: This figure shows the empirical power at the significance level 0.05
when testing whether data come from Laplace distributions, and the alternative is
a mixture of Laplace and logistic distributions. The number of data sets considered
are 100, 300, 500 and 1000, and the cross, plus, triangle and circle represent the
number of data sets, respectively. For moment based tests, the two-sided test is used
at the significance level α2=0.01. AD is applied to every small data set with sample
sizes 5.
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Figure 3.30: This figure shows the empirical power at the significance level 0.05
when testing whether data come from Laplace distributions, and the alternative is a
mixture of Laplace and logistic distributions. The number of data sets considered are
100, 300, 500 and 1000, and the cross, plus, triangle and circle represent the number
of data sets, respectively. For moment based tests, the two-sided test is used at the
significance level α2=0.01. Watson is applied to every small data set with sample
sizes 5.
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Figure 3.31: This figure shows the empirical power at the significance level 0.05
when testing whether data come from Laplace distributions, and the alternative is
a mixture of Laplace and logistic distributions. The number of data sets considered
are 100, 300, 500 and 1000, and the cross, plus, triangle and circle represent the
number of data sets, respectively. For moment based tests, the two-sided test is used
at the significance level α2=0.01. AD is applied to every small data set with sample
sizes 10.
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Figure 3.32: This figure shows the empirical power at the significance level 0.05
when testing whether data come from Laplace distributions, and the alternative is
a mixture of Laplace and logistic distributions. The number of data sets considered
are 100, 300, 500 and 1000, and the cross, plus, triangle and circle represent the
number of data sets, respectively. Watson is applied to every small data set with
sample sizes 10.
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3.3 Testing whether data come from Weibull distributions

A Weibull distribution has been used in a variety of areas such as survival analysis,

reliability analysis, and geophysics. For example, Carroll (2003) used Weibull distri-

butions to analyze survival data from clinical trials and Heo et al. (2001) considered

Weibull distributions for regional flood analysis. Other uses of Weibull distributions

can be found in Chapter 3 of Pham (2006). One reason that a Weibull distribution is

used in data analyses in a variety of areas is its flexibility due to the shape parame-

ter. Hence, it may be natural to consider alternative distributions including a shape

parameter. As alternative distributions, gamma distributions and log-normal distri-

butions, are considered. These alternatives are selected because both distributions

have the support of the positive real line and have a shape parameter.

There are two possible ways to test whether data come from Weibull distribu-

tions. One is to use the fact that the log-transformed Weibull distribution follows

the Gumbel distribution, a location and scale family. The other is to use a test

procedure which will be discussed in Chapter 5. The latter requires one to estimate

the distribution of the shape parameter, and this step may cause an additional in-

stability. Hence, the first way is preferable. To apply edf-based gof tests, estimates

of location and scale parameters are necessary, and one of the most used estimators

is the MLE. The MLE of location and scale parameters of Gumbel distributions are

µ̂ = −σ̂ log

(
n∑
i=1

exp
(
−xi
σ̂

)
/n

)

σ̂ =

∑n
i=1 xi
n

−
∑n

i=1 xi exp (−xi/σ̂)∑n
i=1 exp (−xi/σ̂)

.

The MLE of the scale parameter must be found numerically, and this may not
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be advisable under the current setting due to computational time and convergence

issues. Other possible estimators are quantile-based estimators and moment esti-

mators. To use quantile-based estimators, we need to choose appropriate quantiles.

For example, Wang and Keats (1995) defined an improved quantile estimator of the

shape parameter of Weibull distributions, and the estimator is based on an empirical

quantile which minimized the bias of estimates in simulations. When we have data

sets with small sample sizes, choosing an appropriate quantile like Wang and Keats

(1995) is neither possible nor desirable, because we have few meaningful empirical

quantiles due to the small sample size of each data set. Hence, it seems that the

moment estimators are the most appropriate. Even if the moment estimators are

not optimal in the mean squared error sense, they have a desirable property such

as computational simplicity that is vital especially when we have a large number

of data sets. The moment estimators for location and scale parameters of Gumbel

distributions are µ̂ = x̄−γσ̂ where γ is Euler’s constant and σ̂ =

√
6

π2
s where s is the

sample standard deviation. The location and scale-invariant property can be easily

verified for these moment estimators.

Tables 3.25, 3.27 and 3.29 show the empirical size and power when all data sets

come from the same distribution and the one-sided moment based tests, or smoothing

based tests are applied. When the alternative is a log-normal distribution, both

moment and smoothing based tests detect departures from the null well. Fisher’s

method based on AD has the highest power. When data sets are from gamma

distributions, the power is relatively low. The power of smoothing based tests is

just around the size of tests except when AD is used and we have 500 or 1000

data sets with 10 observations. Tables 3.26, 3.28 and 3.30 show the power when

the two-sided moment based test is applied at the significance level α2=0.01. Since

there is no bias problem, the power decreases by the result of applying the two-sided
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moment based tests. The effect of significance level α2 is investigated in Figures 3.33

and 3.34 when we have 100 data sets with 5 observations. Under the log-normal

alternative, Fisher’s method based on P -values from AD attains the highest power

at all considered significance levels α2, and one interesting thing is that it has the

least relative decrease in power. Under both alternatives, Edgington’s method tends

to have a bigger relative decrease in the power for each edf-based gof test.

Tables 3.31 to 3.36 show the local power, i.e., 90% of data sets come from the null

distributions. When 10% of data sets come from log-normal distributions, moment

based tests dominate smoothing based tests. Fisher’s method based on P -values from

AD attains the highest power. The power of both moment based tests and smoothing

based tests is just around the size of tests when 10% of data sets come from gamma

distributions. Figures 3.35 and 3.36 show the local power and the amount of relative

decrease in the power at various significance levels α2 when the two-sided moment

based test is applied to 100 data sets with sample sizes 5. Since tests are not biased

when 10% of data come from log-normal distributions, the power tends to decrease

as the result of applying the two-sided moment based tests, and there is not much

difference in the amount of relative decrease in the power for the different P -value

combining methods. Under the gamma local alternatives, since the power is so low

regardless of the type of edf-based gof test and the significance level α2, it may be

difficult to draw any meaningful conclusion. However, we notice that only when

Fisher’s method is applied to P -values from AD, the power is slightly greater than

the size of the test. This may imply the preference of Fisher’s method and AD.

Under both fixed and local alternatives, AD is the most powerful among the

three edf-based gof tests. The performance of moment based tests and smoothing

based tests depends on the alternative distribution. For example, when data are

from log-normal distributions, moment based tests dominate smoothing based tests.
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Especially, Fisher’s method is better than Edgington’s method when we have data

sets with 5 observations. Both moment based and smoothing based tests are similar

with respect to power when the data are from gamma distributions. Such results

imply that applying Fisher’s method to P -values from AD is desirable when we test

whether data come from Weibull distributions.
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Table 3.25: This table shows the size(%) and power(%) of the test. The null hypoth-
esis is that data come from Weibull distributions and AD is applied to every small
data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p WeibullLog-normalGammaWeibullLog-normalGamma
5 100 5.0 58.7 7.0 4.9 73.7 7.3

300 5.2 94.8 8.8 4.9 98.3 9.6
500 5.4 99.3 8.5 4.4 100.0 8.6
1000 6.0 100.0 12.5 5.2 100.0 13.4

10 100 3.9 99.8 9.2 3.9 100.0 11.2
300 4.0 100.0 12.1 4.2 100.0 15.9
500 3.8 100.0 15.2 3.6 100.0 21.2
1000 4.0 100.0 22.5 3.6 100.0 32.8

Smooth Test Order Selection Test
n p WeibullLog-normalGammaWeibullLog-normalGamma
5 100 5.6 46.1 5.6 5.4 44.9 4.8

300 4.2 91.5 5.8 4.6 89.5 5.7
500 5.1 99.1 5.8 4.5 98.8 5.1
1000 5.5 100.0 7.4 6.1 100.0 7.0

10 100 5.2 99.1 7.1 5.1 99.4 6.0
300 5.7 100.0 8.3 5.3 100.0 8.0
500 5.2 100.0 9.3 5.3 100.0 8.2
1000 5.6 100.0 14.2 5.7 100.0 13.0

Table 3.26: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from Weibull distributions and
AD is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Weibull Log-normal Gamma Weibull Log-normal Gamma
5 100 5.3 55.5 6.2 5.3 70.3 6.9

300 4.8 93.5 7.5 4.8 98.0 8.2
500 5.4 98.9 7.1 4.6 100.0 7.8
1000 5.3 100.0 10.8 5.4 100.0 10.9

10 100 4.5 99.8 8.1 4.8 100.0 9.2
300 4.8 100.0 10.8 4.5 100.0 13.9
500 4.2 100.0 13.1 4.2 100.0 17.9
1000 4.9 100.0 18.7 4.6 100.0 29.5
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Table 3.27: This table shows the size(%) and power(%) of the test. The null hypoth-
esis is that data come from Weibull distributions and CvM is applied to every small
data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p WeibullLog-normalGammaWeibullLog-normalGamma
5 100 5.2 44.4 6.6 5.0 54.0 6.8

