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ABSTRACT

Many materials in nature are highly heterogeneous and their properties can vary at

different scales. Direct numerical simulations in such multiscale media are prohibitively

expensive and some types of model reduction are needed. Typical model reduction tech-

niques include upscaling and multiscale methods. In upscaling methods, one upscales the

multiscale media properties so that the problem can be solved on a coarse grid. In mul-

tiscale method, one constructs multiscale basis functions that capture media information

and solves the problem on the coarse grid.

Generalized Multiscale Finite Element Method (GMsFEM) is a recently proposed

model reduction technique and has been used for various practical applications. This

method has no assumption about the media properties, which can have any type of compli-

cated structure. In GMsFEM, we first create a snapshot space, and then solve a carefully

chosen eigenvalue problem to form the offline space. One can also construct online s-

pace for the parameter dependent problems. It is shown theoretically and numerically that

the GMsFEM is very efficient for the heterogeneous problems involving high-contrast,

no-scale separation.

In this dissertation, we apply the GMsFEM to perform model reduction for the steady

state elasticity equations in highly heterogeneous media though some of our applications

are motivated by elastic wave propagation in subsurface. We will consider three kinds of

coupling mechanism for different situations. For more practical purposes, we will also

study the applications of the GMsFEM for the frequency domain acoustic wave equation

and the Reverse Time Migration (RTM) based on the time domain acoustic wave equation.
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I. INTRODUCTION

I.1 Motivation

Many science and engineering problems encounter heterogeneous media with multiple

scales and high-contrast, e.g., wave propagation in heterogeneous subsurface, modeling of

composite materials, and flows in porous media. In practical simulations, one cannot

ignore the small scale features because they can affect the macroscopic response of the

problems. However, it can be prohibitively expensive to resolve all the scales in these

problems and therefore some types of model reduction techniques are needed.

Typically, there are two types of model reduction techniques: upscaling and multiscale

methods. Upscaling approaches such as homogenization and numerical homogenization

[69, 3, 87, 35, 22, 34, 1, 73, 20, 41, 67, 80, 59] have been routinely used to model macro-

scopic properties and macroscopic behaviors of media. These approaches compute the

effective media properties based on representative volume simulations. These properties

are further used to solve macroscale equations. However, upscaling is limited by the as-

sumption on media properties (e.g. periodicity) and the geometry of the problems studied.

Another direction is the multiscale method which was extensively investigated in the past

two decades. These methods include variational multiscale method [53, 54], multiscale

finite element method [33, 37, 5], mixed multiscale finite element method [23], the multi-

scale finite volume method [55], mortar multiscale finite element method [85, 84, 6], mul-

tiscale hybrid-mixed finite element methods [4, 49], the heterogeneous multiscale methods

[83, 2]. However, like the upscaling techniques, all these methods have very strict require-

ments about the media properties.

In 2013, Efendiev et al. proposed the generalized multiscale finite element methods

(GMsFEM) [36], which is a generalization of the multiscale finite element method by en-

1



riching local basis function space. The initial version of GMsFEM can also be viewed as

a type of the generalized finite element method (GFEM) [10] since the basis functions are

also the products of shape functions and the partition of unity functions [9]. Therefore,

this method was instantly extended to other scenarios, like the DG-GMsFEM [28, 43], the

mixed GMsFEM [27] and the HDG-GMsFEM [38]. The construction of multiscale basis

functions in GMsFEM consists of three stages: the snapshot space, the offline space, and

the online stage. The core part of the GMsFEM is the design of appropriate spectral prob-

lems that can yield accurate eigenfunctions to obtain a good reduced coarse system. The

coarse space enriched by eigenfunctions renders GMsFEM to yield solutions with a sig-

nificantly improved accuracy for a more general class of problems (e.g. media properties

without scale separation) with a slightly increased computational cost.

The GMsFEM was initially introduced to solve second-order elliptic type of high-

contrast flow problems, the applications of the GMsFEM for other partial differential e-

quations are reported in [26, 27, 30, 43, 21, 29]. The goal of this dissertation is to study the

application of GMsFEM for static linear elasticity equations, frequency domain acoustic

equation and the reverse time migration (RTM) based on the time domain acoustic equa-

tion. The organization of this dissertation is as follows. In Chapter II, we first study the

GMsFEM for second-order static elasticity equations in highly heterogeneous media, we

will discuss the construction of snapshot and offline space for both the continuous Galerkin

and discontinuous Galerkin. We will also study the effects of oversampling. Convergence

analysis will be provided. The hybridizable discontinuous Galerkin GMsFEM (HDG-

GMsFEM) for the first-order linear elasticity system will be discussed in Chapter III. We

will introduce three ways of constructing the edge-based multiscale basis. Comprehensive

numerical study of these methods along with the oversampling, randomized snapshot tech-

niques will be presented, we will also show the performance of applying HDG-GMsFEM

for the nearly incompressible elasticity problem. In Chapter IV, we consider the appli-

2



cation of GMsFEM for the Helmholtz equations, we will show that the eigenfunctions

are better than the polynomial functions in reducing the dispersion error. In Chapter V,

we develop a fast RTM algorithm with GMsFEM. A brief introduction to each chapter is

provided.

I.2 Outline of the dissertation

In Chapter II, we design a multiscale model reduction techniques using GMsFEM for

steady state elasticity equation in heterogeneous media

∂

∂xi
(cijkl(x)ekl(u)) = fj(x), (I.1)

where ekl(u) = 1
2
(∂uk
∂xl

+ ∂ul
∂xk

) and cijkl(x) is a multiscale field with a high contrast. In

particular, we design (1) a snapshot space (2) an offline space for each coarse patch. The

offline space consists of multiscale basis functions that are coupled in a global formulation.

We will consider several choices for snapshot spaces, offline spaces, and global coupling.

The main idea of the snapshot space in each coarse patch is to provide an exhaustive s-

pace where an appropriate spectral decomposition is performed. This space contains local

functions that can mimic the global solution behavior in the coarse patch for all right hand

sides or boundary conditions. We consider two choices for the snapshot space. The first

one consists of all fine-grid functions in each coarse patch and the second one consists

of harmonic extensions. Next, we propose a local spectral decomposition in the snapshot

space which allows selecting multiscale basis functions. This local spectral decomposition

is based on the analysis and depends on the global coupling mechanisms. We consider sev-

eral choices for the local spectral decomposition including oversampling approach where

larger domains are used in the eigenvalue problem. The oversampling technique uses larg-

er domains to compute snapshot vectors that are more consistent with local solution space

and thus can have much lower dimensions.

3



To couple multiscale basis functions constructed in the offline space, we consider two

methods, conforming Galerkin (CG) approach and discontinuous Galerkin (DG) approach

based on symmetric interior penalty method for (I.1). These approaches are studied for

linear elliptic equations in [36]. Both approaches provide a global coupling for multiscale

basis functions where the solution is sought in the space spanned by these multiscale basis

functions. This representation allows approximating the solution with a reduced number

of degrees of freedom. The constructions of the basis functions are different for contin-

uous Galerkin and discontinuous Galerkin methods as the local spectral decomposition

relies on the analysis. In particular, for continuous Galerkin approach, we use partition of

unity functions and discuss several choices for partition of unity functions. We provide an

analysis of both approaches. The offline space construction is based on the analysis.

We present numerical results where we study the convergence of continuous and dis-

continuous Galerkin methods using various snapshot spaces as well as with and without

the use of oversampling. We consider highly heterogeneous coefficients that contain high

contrast. Our numerical results show that the proposed approaches allow approximating

the solution accurately with fewer degrees of freedom. In particular, when using the s-

napshot space consisting of harmonic extension functions, we obtain better convergence

results. In addition, oversampling methods and the use of snapshot spaces constructed in

the oversampled domains can substantially improve the convergence.

The Chapter III is devoted to design multiscale model reduction methods for the first-

order formulation of the linear elasticity equation. The benefit of approximating the mixed

formulation of elasticity equation is it can deal with nearly incompressible materials and

preserve energy and mass conservation. We will study the GMsFEM within the frame-

work of hybridizable discontinuous Galerkin (HDG), which allows decomposing the entire

problem into a small dimension global problem defined on the coarse grid interfaces and

several local problems. The multiscale basis function is supported in coarse edges and we
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will construct three types multiscale spaces for the edge-based trace space to yield a much

reduced stable coarse system. The efficiency of the proposed methods is demonstrated on

a set of numerical experiments for high-contrast media. We are particular interested in the

the convergence behavior of the multiscale solution with more basis added, the effects of

applying oversampling randomized snapshot techniques, and the media contrast. We will

also show the results of applying our methods for the nearly incompressible material.

In Chapter IV, we discuss GMsFEM for the Helmholtz equation in media with variable

mass density. Traditional numerical methods for Helmholtz equation like finite-difference

methods (FDM) [75, 70, 68, 24, 25, 60, 61], finite-element methods (FEM) [48] will lead

to a huge dimension ill conditioned non-positive definite system and thus extremely hard

to solve. In [10, 9], Babuška proposed the GFEM for the Helmholtz equation, which uses

the products of partition of unity functions and the polynomial or trigonometric functions

to form the finite element space. This method shows better accuracy and solvability than

the conventional method. However, to our knowledge, it is only suitable for the homoge-

neous media since the basis functions they use depend on the fixed wavenumber. We will

consider using the eigenfunctions from local spectral problem to form the finite element

space defined on coarse grid, which enables us to accurately solve the Helmholtz equa-

tion without directly touching the large discrete system formed on the fine mesh. We will

design adaptive GMsFEM based on the velocity distribution of the media to sample dif-

ferent numbers of basis functions for different local basis space. Numerical tests on both

homogeneous and heterogeneous media show using eigenfunctions is much better than the

polynomials in terms of accuracy and resistance to the numerical dispersion.

In Chapter V, we consider the GMsFEM for the RTM, a seismic imaging method that

heavily relies on repeatedly solving wave equation with different sources. Wave equation

migration methods provide accurate and detailed subsurface images by incorporating the

influence of complex wave arrivals and features that are not included in solutions based
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on ray theory. However, the computational cost of these methods is significant. In [28],

the GMsFEM was proved to be an efficient solver for the acoustic equation. Based on this

research, we further explore the application of GMsFEM for the RTM that based on the

acoustic wave equation. The basis functions are computed only once for an earth model

and are used for all source positions. Applications to a test model show that the multiscale

RTM produces accurate images with a significant reduction in computation time. Using

fewer basis functions provides faster results, though additional numerical artifacts may

result. However, the results still capture the spatial structure in images, so this is useful

when testing various velocity models because many trial velocities can be tested in much

less computational time.
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II. GENERALIZED MULTISCALE FINITE ELEMENT METHODS FOR

SECOND-ORDER LINEAR ELASTICITY EQUATIONS ?

II.1 Introduction

In this chapter, we discuss the application of GMsFEM to elasticity equation in het-

erogeneous media. We consider steady state elasticity equations though some of our ap-

plications are motivated by elastic wave propagation in subsurface where the subsurface

properties can be highly heterogeneous and have high contrast. We present the construc-

tion of main ingredients for GMsFEM such as the snapshot space and offline spaces. The

latter is constructed using local spectral decomposition in the snapshot space. The spectral

decomposition is based on the analysis which is provided in the chapter. We consider both

continuous Galerkin and discontinuous Galerkin coupling of basis functions. Both ap-

proaches have their strengths and weaknesses. Continuous Galerkin methods allow avoid-

ing penalty parameters though they involve partition of unity functions which can alter

the properties of multiscale basis functions. On the other hand, discontinuous Galerkin

techniques allow gluing multiscale basis functions without any modification. Because ba-

sis functions are constructed independently from each other, this approach provides an

advantage. We discuss the use of oversampling techniques that use snapshots in larger

regions to construct the offline space. We provide numerical results to show that one can

accurately approximate the solution using reduced number of degrees of freedom.

The chapter is organized as follows. In Section II.2, we state the problem and the

notations for coarse and fine grids. In Section II.3, we give the construction of multiscale

basis functions, snapshot spaces and offline spaces, as well as global coupling via CG and

?This chapter is reprinted with permission from ”Generalized multiscale finite element method for elas-
ticity equations” by Chung, Eric T., Yalchin Efendiev, and Shubin Fu, 2014. GEM-International Journal on
Geomathematics, 5(2), pp.225-254. Copyright [2017] by Springer.
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DG. In Section II.4, we present numerical results. Sections II.5-II.6 are devoted to the

analysis of the methods.

II.2 Preliminaries

In this section, we will present the general framework of GMsFEM for linear elasticity

in high-contrast media. Let D ⊂ R2 (or R3) be a bounded domain representing the elastic

body of interest, and let u = (u1, u2) be the displacement field. The strain tensor ε(u) =

(εij(u))1≤i,j≤2 is defined by

ε(u) =
1

2
(∇u+∇uT ),

where∇u = (
∂ui
∂xj

)1≤i,j≤2. In the component form, we have

εij(u) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ 2.

In this dissertation, we assume the medium is isotropic. Thus, the stress tensor σ(u) =

(σij(u))1≤i,j≤2 is related to the strain tensor ε(u) in the following way

σ = 2µε+ λ∇ · u I,

where λ > 0 and µ > 0 are the Lamé coefficients. We assume that λ and µ have highly

heterogeneous spatial variations with high contrasts. Given a forcing term f = (f1, f2),

the displacement field u satisfies the following

−∇ · σ = f, in D (II.1)
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or in component form

−
(∂σi1
∂x1

+
∂σi2
∂x2

)
= fi, in D, i = 1, 2. (II.2)

For simplicity, we will consider the homogeneous Dirichlet boundary condition u = 0 on

∂D.

Let T H be a standard triangulation of the domainD whereH > 0 is the mesh size. We

call T H the coarse grid andH the coarse mesh size. Elements of T H are called coarse grid

blocks. The set of all coarse grid edges is denoted by EH and the set of all coarse grid nodes

is denoted by SH . We also use NS to denote the number of coarse grid nodes, N to denote

the number of coarse grid blocks. In addition, we let T h be a conforming refinement of the

triangulation T H . We call T h the fine grid and h > 0 is the fine mesh size. We remark that

the use of the conforming refinement is only to simplify the discussion of the methodology

and is not a restriction of the method.

Let V h be a finite element space defined on the fine grid. The fine-grid solution uh can

be obtained as

a(uh, v) = (f, v), ∀v ∈ V h, (II.3)

where

a(u, v) =

∫
D

(
2µε(u) : ε(v) + λ∇ · u∇ · v

)
dx, (f, v) =

∫
D

f · v dx (II.4)

and

ε(u) : ε(v) =
2∑

i,j=1

εij(u)εij(v), f · v =
2∑
i=1

fivi. (II.5)

Now, we present GMsFEM. The discussion consists of two main steps, namely, the

construction of local basis functions and the global coupling. In this chapter, we will de-
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velop and analyze two types of global coupling, namely, the continuous Galerkin coupling

and the discontinuous Galerkin coupling. These two couplings will require two types of

local basis functions. In essence, the CG coupling will need vertex-based local basis func-

tions and the DG coupling will need element-based local basis functions.

i

K1

K2K3

K4

T H (Coarse Grid)

ωi
Coarse

Neighborhood

Ki

Coarse
Block

i

i

ω+i
Oversampled
Neighborhood

K+
i

Oversampled Coarse Block

Figure II.1: Illustration of a coarse neighborhood, oversampled coarse neighborhood,
coarse block and oversampled coarse block.