300 5.2 83.2 7.6 5.1 91.4 8.0
500 5.2 95.0 7.1 4.6 98.2 7.4
1000 6.0 99.9 10.6 5.8 100.0 8.9

10 100 3.9 93.1 7.2 4.4 94.8 8.2
300 4.2 100.0 8.9 4.4 100.0 10.0
500 3.4 100.0 9.9 3.4 100.0 11.5
1000 3.9 100.0 12.4 2.9 100.0 15.0

Smooth Test Order Selection Test
n p WeibullLog-normalGammaWeibullLog-normalGamma
5 100 5.3 26.4 5.1 5.8 29.1 4.6

300 4.6 71.5 5.6 5.1 70.5 5.3
500 4.6 90.5 5.3 4.6 88.6 4.8
1000 5.6 99.8 6.8 5.6 99.4 6.3

10 100 5.1 81.3 6.0 5.3 85.2 5.5
300 5.4 100.0 6.6 5.6 100.0 6.6
500 5.7 100.0 6.6 5.4 100.0 6.3
1000 5.8 100.0 7.3 5.7 100.0 7.1

Table 3.28: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from Weibull distributions and
CvM is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Weibull Log-normal Gamma Weibull Log-normal Gamma
5 100 5.3 39.9 5.8 5.0 49.9 6.3

300 4.9 79.8 6.8 5.1 88.8 7.0
500 5.4 94.0 6.7 4.8 97.6 6.2
1000 5.3 99.8 9.4 5.6 100.0 8.6

10 100 4.7 91.3 6.6 4.5 93.8 7.8
300 4.9 100.0 8.0 5.2 100.0 8.9
500 3.8 100.0 9.0 4.0 100.0 9.8
1000 4.5 100.0 10.3 4.1 100.0 11.8
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Table 3.29: This table shows the size(%) and power(%) of the test. The null hy-
pothesis is that data come from Weibull distributions and Watson is applied to every
small data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method
n p WeibullLog-normalGammaWeibullLog-normalGamma
5 100 5.1 33.4 6.2 5.2 36.8 6.6

300 5.3 68.8 6.8 5.0 71.7 6.8
500 5.2 85.2 6.4 4.3 88.7 6.2
1000 5.8 98.1 9.2 5.9 99.0 7.4

10 100 4.2 73.4 6.2 4.4 70.2 6.8
300 4.2 99.0 7.2 4.4 98.5 7.2
500 3.4 99.9 7.3 3.2 100.0 7.7
1000 3.6 100.0 8.1 3.1 100.0 8.6

Smooth Test Order Selection Test
n p WeibullLog-normalGammaWeibullLog-normalGamma
5 100 5.3 17.6 4.6 5.5 20.3 5.0

300 4.4 51.1 5.3 5.1 52.7 4.9
500 4.8 74.3 5.3 4.8 72.1 4.9
1000 5.5 95.8 6.2 5.4 94.8 6.3

10 100 5.0 49.6 5.9 5.1 57.7 5.1
300 5.5 96.5 5.8 5.7 96.4 6.0
500 5.7 99.9 5.0 5.4 99.9 5.3
1000 5.1 100.0 5.7 5.6 100.0 5.6

Table 3.30: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from Weibull distributions and
Watson is applied to every small data set. The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Weibull Log-normal Gamma Weibull Log-normal Gamma
5 100 5.5 29.5 5.5 5.3 33.8 5.9

300 5.1 64.8 6.1 5.1 67.8 6.0
500 5.5 82.5 6.0 4.4 86.1 5.8
1000 5.3 97.7 8.8 5.3 98.9 6.8

10 100 4.4 69.7 6.4 4.7 66.3 6.6
300 4.9 98.9 6.8 5.0 98.2 6.7
500 4.0 99.9 6.8 3.8 100.0 6.8
1000 4.8 100.0 7.0 3.7 100.0 7.5
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Figure 3.33: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels α2, when there
are 100 data sets with 5 observations. In both plots, black, blue and red lines
represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Figure 3.34: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels α2, when there
are 100 data sets with 5 observations. In both plots, black, blue and red lines
represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Table 3.31: This table shows the local power(%) of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from Weibull
distributions and AD is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method Smooth Test Order Selection Test
n p Log-normal Gamma Log-normalGammaLog-normalGammaLog-normal Gamma

5 100 8.0 4.5 7.5 4.6 6.2 5.3 5.3 4.2
300 9.3 6.0 10.1 6.3 6.3 5.4 6.2 5.1
500 11.8 5.8 13.5 5.1 7.8 3.8 6.8 3.8
1000 14.4 6.3 18.1 5.3 8.5 4.9 8.1 4.5

10 100 11.9 4.8 14.9 5.1 7.3 5.1 6.5 5.0
300 17.9 4.4 27.8 4.6 11.3 4.4 9.5 4.5
500 22.7 3.8 37.0 4.5 16.2 4.8 14.4 4.4
1000 33.0 3.3 56.1 4.4 24.3 5.1 21.6 5.0

Table 3.32: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distribution. The null hypothesis is that
data come from Weibull distributions and AD is applied to every small data set. The
significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Log-normal Gamma Log-normal Gamma
5 100 7.6 4.8 7.0 4.9

300 8.5 6.0 8.3 6.1
500 10.2 4.8 11.3 5.0
1000 12.6 6.0 15.6 5.3

10 100 9.8 4.6 13.0 5.4
300 15.4 4.4 24.0 4.9
500 19.8 4.0 33.8 4.3
1000 29.3 3.7 52.0 4.8
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Table 3.33: This table shows the local power(%) of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from Weibull
distributions and CvM is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method Smooth Test Order Selection Test
n p Log-normal Gamma Log-normalGammaLog-normalGammaLog-normal Gamma

5 100 7.3 4.5 6.4 4.5 6.0 5.0 5.4 3.8
300 8.4 6.2 8.5 5.8 5.6 5.8 5.5 5.1
500 10.3 5.1 11.2 5.1 7.0 4.7 6.4 4.2
1000 11.8 6.1 13.2 5.3 7.3 5.0 6.8 4.6

10 100 8.5 4.5 10.0 5.1 5.8 5.4 5.6 4.7
300 11.8 3.9 15.0 4.2 6.8 4.8 6.1 4.5
500 15.8 4.1 19.1 4.1 9.2 4.3 9.8 4.6
1000 20.6 3.5 26.8 3.8 12.3 5.1 11.2 4.9

Table 3.34: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distribution. The null hypothesis is that
data come from Weibull distributions and CvM is applied to every small data set.
The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Log-normal Gamma Log-normal Gamma
5 100 6.4 4.3 6.0 5.1

300 7.4 6.0 7.4 5.6
500 8.6 4.3 9.2 4.6
1000 9.9 5.6 11.2 5.1

10 100 7.5 4.5 8.4 5.3
300 9.5 3.9 13.4 5.1
500 13.6 4.2 16.7 4.2
1000 18.1 3.8 23.1 4.8
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Table 3.35: This table shows the local power(%) of the test when 90% of data sets
are from the null distribution. The null hypothesis is that data come from Weibull
distributions and Watson is applied to every small data set. For moment based tests,
the one-sided test is used.

Edgington’s method Fisher’s method Smooth Test Order Selection Test
n p Log-normal Gamma Log-normalGammaLog-normalGammaLog-normal Gamma

5 100 7.0 4.6 6.2 4.6 5.4 5.1 5.8 3.8
300 7.7 6.3 7.4 5.5 5.5 5.3 5.3 4.5
500 8.8 5.5 9.3 5.0 6.6 4.7 5.9 4.7
1000 10.1 6.2 10.9 5.3 7.0 4.6 6.5 4.7

10 100 7.4 4.5 7.3 5.3 5.1 5.0 5.4 4.7
300 8.6 3.8 10.0 4.4 5.3 4.8 5.1 4.4
500 11.6 4.0 11.5 4.3 7.0 4.8 7.6 5.0
1000 13.1 3.3 13.3 3.5 8.2 5.7 7.6 5.3

Table 3.36: This table shows the local power(%) of the two-sided moment based test
when 90% of data sets are from the null distribution. The null hypothesis is that
data come from Weibull distributions and Watson is applied to every small data set.
The significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Log-normal Gamma Log-normal Gamma
5 100 6.4 4.3 5.8 4.6

300 6.5 5.8 6.8 5.3
500 7.8 4.5 7.8 4.5
1000 8.5 5.8 9.6 5.0

10 100 6.5 4.5 6.8 5.4
300 7.3 3.6 8.6 5.0
500 10.2 4.2 9.6 4.2
1000 11.2 3.7 11.2 4.5
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Figure 3.35: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels α2 when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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Figure 3.36: The left and right plots show the local power of the two-sided moment
based tests and the relative power decrease over various significance levels α2 when
there are 100 data sets with 5 observations. In both plots, black, blue and red
lines represent AD, CvM, and Watson, respectively. Also, the solid and dashed lines
represent Edgington’s method and Fisher’s method, respectively. The dotted line in
the left plot denotes the significance level, 0.05.
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3.4 Summary of simulation results

We investigated the power of moment based and smoothing based tests via sim-

ulations, and found that the power depends on the considered null and alternative

distributions, indicating that there does not exist a uniformly best method. When

the null is normal, there does not exist much difference in power according to the type

of edf-based gof test and Fisher’s method tends to attain the highest power among

the considered P -value combining methods. When we test whether data come from

Laplace distributions and tests are not biased, moment based tests are better than

smoothing based tests, and Edgington’s method has slightly higher power. However,

in this case, smoothing based tests still detect departures from the null well. When

tests are biased, smoothing based tests are more powerful than moment based tests.

Also, we noticed that two-sided moment based tests might not resolve the bias, es-

pecially when we have a relatively small number of data sets, such as 100 or 300. Of

the three edf-based gof tests, Watson might be preferable to AD and CvM because

AD seems to have the bias problem more frequently, and under the logistic local

alternatives, CvM has power around the size for data sets of 5 observations, unlike

AD and Watson. When the null is Weibull, under both fixed and local log-normal

alternatives, moment based tests are better than smoothing based tests. Especially,

Fisher’s method based on P -values from AD is the most powerful. On the contrary,

under the gamma local alternatives, both moment based and smoothing based tests

have power close to the size of tests for all considered gof tests.

Since we do not have any information about a distribution from which data come,

it is hard to choose one best method. However, according to the simulation results,

if we consider the possible bias of tests, smoothing based tests based on P -values

from Watson seems to be a safe choice.
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4. REAL DATA EXAMPLE

In this chapter, we apply the suggested test procedure to microarray data col-

lected by Robert Chapkin and coworkers at Texas A&M University. Previous anal-

yses of the data set are found in Davidson et al. (2004), Hart and Cañette (2011)

and Zhan and Hart (2012). Part of the data set, which contains 8038 logged gene

expression levels from 5 rats, will be analyzed as in Hart and Cañette (2011) and

Zhan and Hart (2012). Since Hart and Cañette (2011) found that there is strong

evidence for scale differences between gene expression levels, we assume the following

model for the data.

Xij = µi + σiεij, i = 1, · · · , 8038; j = 1, · · · , 5.

We also assume that the errors are independent and identically distributed, and

each εij has mean 0 and variance 1. These assumptions follow Hart and Cañette

(2011), and entail that the distributions of Xij and Xlk(i 6= l) differ only with

respect to location and scale. We will consider two null distributions for εij: normal

and uniform. The uniform distribution is chosen because Hart and Cañette (2011)

estimated error quantiles by the minimum distance method and found that they are

remarkably close to uniform quantiles.

One important problem to be addressed before applying the test procedure to the

data is possible correlations between logged gene expression levels in the same rat.

Since the suggested test procedure is valid only when P -values from each small data

set are independent, if there exist significant correlations between gene expression

levels, applying the procedure to the data might result in poor power or incorrect size.
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Fortunately, the independence assumption across genes was found to be reasonable

by Zhan and Hart (2012) based on an analysis of autocorrelations.

Another problem is the number of bootstrap replications. Even if we checked that

100, 000 bootstrap replications are enough through simulation results in Chapter 3

when there are at most 1,000 data sets, there is a possibility that this number of boot-

strap replications might not be enough when we have 8, 038 data sets. The number

of bootstrap replications is especially important when we use Fisher’s method be-

cause the sufficient condition for having the chi-squared null distribution for Fisher’s

method based on empirical P -values is p = o(
√
N) by Theorem 2.5.3. This implies

that Edgington’s method is better than Fisher’s method when we have a large num-

ber of data sets. Also, it may be necessary to use a much larger number of bootstrap

replications, such as 107, to generate the null distribution.

Since we assume that εij are independent and identically distributed as a distri-

bution with mean 0 and variance 1, we need to consider the uniform distribution

on the interval (−
√

3,
√

3) when testing uniformity. Maximum likelihood is used

to estimate the location and scale parameters, which are µ̂i =
Xi(1) +Xi(n)

2
and

σ̂i =
Xi(n) −Xi(1)

2
√

3
, where Xi(j) denotes the j-th order statistic within data set i.

If AD is computed based on the MLE, AD always has the value ∞ regardless of

the distribution from which observations come. This happens because the cumu-

lative probabilities of the uniform distribution are always 0 and 1 for the smallest

and largest observations, respectively. For this reason, AD is excluded when test-

ing uniformity. One possible way to avoid excluding AD when testing uniformity is

to use other estimators, perhaps moment estimators. Unfortunately, when testing

uniformity, the moment estimator also has a problem in the sense that it does not

guarantee that the inferred support includes all observations.

Table 4.1 shows test statistics and P -values of moment based tests and smoothing
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Table 4.1: This table shows the test statistics and P -values of moment based tests
and smoothing based tests regarding the number of bootstrap replications when
testing whether data come from uniform distributions. The numbers in parentheses
are the one-sided P -values.

Bootstrap
Replications

CvM Watson
Edgington Fisher Smooth Order Edgington Fisher Smooth Order

105
6.82 15,165.78 65.18 42.52 7.93 15,165.90 74.21 64.78
(1.00) (1.00) (6.7e-16)(7.0e-11) (1.00) (1.00) (0) (8.9e-16)

106
6.80 15,159.44 65.42 46.28 8.00 15,154.85 72.67 67.24
(1.00) (1.00) (5.6e-16)(1.0e-11) (1.00) (1.00) (0) (2.2e-16)

107
6.84 15,153.26 65.92 45.30 7.98 15,169.88 75.08 65.96
(1.00) (1.00) (4.4e-16)(1.7e-11) (1.00) (1.00) (0) (4.4e-16)

based tests when testing uniformity. There does not exist much difference in test

statistics depending on the number of bootstrap replications and the type of edf-based

test statistics. When the one-sided moment based test is used, both Edgington’s

method and Fisher’s method fail to reject the null hypothesis. However, if the two-

sided moment based test is applied at the significance level α2=0.001, uniformity

is rejected. The results of the two-sided moment based tests agree with those of

the smoothing based tests. The density estimate of the P -values in Figure 4.1 does

not lie between the confidence bands, showing that the estimated density departs

from uniformity. Also, both the moment based tests and the density estimate of

the P -values imply that a relatively higher proportion of large P -values results in

the rejection of the null hypothesis. This result conflicts with the usual belief that

large P -values favor the null hypothesis and supports the idea of using the two-sided

moment based tests instead of the one-sided ones.

Rejection of uniformity does not seem to accord with the estimated distribution

of εij from Hart and Cañette (2011). To explain this incompatibility, the following
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Figure 4.1: This figure shows the estimated density of P -values from each edf-based
gof test when testing whether data come from uniform distributions. In these plots,
P -values are obtained based on 107 bootstrap replications. The solid line represents
the density estimate and the dashed lines represent 95% confidence bands for the
density estimate when P -values are from the uniform distribution.

two alternative distributions are considered:

f10(x) =

(
3− 2

√
3

6
x2 +

√
3− 1

2

)
I(−
√
3,
√
3)(x)

f20,h(x) =
√
s2e + h2f̂h(

√
s2e + h2x),

where f̂h is a kernel density estimate using the Gaussian kernel and based on residuals

eij =
Xij − X̄i

si
, and h and se denote the bandwidth of the kernel estimate and the

standard deviation of residuals, respectively. The density f20,h has mean 0 and
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Figure 4.2: This figure shows the distribution functions of four alternatives. The solid
and dashed lines represent the cumulative distribution functions of the alternative
and null distribution, respectively.

variance 1 due to the facts that Ef̂h(X) =
1

np

∑
i

∑
j

eij and Varf̂h(X) = s2e + h2.

The distribution function of these alternatives are shown in Figure 4.2. Especially,

when the alternative is f20,h, we notice that there is little discrepancy between the

cdf of the alternative distribution and that of the uniform distribution. This explains

the apparent contradiction between our test result and the fact the quantile estimate
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of Hart and Cañette (2011) appears very similar to that of a uniform distribution.

Tables 4.2 and 4.3 show the empirical size and power when testing whether data

come from uniform distributions and CvM is applied to every small data set. To

obtain the empirical P -values, 100,000 bootstrap replications were used. Since the

results from Watson are similar to those from CvM, only results from CvM are

shown here. Judging from the power of the one-sided moment based tests and the

distribution of the P -value in Figure 4.3, we note that the test is biased under

the considered alternatives, and the two-sided moment based tests and smoothing

based tests detect departures from uniformity well. Since there exists little difference

between the cdf of f20,h and the uniform cdf, the tests seem to well detect a very

subtle difference between the null and the alternative, especially when we have a large

number of data sets. Also, we notice that the size of Fisher’s method is close to 0.10

when we consider 8,038 small data sets. The sufficient condition that Fisher’s method

based on empirical P -values has the chi-squared null distribution is p = O(
√
N) from

Theorem 2.5.3, and this condition is not satisfied when there are 8,038 small data

sets and just 100,000 bootstrap replications. Unfortunately, using the number of

bootstrap replications satisfying the condition is too large and it is prohibitive to use

too many bootstrap samples due to computing time. Hence, it may be desirable to

use Edgington’s method rather than Fisher’s method when we have more than 1,000

data sets.