For each vertex xi ∈ SH in the coarse grid, we define the coarse neighborhood ωi by

ωi =
⋃
{Kj : Kj ⊂ T H , xi ∈ Kj}.

That is, ωi is the union of all coarse grid blocks Kj having the vertex xi (see Figure II.1).

A snapshot space V i,snap is constructed for each coarse neighborhood ωi. The snapshot

space contains a large set that represents the local solution space. A spectral problem is

then constructed to get a reduced dimensional space. Specifically, the spectral problem
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is solved in the snapshot space and eigenfunctions corresponding to dominant modes are

used as the final basis functions. To obtain conforming basis functions, each of these

selected modes will be multiplied by a partition of unity function. The resulting space

is denoted by V i,off, which is called the offline space for the i-th coarse neighborhood

ωi. The global offline space V off is then defined as the linear span of all these V i,off, for

i = 1, 2, · · · , NS . The CG coupling can be formulated as to find uCG
H ∈ V off such that

a(uCG
H , v) = (f, v), ∀v ∈ V off. (II.6)

The DG coupling can be constructed in a similar fashion. A snapshot space V i,snap

is constructed for each coarse grid block Ki. A spectral problem is then solved in the

snapshot space and eigenfunctions corresponding to dominant modes are used as the final

basis functions. This space is called the offline space V i,off for the i-th coarse grid block.

The global offline space V off is then defined as the linear span of all these V i,off, for i =

1, 2, · · · , N . The DG coupling can be formulated as: find uDG
H ∈ V off such that

aDG(uDG
H , v) = (f, v), ∀v ∈ V off, (II.7)

where the bilinear form aDG is defined as

aDG(u, v) =aH(u, v)−
∑
E∈EH

∫
E

(
{{σ(u)nE}} · [[v]] + {{σ(v)nE}} · [[u]]

)
ds

+
∑
E∈EH

γ

h

∫
E

{{λ+ 2µ}}[[u]] · [[v]] ds

(II.8)

with

aH(u, v) =
∑
K∈TH

aKH(u, v), aKH(u, v) =

∫
K

(
2µε(u) : ε(v) + λ∇ · u∇ · v

)
dx, (II.9)
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where γ > 0 is a penalty parameter, nE is a fixed unit normal vector defined on the coarse

edge E and σ(u)nE is a matrix-vector product. Note that, in (II.8), the average and the

jump operators are defined in the classical way. Specifically, consider an interior coarse

edge E ∈ EH and let K+ and K− be the two coarse grid blocks sharing the edge E. For a

piecewise smooth function G, we define

{{G}} =
1

2
(G+ +G−), [[G]] = G+ −G−, on E,

where G+ = G|K+ and G− = G|K− and we assume that the normal vector nE is pointing

from K+ to K−. For a coarse edge E lying on the boundary ∂D, we define

{{G}} = [[G]] = G, on E,

where we always assume that nE is pointing outside of D. For vector-valued functions,

the above average and jump operators are defined component-wise. We note that the DG

coupling (II.7) is the classical interior penalty discontinuous Galerkin (IPDG) method with

our multiscale basis functions.

Finally, we remark that, we use the same notations V i,snap, V i,off and V off to denote the

local snapshot, local offline and global offline spaces for both the CG coupling and the DG

coupling to simplify notations.

II.3 Construction of multiscale basis functions

This section is devoted to the construction of multiscale basis functions.

II.3.1 Basis functions for CG coupling

We begin by the construction of local snapshot spaces. Let ωi be a coarse neighbor-

hood, i = 1, 2, · · · , NS . We will define two types of local snapshot spaces. The first type
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of local snapshot space is

V i,snap
1 = V h(ωi),

where V h(ωi) is the restriction of the conforming space to ωi. Therefore, V i,snap
1 contains

all possible fine scale functions defined on ωi. The second type of local snapshot space

contains all possible harmonic extensions. Next, let V h(∂ωi) be the restriction of the

conforming space to ∂ωi. Then we define the fine-grid delta function δk ∈ V h(∂ωi) on

∂ωi by

δk(xl) =


1, l = k

0, l 6= k,

where {xl} are all fine grid nodes on ∂ωi. Given δk, we find uk1 and uk2 by

−∇ · σ(uk1) = 0, in ωi

uk1 = (δk, 0)T , on ∂ωi

(II.10)

and

−∇ · σ(uk2) = 0, in ωi

uk2 = (0, δk)
T , on ∂ωi.

(II.11)

The linear span of the above harmonic extensions is our second type of local snapshot

space V i,snap
2 . To simplify the notations, we will use V i,snap to denote V i,snap

1 or V i,snap
2 when

there is no need to distinguish the two type of spaces. Moreover, we write

V i,snap = span{ψi,snap
k , k = 1, 2, · · · ,M i,snap},

where M i,snap is the number of basis functions in V i,snap.

We will perform a dimension reduction on the above snapshot spaces by the use of
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a spectral problem. First, we will need a partition of unity function χi for the coarse

neighborhood ωi. One choice of a partition of unity function is the coarse grid hat functions

Φi, that is, the piecewise bi-linear function on the coarse grid having value 1 at the coarse

vertex xi and value 0 at all other coarse vertices. The other choice is the multiscale partition

of unity function, which is defined in the following way. Let Kj be a coarse grid block

having the vertex xi. Then we consider

−∇ · σ(ζi) = 0, in Kj

ζi = (Φi, 0)T , on ∂Kj.

(II.12)

Then we define the multiscale partition of unity as Φ̃i = (ζi)1. The values of Φ̃i on the

other coarse grid blocks are defined similarly.

Based on our analysis to be presented in the next sections, we define the spectral prob-

lem as ∫
ωi

(
2µε(u) : ε(v) + λ∇ · u∇ · v

)
dx = ξ

∫
ωi

κ̃u · v dx, (II.13)

where ξ denotes the eigenvalue and

κ̃ =

NS∑
i=1

(λ+ 2µ)|∇χi|2. (II.14)

The above spectral problem (II.13) is solved in the snapshot space. We let (φk, ξk) be

the eigenfunctions and the corresponding eigenvalues. Assume that

ξ1 ≤ ξ2 ≤ · · · ≤ ξM i,snap .
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Then the first Li eigenfunctions will be used to construct the local offline space. We define

ψi,off
l =

M i,snap∑
k=1

φlkψ
i,snap
k , l = 1, 2, · · · , Li, (II.15)

where φlk is the k-th component of φl. The local offline space is then defined as

V i,off = span{χiψi,off
l , l = 1, 2, · · · , Li}.

Next, we define the global continuous Galerkin offline space as

V off = span{V i,off, i = 1, 2, · · · , NS}.

II.3.2 Basis functions for DG coupling

We will construct the local basis functions required for the DG coupling. We also

provide two types of snapshot spaces as in CG case. The first type of local snapshot

space is all possible fine grid bi-linear functions defined on Ki. The second type of local

snapshot space V i,snap for the coarse grid block Ki is defined as the linear span of all

harmonic extensions. Specifically, given δk, we find uk1 and uk2 by

−∇ · σ(uk1) = 0, in Ki

uk1 = (δk, 0)T , on ∂Ki

(II.16)

and

−∇ · σ(uk2) = 0, in Ki

uk2 = (0, δk)
T , on ∂Ki.

(II.17)
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The linear span of the above harmonic extensions is the local snapshot space V i,snap. We

also write

V i,snap = span{ψi,snap
k , k = 1, 2, · · · ,M i,snap},

where M i,snap is the number of basis functions in V i,snap.

We will perform a dimension reduction on the above snapshot spaces by the use of a

spectral problem. Based on our analysis to be presented in the next sections, we define the

spectral problem as

∫
Ki

(
2µε(u) : ε(v) + λ∇ · u∇ · v

)
dx =

ξ

H

∫
∂Ki

〈λ+ 2µ〉u · v ds, (II.18)

where ξ denotes the eigenvalues and 〈λ+ 2µ〉 is the maximum value of {{λ+ 2µ}} on

∂Ki. The above spectral problem (II.18) is again solved in the snapshot space V i,snap.

We let (φk, ξk), for k = 1, 2, · · · ,M i,snap be the eigenfunctions and the corresponding

eigenvalues. Assume that

ξ1 ≤ ξ2 ≤ · · · ≤ ξM i,snap .

Then the first Li eigenfunctions will be used to construct the local offline space. Indeed,

we define

ψi,off
l =

M i,snap∑
k=1

φlkψ
i,snap
k , l = 1, 2, · · · , Li, (II.19)

where φlk is the k-th component of φl. The local offline space is then defined as

V i,off = span{ψi,off
l , l = 1, 2, · · · , Li}.

The global offline space is also defined as

V off = span{V i,off, i = 1, 2, · · · , N}.
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II.3.3 Oversampling technique

In this section, we present an oversampling technique for generating multiscale basis

functions. The main idea of oversampling is to solve local spectral problem in a larger do-

main. This allows obtaining a snapshot space that has a smaller dimension since snapshot

vectors contain solutions oscillating near the boundaries. In our previous approaches, we

assume that the snapshot vectors can have an arbitrary value on the boundary of coarse

blocks which yield to large dimensional coarse spaces.

For the harmonic extension snapshot case, we solve equation (II.10) and (II.11) in ω+
i

(see Figure II.1) instead of ωi for CG case, and solve the equation (II.16) and (II.17) in

K+
i instead of Ki for DG case. We denote the solutions as ψ+,snap

i , and their restrictions on

ωi or Ki as ψsnap
i . We reorder these functions according to eigenvalue behavior and write

R+
snap =

[
ψ+,snap

1 , . . . , ψ+,snap
Msnap

]
and Rsnap =

[
ψsnap

1 , . . . , ψsnap
Msnap

]
.

where Msnap denotes the total number of functions kept in the snapshot space.

For CG case we define the following spectral problems in the space of snapshot:

RT
snapARsnapΨk = ζ(R+

snap)
TM+R+

snapΨk, (II.20)

or

(R+
snap)

TA+R+
snapΨk = ζ(R+

snap)
TM+R+

snapΨk, (II.21)
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where

A = [akl] =

∫
ωi

(
2µε(ψsnap

k ) : ε(ψsnap
l ) + λ∇ · ψsnap

k ∇ · ψsnap
l

)
dx,

A+ = [a+
kl] =

∫
ω+
i

(
2µε(ψ+,snap

k ) : ε(ψ+,snap
l ) + λ∇ · ψ+,snap

k ∇ · ψ+,snap
l

)
dx,

M+ = [m+
kl] =

∫
ω+
i

κ̃ψ+,snap
k · ψ+,snap

l dx,

where κ̃ is defined through (II.14).

The local spectral problem for DG coupling is defined as

(R+
snap)

TA+R+
snapΨk = ζ(R+

snap)
TM+

1 R
+
snapΨk (II.22)

or

(R+
snap)

TA+R+
snapΨk = ζ(R+

snap)
TM+

2 R
+
snapΨk (II.23)

in the snapshot space, where

A+ = [a+
kl] =

∫
K+

i

(
2µε(ψ+,snap

k ) : ε(ψ+,snap
l ) + λ∇ · ψ+,snap

k ∇ · ψ+,snap
l

)
dx,

M+
1 = [m+

1,kl] =
1

H

∫
K+

i

{{λ+ 2µ}}ψ+,snap
k · ψ+,snap

l dx,

M+
2 = [m+

2,kl] =
1

H

∫
∂K+

i

{{λ+ 2µ}}ψ+,snap
k · ψ+,snap

l ds.

After solving above local spectral problems, we form the offline space as in the no

oversampling case, see Section II.3.1 for CG coupling and Section II.3.2 for DG coupling.

II.4 Numerical result

In this section, we present numerical results for CG-GMsFEM and DG-GMsFEM with

two models. We consider different choices of snapshot spaces such as local-fine grid
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Figure II.2: Young’s modulus (Model 1)

functions and harmonic functions and use different local spectral problems such as no-

oversampling and oversampling described in the previous section. For the first model, we

consider the medium that has no-scale separation and features such as high conductivity

channels and isolated inclusions. The Young’s modulus E(x) is depicted in Figure II.2,

λ(x) = ν
(1+ν)(1−2ν)

E(x), µ(x) = 1
2(1+ν)

E(x), the Poisson ratio ν is taken to be 0.20.

For the second example, we use the model that is used in [43] for the simulation of sub-

surface elastic waves (see Figure II.3). In all numerical tests, we use constant force and

homogeneous Dirchlet boundary condition. In all tables below, Λ∗ represent the minimum

discarded eigenvalue of the corresponding spectral problem. We note that the first three

eigenbasis (that correspond to the first three smallest eigenvalues) are constant and linear

functions, therefore we present our numerical results starting from fourth eigenbasis in all

cases. In the below, dimension of a solution represents the total number of basis used for

the finite element space.

Before presenting the numerical results, we summarize our numerical findings.

• We observe a fast decay in the error as more basis functions are added in both CG-

GMsFEM and DG-GMsFEM
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• We observe the use of multiscale partition of unity improves the accuracy of CG-

GMsFEM compared to the use of piecewise bi-linear functions

• We observe an improvement in the accuracy (a slight improvement in CG case and

a large improvement in DG case) when using oversampling for the examples we

considered and the decrease in the snapshot space dimension

II.4.1 Numerical results for Model 1 with conforming GMsFEM (CG-GMsFEM)

For the first model, we divide the domain D = [0, 1] × [0, 1] into 10 × 10 coarse grid

blocks, inside each coarse block we use 10×10 fine scale square blocks, which results in a

100×100 fine grid blocks. The number of basis functions used to get the reference solution

is 20402. We will show the performance of CG-GMsFEM with the use of local fine-scale

snapshots and harmonic extension snapshots. Both bi-linear and multiscale partition of

unity functions (see Section II.3.1) will be considered. For each case, we will provide

the comparsion using oversampling and no-oversampling. For the error measure, we use

relative weighted L2 norm error and weighted H1 norm error to compare the accuracy of
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CG-GMsFEM, which is defined as

eL2 =
‖(λ+ 2µ)(uH − uh)‖L2(D)

‖(λ+ 2µ)uh‖L2(D)

, eH1 =

√√√√a(uH − uh, uH − uh)
a(uh, uh)

where uH and uh are CG-GMsFEM defined in (II.6) and fine-scale CG-FEM solution

defined in (II.3) respectively.