To check the hypothesis that the data set comes from a given alternative, our

four tests are applied. The test statistics for Edgington’s method, Fisher’s method,

the smooth test and the order selection test are -3.61, 16,769.07, 13.0, and 13.46 with

P -values 0.0002, 6.8e-5, 0.0003, and 0.0002 when the null density is f10 and CvM

is used. The results when Watson is used are similar to those when CvM is used.

Clearly, both moment based tests and smoothing based tests show strong evidence
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against the null density, f10. To test whether the data set is from density f20,h, we

should not use the entire data set. If the whole data set is exploited, we use the

same data set twice: it is used to obtain the kernel density estimate and to compute

the test statistics. This indicates that the obtained results are not fair. Hence, the

data set is randomly divided into half. Either of the two data sets can be used to

obtain the kernel density estimate, and the test can be applied to the remaining one.

To prevent the test results from depending on one random data split, we split the

data set in two twenty times, and the results are shown in Table 4.4. When the

bandwidth 0.15 is used, none of the randomly split data sets rejects the null. On

the contrary, if either the bandwidth 0.2 or the bandwidth 0.3 is used, some reject

the null. According to these results, it seems reasonable to conclude that f20,0.15

is a good model for the distribution of the error density. We reiterate that this

result is consistent with the estimated distribution of εij by Hart and Cañette (2011)

since Figure 4.2 shows that the distribution function of f20,0.15 is close to that of the

uniform distribution.

Tables 4.5 and 4.6 show the test statistics and P -values of moment based tests

and smoothing based tests when testing normality. Both moment based tests using

AD, CvM or Watson reject the null hypothesis regardless of whether one-sided tests

or two-sided tests are used. Smoothing based tests also reject normality.

Results of testing uniformity and normality strongly suggest that the error density

is short-tailed and if we are interested in testing whether the population means are

0, it would be better to use the linear signed rank test with scores designed for

short-tailed densities rather than the t-test.
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Table 4.2: This table shows the size(%) and power(%) of a nominal size 0.05 test.
The null hypothesis is that data come from uniform distributions. CvM is applied
to every small data set. For moment based tests, the one-sided test is used. Each
value is obtained from 2,000 replications.

Edgington’s method Fisher’s method
n p Uniform f10 f20,0.15 f20,0.2 f20,0.3 Uniform f10 f20,0.15 f20,0.2 f20,0.3
5 100 5.8 0.4 1.1 1.3 0.6 6.0 0.5 1.2 1.6 1.2

300 5.7 0.0 0.4 0.1 0.0 5.4 0.1 0.6 0.3 0.4
500 4.7 0.0 0.3 0.2 0.0 4.9 0.2 0.5 0.2 0.1
1000 4.2 0.0 0.0 0.0 0.0 5.6 0.2 0.2 0.5 0.3
8038 5.5 0.0 0.0 0.0 0.0 9.9 2.4 0.2 0.4 0.3

Smooth Test Order Selection Test
n p Uniform f10 f20,0.15 f20,0.2 f20,0.3 Uniform f10 f20,0.15 f20,0.2 f20,0.3
5 100 5.4 12.9 7.0 8.6 8.6 5.0 16.9 9.0 10.4 13.4

300 4.3 38.5 14.6 19.6 19.6 5.2 41.6 15.9 21.9 32.9
500 5.1 57.7 25.1 31.4 31.4 5.1 59.8 26.2 32.5 50.6
1000 5.2 89.0 42.9 55.4 55.4 4.2 89.0 42.1 54.7 79.0
8038 5.3 100.0 100.0 100.0 100.0 5.3 100.0 100.0 100.0 100.0

Table 4.3: This table shows the size(%) and power(%) of the two-sided moment
based tests. The null hypothesis is that data come from uniform distributions. CvM
is applied to every small data set. The nominal size is 0.05 and the significance level
α2=0.01 is used. Each value is obtained from 2,000 replications.

Edgington’s method Fisher’s method
n p Uniform f10 f20,0.15 f20,0.2 f20,0.3 Uniform f10 f20,0.15 f20,0.2 f20,0.3
5 100 6.1 10.9 5.4 7.0 8.2 6.4 9.9 4.9 6.3 7.0

300 5.8 31.1 10.2 13.9 22.4 5.3 25.1 8.4 10.7 16.4
500 4.3 48.9 17.2 24.7 38.7 4.8 37.5 12.8 15.7 27.6
1000 4.8 83.3 32.7 43.0 70.0 5.7 71.0 23.9 29.6 52.6
8038 5.3 100.0 32.7 43.0 70.0 9.3 100.0 100.0 100.0 100.0

Table 4.4: This table shows the percentage of rejections in 20 random splits of the
data when we test whether the data come from f20,h.

bandwidth
CvM Watson

Edgington Fisher Smooth Order Edgington Fisher Smooth Order
0.15 0 0 0 0 0 0 0 0
0.2 20.0 10.0 10.0 10.0 20.0 10.0 10.0 5.0
0.3 55.0 55.0 40.0 50.0 55.0 55.0 40.0 55.0
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Figure 4.3: This figure shows the estimated density of P -values when testing unifor-
mity and data come from alternative distributions. The solid line in each plot is the
median of 1,000 kernel density estimates and the dashed lines are 0.025 and 0.975
percentiles of kernel density estimates.
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Table 4.5: This table shows the test statistics and P -values of moment based tests
regarding the number of bootstrap replications when testing whether the data set
comes from normal distributions. The numbers in parentheses are the one-sided
P -values.

Bootstrap
Replications

AD CvM Watson
Edgington Fisher Edgington Fisher Edgington Fisher

105 -7.44 17,280 -7.16 17,160 -7.61 17,307
(5.0e-14) (2.7e-11) (1.9e-13) (1.6e-9) (2.2e-13) (1.0e-11)

106 -7.27 17,232 -6.98 17,115 -7.44 17,264
(1.8e-13) (1.5e-10) (1.5e-12) (6.8e-9) (5.0e-15) (4.8e-11)

107 -7.25 17,231 -6.95 17,112 -7.41 17,261
(2.1e-13) (1.5e-10) (1.8e-12) (7.5e-9) (5.0e-14) (5.4e-11)

Table 4.6: This table shows the test statistics and P -values of smoothing based tests
regarding the number of bootstrap replications when testing whether the data set
comes from normal distributions. The numbers in parentheses are the P -values.

Bootstrap
Replications

AD CvM Watson
Smooth Order Smooth Order Smooth Order

105 59.27 49.69 51.20 46.60 62.16 52.10
(1.4e-14) (1.8e-12) (8.3e-13) (8.7e-12) (3.2e-15) (5.3e-13)

106 55.39 48.86 48.74 45.89 58.62 51.19
(9.9e-14) (2.7e-12) (2.9e-12) (1.3e-11) (1.9e-14) (8.4e-14)

107 55.17 51.67 48.28 48.72 58.16 54.20
(1.1e-13) (6.6e-13) (3.7e-12) (3.0e-12) (2.4e-14) (1.8e-13)
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5. METHODOLOGY FOR NON-LOCATION AND SCALE FAMILY

When the null distribution is not in a location and scale family, the distributions

of AD, CvM and Watson statistics depend on unknown parameters, indicating that

the methodology in Chapter 2 cannot be applied. Several approaches have been

proposed to deal with unknown parameters. One method is the half-sample method,

which uses half of a data set to estimate the parameters, and computes gof test

statistics based on the entire data set. This method asymptotically guarantees that

the null distribution of test statistics when nuisance parameters are present is the

same as that when nuisance parameters are not present. Stephens (1978) investigated

the half-sample method when testing normality or exponentiality, and he found that

there is considerable loss in power. Also, Braun (1980) suggested another method

dealing with unknown parameters. The method randomly divides a data set into

several groups and calculates gof test statistics for each group using estimates of

parameters from all the observations. Each test statistic is compared to Bonferroni

adjusted critical values and the null hypothesis is rejected when at least one test

statistic is significant.

Clearly, both approaches might be used when we have a data set with a large

enough sample size. When we have a large number of data sets with few replications,

another approach to deal with unknown parameters is necessary. To handle the de-

pendence on unknown parameters, we further assume that θ1, . . . , θp are independent

and identically distributed from a distribution G. We also assume that either there

exists one unknown parameter or there are two unknown parameters, one of which

is a location or scale parameter, to avoid the difficulty of dealing with multiple un-

known parameters. In Section 5.1, the way to handle an unknown parameter will be
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suggested. In Section 5.2, several issues which arise due to the existence of unknown

parameters, such as the size of tests and the independence between P -values, will be

discussed and simulation results will be shown when the null is a gamma distribution.

5.1 Estimating the distribution of unknown parameters and testing procedure

One way to handle the unknown parameter is to estimate its distribution and

use the distribution to obtain unconditional P -values for every small data set. In

the current setting, estimating the distribution of unknown parameters is equivalent

to estimating a mixing distribution. Lindsay (1983) shows that for maximization

purposes it is sufficient to consider a discrete measure with a finite set of positive

probability, and the number of points of the support would not exceed the number

of distinct data points. This implies that g, the density corresponding to G, can be

estimated by a histogram-type estimator.

One issue related to this problem is identifiability of G. There is a literature

exploring this issue (Teicher, 1961; Barndorff-Nielsen, 1965). Lindsay (1981) points

out, however, that even if the mixing distribution G itself is not identifiable, there

will be parameters of the mixture system which will be identifiable and estimable

by the method of maximum likelihood. Hence, the mixing distribution, G, is either

identifiable or not, but we can still estimate G using the maximum likelihood method.

Also, since the purpose of estimating the density g is using it to obtain unconditional

empirical P -values, identifiability of G does not matter.

Estimating the mixing distribution is a problem of maximizing the marginal like-

lihood of G. The only thing which is necessary to be found is the marginal likelihood.

Suppose that f(x;α, β) =
1

β
f

(
x

β
;α, 1

)
, i.e., distributions have a scale parameter

and another parameter which is a shape parameter. Examples of such distributions

are gamma and Weibull distributions. We also assume that Xi1, . . . , Xin are inde-

129



pendent and identically distributed f(·|αi, βi) given (αi, βi). It can be easily verified

that the distribution of Ui =

(
Xi1

Xin

, . . . ,
Xi,n−1

Xin

)
, i = 1, . . . , p, depends only on the

parameter αi. Let h be the density function of Ui. Then the likelihood of a candidate

G̃ for G is

L(G̃) =

p∏
i=1

∫
h(Ui;α)dG̃(α).

We may model the density function g corresponding to distribution function G as

g(α|p) =
k

L

k∑
j=1

pjI(L(j−1)
k

,Lj
k )(α),

where L > 0 is assumed to be such that P (α < L) ≈ 1, and p = (p1, . . . , pk). Hence,

the marginal log-likelihood of p = (p1, . . . , pk) can be expressed as

l(p) =

p∑
i=1

log

(
k

L

k∑
j=1

pj

∫ Lj/k

L(j−1)/k
h(ui|α)dα

)
. (5.1)

The unconditional P -value of an observed test statistic t is P (t) = P (T > t) =∫
P (T > t|α)dG(α). Given an estimate Ĝ of G we may estimate the P -value by

P̂ (t) =

∫
P (T > t|α)dĜ(α). Since the unconditional P -values P (T1), . . . , P (Tp) are

independent and identically distributed, and follow the uniform distribution under

the null, it is reasonable to apply any one of the test procedures studied in Chapter

2. More specifically, we may proceed as follows:

1. For every small dataset, apply AD, CvM or Watson.

2. Estimate the distribution of the shape parameter by maximizing the marginal

log-likelihood l(p) in (5.1).

3. For some large number B, generate a sample α∗1, . . . , α
∗
B from g(α|p̂).
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4. Generate random samples of the same sample size as the data sets from f(x;α∗i , 1),

i = 1, . . . , B, and compute AD, CvM or Watson for each of the B data sets.

5. Find the empirical unconditional P -values,
1

B

B∑
j=1

I(T ∗j > Ti) where T ∗j and Ti

are test statistics from steps 4 and 1, respectively, and i = 1, . . . , p.

6. Apply moment based tests or smoothing based tests to the empirical uncondi-

tional P -values from step 5.

When the null is from a location and scale family, to obtain empirical P -values

we just need to generate bootstrap samples using the null distribution with location

parameter 0 and scale parameter 1, because edf-based tests are invariant to location

and scale parameters. When data are from a non-location and scale family, however,

we need to generate bootstrap samples using the estimated density function g. This

implies that there are two sources of error in this case: one is the error due to the

finite number of bootstrap replications, and the other is the error due to estimating

the density g. Hence, it is essential to find an appropriate number of bootstrap repli-

cations and number of bins. Since we use the whole data set to estimate the density

g, one may also question whether unconditional P -values in step 5 are independent

and identically distributed as the uniform distribution. These issues will be explored

by an example of testing whether data come from gamma distributions in the next

section.

5.2 Testing whether data come from gamma distributions

Suppose X1, . . . , Xn are i.i.d with gamma distribution having shape parameter α

and rate parameter β. Then the density of

(
X1

Xn

, . . . ,
Xn−1

Xn

)
is

f(y1, . . . , yn−1|α) =
Γ(nα)

Γ(α)n

(
n−1∏
i=1

yi

)α−1(
1 +

n−1∑
i=1

yi

)−nα
, where yi =

Xi

Xn

. (5.2)
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Figure 5.1: This figure shows the estimated distribution of the shape parameter
when data come from gamma distributions. Shape parameters are generated from
an exponential distribution with rate parameter 1, and then 1/2 is added. The left
and right plots are the estimated distribution of the shape parameter for the number
of bins, 500 and 1,000, respectively. In each plot, the solid and dotted lines represent
the estimated distribution and the true distribution, respectively.

Using (5.2), we can now compute the likelihood of a candidate for g. To apply

the test procedure in Section 5.1, we need to determine the number of bootstrap

replications and bins. As a test case, we consider a situation when we have 1,000

data sets with 5 replications. The shape parameters of the gamma distributions are

generated from an exponential distribution with a rate parameter 1, and then 1/2

is added to the obtained shape parameters. This distribution is selected because it
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has a relatively low probability of having large values. Choosing such a distribution

is important because D’Agostino and Stephens (1986, p.156) point out that, when

testing whether data come from gamma distributions, critical values of AD or CvM

do not change much for relatively large shape parameters. This implies that, when

we have relatively large shape parameters, there is a possibility that tests may attain

the right size even if the estimated density of the shape parameter is far from the true

density. Since Lindsay (1981) shows that the number of bins need not exceed the

number of data sets, three numbers of bins, 500, 750 and 1,000 will be considered.

Figure 5.1 shows the true and the estimated distributions of the shape parameter

under 500 and 1,000 bins. For both numbers of bins, the estimated distribution is

close to the true distribution. Tables 5.1 and 5.2 show the empirical size of tests at

the significance level 0.05, for the different numbers of bins and replications. The

size of tests tends to approach to the significance level as the number of bootstrap

replication increases. Even if the number of replications is 15,000, however, the size

of moment based tests is prone to be greater than 0.05 when the number of bins is

500 or 750. Only when the number of bootstrap replications is 10,000 or 15,000, and

the number of bins is 1,000 do we obtain the right size for both moment based and

smoothing based tests.

Another issue of interest is whether the obtained empirical P -values are inde-

pendent of each other and are approximately uniformly distributed. Checking these

might not be pragmatically necessary when the right size is obtained. However,

since the right size does not guarantee independence and uniformity of empirical

unconditional P -values, we will check these only for cases which have the right size.

Specifically, we will check uniformity by the uniform Q-Q plot and tests of uniformity,

and the independence will be checked by Hoeffding’s independence test (Hoeffding,

1948).
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Table 5.3 shows the results from testing uniformity at the significance level 0.05.

The results do not seem to indicate departures from uniformity. Also, the uniform

Q-Q plot in Figure 5.2 supports the uniformity of unconditional P -values from AD.

We note that one P -value is randomly selected from each replication to draw the

uniform Q-Q plot because the uniformity might be exaggerated by dependence if all

P -values from the same replication were used. Even though the uniform Q-Q plots

of P -values from CvM or Watson are not shown here, they also support uniformity.

To perform the Hoeffding’s independence test, 100 pairs of P -values are randomly

selected from each replication. Specifically, 200 P -values are randomly selected from

Table 5.1: This table shows the size(%) of moment based tests according to the
number of bins and replications for 1,000 data sets with sample sizes 5. Each value
is obtained from 1,000 replications.