Tables II.1 and II.2 show the numerical results of using local fine-scale snapshots with

piecewise bi-linear function and multiscale functions as partition of unity respectively. As

we observe, when using more multiscale basis, the errors decay rapidly, especially for mul-

tiscale partition of unity. For example, we can see that the weighted L2 error drops from

24.1% to 1.1% in the case of using bi-linear function as partition of unity with no over-

sampling, while the dimension increases from 648 to 2592. If we use multiscale partition

of unity, the corresponding weighted L2 error drops from 8.2% to 0.5%, which demon-

strates a great advantage of multiscale partition of unity. Oversampling can help improve

the accuracy as our results indicate. The local eigenvalue problem used for oversampling

is Eq.(II.21).

Next, we present the numerical results when harmonic extensions are used as snapshots

in Tables II.3 and II.4. We can observe similar trends as in the local fine-scale snapshot

case. The errors decrease as the number of basis functions increase. The L2 error is less

than 1% when about 13% of degrees of freedom is used. Similarly, the oversampling

method helps to improve the accuracy. In this case, the local eigenvalue problem used for

oversampling is Eq.(II.20).

II.4.2 Numerical results for Model 1 with DG-GMsFEM

In this section, we consider numerical results for DG-GMsFEM discussed in Section

II.3.2. To show the performance of DG-GMsFEM, we use the same model (see Figure
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Dimension 1/Λ∗ eH1 eL2

without
oversampling

with
oversampling

without
oversampling

with
oversampling

without
oversampling

with
oversampling

648 2.61e+05 2.77e+05 4.36e-01 4.47e-01 2.41e-01 2.60e-01
1134 9.56e+04 1.20e+05 2.20e-01 2.18e-01 4.82e-02 4.77e-02
1620 2.11e+04 5.83e+04 1.61e-01 1.57e-01 2.65e-02 2.49e-02
2106 8.28e-01 2.08e+04 1.32e-01 1.29e-01 1.78e-02 1.70e-02
2592 5.32e-01 4.38e+00 1.05e-01 1.06e-01 1.13e-02 1.15e-02

Table II.1: Relative errors between CG-MsFEM solution and the fine-scale CG-FEM solu-
tion, piecewise bi-linear partition of unity functions are used. The case with local fine-scale
snapshots.

Dimension 1/Λ∗ eH1 eL2

without
oversampling

with
oversampling

without
oversampling

with
oversampling

without
oversampling

with
oversampling

648 1.62e+05 1.81e+05 2.52e-01 2.76e-01 8.23e-02 8.23e-02
1134 2.11e+00 7.88e+04 1.67e-01 1.65e-01 3.11e-02 3.03e-02
1620 1.08e+00 3.75e+04 1.11e-01 1.11e-02 1.44e-02 1.34e-02
2106 6.37e-01 8.25e+00 8.78e-02 8.82e-02 8.33e-03 8.16e-02
2592 4.98e-01 1.81e+00 7.08e-02 7.13e-02 5.49e-03 5.27e-03

Table II.2: Relative errors between CG-MsFEM solution and the fine-scale CG-FEM so-
lution, multiscale partition of unity functions are used. The case with local fine-scale
snapshots.

Dimension 1/Λ∗ eH1 eL2

without
oversampling

with
oversampling

without
oversampling

with
oversampling

without
oversampling

with
oversampling

648 2.59e+05 9.95e+05 4.44e-01 4.41e-01 2.52e-01 2.53e-01
1134 5.42e+04 4.90e+05 2.18e-01 2.15e-01 4.72e-02 4.62e-02
1620 4.94e+03 3.57e+04 1.54e-01 1.48e-01 2.39e-02 2.22e-02
2106 5.08e-01 1.75e+04 1.25e-01 1.24e-01 1.60e-02 1.55e-02
2592 2.97e-01 9.82e+00 1.03e-01 1.04e-01 1.09e-02 1.10e-02

Table II.3: Relative errors between CG-MsFEM solution and the fine-scale CG-FEM so-
lution, piecewise bi-linear partition of unity functions are used. The case with hamonic
snapshots.

Dimension 1/Λ∗ eH1 eL2

without
oversampling

with
oversampling

without
oversampling

with
oversampling

without
oversampling

with
oversampling

648 1.62e+05 5.19e+05 2.57e-01 2.95e-01 8.48e-02 1.16e-01
1134 1.78e+00 2.68e+05 1.73e-01 1.70e-01 3.38e-02 3.07e-02
1620 8.21e-01 1.85e+05 1.15e-01 1.11e-02 1.52e-02 1.28e-02
2106 4.89e-01 1.00e+04 9.01e-02 8.89e-02 8.89e-03 8.30e-02
2592 3.96e-01 5.57e+04 7.57e-02 7.45e-02 6.51e-03 6.04e-03

Table II.4: Relative errors between CG-MsFEM solution and the fine-scale CG-FEM so-
lution, multiscale partition of unity functions are used. The case with hamonic snapshots.
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II.2) and the coarse and fine grid settings as in the CG case. We will also present the result

of using both harmonic extension and eigenbasis (local fine-scale) as snapshot space. To

measure the error, we define broken weighted L2 norm error and H1 norm error

eH1 =

√∑
K∈TH

∫
K
σ(uH − uh)) : ε(uH − uh)) dx∑

K∈TH

∫
K
σ(uh) : ε(uh) dx

where uH and uh are DG-GMsFEM defined in (II.7) and fine-scale DG-FEM solution

defined in (II.49) respectively. We note that the dimension of the reference solution uh

here is 24200.

In Table II.5, the numerical results of DG-MsFEM with local fine-scale functions as

the snapshot space is shown. We observe that DG-MsFEM shows a better approximation

compared to CG-MsFEM if oversampling is used. The error decreases more rapidly as

we add basis. More specifically, the relative broken L2 error and H1 error decrease from

33.6%, 62.8% to 0.7% and 8.1% respectively, while the degrees of freedom of the coarse

system increase from 728 to 2696, where the latter is only 13.2% of the reference solution.

The local eigenvalue problem used for oversampling is Eq.(II.22).

Table II.6 shows the corresponding results when harmonic functions are used to con-

struct the snapshot space. We observe similar errors decay trend as local fine-scale snap-

shots are used. Oversampling can help improve the results significantly. Although the

error is very large when the dimension of coarse system is 728 (4 multiscale basis is used),

the error becomes very small when the dimension reaches 1728 (9 multiscale basis is

used). The local eigenvalue problem used for oversampling here is Eq.(II.23). We remark

that oversampling can not only help decrease the error, but also decrease the dimension of

the snapshot space greatly in periodic case. Increasing the the oversampling domain will

decrease the error but will increase the computational time of the offline stage. We also

remark that the optimal penalty here depends on the number of basis, in our simulation we
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Dimension 1/Λ∗ eH1 eL2

without
oversampling

with
oversampling

without
oversampling

with
oversampling

without
oversampling

with
oversampling

728 1.4e-03 1.5e-03 0.628 0.539 0.511 0.336
1184 8.2e-04 2.2e-04 0.437 0.231 0.231 0.056
1728 5.4e-04 1.5e-03 0.387 0.181 0.181 0.407
2184 3.6e-04 8.9e-04 0.356 0.130 0.146 0.021
2696 2.8e-04 7.4e-04 0.311 0.081 0.100 0.007

Table II.5: Relative errors between DG-MsFEM solution and the fine-scale DG-FEM so-
lution. The case with local fine-scale snapshots.

Dimension
1/Λ∗ eH1 eL2

without
oversampling

with
oversampling

without
oversampling

with
oversampling

without
oversampling

with
oversampling

728 1.4e-01 2.3e-01 0.640 0.561 0.511 0.363
1184 5.7e-02 9.7e-02 0.520 0.402 0.319 0.180
1728 4.7e-02 8.0e-02 0.405 0.172 0.205 0.031
2184 3.4e-02 5.6e-02 0.307 0.099 0.119 0.012
2696 2.5e-02 4.1e-02 0.235 0.080 0.057 0.006

Table II.6: Relative errors between DG-MsFEM solution and the fine-scale DG-FEM so-
lution. The case with hamonic snapshots

use uniform penalty.

II.4.3 Numerical results for Model 2

The purpose of this example is to test a method for an earth model that is used in

[43]. The domain for the second model is D = (0, 6000)2 (in meters) which is divided

into 900 = 30 × 30 square coarse grid blocks, inside each coarse block we generate

20 × 20 fine scale square blocks. The reference solution is computed through standard

CG-FEM on the resulting 600×600 fine grid. We note that the dimension of the reference

solution is 722402. The numerical results for CG-MsFEM and DG-MsFEM are presented

in Tables II.7 and II.8 respectively. We observe the relatively low errors compared to the

high contrast case and the error decrease with the dimension increase of the offline space.

Both coupling methods (CG and DG) show very good approximation ability.
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dimension 1
Λ∗

eH1 eL2

6968 4.9e+00 5.4e-02 3.1e-03
8650 4.5e+00 5.2e-02 2.7e-03
10332 3.9e+00 4.9e-02 2.5e-03
12014 3.6e+00 4.7e-02 2.2e-03

Table II.7: Relative errors between CG-MsFEM solution and the fine-scale CG-FEM solu-
tion, piecewise bi-linear partition of unity functions are used. The case with local fine-scale
snapshots.

dimension 1
Λ∗

eH1 eL2

7200 6.3e-06 7.1e-02 4.1e-03
9000 6.0e-06 6.6e-02 4.0e-03

10800 4.6e-06 6.3e-02 3.8e-03
12600 4.5e-06 5.9e-02 3.1e-03

Table II.8: Relative errors between DG-MsFEM solution and the fine-scale CG-FEM so-
lution. The case with local fine-scale snapshots.

II.5 Error estimate for CG coupling

In this section, we present error analysis for both no oversampling and oversampling

cases. In the discussions below, a � b means a ≤ Cb, where C is a constant independent

of the mesh size and the contrast of the coefficient.

II.5.1 No oversampling case

Lemma II.5.1. Let ωn be a coarse neighborhood. For any ψ ∈ H1(ωn), we define r =

−div(σ(ψ)). Then we have

∫
ωn

2µχ2
nε(ψ) : ε(ψ) dx+

∫
ωn

λχ2
n(∇·ψ)2 dx � |

∫
ωn

χ2
nr·ψ dx|+

∫
ωn

(λ+2µ)|∇χn|2ψ2 dx,

(II.24)

where χn is a scalar partition of unity subordinated to the coarse neighborhood ωn.
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Proof. Multiplying both sides of −div(σ(ψ)) = r by χ2
nψ, we have

∫
ωn

χ2
nr · ψ dx =

∫
ωn

2µε(ψ) : ε(χ2
nψ) dx+

∫
ωn

λ∇ · ψ∇ · (χ2
nψ) dx

=

∫
ωn

2µχ2
nε(ψ) : ε(ψ) dx+

∫
ωn

2µχnεij(ψ)(ψi
∂χn
∂xj

+ ψj
∂χn
∂xi

) dx

+

∫
ωn

λχ2
n(∇ · ψ)2 dx+

∫
ωn

2λ∇ · ψχnψ · ∇χn dx

=

∫
ωn

2µχ2
nε(ψ) : ε(ψ) dx+

∫
ωn

λχ2
n(∇ · ψ)2 dx

+

∫
ωn

2
(√

2µχnεij(ψ)
)(√

µ/2(ψi
∂χn
∂xj

dx+ ψj
∂χn
∂xi

)
)
dx

+

∫
ωn

2
(√

λχn∇ · ψ
)(√

λψ · ∇χn
)
dx.

(II.25)

Therefore,

∫
ωn

2µχ2
nε(ψ) : ε(ψ) dx+

∫
ωn

λχ2
n(∇ · ψ)2 dx

≤ |
∫
ωn

χ2
nr · ψ dx|+ |

∫
ωn

2
(√

2µχnεij(ψ)
)(√

µ/2(ψi
∂χn
∂xj

+ ψj
∂χn
∂xi

)
)
dx

+

∫
ωn

2(
√
λχn∇ · ψ)(

√
λψ · ∇χn) dx|

� |
∫
ωn

χ2
nr · ψ dx|+

∫
ωn

(2λ+ 4µ)|∇χn|2ψ2 dx

� |
∫
ωn

χ2
nr · ψ dx|+

∫
ωn

(λ+ 2µ)|∇χn|2ψ2 dx.

(II.26)

In the last step, we have used 2ab ≤ εa2+ 1
ε
b2 (ε > 0), and (ab+cd)2 ≤ (a2+c2)(b2+d2).

�

Next, we will show the convergence of the CG-GMsFEM solution defined in (II.6)

without oversampling. We take Iωnuh to be the first Ln terms of spectral expansion of u in

terms of eigenfunctions of the problem −div(σ(φn)) = ξκ̃φn solved in V h(ωn). Applying
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Cea’s Lemma, Lemma II.5.1 and using the fact that |χn| � 1, we can get

∫
D

(
2µε(uh − uH) : ε(uh − uH) + λ(∇ · (uh − uH))2

)
dx

�
Ns∑
n=1

∫
ωn

2µε(χn(uh − Iωnuh)) : ε(χn(uh − Iωnuh)) dx

+
Ns∑
n=1

∫
ωn

2λ(∇ · (χn(uh − Iωnuh)))
2 dx

�
Ns∑
n=1

∫
ωn

2µχ2
nε(uh − Iωnuh) : ε(uh − Iωnuh) dx

+
Ns∑
n=1

∫
ωn

λχ2
n(∇ · (uh − Iωnuh))

2 dx+
Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx

�
Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx+

Ns∑
n=1

|
∫
ωn

χ2
ng · (uh − Iωnuh)| dx

�
Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx+

Ns∑
n=1

∫
ωn

((λ+ 2µ)|∇χn|2)−1g2 dx,

(II.27)

where g = fh + div(σ(Iωnuh)), fh is the L2 projection of f in V h, f is the right hand side

of (II.1).

Using the properties of the eigenfunctions, we obtain

∫
ωn

(λ+ 2µ)
Ns∑
s=1

|∇χs|2(uh − Iωnuh)
2 dx

� 1

ξωn
Ln+1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh) + λ(∇ · (uh − Iωnuh))

2
)
dx.

(II.28)
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Then, the first term in the right hand side of (II.27) can be estimated as follows

Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx

�
Ns∑
n=1

∫
ωn

(λ+ 2µ)
Ns∑
s=1

|∇χs|2|(uh − Iωnuh)
2 dx

�
Ns∑
n=1

1

ξωn
Ln+1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh) + λ(∇ · (uh − Iωnuh))

2
)
dx

�
Ns∑
n=1

αωn
Ln+1

ξωn
Ln+1

∫
ωn

(
2µχ2

nε(uh − Iωnuh) : ε(uh − Iωnuh) + λχ2
n(∇ · (uh − Iωnuh))

2
)
dx

�
Ns∑
n=1

αωn
Ln+1

ξωn
Ln+1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx

+
Ns∑
n=1

αωn
Ln+1

ξωn
Ln+1

|
∫
ωn

χ2
ng · (uh − Iωnuh) dx|

� 1

Λ∗

(
Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx+

Ns∑
n=1

|
∫
ωn

χ2
ng · (uh − Iωnuh) dx|

)
,

(II.29)

where

Λ∗ = minωn

ξωn
Ln+1

αωn
Ln+1

,

and

αωn
Ln+1 =

∫
ωn

2µε(uh − Iωnuh) : ε(uh − Iωnuh) dx+
∫
ωn
λ(∇ · (uh − Iωnuh))

2 dx∫
ωn

2µχ2
nε(uh − Iωnuh) : ε(uh − Iωnuh) dx+

∫
ωn
λχ2

n(∇ · (uh − Iωnuh))2 dx
.
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Applying inequality (II.29) m times, we have

Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx

�
(

1

Λ∗

)m Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx

+
m∑
l=1

(
1

Λ∗

)l Ns∑
n=1

|
∫
ωn

χ2
ng · (uh − Iωnuh) dx|

�
(

1

Λ∗

)m Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx

+ (Λ∗)
m

(
1− Λ−m∗
Λ∗ − 1

) Ns∑
n=1

∫
ωn

((λ+ 2µ)|∇χn|2)−1g2 dx,

(II.30)

Taking into account that

Ns∑
n=1

∫
ωn

(λ+2µ)|∇χn|2(uh−Iωnuh)
2 dx �

Ns∑
n=1

∫
ωn

(λ+2µ)
Ns∑
s=1

|∇χs|2(uh−Iωnuh)
2 dx,

(II.31)

and

Ns∑
n=1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh) dx+ λ(∇ · (uh − Iωnuh))

2
)
dx

�
∫
D

(
2µε(uh) : ε(uh) + λ(∇ · uh)2

)
dx.

(II.32)
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inequality (II.27) becomes

∫
D

(
2µε(uh − uH) : ε(uh − uH) + λ(∇ · (uh − uH))2

)
dx

�
(

1

Λ∗

)m+1 Ns∑
n=1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh) + λ(∇ · (uh − Iωnuh))

2
)
dx

+

(
Λm
∗

(
1− Λ−m∗
Λ∗ − 1

)
+ 1

) Ns∑
n=1

∫
ωn

((λ+ 2µ)|∇χn|2)−1g2 dx

�
( 1

Λ∗

)m+1
∫
D

(
2µε(uh) : ε(u) + λ(∇ · uh)2

)
dx+

(
(Λ∗)

m

(
1− (Λ∗)

−m

Λ∗ − 1

)
+ 1

)
R,

(II.33)

where R =
∑Ns

n=1

∫
ωn

((λ+ 2µ)|∇χn|2)−1g2 dx. If |g| � 1, then we have∫
ωn

((λ+ 2µ)|∇χn|2)−1g2 dx � H2, from which we obtain

∫
D

(
2µε(uh − uH) : ε(uh − uH) + λ(∇ · (uh − uH))2

)
dx

�
( 1

Λ∗

)m+1
∫
D

(
2µε(uh) : ε(u) + λ(∇ · uh)2

)
dx+

(
(Λ∗)

m

(
1− (Λ∗)

−m

Λ∗ − 1

)
+ 1

)
H2.

(II.34)

Combining results above, we have

Theorem II.5.2. Let uh ∈ V h
CG be the fine-scale CG-FEM solution defined in (II.3) and

uH be the CG-GMsFEM solution defined in (II.6) without oversampling. If Λ∗ > 1 and∫
D

(λ+ 2µ)−1g2 dx � 1, let n = − log(H)
logΛ∗

, then

∫
D

(
2µε(uh − uH) : ε(uh − uH) + λ(∇ · (uh − uH))2

)
dx

�
(
H

Λ∗

)(∫
D

(
2µε(uh) : ε(uh) + λ(∇ · uh)2

)
dx+ 1

)
.
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II.5.2 Oversampling case

In this subsection, we will analyze the convergence of CG-GMsFEM solution defined

in (II.6) with oversampling. We define Iω
+
n uh as an interpolation of uh in ω+

n using the first

Ln modes for the eigenvalue problem (II.20). Let χ+
n be a partition of unity subordinated

to the coarse neighborhood ω+
n . We require χ+

n to be zero on ∂ω+
n and

|∇χn|2 � |∇χ+
n |2.

Using the same argument as Lemma II.5.1, it is easy to deduce

∫
ω+
n

(
2µ|χ+

n |2ε(uh − Iω
+
n uh) : ε(uh − Iω

+
n uh) + λ|χ+

n |2(∇ · (uh − Iω
+
n uh))

2
)
dx

� |
∫
ω+
n

|χ+
n |2g · (uh − Iω

+
n uh) dx|+

∫
ω+
n

(λ+ 2µ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx,

(II.35)

where g = fh + div(σ(Iωnuh)), Iωnuh = Iω
+
n uh in ωn.

Applying eigenvalue problem (II.20), we obtain

∫
ω+
n

(λ+ 2µ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

� 1

ξωn
Ln+1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh) + λ(∇ · (uh − Iωnuh))

2
)
dx.

(II.36)
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Using the definition of interpolation Iω
+
n uh and inequality (II.36), we have

Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx

�
Ns∑
n=1

∫
ω+
n

(λ+ 2µ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

�
Ns∑
n=1

1

ξωn
Ln+1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh) + λ(∇ · (uh − Iωnuh))

2
)
dx

�
Ns∑
n=1

1

ξωn
Ln+1

∫
ω+
n

2µ|∇χ+
n |2ε(uh − Iω

+
n uh) : ε(uh − Iω

+
n uh) dx

+ λ|∇χ+
n |2(∇ · (uh − Iω

+
n uh))

2 dx

�
Ns∑
n=1

1

ξωn
Ln+1

∫
ω+
n

(λ+ 2µ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

+
Ns∑
n=1

1

ξωn
Ln+1

|
∫
ω+
n

|χ+
n |2g · (uh − Iω

+
n uh) dx|

� 1

Λ+
∗

Ns∑
n=1

∫
ω+
n

(λ+ 2µ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

+
1

Λ+
∗

Ns∑
n=1

|
∫
ω+
n

|χ+
n |2g · (uh − Iω

+
n uh) dx|

� 1

Λ+
∗

Ns∑
n=1

1

ξωn
Ln+1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh)

+ λ(∇ · (uh − Iωnuh))
2
)
dx+

1

Λ+
∗

Ns∑
n=1

|
∫
ω+
n

|χ+
n |2g · (uh − Iω

+
n u) dx|,

(II.37)

where Λ+
∗ = minωnξ

ωn
Ln+1.
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Applying the last inequality m times with (II.36), we get

Ns∑
n=1

∫
ω+
n

(λ+ 2µ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

�
( 1

Λ+
∗

)m 1

ξωn
Ln+1

Ns∑
n=1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh) + λ(∇ · (uh − Iωnuh))

2
)
dx

+
m∑
l=1

( 1

Λ+
∗

)l Ns∑
n=1

|
∫
ω+
n

|χ+
n |2g · (uh − Iω

+
n uh) dx|

�
( 1

Λ+
∗

)m+1
Ns∑
n=1

∫
ωn

(
2µε(uh − Iωnuh) : ε(uh − Iωnuh) + λ(∇ · (uh − Iωnuh))

2
)
dx

+ (Λ+
∗ )m

(
1− (Λ+

∗ )−m

Λ+
∗ − 1

) Ns∑
n=1

∫
ω+
n

((λ+ 2µ)|∇χ+
n |2)−1g2 dx.

(II.38)

Using Cea’s lemma and inequality (II.32) , we have

∫
D

(
2µε(uh − uH) : ε(uh − uH) + λ(∇ · (uh − uH))2

)
dx

�
Ns∑
n=1

∫
ωn

(λ+ 2µ)|∇χn|2(uh − Iωnuh)
2 dx+

Ns∑
n=1

|
∫
ωn

χ2
ng · (uh − Iωnuh) dx|

�
( 1

Λ+
∗

)m+1
∫
D

(
2µε(uh) : ε(uh) + λ(∇ · uh)2

)
dx+

(
(Λ+
∗ )m

(
1− (Λ+

∗ )−m

Λ+
∗ − 1

)
+ 1

)
R.

(II.39)

where R =
∑Ns

n=1

∫
ω+
n

((λ+ 2µ)|∇χ+
n |2)−1g2 dx.

Therefore, similar with the no oversampling case, we have

Theorem II.5.3. Let uh ∈ V h
CG be the fine-scale CG-FEM solution defined in (II.3) and

uH be the CG-GMsFEM solution defined in (II.6) with oversampling. If Λ+
∗ > 1 and
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∫
D

(λ+ 2µ)−1g2 dx � 1, let n = − log(H)

logΛ+
∗

, then

∫
D

(
2µε(uh − uH) : ε(uh − uH) + λ(∇ · (uh − uH))2

)
dx

�
(
H

Λ+
∗

)(∫
D

(
2µε(uh) : ε(uh) + λ(∇ · uh)2

)
dx+ 1

)
.

II.6 Error estimate for DG coupling

In this section, we will analyze the DG coupling of the GMsFEM (II.7). For any u, we

define the DG-norm by

‖u‖2
DG = aH(u, u) +

∑
E∈EH

γ

h

∫
E

{{λ+ 2µ}}[[u]]2 ds.

Let K be a coarse grid block and let n∂K be the unit outward normal vector on ∂K. We

denote V h(∂K) by the restriction of the conforming space V h on ∂K. The normal flux

σ(u)n∂K is understood as an element in V h(∂K) and is defined by

∫
∂K

(σ(u)n∂K) · v ds =

∫
K

(
2µε(u) : ε(v̂) + λ∇ · u∇ · v̂

)
dx, v ∈ V h(∂K), (II.40)

where v̂ is the harmonic extension of v in K. By the Cauchy-Schwarz inequality,

∫
∂K

(σ(u)n∂K) · v ds ≤ aKH(u, u)
1
2 aKH(v̂, v̂)

1
2 .

By an inverse inequality and the fact that v̂ is the harmonic extension of v

aKH(v̂, v̂) ≤ κKC
2
invh

−1

∫
∂K

|v|2 dx, (II.41)
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where κK = maxK{λ+ 2µ} and Cinv > 0 is the constant from inverse inequality. Thus,

∫
∂K

(σ(u)n∂K) · v ds ≤ κ
1
2
KCinvh

− 1
2‖v‖L2(∂K) a

K
H(u, u)

1
2 .

This shows that ∫
∂K

|σ(u)n∂K |2 ds ≤ κKC
2
invh

−1aKH(u, u). (II.42)

Our first step in the convergence analysis is to establish the continuity and the coerciv-

ity of the bilinear form (II.8) with respect to the DG-norm.

Lemma II.6.1. Assume that the penalty parameter γ is chosen so that γ > 2C2
inv. The

bilinear form aDG defined in (II.8) is continuous and coercive, that is,

aDG(u, v) ≤ ‖u‖DG ‖v‖DG, (II.43)

aDG(u, u) ≥ a0‖u‖2
DG, (II.44)

for all u, v, where a0 = 1−
√

2Cinvγ
− 1

2 > 0.

Proof. By the definition of aDG, we have

aDG(u, v) =aH(u, v)−
∑
E∈EH

∫
E

(
{{σ(u)nE}} · [[v]] + {{σ(v)nE}} · [[u]]

)
ds

+
∑
E∈EH

γ

h

∫
E

{{λ+ 2µ}}[[u]] · [[v]] ds.

Notice that

aH(u, v) +
∑
E∈EH

γ

h

∫
E

{{λ+ 2µ}}[[u]] · [[v]] ds ≤ ‖u‖DG ‖v‖DG.

For an interior coarse edge E ∈ EH , we let K+, K− ∈ T H be the two coarse grid blocks
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having the edge E. By the Cauchy-Schwarz inequality, we have

∫
E

{{σ(u)nE}} · [[v]] ds ≤
(
h

∫
E

{{σ(u)nE}}2{{λ+ 2µ}}−1 ds
) 1

2
(1

h

∫
E

{{λ+ 2µ}}[[v]]2 ds
) 1

2
.

(II.45)

Notice that

h

∫
E

{{σ(u)nE}}2{{λ+ 2µ}}−1 ds

≤ h
(∫

E

(σ(u+)nE)2(λ+ + 2µ+)−1 ds+

∫
E

(σ(u−)nE)2(λ− + 2µ−)−1 ds
)
,

where u± = u|K± , λ± = λ|K± and µ± = µ|K± . So, we have

h

∫
E

{{σ(u)nE}}2{{λ+ 2µ}}−1 ds ≤ C2
inv

(
aK

+

H (u+, u+) + aK
−

H (u−, u−)
)
.

Thus (II.45) becomes

∫
E

{{σ(u)nE}} · [[v]] ds ≤ Cinv

(
aK

+

H (u+, u+) + aK
−

H (u−, u−)
) 1

2
(1

h

∫
E

{{λ+ 2µ}}[[v]]2 ds
) 1

2
.

(II.46)

When E is a boundary edge, we have

∫
E

{{σ(u)nE}} · [[v]] ds ≤ Cinva
K
H(u, u)

1
2

(1

h

∫
E

{{λ+ 2µ}}[[v]]2 ds
) 1

2
, (II.47)

where K denotes the coarse grid block having the edge E. Summing (II.46) and (II.47)

for all edges E ∈ EH , we have

∑
E∈EH

∫
E

{{σ(u)nE}} · [[v]] ds ≤
√

2CinvaH(u, u)
1
2

( ∑
E∈EH

1

h

∫
E

{{λ+ 2µ}}[[v]]2 ds
) 1

2
.
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Similarly, we have

∑
E∈EH

∫
E

{{σ(v)nE}} · [[u]] ds ≤
√

2CinvaH(v, v)
1
2

( ∑
E∈EH

1

h

∫
E

{{λ+ 2µ}}[[u]]2 ds
) 1

2
.

Hence

∑
E∈EH

∫
E

(
{{σ(u)nE}} · [[v]] + {{σ(v)nE}} · [[u]]

)
ds ≤

√
2Cinvγ

− 1
2‖u‖DG ‖v‖DG. (II.48)

This proves the continuity.

For coercivity, we have

aDG(u, u) = ‖u‖2
DG −

∑
E∈EH

∫
E

(
{{σ(u)nE}} · [[u]] + {{σ(u)nE}} · [[u]]

)
ds.

By (II.48), we have

aDG(u, u) ≥ (1−
√

2Cinvγ
− 1

2 )‖u‖2
DG,

which gives the desired result.

�

We will now prove the convergence of the method (II.7). Let uh ∈ V h
DG be the fine grid

solution which satisfies

aDG(uh, v) = (f, v), ∀v ∈ V h
DG. (II.49)

It is well-known that uh converges to the exact solution u in the DG-norm as the fine mesh

size h → 0. Next, we define a projection uS ∈ V snap of uh in the snapshot space by the

following construction. For each coarse grid blockK, the restriction of uS onK is defined
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as the harmonic extension of uh, that is,

−∇ · σ(uS) = 0, in K,

uS = uh, on ∂K.