Bins Replications
Edgington’s method Fisher’s method
AD CvM Watson AD CvM Watson

500

2,000 11.1 9.9 9.9 12.2 11.5 10.7
4,000 9.0 7.2 7.3 8.8 8.2 8.1
6,000 8.0 6.6 6.3 8.5 7.2 7.2
8,000 7.6 6.6 6.4 8.5 7.0 7.0
10,000 7.6 7.8 7.2 7.4 7.2 6.6
15,000 7.2 6.0 6.2 6.0 6.4 6.8

750

2,000 10.1 10.3 10.6 11.4 10.9 10.8
4,000 8.3 8.0 8.2 7.6 8.8 8.4
6,000 6.4 6.6 6.4 6.7 6.9 6.7
8,000 6.8 6.8 6.9 7.2 6.6 6.3
10,000 6.1 5.4 4.9 5.6 5.8 5.3
15,000 7.7 6.8 6.9 7.2 7.5 6.8

1,000

2,000 10.4 10.2 9.9 10.4 9.0 8.5
4,000 7.3 7.4 7.4 8.7 8.3 8.3
6,000 6.4 6.8 6.9 6.8 7.3 7.4
8,000 5.9 5.5 5.4 5.8 6.4 6.2
10,000 5.1 4.2 4.7 5.8 5.5 5.1
15,000 5.1 4.4 4.5 6.7 5.6 5.2
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each replication, and are divided in half. Then, the first P -value from each group is

chosen to make a pair, and the remaining pairs are obtained in the same way. The

results are shown in Table 5.4, and they indicate that the independence assumption

is not violated.

Tables 5.5 to 5.10 show the empirical size and power of tests when we test whether

data come from gamma distributions. In the simulation, two alternative distribu-

tions, log-normal distributions and Weibull distributions, are considered, and shape

parameters are generated from an exponential distribution with a rate parameter

1, and then 1/2 is added. The distribution of the shape parameter is estimated by

Table 5.2: This table shows the size(%) of smoothing based tests according to the
number of bins and replications for 1,000 data sets with sample sizes 5. Each value
is obtained from 1,000 replications.

Bins Replications
Smooth Test Order Selection Test

AD CvM Watson AD CvM Watson

500

2,000 13.4 13.9 13.6 13.7 14.6 14.7
4,000 7.6 8.5 8.7 8.3 8.8 8.5
6,000 8.5 8.9 8.8 8.1 8.3 8.0
8,000 6.2 6.7 7.0 6.1 7.1 7.4
10,000 5.8 5.8 6.0 6.6 6.0 6.0
15,000 4.8 5.8 6.2 4.6 4.0 4.8

750

2,000 13.3 12.7 13.7 12.6 13.7 13.9
4,000 8.9 9.4 9.7 8.5 9.2 8.9
6,000 6.8 7.5 7.2 5.7 7.0 6.9
8,000 6.6 6.1 6.1 6.0 5.8 5.5
10,000 5.8 5.3 5.3 5.2 5.7 5.6
15,000 5.4 6.4 6.0 5.7 6.5 6.4

1,000

2,000 16.0 12.5 12.4 11.6 11.4 13.9
4,000 8.5 8.9 9.6 8.3 10.3 9.7
6,000 7.1 6.7 6.6 7.0 6.6 6.4
8,000 7.1 7.5 7.6 6.9 6.3 6.6
10,000 4.6 5.4 5.8 5.0 5.5 5.4
15,000 4.1 4.5 4.7 4.0 5.0 4.9
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Figure 5.2: Both plots show the uniform Q-Q plot where the dashed line is a straight
line with intercept 0 and slope 1.

using the number of bins equal to the number of data sets. Since both numbers of

bootstrap replications, 10,000 and 15,000, seem to guarantee P -values that are in-

dependent and identically distributed as the uniform distribution, 10,000 bootstrap

replications were used in the simulation to save computational time. In practice,

if we have one data set, it may be better to use 15,000 bootstrap replications. We

notice that, when moment based tests are applied, the size of tests is larger than the

nominal level of 0.05. Even if we have 1,000 data sets with 10 observations, Fisher’s

method still fails to attain the right size. This indicates that more bootstrap repli-

cations are required for Fisher’s method.

There exists a severe bias problem when the alternative is a log-normal distribu-

tion and moment based tests are applied to P -values from AD. One interesting thing
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Table 5.3: This table shows the rejection percentage of testing uniformity of P -values
from edf-based gof tests at the significance level α = 0.05. Each value is obtained
from 1,000 replications.

Bins Replications
Smooth Test Order Selection Test

AD CvM Watson AD CvM Watson

1,000
10,000 4.6 5.4 5.8 5.0 5.5 5.4
15,000 4.1 4.5 4.7 4.0 5.0 4.9

Table 5.4: This table shows the rejection percentage of Hoeffding’s independence
test based on 100 randomly selected pairs of P -values from AD, CvM or Watson at
the significance level α = 0.05. Each value is obtained from 1,000 replications.

Bins Replications AD CvM Watson

1,000
10,000 5.0 4.0 6.0
15,000 4.0 3.0 5.0

is that moment based tests based on P -values from CvM or Watson do not have the

bias problem. Also, it seems that the bias problem is resolved when the two-sided

moment based tests are applied at the significance level α2=0.01, except in the case

of 100 data sets with sample sizes 5.

Figures 5.3 and 5.4 show the empirical power and relative decrease in power when

the two-sided moment based tests are applied to 100 data sets with 5 observations

at different significance levels α2. When the alternative is a log-normal distribution,

Fisher’s method using P -values from CvM is the most powerful regardless of the

significance levels α2. In this case, the relative power decrease may be immaterial, but

it still provides insights regarding a choice of the significance level α2. For example,

Figure 5.3 shows that at least 10% of power decreases when the significance level α2

is greater than 0.009. One interesting thing is that, even if the power of Edgington’s

method based on AD is less than the nominal level of 0.05, it does not increase at
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significance levels α2 greater than 0.003. Especially, the bias problem of AD is not

resolved even if an evenly divided significance level is used. When the alternative is a

Weibull distribution, Fisher’s method based on CvM has the highest power when the

significance level α2 is less than 0.019. On the contrary, Edgington’s method based

on AD has the best power when the significance level α2 is greater than 0.021. Also,

the power of Fisher’s method tends to decrease relatively more than Edgington’s

method regardless of the type of gof tests, indicating that a cautious choice of the

significance level α2 may be more important for Fisher’s method.

Tables 5.11 to 5.16 show the local power, i.e., 90% of data sets are from the null

distribution, and the effect of the significance level α2 is investigated in Figures 5.5

and 5.6. We notice that, when AD is applied, the power under the log-normal local

alternatives is greater than that under the log-normal fixed alternatives. This result

is surprising because it may not be expected that power increases when fewer data

sets are from alternative distributions, and it happens due to the fact that AD is

biased when data come from log-normal distributions, as shown in Table 5.5. Figure

5.5 shows that the power under the log-normal local alternatives is below the size

when either Edgington’s method or AD is used at some significance levels, such as

0.02. Also, we notice that the relative decrease in the power is the biggest when

Fisher’s method is applied to P -values from AD. These results may suggest CvM or

Watson is preferable to AD.

Under the log-normal local alternatives, when CvM or Watson is used, Fisher’s

method attains the best power. However, under the Weibull local alternatives, there

does not exist much difference in power according to the P -value combining methods.

Such power results can be explained by the strength of evidence against the null.

Figures 5.7 and 5.8 show the density estimate of the P -value when data sets are

from log-normal distributions and Weibull distributions, respectively. The density of
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the P -value, when Watson is applied, is not shown here, but it is similar to the density

of the P -value when CvM is applied. From these figures, we notice that evidence

against the null under the log-normal alternative is stronger than that under the

Weibull alternative. Especially, when CvM is applied to data sets with the sample

size 10, the evidence against the null is the strongest. This accords with higher power

of Fisher’s method than Edgington’s method when CvM or Watson is applied to data

sets that are from a mixture of gamma and log-normal distributions. According to

the power results, when testing whether data come from gamma distributions, CvM

or Watson is preferable to AD under both fixed and local alternatives. Also, moment

based tests tend to have higher power than smoothing based tests.
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Table 5.5: This table shows the size(%) and power(%) of a nominal size 0.05 test.
The null hypothesis is that data come from gamma distributions and AD is used to
compute the P -value. For moment based tests, the one-sided test is applied. Each
value in the table is obtained from 1,000 replications.

Edgington’s method Fisher’s method
n p GammaLog-normalWeibullGammaLog-normalWeibull
5 100 8.4 2.8 11.4 9.4 0.1 9.2

300 6.7 0.3 9.8 7.5 0.0 5.5
500 7.1 0.0 11.2 7.0 0.0 4.5
1000 5.1 0.0 12.5 5.8 0.0 4.5

10 100 9.1 44.7 19.0 11.7 28.0 14.8
300 6.5 63.0 23.4 8.4 16.8 12.4
500 6.2 78.6 30.5 6.8 17.8 14.8
1000 5.3 93.2 47.0 6.4 18.3 18.2

Smooth Test Order Selection Test
n p GammaLog-normalWeibullGammaLog-normalWeibull
5 100 5.5 9.7 6.4 5.3 4.7 8.1

300 4.7 45.5 6.0 4.9 28.9 7.5
500 6.2 77.0 7.5 6.1 66.7 7.8
1000 4.6 99.6 9.6 5.0 99.2 10.4

10 100 6.1 21.2 9.3 5.3 30.3 11.0
300 5.5 43.2 12.3 5.0 50.3 14.9
500 5.3 64.2 18.7 5.0 70.6 20.1
1000 3.4 81.4 24.1 5.8 90.8 37.0

Table 5.6: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from gamma distributions and AD
is used to compute the P -value. The nominal size is 0.05 and the significance level
α2=0.01 is used. Each value in the table is obtained from 1,000 replications.