(II.50)

Now, we prove the following estimate for the projection uS .

Lemma II.6.2. Let uh ∈ V h
DG be the fine grid solution defined in (II.49) and uS ∈ V snap

be the projection of uh defined in (II.50). Then we have

‖uh − uS‖DG ≤ CH
(

max
K∈T H

ηK

)
‖f‖L2(Ω),

where ηK = minK{λ+ 2µ}.

Proof. Let K be a given coarse grid block. Since uS = uh on ∂K, the jump terms in

the DG-norm vanish. Thus, the DG-norm can be written as

‖uh − uS‖2
DG =

∑
K∈T H

aKH(uh − uS, uh − uS).

Since uS satisfies (II.50) and uh − uS = 0 on ∂K, we have

aKH(uS, uh − uS) = 0.

So,

‖uh − uS‖2
DG =

∑
K∈T H

aKH(uh, uh − uS) = aDG(uh, uh − uS) = (f, uh − uS).
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By the Poincare inequality, we have

‖uh − uS‖L2(K) ≤ CH2η2
Ka

K
H(uh − uS, uh − uS),

where ηK = minK{λ+ 2µ}. Hence, we have

‖uh − uS‖DG ≤ CH
(

max
K∈T H

ηK

)
‖f‖L2(Ω).

�

In the following theorem, we will state and prove the convergence of the GMsFEM

(II.7).

Theorem II.6.3. Let uh ∈ V h
DG be the fine grid solution defined in (II.49) and uH be the

GMsFEM solution defined in (II.7). Then we have

‖uh − uH‖2
DG ≤C

( NE∑
i=1

H

〈λ+ 2µ〉 ξLi+1

(1 +
γH

hξLi+1

)

∫
∂Ki

(σ(uS) · n∂K)2 ds

+H2
(

max
K∈T H

η2
K

)
‖f‖2

L2(Ω)

)
,

where uS is defined in (II.50).

Proof. First, we will define a projection ûS ∈ V off of uS in the offline space. Notice

that, on each Ki, uS can be represented by

uS =

Mi∑
l=1

clψ
i,off
l ,

where Mi = M i,snap and we assume that the functions ψi,off
l are normalized so that

∫
∂Ki

〈λ+ 2µ〉 (ψi,off
l )2 ds = 1.
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Then the function ûS is defined by

ûS =

Li∑
l=1

clψ
i,off
l .

We will find an estimate of ‖uS − ûS‖DG. Let K be a given coarse grid block. Recall that

the spectral problem is

∫
K

2µε(u) : ε(v) dx+

∫
K

λ∇ · u∇ · v dx =
ξ

H

∫
∂K

〈λ+ 2µ〉uv ds.

By the definition of the flux (II.40), the spectral problem can be represented as

∫
∂K

(σ(u) · n∂K)v ds =
ξ

H

∫
∂K

〈λ+ 2µ〉uv ds.

By the definition of the DG-norm, the error ‖uS − ûS‖DG can be computed as

‖ûS − uS‖2
DG ≤

∑
K

(∫
K

2µε(ûS − uS)2 ds+

∫
K

λ(∇ · (ûS − uS))2 ds

+
γ

h

∫
∂K

{{λ+ 2µ}}(ûS − uS))2 ds
)
.

Note that∫
Ki

2µε(ûS − uS)2 ds+

∫
Ki

λ(∇ · (ûS − uS))2 ds ≤ 1

h

∫
∂Ki

〈λ+ 2µ〉 (ûS − uS)2 ds

=

Mi∑
l=Li+1

ξl
H
c2
l ≤

H

ξLi+1

Mi∑
l=Li+1

(
ξl
H

)2c2
l .

Also,

1

h

∫
∂Ki

{{λ+ 2µ}}(ûS − uS)2 ds =
1

h

Mi∑
l=Li+1

c2
l ≤

H2

hξ2
Li+1

Mi∑
l=Li+1

(
ξl
H

)2c2
l .
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Moreover,

Mi∑
l=Li+1

(
ξl
H

)2c2
l ≤

Mi∑
l=1

(
ξl
H

)2c2
l ≤

1

〈λ+ 2µ〉

∫
∂Ki

(σ(uS) · n∂K)2 ds.

Consequently, we obtain the following bound

‖uS − ûS‖2
DG ≤

NE∑
i=1

H

〈λ+ 2µ〉 ξLi+1

(1 +
γH

hξLi+1

)

∫
∂Ki

(σ(uS) · n∂K)2 ds.

Next, we will prove the required error bound. By coercivity,

a0‖ûS − uH‖2
DG = aDG(ûS − uH , ûS − uH)

= aDG(ûS − uH , ûS − uS) + aDG(ûS − uH , uS − uh)

+ aDG(ûS − uH , uh − uH).

Note that aDG(ûS − uH , uh − uH) = 0 since û− uH ∈ V off. Using the above results,

‖ûS − uH‖2
DG ≤ C

( NE∑
i=1

H

〈λ+ 2µ〉 ξLi+1

(1 +
γH

hξLi+1

)

∫
∂Ki

(σ(uS) · n∂K)2 ds

+H2
(

max
K∈T H

η2
K

)
‖f‖2

L2(Ω)

)
.

(II.51)

Finally, the desired bound is obtained by the triangle inequality

‖uh − uH‖DG ≤ ‖uh − uS‖DG + ‖uS − ûS‖DG + ‖ûS − uH‖DG.

�

Remark II.6.4. It is worthwhile to note that (II.41) can be replaced by

aKH(v̂, v̂) ≤ Λsnap
K 〈λ+ 2µ〉

∫
∂K

|v|2 ds,
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h Λsnap
K Λsnap

K+

1/10 3.91e+02 19.3
1/20 7.99e+02 19.2
1/40 1.61e+03 20.4
1/80 3.22e+03 20.4

Table II.9: Largest eigenvalue for no oversampling and oversampling

where Λsnap
K is the largest eigenvalue for the spectral problem (II.18). Therefore, (II.42)

becomes ∫
∂K

|σ(u)n∂K |2 ds ≤ Λsnap
K 〈λ+ 2µ〉 aKH(u, u).

Repeating above steps, one can choose γ in (II.51) that satisfies

γ > C̃h max
K⊂T H

Λsnap
K ,

where the constant C̃ is defined as

C̃ = max
K⊂T H

maxE⊂∂K{λ+ 2µ}
minE⊂∂K{λ+ 2µ} .

If we assume every coarse element includes a high contrast region, then C̃ is O(1).

Table II.9 shows Λsnap
K with and without oversampling for different h. We can see that

Λsnap
K+ is much smaller than Λsnap

K . Besides, the numerical experiments show Λsnap
K+ is a very

weak function of h, while Λsnap
K is proportional to h−1.

We can get similar error analysis for the case of oversampling by just following steps

shown in the above no oversampling case. But we can have better estimate in the over-

sampling case. If we let γ = αC̃maxK⊂T HΛsnap
K+ , then the term C1 = 1 + γH

hξLi+1
in (II.51)

becomes 1 +
αC̃max

K⊂TH Λsnap

K+ H

ξLi+1
. We have numerically shown that Λsnap

K+ is almost indepen-

dent of h, which means C1 can be controlled. Therefore, the dominated error comes from
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H
〈λ+2µ〉ξLi+1

. We emphasize that this remark is based on our numerical observations while

the analytical studies are complicated and it will be the subject of our future research.

II.7 Concluding remarks

We design a multiscale model reduction method using GMsFEM for second-order for-

mulation of elasticity equations in heterogeneous media. We design a snapshot space and

an offline space based on the analysis. We present two approaches that couple multiscale

basis functions of the offline space. These are continuous Galerkin and discontinuous

Galerkin methods. Both approaches are analyzed. We present oversampling studies where

larger domains are used for calculating the snapshot space. Numerical results are present-

ed.
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III. GENERALIZED MULTISCALE FINITE ELEMENT METHODS FOR

FIRST-ORDER LINEAR ELASTICITY EQUATION

III.1 Introduction

Previous chapters are devoted to reduce the linear elasticity system in the second order

formulation. In this chapter, we will study the reduction for the first-order formulation of

the linear elasticity system, where the stress tensor is one of the unknowns. The motiva-

tion of using a mixed formulation is to preserve energy and mass conservation which is

important for elastic wave simulations and geomechanical applications [16, 63]. Another

important advantage of mixed formulation is its robustness for nearly incompressible ma-

terials. One can also directly compute the stress tensor, which is often the focus of interest

in some engineer problems [66].

It is well-known that the solution of second-order displacement formulation of the

elasticity system will deteriorate (the so-called locking effect [17, 11]) for the nearly in-

compressible material. Methods based on mixed formulations provide good alternatives

as they can overcome the problem of locking. Classical mixed methods for the linear elas-

ticity problems are reported in [8, 17, 76, 18, 40, 7, 51, 50, 47]. The main disadvantage of

these mixed methods is that they have too many degrees of freedom, or the resulting linear

system is not symmetric positive definite and thus difficult to solve (see detailed descrip-

tion in [47]). Some of these methods require regular or uniform grids which make them

fail to handle the case of irregular domain. Recently proposed Hybridizable Discontinu-

ous Galerkin (HDG) method [31] has shown a promising ability to reduce the degrees of

freedom of many problems like the mixed formulation of the elliptic problem, this method

also allows non-conforming and irregular grids, and domain decomposition formulation,

the resulting linear system is symmetric positive definite or nearly symmetric positive def-

44



inite. The literature of applying HDG method for the linear elasticity problem can be seen

in [72, 32].

Our goal here is to design multiscale model reduction techniques for the linear elas-

ticity problems in highly heterogeneous media within the framework of HDG method. To

achieve this, we use the domain decomposition formulation of the HDG method, the en-

tire problem can be decomposed by solving a small dimension global problem and some

independent local problems on each coarse element. The global problem are defined on

numerical trace space that lives in the coarse elements interface. The standard choice for

the numerical trace space is the polynomial functions, however, polynomial only works

very well for the case that media property is smooth along the interfaces. It is quite neces-

sary to construct multiscale numerical trace space that can capture the local information of

arbitrary heterogeneous media and thus reduce the dimension of the trace space. We will

introduce several multiscale spaces for the numerical trace that can represent the solution

with fewer degrees of freedom. We will show the efficiency and robustness of our methods

with various numerical examples.

This chapter is arranged in the following. In Section III.2, we first describe the mod-

el problem and the coarse and fine discretizations of the domain, and then present the

framework of HDG-GMsFEM for the mixed linear elasticity system, followed by the de-

scription of the domain decomposition method. In Section III.3, we introduce three ways

of constructing the multiscale basis functions. Numerical examples are given in Section

III.4, and conclusions are made in the last section.

III.2 Preliminaries

In this section, we will describe the model problem and gird generation. In addition,

we will present the formulations of a fine-scale HDG discretization of the first-order linear

elasticity system and its domain decomposition formulation.
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III.2.1 Model problem

Let Ω be a polygonal open subset of R2. Consider the linear elasticity system in the

mixed form

Aσ + ε(u) = 0 in Ω ⊂ R2, (III.1a)

∇ · σ = f in Ω, (III.1b)

u = 0 on ∂Ω, (III.1c)

Here, u represents the displacement filed, the strain tensor is again represented by

ε(u) := 1
2
(∇u+ (∇u)>). The stress tensor is represented by σ : Ω 7→ S, where S denotes

the set of all symmetric matrices in R2×2. The compliance tensor A is assumed to be a

bounded, symmetric, positive definite tensor over S. Aσ = λtr(σ)δ + µσ, λ and µ are

elastic parameters, their relationships with Lamé parameter λ and µ are

µ =
1

2µ
(III.2a)

λ = − λ

4µ(λ+ µ)
(III.2b)

f ∈ L2(Ω), g ∈H1/2(∂Ω).

III.2.2 Fine and coarse grids

The HDG-GMsFEM method for the system (III.1) relies on a two-scale grid. Let

Ω be divided into non-overlapping polygonal coarse blocks Ki with diameter Hi so that

Ω = ∪NE
i=1Ki, where NE is the total number of coarse blocks. The decomposition of

the domain can be nonconforming. We call EH a coarse edge of the coarse block Ki if

EH = ∂Ki ∩ ∂Kj or EH = ∂Ki ∩ ∂Ω. Let EH(Ki) be the set of all coarse edges on the

boundary of the coarse block Ki, and let EH = ∪Ni=1EH(Ki) be the set of all coarse edges

46



and E0
H be the set of all interior coarse edges. Nv is the total number of coarse grid nodes.

We further partition each each coarse block Ki into a finer mesh with mesh size hi.

Let Th = ∪Ni=1Th(Ki) be the union of all these triangulations, which is a fine mesh tri-

angulation of the domain Ω. We use h = max1≤i≤nhi to denote the mesh size of Th. In

addition, we let Eh(Ki) be the set of all edges of the triangulation Th(Ki) and E0
h(Ki) be

the set of all interior edges of the triangulation Th(Ki) and let Eh = ∪Ni=1Eh(Ki) be the

set of all edges in the triangulation Th. We also denote E0
h = ∪Ni=1E0

h(Ki) as the set of all

fine-scale interior edges. Figure III.1 gives an illustration of the constructions of the two

grids. The red lines represent the coarse grid, and the black lines represent the fine grid.

For each coarse edge Ei, we define a coarse neighborhood ωi as the union of all coarse

blocks having the edge Ei. Figure III.1 shows a coarse neighborhood ωi in yellow color.

Coarse edge Ei

Coarse neighborhood ωi

Ki1

Ki2

Figure III.1: Illustration of the coarse and fine grids and a coarse neighborhood ωi subor-

dinated to a coarse edge.

III.2.3 HDG-GMsFEM for elasticity equation

The methods we are interested in seek an approximation to (u, q, u|Eh) by the hy-

bridized discontinuous Galerkin finite element method. For this purpose, using the two-
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scale grid defined in the last subsection, we define the following finite element spaces:

V h := {v ∈ L2(Th) : v|K ∈ V (K) ∀ K ∈ Th},

Wh := {ω ∈ L2(Th) : ω|K ∈W (K) ∀ K ∈ Th},

Mh := {µ ∈ L2(Eh) : for F ∈ E0
h µ|F ∈Mh(F ), and µ|∂Ω = 0},

M 0
h := {µ ∈ L2(Eh) : for F ∈ E0

h µ|F ∈Mh(F ), and µ|EH = 0},

MH := {µ ∈ L2(Eh,H) : for F ∈ EH µ|F ∈MH(F ), and µ|E0
h∪∂Ω = 0}.

Mh,H :=M 0
h ⊕MH .