Fisher’s method Edgington’s method
n p Gamma Log-normal Weibull Gamma Log-normal Weibull
5 100 7.1 2.7 10.1 7.8 1.9 7.7

300 5.5 5.6 8.6 6.1 34.7 5.4
500 7.0 14.7 9.6 5.9 76.6 4.1
1000 5.0 45.5 10.8 5.3 98.9 5.1

10 100 7.3 39.7 16.1 9.6 24.1 12.7
300 6.0 57.9 21.0 7.3 12.7 10.7
500 5.6 74.9 27.2 6.3 15.4 12.9
1000 4.8 91.0 42.8 6.2 14.6 15.9

140



Table 5.7: This table shows the size(%) and power(%) of a nominal size 0.05 test.
The null hypothesis is that data come from gamma distributions and CvM is used to
compute the P -value. For moment based tests, the one-sided test is applied. Each
value in the table is obtained from 1,000 replications.

Edgington’s method Fisher’s method
n p GammaLog-normalWeibullGammaLog-normalWeibull
5 100 5.7 33.9 11.5 6.4 61.7 13.2

300 7.0 41.1 10.3 7.0 71.8 11.5
500 5.9 51.3 12.6 6.1 83.7 12.8
1000 4.2 72.3 16.8 5.5 95.5 18.3

10 100 8.2 96.0 17.2 8.5 99.7 23.1
300 6.7 100.0 22.9 7.2 100.0 30.1
500 5.7 100.0 28.4 7.0 100.0 37.3
1000 6.2 100.0 42.5 5.9 100.0 54.9

Smooth Test Order Selection Test
n p GammaLog-normalWeibullGammaLog-normalWeibull
5 100 5.9 23.6 7.0 5.0 20.2 7.8

300 5.4 30.0 8.7 5.3 27.1 9.1
500 6.3 40.4 9.8 6.1 36.9 8.2
1000 5.4 62.1 11.9 5.5 58.9 12.2

10 100 6.5 96.0 9.2 6.1 92.0 11.3
300 5.4 100.0 13.6 5.4 100.0 14.4
500 5.1 100.0 16.2 5.1 100.0 15.7
1000 3.6 100.0 21.1 6.9 100.0 29.6

Table 5.8: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from gamma distributions and
CvM is used to compute the P -value. The nominal size is 0.05 and the significance
level α2=0.01 is used. Each value in the table is obtained from 1,000 replications.

Edgington’s method Fisher’s method
n p Gamma Log-normal Weibull Gamma Log-normal Weibull
5 100 5.6 29.2 10.0 6.2 57.7 11.7

300 6.6 37.1 9.6 6.5 67.9 10.2
500 6.0 46.5 10.7 5.6 81.3 11.0
1000 5.0 67.2 15.1 6.5 95.5 18.6

10 100 7.3 94.8 14.9 7.4 99.7 20.0
300 6.4 100.0 19.8 6.9 100.0 26.7
500 5.4 100.0 25.6 6.5 100.0 34.1
1000 6.4 100.0 38.5 7.0 100.0 54.9
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Table 5.9: This table shows the size(%) and power(%) of a nominal size 0.05 test.
The null hypothesis is that data come from gamma distributions and Watson is used
to compute the P -value. For moment based tests, the one-sided test is applied. Each
value in the table is obtained from 1,000 replications.

Edgington’s method Fisher’s method
n p GammaLog-normalWeibullGammaLog-normalWeibull
5 100 5.9 32.3 9.9 5.9 45.4 11.3

300 7.0 43.8 9.2 6.6 60.5 9.4
500 5.7 56.8 10.5 6.7 72.3 10.0
1000 4.7 78.6 14.1 5.1 90.5 13.4

10 100 7.6 96.5 13.1 7.7 99.7 14.7
300 6.2 100.0 16.4 7.0 100.0 16.8
500 5.2 100.0 17.8 5.9 100.0 20.2
1000 6.1 100.0 29.0 6.0 100.0 29.0

Smooth Test Order Selection Test
n p GammaLog-normalWeibullGammaLog-normalWeibull
5 100 6.0 19.1 6.9 4.5 19.7 6.7

300 4.7 31.2 7.8 5.0 29.7 8.0
500 5.5 44.5 9.3 5.6 43.2 7.8
1000 5.8 68.6 10.5 5.4 67.5 10.4

10 100 6.2 94.6 7.7 5.9 91.7 8.0
300 5.5 100.0 9.1 5.6 100.0 10.3
500 5.3 100.0 10.5 4.9 100.0 9.9
1000 3.3 100.0 11.1 7.1 100.0 18.50

Table 5.10: This table shows the size(%) and power(%) of the two-sided moment
based test. The null hypothesis is that data come from gamma distributions and
Watson is used to compute the P -value. The nominal size is 0.05 and the significance
level α2=0.01 is used. Each value in the table is obtained from 1,000 replications.

Edgington’s method Fisher’s method
n p Gamma Log-normal Weibull Gamma Log-normal Weibull
5 100 5.3 27.9 8.7 5.4 41.3 9.4

300 6.8 39.7 9.2 6.4 56.5 8.3
500 6.0 51.7 9.1 5.8 68.5 8.8
1000 6.4 78.6 14.8 6.3 90.5 13.7

10 100 7.3 94.4 11.5 7.1 99.6 13.6
300 6.5 100.0 13.6 6.5 100.0 14.8
500 5.5 100.0 15.2 6.2 100.0 17.0
1000 7.7 100.0 29.1 7.0 100.0 29.1
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Figure 5.3: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels, α2, respectively.
In both plots, black, blue and red lines represent AD, CvM, and Watson, respectively.
Also, the solid and dashed lines represent Edgington’s method and Fisher’s method,
respectively. The dotted line in the left plot denotes the significance level 0.05.

Table 5.11: This table shows the local power(%) of a nominal size 0.05 test when 90%
of data sets are from the null distributions. The null hypothesis is that data come
from gamma distributions and AD is applied to every small data set. For moment
based tests, the one-sided test is used.

Edgington’s method Fisher’s method Smooth Test Order Selection Test
n p Log-NormalWeibull Log-NormalWeibullLog-NormalWeibullLog-Normal Weibull

5 100 6.6 8.7 7.0 10.1 3.9 5.9 4.7 6.5
300 5.3 6.5 3.4 5.8 5.6 5.5 5.3 3.9
500 4.8 8.9 2.2 8.5 5.1 7.2 5.2 6.8
1000 4.0 5.3 1.2 4.8 3.5 3.5 6.4 6.2

10 100 10.8 8.8 11.6 10.9 6.3 7.2 5.8 5.2
300 9.1 8.4 7.1 7.7 6.5 5.7 5.7 6.0
500 9.2 8.8 6.9 8.1 5.5 6.9 5.6 6.3
1000 10.1 7.9 6.5 7.3 3.5 2.3 6.4 4.9
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Figure 5.4: The left and right plots show the power of the two-sided moment based
tests and the relative power decrease over various significance levels, α2, respectively.
In both plots, black, blue and red lines represent AD, CvM, and Watson, respectively.
Also, the solid and dashed lines represent Edgington’s method and Fisher’s method,
respectively. The dotted line in the left plot denotes the significance level 0.05.

Table 5.12: This table shows the local power(%) of two-sided moment based tests
when 90% of data sets are from the null distributions. The null hypothesis is that
data come from gamma distributions and AD is applied to every small data set. The
nominal size is 0.05 and the significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Log-Normal Weibull Log-NormalWeibull
5 100 5.5 7.3 6.2 8.7

300 5.2 5.9 3.9 5.3
500 5.5 8.2 2.6 7.1
1000 3.9 5.3 3.2 5.2

10 100 9.5 7.4 9.0 8.5
300 8.0 7.8 5.9 7.0
500 7.4 7.4 5.4 7.0
1000 8.7 6.4 5.4 6.6
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Table 5.13: This table shows the local power(%) of a nominal size 0.05 test when
90% of data sets are from the null distributions at the 5% significance level. The
null hypothesis is that data come from gamma distributions and CvM is applied to
every small data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method Smooth Test Order Selection Test
n p Log-NormalWeibull Log-NormalWeibullLog-NormalWeibullLog-Normal Weibull

5 100 7.6 7.2 10.7 7.9 5.9 5.7 4.5 6.7
300 8.6 6.5 11.4 6.9 5.8 5.4 6.3 4.9
500 7.6 9.3 9.6 8.9 5.9 7.5 5.4 7.2
1000 9.2 6.4 12.4 7.1 7.2 6.6 6.5 6.5

10 100 12.7 8.4 23.0 9.5 10.0 6.4 8.2 5.5
300 14.3 7.4 31.6 7.6 13.2 6.2 8.9 5.0
500 16.9 8.6 38.1 9.0 12.8 7.2 10.3 7.4
1000 23.1 7.5 55.4 9.5 17.3 5.9 14.9 5.7

Table 5.14: This table shows the local power(%) of two-sided moment based tests
when 90% of data sets are from the null distributions. The null hypothesis is that
data come from gamma distributions and CvM is applied to every small data set.
The nominal size is 0.05 and the significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Log-Normal Weibull Log-NormalWeibull
5 100 6.1 7.3 8.9 7.4

300 7.5 5.9 10.2 5.8
500 6.6 8.9 8.6 8.2
1000 7.8 6.6 11.6 6.7

10 100 11.2 7.7 18.9 8.1
300 12.7 6.8 27.8 6.5
500 14.5 7.6 34.5 8.1
1000 20.7 6.7 51.1 8.0

145



Table 5.15: This table shows the local power(%) of a nominal size 0.05 test when
90% of data sets are from the null distributions at the 5% significance level. The
null hypothesis is that data come from gamma distributions and Watson is applied
to every small data set. For moment based tests, the one-sided test is used.

Edgington’s method Fisher’s method Smooth Test Order Selection Test
n p Log-NormalWeibull Log-NormalWeibullLog-NormalWeibullLog-Normal Weibull

5 100 7.6 6.8 9.3 7.7 5.9 5.7 4.4 7.0
300 8.7 5.9 9.8 6.6 6.4 5.3 6.6 4.8
500 7.7 9.3 9.1 8.4 6.1 7.4 6.0 7.2
1000 9.3 5.9 11.8 6.7 4.6 3.9 7.1 6.2

10 100 12.8 7.9 18.0 9.0 9.2 6.9 8.1 5.1
300 15.1 6.8 28.0 6.6 12.3 6.1 9.5 5.0
500 17.8 7.5 37.2 8.4 12.4 7.4 10.3 7.2
1000 24.9 6.7 54.5 7.1 11.7 2.6 16.5 5.4

Table 5.16: This table shows the local power(%) of two-sided moment based tests
when 90% of data sets are from the null distributions. The null hypothesis is that
data come from gamma distributions and Watson is applied to every small data set.
The nominal size is 0.05 and the significance level α2=0.01 is used.

Edgington’s method Fisher’s method
n p Log-Normal Weibull Log-NormalWeibull
5 100 6.1 7.3 8.9 7.4

300 7.5 5.9 10.2 5.8
500 6.6 8.9 8.6 8.2
1000 7.8 5.7 10.4 6.9

10 100 11.2 7.7 18.9 8.1
300 12.7 6.8 27.8 6.5
500 14.5 7.6 34.5 8.1
1000 22.4 5.7 50.1 6.5
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Figure 5.5: The left and the right plots show the power of the two-sided tests and
the relative power decrease over various significance levels, α2, respectively. In both
plots, black, blue and red lines represent AD, CvM, and Watson, respectively. Also,
the solid and dashed lines represent Edgington’s method and Fisher’s method, re-
spectively. The dotted line in the left plot denotes the significance level, 0.05.
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Figure 5.6: The left and the right plots show the power of the two-sided tests and
the relative power decrease over various significance levels, α2, respectively. In both
plots, black, blue and red lines represent AD, CvM, and Watson, respectively. Also,
the solid and dashed lines represent Edgington’s method and Fisher’s method, re-
spectively. The dotted line in the left plot denotes the significance level, 0.05.
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Figure 5.7: This figure shows the estimated density of P -values under the log-normal
alternatives when testing whether data come from gamma distributions. In each plot,
the solid line is the median of 100 kernel density estimates and the dashed lines are
0.025 and 0.975 percentiles of kernel density estimates.
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Figure 5.8: This figure shows the estimated density of P -values under the Weibull
alternatives when testing whether data come from gamma distributions. In each
plot, the solid line is the median of 100 kernel density estimates and the dashed lines
are 0.025 and 0.975 percentiles of kernel density estimates.
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6. SUMMARY AND FURTHER RESEARCH

6.1 Summary

In this dissertation, gof test procedures for a large number of small data sets are

suggested and compared. The basic approach is to apply edf based gof tests to every

small data set and use the fact that P -values follow the uniform distribution under

the null. By exploiting uniformity, moment based tests or smoothing based tests can

be applied to P -values to test whether all data sets come from a distribution in a

specific parametric family. The two moment based tests, Edgington’s method and

Fisher’s method, are compared regarding Pitman efficiency, and Edgington’s method

is shown to be slightly more efficient than Fisher’s method. Also, for moment based

tests, the two-sided test is suggested to handle possible bias due to small sample sizes.

The effects of the two-sided tests are investigated under local alternatives at various

significance levels α2. These investigations indicate that it may be reasonable to use

the significance level α2 less than 0.015 at the significance level 0.05. Since the exact

null distributions of edf based gof tests are unknown, we need to generateN bootstrap

samples to obtain P -values. Conditions which guarantee that the asymptotic null

distribution of moment based tests based on empirical P -values is the same as that

based on exact P -values are found. For Edgington’s method, the condition is p =

o(N), and for Fisher’s method, the condition is p = o(
√
N).

When the null distribution is in a location and scale family, we can apply the

suggested procedures easily because edf based gof tests are free of location and scale

parameters. However, when the null distribution is not in a location and scale family,

such as the gamma distribution, an additional step of estimating the distribution of

an unknown parameter is required. The distribution of the unknown parameter can
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be estimated by a histogram-type estimator. Since both the precision of the esti-

mated density of the unknown parameter and the number of bootstrap replications

may affect the fact that unconditional P -values are independent and asymptotically

follow the uniform null distribution, effects of the number of bins and bootstrap repli-

cations are explored through the example of testing whether data come from gamma

distributions. The example suggests that at least 10,000 bootstrap replications and

the number of bins equal to the number of data sets are appropriate.

The power of moment based tests and that of smoothing based tests are inves-

tigated through simulations. Simulation results show that the two-sided moment

based tests might not correct the bias problem, especially when we have a relatively

small number of data sets, such as 100. Also, AD seems to suffer from a bias problem

more frequently than CvM or Watson and Watson tends to have more stable power

than CvM. These results suggest that using a smoothing based test based on Watson

is desirable when we have a large number of data sets with few replications. Also, the

suggested test procedures are applied to a real data set that has 8038 gene expres-

sions from 5 mice. The real data analysis suggests that logged gene expression levels

follow a short-tailed distribution, and if we need to perform a test about population

means, it is better to use the linear signed rank test rather than the t-test.

6.2 Further Research

There are several possibilities for further research. We only found sufficient con-

ditions for Fisher’s method based on empirical P -values to have the chi-squared null

distribution. The condition requires too many bootstrap replications and the simu-

lation results in Chapter 3 indicate that we may need fewer bootstrap replications.

Hence, finding necessary and sufficient conditions that guarantee the chi-squared null

distribution for Fisher’s method based on empirical P -values can be a part of further
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research. Also, the test procedure suggested in this dissertation cannot be applied

when we test whether data come from discrete distributions because the obtained

P -values would be discrete and conservative. Thus, the test procedure is necessary

to be modified to consider discrete null distributions, and this may be another area

of further research.
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APPENDIX A

Theorem A.0.1 (Randles and Wolfe, 1979, Theorem 5.2.7) Let {Sni
} and {Tn′i}

be two sequences of tests, with associated sequences of numbers {µSni
(θ)}, {µT

n
′
i

(θ)},

{σ2
Sni

(θ)} and {σ2
T
n
′
i

(θ)} and satisfying the following Assumptions A1-A6:

A1.
Sni
− µSni

(θi)

σSni
(θi)

and
Tn′i
− µT

n
′
i

(θi)

σT
n
′
i

(θi)

have the same continuous limiting (i → ∞) distribution with c.d.f. H(·) and

interval support when θi is the true value of θ.

A2. Same assumption as in A1 but with θi replaced by θ0 throughout.

A3.

lim
i→∞

σSni
(θi)

σSni
(θ0)

= lim
i→∞

σT
n
′
i

(θi)

σT
n
′
i

(θ0)
= 1.

A4.

d

dθ
[µSni

(θ)] = µ
′

Sni
(θ) and

d

dθ
[µT

n
′
i

(θ)] = µ
′

T
n
′
i

(θ)

are assumed to exist and be continuous in some closed interval about θ = θ0

with µ
′
Sni

(θ0) and µ
′
T
n
′
i

(θ0) both nonzero.

A5.

lim
i→∞

µ
′
Sni

(θi)

µ
′
Sni

(θ0)
= lim

i→∞

µ
′
T
n
′
i

(θi)

µ
′
T
n
′
i

(θ0)
= 1.

A6.

lim
i→∞

µ
′
Sni

(θ0)√
nσ2

Sni
(θ0)

= KS and lim
i→∞

µ
′
T
n
′
i

(θ0)√
n′σ2

T
n
′
i

(θ0)
= KT
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where KS and KT are positive constants. Then

ARE(S, T ) =
K2
S

K2
T

.
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