Then the multiscale HDG finite element method can be read as: find (uh, σh, ûh,H) in

the space Wh × V h ×Mh,H that satisfies the following weak problem

(Aσh , v)Th − (uh , ∇ · v)Th + 〈ûh,H , vn〉∂Th = 0, (III.3a)

(σh , ∇ω)Th − 〈σ̂h,Hn , ω〉∂Th = −(f , ω)Th , (III.3b)

〈σ̂h,Hn , µ〉∂Th(T ) = 0, (III.3c)

〈ûh,H , µ〉∂D = 〈0̂ , µ〉∂D, (III.3d)

for all (v, ω, µ) ∈ V h ×Wh ×Mh,H , where

σ̂h,Hn = σhn+ τ(PMuh − ûh,H) on ∂Th. (III.3e)

Here, PM denotes the standard L2-orthogonal projection from L2(Eh) onto Mh. We

write (η , ζ)Th :=
∑2

i,j=1(η
i,j
, ζ

i,j
)Th , (η , ζ)Th :=

∑2
i=1(ηi , ζi)Th , and (η , ζ)Th :=∑

K∈Th(η, ζ)K , where (η, ζ)D denotes the integral of ηζ over D ⊂ R2. Similarly, we

write 〈η , ζ〉∂Th :=
∑n

i=1〈ηi , ζi〉∂Th and 〈η , ζ〉∂Th :=
∑

K∈Th〈η , ζ〉∂K , where 〈η , ζ〉D
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denotes the integral of ηζ over D ⊂ R1.

On each K ∈ Th, the stabilization parameter τ is non-negative constant on each F ∈

∂K and we assume that τ > 0 on at least one face F ∗ ∈ ∂K. By taking particular choices

of the local spaces V (K), W (K) and Mh(F ), and the linear local stabilization operator

τ , various HDG methods are obtained [72, 32]. Here we use the finite element space

introduced in [72] to form space V (K), W (K) and Mh(F ) for K ∈ Th. The focus of

this chapter is the construction of multiscale basis to fill MH .

III.2.4 Domain decomposition formulation

The main feature of this method is that it could be implemented by just solving a

global system on the coarse edges EH together with the solutions of some local problems.

To achieve this, we split (III.3c) into two equations by testing separately with µ ∈ M 0
h

and µ ∈MH so that

〈σ̂h,Hn, µ〉∂Th = 0 ∀µ ∈M 0
h and 〈σ̂h,Hn, µ〉∂Ki

= 0 ∀µ ∈MH and i = 1, . . . , NE.

(III.4)

On any subdomain T , given the boundary data of ûh,H = ξH for ξH ∈ MH(F ), F ∈

EH(T ), we can solve for (σh, uh, ûh,H)|T by restricting the equations (III.3a)–(III.3c) on

this particular subdomain T :

(Aσh , v)Th(T ) − (uh , ∇ · v)Th(T ) + 〈ûh,H , vn〉∂Th(T ) = 0, (III.5)

(σh , ∇ω)Th(T ) − 〈σ̂h,Hn , ω〉∂Th(T ) = −(f , ω)Th(T ), (III.6)

〈σ̂h,Hn , µ〉∂Th(T ) = 0, (III.7)

ûh,H = ξH on ∂T , (III.8)
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for all (w, v, µ) ∈ Wh|T × V h|T ×M 0
h |E0

h(T ). Here again we have σ̂h,Hn = σhn +

τ(PMuh− ûh,H) on ∂Th(T ). In fact the above local system is the regular HDG methods

defined on T . From [72] we already know that this system is stable. Hence, this HDG

solver defines a global affine mapping from MH to Wh×V h×M 0
h . The solution can be

further split into two parts, namely,

(σh, uh, ûh,H) = (σh(f), uh(f), ûh,H(f)) + (σh(ξH), uh(ξH), ûh,H(ξH))

where (σh(f), uh(f), ûh,H(f)) satisfies

(Aσh(f) , v)Th(T ) − (uh(f) , ∇ · v)Th(T ) + 〈ûh,H(f) , vn〉∂Th(T ) = 0,

(σh(f) , ∇ω)Th(T ) − 〈σ̂h,H(f)n , ω〉∂Th(T ) = −(f , ω)Th(T ),

〈σ̂h,H(f)n , µ〉∂Th(T ) = 0,

ûh,H(f) = 0 on ∂T ,

for all (w, v, µ) ∈Wh|T × V h|T ×M 0
h |E0

h(T ) and (σh(ξH), uh(ξH), ûh,H(ξH)) satisfies

(Aσh(ξH) , v)Th(T ) − (uh(ξH) , ∇ · v)Th(T ) + 〈ûh,H(ξH) , vn〉∂Th(T ) = 0,

(σh(ξH) , ∇ω)Th(T ) − 〈σ̂h,H(ξH)n , ω〉∂Th(T ) = 0,

〈σ̂h,H(ξH)n , ω〉∂Th(T ) = 0,

ûh,H(ξH) = ξH on ∂T ,

for all (w, v, µ) ∈Wh|T × V h|T ×M 0
h |E0

h(T )
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Then the second equation (III.4) reduces to

a(ξH , µ) = l(µ) for all µ ∈MH , (III.9)

where the bilinear form a(ξH , µ) : MH ×MH → R and the linear form l(µ) : MH → R

are defined as

a(ξH , µ) := −〈σ̂h,H(ξH) · n , µ〉∂TH and l(µ) := a(f, µ) = 〈σ̂h,H(f) · n , µ〉∂TH .

(III.10)

We note that similar procedure can be applied for other types of boundary conditions.

We can apply direct solver to solve the linear system resulting from a(·, ·) and l(·). On

the other hand, MH in (III.9) is not accurate enough for problems with high contrast

heterogeneous media if it contains only polynomial basis functions. Thus, in the next

section, we will discuss the construction of multiscale basis functions.

III.3 Construction of the multiscale space MH

In this section, we propose three different multiscale space MH . We remark that if the

media is smooth across the coarse block interface, polynomial space is a good choice for

MH . We first clarify some notations about the grids. Suppose Ei is a local coarse edge, let

xi1 and xi2 be the coarse nodes that lies on the two ends of Ei. For each coarse node xi, we

say the union of coarse blocks that include xi is the coarse neighborhood that associated

with xi. Therefore, for xi1 and xi2 we have two corresponding coarse neighborhoods

Ωi1 and Ωi2 that associated with them respectively. Figure III.2 shows xi1 and its coarse

neighborhood Ωi1. We also define ωi as the coarse neighborhood that subordinated to

the coarse edge Ei, which is the union of the two adjacent coarse blocks Ki1 and Ki2

that include Ei (see FigureIII.1). We note here that the neighborhood associated with a

coarse node and the neighborhood associated with a coarse edge are different, the former
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Coarse edge Ei

Coarse node xi1Coarse node xi2

Coarse neighborhood Ωi1

Figure III.2: Illustration of coarse nodes (black dot), a coarse edge (green edge) and a
coarse neighborhood (blue block) subordinated to a coarse node.

are consist of 4 coarse blocks while the latter has two coarse blocks in the 2D case we

discussed here.

III.3.1 Multiscale Space I

This approach is very close to the method of constructing multiscale basis in contin-

uous Galerkin framework introduced in Section II.3. This is because the edge function

comes from a conforming space, which is a subspace of H1
0 (D). Nevertheless, the mul-

tiscale space MH in our case is for u along the coarse-grid edges. So we can just take

the trace of all space used in Section II.3 to form the space MH . Next we will show the

construction in details:

Step 1: For each coarse neighborhood that associated with a coarse node xi, we can

compute or pre-define a partition of unity function (see II for more details). We denote all

the partition of unities as {χi}Nv
i=1.

With the partition of unity functions, we compute κ̃ by:

κ̃ := (λ+ 2µ)
Nv∑
i=1

|∇χi|2.

Step 2: On each coarse neighborhood Ωi, we solve the following homogeneous Neu-

mann eigenvalue problem in the snapshot space {ψi,snap}M i,snap

k=1 (fine-scale snapshot or har-
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monic extension snapshot):

−∇ · σ(φ) = ξκ̃φ. (III.11)

The above local problem is solved on the fine grid and we order eigenvalues as

0 = ξ1 ≤ ξ2 ≤ · · · ≤ ξj ≤ · · · .

We then choose the first Li eigenfunctions φl associated to the smallest Li eigenvalues.

We define

ψil =
M i,snap∑
k=1

φlkψ
i,snap
k , l = 1, 2, · · · , Li, (III.12)

where φlk is the k-th component of discrete φl. Then we multiply these functions with

partition of unity χi, we denote the resulting functions again by ψil . We apply this process

for Ωi1 and Ωi2 and thus we can obtain two set of functions ψi1l and ψi2l . Due to the partition

of unity function χi, these basis are in H1
0 (D).

Then we take the trace of ψi1l and ψi2l of on the target edgeEi respectively, and combine

these two sets of 1D functions, then we obtain local offline space MH(Ei). Generally,

the functions in this set are linearly dependent, therefore we need to perform a Proper

Orthogonal Decomposition (POD [14]) to remove the dependency, and select the most

important modes in order to further reduce the dimension of MH(Ei). The resulting space

MH(Ei) is the local multiscale basis function space we desired to construct.

Step 3: The global multiscale space MH now can be defined as:

MH = ⊕|E
0
H |

i=1 MH(Ei).
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III.3.2 Multiscale Space II

In multiscale space I, for each coarse edge Ei, we have overlap in the construction

of the multiscale space MH since the space is constructed based on coarse nodes. The

computational cost maybe very large since the local problem is defined in a neighborhood

associated with a coarse node. Here we propose another way to construct the space MH

based on the coarse elements, which makes this approach similar to the constructing multi-

scale basis functions for discontinuous Galerkin coupling framework described in Section

II.3. Comparing with the first approach, the local spectral problem dimension is smaller.

We have following steps to obtain the second type of multiscale space.

Step 1: For each coarse edge Ei, we consider its associated two coarse elements Ki1

and Ki2 (see Figure III.1). For each coarse element, we solve following spectral problem:

∫
Ki

(
2µε(u) : ε(v) + λ∇ · u∇ · v

)
dx =

ξ

H

∫
∂Ki

〈λ+ 2µ〉u · v ds, (III.13)

in fine-scale or harmonic extension snapshot space. We then select the eigenfunctions φk

corresponding to smallest Li eigenvalues and define

ψil =
M i,snap∑
k=1

φlkψ
i,snap
k , l = 1, 2, · · · , Li, (III.14)

where ψi,snap
k is the snapshot.

Therefore we can obtain two set of full domain defined functions {ψi1l }Li1
l=1 and {ψi2l }Li2

l=1.

Step 2: Take the trace of {ψi1l }Li1
l=1 and {ψi2l }Li2

l=1 on Ei to generate the local multiscale

space on the coarse edges Ei respectively, namely, it can be written as:

MH(Ei) := span{ψi11 |Ei
, ψi12 |Ei

, . . . , ψi1Li1
|Ei
, ψi21 |Ei

, ψi22 |Ei
, . . . , ψi2Li2

|Ei
}.
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Due the functions in MH(Ei) comes from two separate spectral problems, again we need

to again apply POD to remove the dependence among these functions and select the most

important modes. Then we obtain the local multiscale space MH(Ei) for the targeted edge

Ei.

Step 3: The global multiscale space MH now can be defined as:

MH = ⊕|E
0
H |

i=1 MH(Ei).

III.3.3 Multiscale Space III

The first two approaches involve applying POD because the local basis functions

comes from the eigenfunctions of two spectral problems. The third approach we will

introduce involves only one spectral problem for each coarse edge Ei. The details are as

follows:

Step 1: For each coarse edge Ei, consider a spectral problem in the neighborhood ωi

(see figure III.1). More specifically, we solve following eigenvalue problem:

∫
ωi

(
2µε(u) : ε(v) + λ∇ · u∇ · v

)
dx = ξ

∫
∂ωi

〈λ+ 2µ〉u · v ds, (III.15)

in local fine-scale or harmonic extension snapshot space that is supported on ωi. We then

take the eigenfunctions φk corresponding to smallest Li eigenvalues and define

ψil =
M i,snap∑
k=1

φlkψ
i,snap
k , l = 1, 2, · · · , Li, (III.16)

where ψi,snap
k is the snapshot.

Step 2: Take the trace of full domain defined functions {ψil}Li
i=1 on Ei to fill MH(Ei),

namely
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MH(Ei) := span{ψi1|Ei
, ψi2|Ei

, . . . , ψiLi
|Ei
}.

Step 3: The global multiscale space MH now again can be defined as:

MH = ⊕|E
0
H |

i=1 MH(Ei).

We remark the second method requires least computational cost since the dominant com-

putation is to solve the eigenvalue problem and the dimension of the spectral problem of

the second method is the smallest. The oversampling techniques can be applied to create

the snapshot space and offline space, one can also use randomized snapshot when gener-

ating snapshot space.

III.4 Numerical results

In this section, we present some representative numerical experiments to verify the

performance of HDG-GMsFEM. We compute the multiscale solution (uH , σH) on coarse

grid and study the error with respect to the find-grid reference solution. We focus our study

on the convergence of HDG-GMsFEM solution with more basis added to the coarse space

with fixed find-grid and coarse-grid size. We will also study the effects of randomized

snapshot, oversampling, media contrast and nearly incompressible media.

In all simulations reported below, the computational domain D = [0, 1]2, the fine-

scale grid is 100 × 100, while the coarse-scale grid is 10 × 10. We will consider two

different Young’s modulus fields E(x), as depicted in Figure III.3. We note that in the

blue region E(x) = 1 and in the red region κ = η (>> 1), λ(x) = ν
(1+ν)(1−2ν)

E(x),

µ(x) = 1
2(1+ν)

E(x). As it is shown, these two models contain high permeable inclusions,

short and long channels.
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Figure III.3: Young’s modulus E(x)

In all simulations, we use constant force and homogeneous Dirichlet boundary condi-

tions. We use constant source and the stabilization parameter τ = (λ̄+2µ̄)
h

, where h is the

fine-grid size. Harmonic extension snapshot is adopted for all tests. We use additional

one more fine-grid element if oversampling is applied. The reference solution (uh, σh)

is computed on the fine scale grid by applying the lowest order HDG method introduced

in [72]. Wh and V h consist of piece-wise quadratic and piece-wise linear, discontinuous

functions on Th, M 0
h of piece-wise linear, discontinuous function in Eh. We note the di-

mension of the reference solution is 4|E0
h|, which is 79200. We define the weighted L2

norm as following

||σ||L2(A,D) =
√

(Aσ, σ)D,

to quantify the error of σ and use classical L2 norm to quantify the error of u.

In all tables presented below, “Dim” represents the dimension of the coarse system,

“Nb” means the number of basis used per coarse edge, we will the same number of basis

for all the coarse edges, “ν” is the Poisson ratio.

We first summarize our major observations:
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1. The HDG-GMsFEM solution converges fast with more multiscale basis added to

each of the three multiscale space introduced,

2. HDG-GMsFEM is very robust with respect to the media contrast,

3. Oversampling can improve the accuracy of the coarse solution, especially for Mul-

tiscale Space II,

4. Randomized snapshot is very efficient and is a good alternate for the full snapshot,

5. HDG-GMsFEM is capable of dealing with nearly incompressible material.

III.4.1 Numerical results of Model a

In this subsection, we study the numerical experiments for the model a by applying

Multiscale I−III. In this numerical tests, we study the error decay behavior by adding dif-

ferent types of multiscale basis functions. The results are presented in Tables III.1−III.3.

The results of the case η = 106 are report in parentheses. As it is shown the HDG-

GMsFEM solution converges to the reference solution (find-grid solution). We observe a

fast error decay if as more basis functions are added for all three type of multiscale basis.

For example, The relative L2 error of uH decreases from 6.7% to 1.0% when multiscale

space I is applied without oversampling, while the dimension of the coarse system in-

crease from 1080 to 2160, which is just 1.36% to 2.73% of the degrees of freedom of the

fine-scale problem. We also notice that oversampling can help decrease the error although

only one find-grid element is added. Oversampling is particular usefully when multiscale

space II is applied (see Table III.2), since in this case the local domain to compute the

snapshot now covers the support of local basis and thus can remove the boundary effect-

s. We observe that oversampling is not that efficient for Multiscale Space I compared

with Multiscale II and III, this is because in this scenario, the local domain of comput-

ing snapshot has already covered the target edge. The effects of apply oversampling for
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Dim(Nb)
||σh−σH ||L2(A,Ω)

||σh||L2(A,Ω)

||uh−uH ||L2(Ω)

||uh||L2(Ω)

No oversampling Oversampling No oversampling Oversampling
1080(3) 0.193(0.199) 0.189(0.195) 0.067(0.071) 0.065(0.069)
1440(4) 0.114(0.123) 0.114(0.131) 0.029(0.033) 0.029(0.035)
1800(5) 0.067(0.070) 0.068(0.078) 0.013(0.014) 0.013(0.016)
2160(6) 0.055(0.069) 0.044(0.051) 0.010(0.015) 0.007(0.009)

Table III.1: Relative errors between the HDG-GMsFEM solution and the fine-scale HDG
solution, with Multiscale Space I for Model a, η = 104(106), ν = 0.2.

Dim(Nb)
||σh−σH ||L2(A,Ω)

||σh||L2(A,Ω)

||uh−uH ||L2(Ω)

||uh||L2(Ω)

No oversampling Oversampling No oversampling Oversampling
1080(3) 0.210(0.235) 0.162(0.162) 0.076(0.092) 0.048(0.048)
1440(4) 0.159(0.205) 0.086(0.086) 0.046(0.076) 0.017(0.017)
1800(5) 0.124(0.159) 0.056(0.056) 0.030(0.048) 0.009(0.009)
2160(6) 0.093(0.109) 0.034(0.033) 0.019(0.025) 0.005(0.005)

Table III.2: Relative errors between the HDG-GMsFEM solution and the fine-scale HDG
solution, with Multiscale Space II for Model a, η = 104(106), ν = 0.2.

HDG-GMsFEM is quite similar to the oversampling results in chapter II. By comparing

the results of η = 104 and η = 106, we can see clearly all three Multiscale Spaces are

robust against to the media contrast. We show the reference solution and HDG-GMsFEM

solutions computed with different number of basis functions in Figures III.4 and III.5. We

can observe obvious difference between the HDG-GMsFEM solution with only 2 basis

functions per coarse edge and reference solution. If we increase the basis number to 4,

we notice, at first glance, the multiscale solution looks similar to the reference solution.

However, if we take a closer look, we notice some missing features in inner part of the

solution. When we use 6 basis functions per coarse edge, these features can be recovered

correctly.

59



Dim(Nb)
||σh−σH ||L2(A,Ω)

||σh||L2(A,Ω)

||uh−uH ||L2(Ω)

||uh||L2(Ω)

No oversampling Oversampling No oversampling Oversampling
1080(3) 0.207(0.207) 0.191(0.190) 0.067(0.067) 0.057(0.057)
1440(4) 0.138(0.133) 0.119(0.115) 0.033(0.032) 0.026(0.025)
1800(5) 0.091(0.109) 0.069(0.070) 0.017(0.023) 0.012(0.012)
2160(6) 0.059(0.070) 0.050(0.056) 0.010(0.012) 0.008(0.009)

Table III.3: Relative errors between the HDG-GMsFEM solution and the fine-scale HDG
solution, with Multiscale Space III for Model a, η = 104(106), ν = 0.2.
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(d) HDG-GMsFEM solution of u1

with 6 basis.

Figure III.4: Comparison of the HDG-GMsFEM solution and the fine-scale HDG solution
(first component of displacement) with Multiscale Space III for model a, η = 104, no
oversampling, ν = 0.2.

III.4.2 Numerical results of Model b

Next, we consider the model b and compare to the previous results, see Table III.4−

III.6. This model includes a long channel which will bring a long-range effect in the

60



 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07
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with 2 basis.
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(d) HDG-GMsFEM solution of u2

with 6 basis.

Figure III.5: Comparison of the HDG-GMsFEM solution and the fine-scale HDG solution
(second component of displacement) with Multiscale Space III for Model a, η = 104, no
oversampling, ν = 0.2.

solution. Again, we can see that the error decreases as more basis is added. We also notice

the robustness of the three types Multiscale basis functions with respect to the contrast.

Again, we see that the error is reduced if we apply oversampling technique. In particular,

the L2 error of u decrease from 3.0% to 0.9% if 5 bases from Multiscale Space II are used.

III.4.3 Randomized snapshot

We have already seen that oversampling can help increase the accuracy of HDG-

GMsFEM, however applying oversampling will increase the computational cost of offline

stage especially in 3D case. This problem can be relieved by using randomized bound-

ary conditions to generate the snapshot space. The main idea of this approach is to use
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Dim(Nb)
||σh−σH ||L2(A,Ω)

||σh||L2(A,Ω)

||uh−uH ||L2(Ω)

||uh||L2(Ω)

No oversampling Oversampling No oversampling Oversampling
1080(3) 0.112(0.114) 0.112(0.113) 0.024(0.027) 0.024(0.026)
1440(4) 0.074(0.072) 0.076(0.069) 0.013(0.014) 0.014(0.013)
1800(5) 0.041(0.041) 0.037(0.039) 0.006(0.007) 0.006(0.006)
2160(6) 0.027(0.027) 0.025(0.025) 0.004(0.004) 0.004(0.004)

Table III.4: Relative errors between the HDG-GMsFEM solution and the fine-scale HDG
solution, with Multiscale Space I for Model b, η = 104(106), ν = 0.2.

Dim(Nb)
||σh−σH ||L2(A,Ω)

||σh||L2(A,Ω)

||uh−uH ||L2(Ω)

||uh||L2(Ω)

No oversampling Oversampling No oversampling Oversampling
1080(3) 0.167(0.184) 0.130(0.128) 0.047(0.057) 0.031(0.031)
1440(4) 0.131(0.153) 0.077(0.074) 0.033(0.045) 0.014(0.013)
1800(5) 0.084(0.101) 0.043(0.036) 0.016(0.023) 0.006(0.006)
2160(6) 0.069(0.082) 0.037(0.027) 0.012(0.017) 0.005(0.004)

Table III.5: Relative errors between the HDG-GMsFEM solution and the fine-scale HDG
solution, with Multiscale Space II for Model b, η = 104(106), ν = 0.2.

Dim(Nb)
||σh−σH ||L2(A,Ω)

||σh||L2(A,Ω)

||uh−uH ||L2(Ω)

||uh||L2(Ω)

No oversampling Oversampling No oversampling Oversampling
1080(3) 0.162(0.161) 0.160(0.167) 0.040(0.040) 0.039(0.043)
1440(4) 0.108(0.114) 0.102(0.102) 0.022(0.025) 0.020(0.020)
1800(5) 0.077(0.081) 0.077(0.080) 0.014(0.015) 0.014(0.015)
2160(6) 0.055(0.061) 0.050(0.045) 0.009(0.011) 0.008(0.007)

Table III.6: Relative errors between the HDG-GMsFEM solution and the fine-scale HDG
solution, with Multiscale Space III for Model b, η = 104(106), ν = 0.2.

random boundary conditions when computing harmonic extension snapshots. This will

substantially reduce the dimension of the spectral problem defined in snapshot space. For

example, in the setting of Multiscale Space III in Tables III.3 and III.6, the dimension of

oversampling snapshot is 136. We conduct the same set of numerical experiments with
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some random boundary conditions and report the results in Tables III.7 and table III.8.

We note that We can see that, in general, using the harmonic extension snapshot space

from randomized boundary conditions leads to slightly larger errors. However, the offline

computational cost is reduced significantly.

Dim(Nb)

# of random BC
Nb + 4 Nb + 8 Nb + 12 136 (Full snapshot)

1080(3) 0.072 0.073 0.069 0.057

1440(4) 0.039 0.039 0.040 0.026

1800(5) 0.024 0.023 0.021 0.012

2160(6) 0.012 0.011 0.010 0.008

Table III.7: Relative L2 errors of displacements between the HDG-GMsFEM solution and

the fine-scale HDG solution, with Multiscale Space III for Model a, randomized snapshot,

η = 104.
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Dim(Nb)

# of random BC
Nb + 4 Nb + 8 Nb + 12 136 (Full snapshot)

1080(3) 0041 0.040 0.044 0.039

1440(4) 0.029 0.027 0.027 0.019

1800(5) 0.018 0.018 0.020 0.013

2160(6) 0.014 0.012 0.014 0.008

Table III.8: Relative L2 errors of displacements between the HDG-GMsFEM solution and

the fine-scale HDG solution, with Multiscale Space III for Model b, randomized snapshot,

η = 104.

III.4.4 HDG-GMsFEM for the nearly incompressible material

We also test our methods for the nearly incompressible material, the results are re-

ported in Table III.9. We can also observe the convergence behavior of the error with the

increase of basis functions. It is clear that our method is robust with respect to the Poisson

ratio ν.
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Dim(Nb)
Model a Model b

ν=0.49999 ν=0.499999 ν=0.49999 ν=0.499999

1080(3) 0.019 0.007 0.023 0.010

1440(4) 0.005 0.002 0.010 0.004

1800(5) 0.003 0.001 0.006 0.003

2160(6) 0.002 0.001 0.005 0.002

Table III.9: Relative L2 errors between the HDG-GMsFEM solution and the fine-scale

HDG solution, with Multiscale Space III for Model a and model b, oversampling is ap-

plied, η = 104.

III.5 Concluding remarks

We design a multiscale model reduction method using HDG-GMsFEM for first-order

formulation of elasticity equations in heterogeneous media. We introduce three methods

of constructing multiscale basis function. We study the numerical performance of these

methods comprehensively with two highly heterogeneous model. The results show these

methods are robust and efficient in providing an accurate coarse-grid solution even for the

nearly incompressible media.
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IV. GENERALIZED MULTISCALE FINITE ELEMENT METHODS FOR THE

HELMHOLTZ EQUATION IN VARIABLE DENSITY MEDIA ?

IV.1 Introduction

Efficient Helmholtz equation solver is vitally important for many geophysical appli-

cations. For instance, frequency-domain full-waveform inversion relies on solving the

Helmholtz equations for obtaining wavefield in the frequency domain [71, 81, 19]. The

computation cost of the frequency-domain full-waveform inversion almost totally relies

on the computational cost of the Helmholtz solver. Conventional numerical methods for

solving the Helmholtz equation include finite-difference methods (FDM) [75, 70, 68, 24,

25, 60, 61], finite-element methods (FEM) [48], and generalized finite-element method

(GFEM) [10, 64], etc.

FDM is widely used in geophysics community because of its efficiency and simplicity,

yet it is only applicable on structured mesh. FEM is more suitable to handle unstruc-

tured mesh as well as complicated topography. The conventional FDM and FEM for

Helmholtz equation share a common disadvantage that the computational complexity and

cost of solving the linear system associated with Helmholtz equation will be prohibitively

large for models that contain larger number of grids, especially for large 3D models [70].

Moreover, current oil and gas exploration tends to investigate finer and finer details of tar-

get reservoirs, and to characterize smaller and smaller geological heterogeneities that are

probably smaller than the wavelength of seismic wavefield. In these cases, one needs very

finely discretized model, and since the computational time and memory cost are directly

proportional to the grid number in FDM or FEM, the computational cost will increase

?Part of this chapter is reprinted with permission from ”Fast solver for Helmholtz equation using mul-
tiscale basis functions” by Fu, Shubin and Gao, Kai, 2015. SEG Technical Program Expanded Abstracts
2015, pp. 3688-3693. Copyright [2017] by SEG.
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accordingly. GFEM can alleviate this difficulty by using coarser mesh, however it is not

suitable for solving Helmholtz equation in media with high velocity contrasts or variable

mass density due to the fact that the basis function in GFEM is product of the partition of

unity and polynomial or trigonometric functions. The basis function therefore contains no

information of the heterogeneous media, which makes GFEM effective and accurate only

for homogeneous media.

Some methods focus on reducing the computational complexity and storage by explor-

ing and optimizing the internal structure of the coefficient matrix in Helmholtz equation’s

discrete system. For example, [82] developed a structured parallel multifrontal direct

Helmholtz solver based on the equation’s Hierarchically Semi-Separable (HSS) structure.

Another direction to reduce the computational cost is to adopt the multiscale method.

For the application of multiscale method to solve the wave equation we refer [75, 57, 39,

42, 28]. All these methods show some advantages over conventional FDM and FEM in

terms of computational cost. The generalized multiscale finite-element method (GMs-

FEM) [42, 28] has proved to be an efficient method in solving wave equations in time

domain. We now extend the GMsFEM to solve Helmholtz equation. The key part of

our method is constructing multiscale basis functions for each coarse neighborhood on

the coarsely discretized mesh. We first solve an appropriately designed local eigenval-

ue problem for each coarse neighborhood, and select the eigenvectors corresponding to

several smallest eigenvalues. We then multiply these eigenvectors with multiscale parti-

tion of unity to construct the final coarse approximation space for Helmholtz equation.

These multiscale basis functions contain information of the heterogeneous model, and this

makes them more suitable and accurate than the polynomial or trigonometric functions

to solve Helmholtz equation on the coarse mesh. In this chapter, we first briefly review

the continuous Galerkin formulation of finite-element method for solving Helmholtz e-

quation. Then we explain the methodology of how to construct multiscale basis functions,
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and incorporate such multiscale basis functions into the fully discrete system associated

with Helmholtz equation. Finally, we present an example to demonstrate the accuracy and

efficiency of our method.

IV.1.1 Helmholtz equation and the continuous Galerkin (CG) formulation

We consider the following Helmholtz equation for heterogeneous acoustic media with

variable mass density in the space domain D:

− ω
2

ρc2
p−∇ ·

(
1

ρ
∇p
)

= f, (IV.1)

where p = p(x, ω) is the pressure wavefield in the frequency-space domain, ω is the

angular frequency, c = c(x) is the wave propagation velocity of the medium, ρ = ρ(x) is

the mass density of the medium, and f = f(x, ω) is the external force term. Both c(x)

and ρ(x) can contain high-contrast variations in space. Conventionally, the Helmholtz

equation (IV.1) is solved by assuming constant mass density for simplicity. However,

subsurface mass density can vary sharply in space in realistic geological settings, and

therefore the assumption of heterogeneous ρ(x) is one of the important considerations

when we develop the GMsFEM-based Helmholtz equation solver to embrace a wider range

of geophysical applications.

To appropriately represent the subsurface media with discrete meshes, we denote TH
as a coarse partition of the computational domain D. We call TH the coarse grid and H

the size of the coarse grid. Elements of TH are called coarse grid blocks (see Figure IV.1).

The set of all coarse grid nodes is denoted by PH , Nc is the total number of coarse nodes.

Th as a refinement of TH . Each of these Ki may contain many finer elements of Th.

Let V h
0 be a finite element space defined on Th. Then the fine-grid solution of Helmholtz
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Figure IV.1: Illustration of a coarse node (red dot), a coarse block (green block) and a
coarse neighborhood (yellow block).

equation IV.1 can be obtained as

a(ph, v) = (f, v), ∀v ∈ V h
0 , (IV.2)

where

a(p, v) =

∫
D

− ω
2

ρc2
pvdx +

1

ρ
∇p · ∇vdx, (f, v) =

∫
D

fvdx. (IV.3)

Let V H
0 be a finite-dimensional approximation space where the coarse-grid solution

lives, then solving Helmholtz equation 1 on TH can be stated as: find pH ∈ V H
0 such that

a(pH , v) = (f, v), ∀v ∈ V H
0 , (IV.4)

We call the solution to Helmholtz equation on Th the conventional CG-FEM solution,

while that on TH the GFEM solution if the basis functions on TH are conventional polyno-

mial basis functions, and the CG-GMsFEM solution if the basis functions are multiscale

basis functions, which we will solve below.
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IV.1.2 Multiscale basis functions

The most important ingredient of our GMsFEM-based Helmholtz equation solver is

the multiscale basis functions. To obtain appropriate multiscale basis functions to form

the space V H
0 , for each coarse node xi ∈ PH , we define the coarse neighborhood ωi by:

ωi =
⋃
{Kj : Kj ⊂ T H , xi ∈ Kj}.

That is, ωi is the union of all coarse grid blocks Kj having the vertex xi (see Figure IV.1).

To construct the local multiscale basis for the coarse neighborhood ωi, we need a partition

of unity function χi [64]. One choice is the piecewise bi-linear hat function φi on the

coarse grid that has value 1 at the coarse node xi and 0 at all other coarse nodes. Another

choice is the multiscale partition of unity χi which is defined in the following way. Let

Kj be a coarse grid block including xi, then the restriction of χi in Kj is the solution of

following equation

−∇ ·
(

1

ρ
∇u
)

= 0, in Kj (IV.5)

u = φi, on ∂Kj. (IV.6)

Inspired by the appendix of [33], we consider the following eigenvalue problem in the

coarse neighborhood ωi:

−∇ ·
(
χ2
i

ρ
∇ϕ
)

= λ
χ2
i

ρ̃
ϕ, (IV.7)

with zero Neumann boundary condition

1

ρ

∂ϕ

∂n
= 0, (IV.8)
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where n is the outward-pointing normal vector of K, and

1

ρ̃
=

Nc∑
i=1

1

ρ
|∇χi|2. (IV.9)

The discrete form of equation (IV.7) is a finite-dimensional eigenvalue problem which

can be written as

Sϕ = λMϕ, (IV.10)

where λ is the eigenvalue. S and M are the stiffness and mass matrices corresponding

with the coarse neighborhood ωi, respectively, which can be written as

Sm,n =

∫
ωi

χ2
i

ρ
∇ξn · ∇ζmdx, (IV.11)

Mm,n =

∫
ωi

χ2
i

ρ̃
ξnζmdx, (IV.12)

where ξn and ζm are fine-scale finite element basis functions (e.g., piecewise linear func-

tions)

By solving equation (IV.10), we can obtain a series of eigenvalues and eigenvectors for

each coarse neighborhood ωi (i = 1, 2, · · · , Nc). For each of these coarse neighborhoods,

we first order the eigenvalues in an ascending way, i.e.,

λi1 ≤ λi2 ≤ · · · ≤ λij ≤ · · · . (IV.13)

Then we select the first Li eigenvectors ϕji (j = 1, 2, · · · , Li) corresponding to the

smallest Li eigenvalues. Note these eigenfunctions are not globally continuous, there-

fore we multiply ϕji with the partition of unity {χi}Ni=1. Here we use the second type of

partition of unity function which include local medium properties ρ(x) within the coarse

neighborhood ωi. Using eigenfunctions and multiscale partition of unity is the most im-
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portant feature of our method. In contrast, FEM and GFEM use only polynomial basis

functions, which are only determined by the order of the polynomials. These predefined

basis functions are invariant under different local medium properties, and therefore cannot

effectively capture the fine details of the investigated heterogeneous media.

With these eigenfunctions, we now define the coarse mesh approximation space as

V H
0 = span{Φi

j|1 ≤ i ≤ N, 1 ≤ j ≤ Li}, (IV.14)

where Φj
i = ϕjiχi.

IV.1.3 Discrete Helmholtz equation system

The aforementioned multiscale basis functions enable us to obtain the discrete system

for the Helmholtz equation in the coarse space V 0
H as

AP = F, (IV.15)

where for each coarse neighborhood ωi, the local matrix Ai is

Ai =
∑
k,l

∫
ωi

(
− ω

2

ρc2
Φk
i Φ

l
i +

1

ρ
∇Φk

i · ∇Φl
i

)
dx, (IV.16)

while the RHS is the force term, and has the form

Fi =
∑
k

∫
ωi

fΦk
i dx. (IV.17)

Meanwhile, P is the solution of the Helmholtz equation on T H .

In practical implementation, we don’t assemble the matrices A and vector F directly.

One can use the representation of multiscale basis functions via fine-scale basis functions
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to obtain A and F. Assume the i-th basis Φi in space V H
0 can be written as

Φi =
∑
j

dijφ
f
j

where dij is the coefficient and φfj is the piecewise linear basis functions for V h
0 . Then, we

have

Ai,j =

∫
D

− ω
2

ρc2
ΦiΦjdx +

1

ρ
∇Φi · ∇Φjdx

=
∑
m,n

dmi

∫
D

− ω
2

ρc2
φfmφ

f
ndx +

1

ρ
∇φfm · ∇φfndxdjn

(IV.18)

Denoting the matrix for the fine-scale problem by Af = (afmn), afmn = a(φfm, φ
f
n) then we

have

A = DAfDT

Similarly, F = DFf , where Ff = (F f
i ), F f

i = (f, φfi ). Therefore, we just need to

assemble fine-scale matrix A and vector F, and form the basis representation matrix D in

which each row stores a discrete multiscale function Φi.

Equation (IV.15) can serve as a general discrete form for the Helmholtz equation. The

dimension of H, NH, is a factor that directly affects the computation efficiency of the

Helmholtz equation solver. Although A can be sparse, a large NH can significantly in-

crease the complexity and therefore increase the computation memory/time. With our

multiscale Helmholtz equation solver, ND =
∑N

i Li, which can be much smaller than

the corresponding size of the system that is constructed directly on T h, especially when

T H is adequately coarse, i.e., NH is very small. Solving equation (IV.15) is the there-

fore much more efficient than solving the corresponding system on T h. Our multiscale

Helmholtz solver can also be constructed in a space-adaptive way: The number of the
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multiscale basis functions can vary in different coarse neighborhood ωi. This is because

the spatial accuracy of a Helmholtz solver is determined by the number of grid points to

represent the wavelength, which is eventually determined by the medium properties (c in

our formulation). If a neighborhood ωi has higher c, fewer number of multiscale basis

functions (smaller Li) can be used, and larger Li vice versa. In this way, we can construct

space-adaptive multiscale basis function space that can still achieve high accuracy. After

obtaining D, we can project it onto the T h by using the solved multiscale basis functions

Φj
i , which is a process that costs trivially small computational time.

IV.1.4 Perfectly Matched Layers for the multiscale Helmholtz equation solver

Absorptions of outgoing wavefields at computational domain boundary is important

many applications. There are several mature methods to achieve this goal, for example, the

one-way wave equation methods, damping boundary conditions, and Perfectly Matched

Layers (PML) [13, 45]. PML has been proved to be very effective and efficient for various

wavefield propagation problems because of its superior absorption effect. We apply the

PML to our multiscale Helmholtz equation solver.

To simplify the discussion of implementing PML, we assume the computational do-

main D = (0, 1)2 without loss of generality. The methodology can be easily extended to

three dimensional case and irregular domain with trivial modifications.

We define

f(x) =



C

ξ

(
x− ξ
ξ

)2

, x ∈ [0, ξ],

0, x ∈ [ξ, 1− ξ],
C

ξ

(
x− 1 + ξ

ξ

)2

, x ∈ [1− ξ, 1],

(IV.19)
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and

g1(x1) =

(
1 + i

f(x1)

ω

)−1

, (IV.20)

g2(x2) =

(
1 + i

f(x2)

ω

)−1

, (IV.21)

where x1 and x2 represents the space variables. In equation (IV.19), ξ is the thickness of

the PML, and is typically equal to one wavelength. C is an appropriate positive constant

independent of the frequency ω.

Then the Helmholtz equation IV.1 can be written as

(
− ω2

ρc2g1g2

p− ∂

∂x1

(
g1

g2

1

ρ

∂

∂x1

)
− ∂

∂x2

(
g2

g1

1

ρ

∂

∂x2

))
p = f

The weak formulation of this equation can be formulated through finding pH ∈ V H
0 such

that

∫
D

− ω2

ρc2g1g2

pHwHdx+

∫
D

g1

g2

1

ρ

∂pH
∂x1

∂wH
∂x1

wHdx+

∫
D

g2

g1

1

ρ

∂pH
∂x2

∂wH
∂x2

wHdx =

∫
D

fwHdx,

(IV.22)

∀wh ∈ V H
0 . One can then compute the corresponding matrix H and S.

IV.2 Results

We present two numerical examples to demonstrate the performance of our new multi-

scale Helmholtz equation solver. In both of these two examples, we compute the reference

solutions using the standard first-order continuous Galerkin finite-element method on the

fine mesh. We investigate three types of coarse-scale solutions: Solutions titled GFEM

is the the coarse-grid solution using the product of polynomial functions and partition of

unity as basis functions; Solution titled GMsFEM is the coarse-grid solution using the

product of eigenfunctions and partition of unity as basis functions; Solution titled adaptive
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GMsFEM is the GMsFEM solution with non-uniform number of multiscale basis function

in each coarse neighborhood, and the number of multiscale basis function is determined

based on the relative velocity values of the coarse blocks.

To quantitatively compare the accuracy of coarse-scale solutions, we define the relative

L2-norm error of a coarse-scale solution (with GFEM, GMsFEM or adaptive GMsFEM)

with respect to the reference solution as ε = ||p − p0||2/||p0||2, where p is the solution

computed on the coarse mesh and p0 is the reference solution computed on the fine mesh.

We solve the discrete system using the linear solver available in the commercial nu-

merical software MATLAB. Our code is currently in its prototypical stage and therefore

does not contain any parallelism optimizations. Further implementation may include us-

ing compiled languages such as C/C++ or Fortran with parallelism and optimizations to

improve efficiency.

IV.2.1 Smooth heterogeneous model

In the first example, we use a smooth heterogeneous model shown in Figure IV.2. The

velocity c of the model increase linearly from the top to the bottom, and we set two velocity

anomalies in the model: one with higher velocity value and the other with lower velocity

value. The density model ρ is set based on the Gardener’s relation [44] as ρ = 0.31c0.25 ×

1000, with unit kg/m3. The model is 5000 m in both the horizontal and vertical directions,

and is composed of 1000× 1000 rectangular fine elements, with element size 5 m in both

directions. A point source is placed at (500, 500) m of the model. We investigate the

accuracy and efficiency of the GFEM and GMsFEM using two different coarse meshes,

named Mesh 1 and Mesh 2, respectively. Mesh 1 is composed of 50× 50 coarse elements,

and Mesh 2 is composed of 100× 100 coarse elements. The size of the coarse element is

therefore 100 m in Mesh 1 and 50 m in Mesh 2. We investigate two source frequencies,

15 and 20 Hz, for this model.
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Figure IV.2: (a) P-wave velocity of a smooth heterogeneous model, and (b) the density
model computed from the Gardner’s relation.
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Figure IV.3: The reference fine-scale FEM solution of the Helmhotlz equation in the s-
mooth heterogeneous model.

The reference fine-scale FEM solution with 20 Hz source frequency is shown in Fig-

ure IV.3. The wavefield caustics near the right boundary of the model is caused by the

low-velocity heterogeneity at the right half of the model. The high-velocity heterogeneity

on the left half of the model also causes obvious wavefield distortion.
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Figure IV.4: (a) Coarse-scale solution computed using the GFEM with Nb = 16, and (b)
the absolute amplitude difference between the coarse-scale GFEM solution and the ref-
erence fine-scale FEM solution; (c) Coarse-scale solution computed using the GMsFEM
with Nb = 16, and (d) the absolute amplitude difference between the coarse-scale GMs-
FEM solution and the reference fine-scale FEM solution.

The coarse-scale solutions are computed using the aforementioned polynomial-basis-

based GFEM solver and multiscale-basis-based GMsFEM solver with different numbers

of basis functions. For this test, we set the number of polynomial or multiscale basis func-

tions to 4, 9 or 16. Figure IV.4a shows the coarse-scale solution pGFEM with 20 Hz source

frequency on Mesh 1 computed using the GFEM with 16 polynomial basis functions, and
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Solution type
15 Hz 20 Hz

Nb N T (s) ε Nb N T (s) ε
FEM reference / 1168561 34.5 / / 1168561 34.8 /

GFEM 4 12100 0.5 1.385 4 12100 0.5 1.506
GFEM 9 27225 16.1 0.798 9 27225 16.6 1.517
GFEM 16 48400 109.0 0.062 16 48400 109.1 0.580

GMsFEM 4 12100 0.4 1.149 4 12100 0.5 1.836
GMsFEM 9 27225 2.7 0.060 9 27225 3.1 0.344
GMsFEM 16 48400 13.7 0.010 16 48400 11.9 0.064

Table IV.1: A comparison of the number of basis functionsNb, the total number of discrete
system unknownsN , the computational time T and the relative L2-norm error ε for GFEM
and GMsFEM coarse-mesh solutions in a smooth heterogeneous model on Mesh 1. The
fine mesh size is 5 m in both directions and the coarse mesh size is 100 m in both directions.

Solution type
15 Hz 20 Hz

Nb N T (s) ε Nb N T (s) ε
FEM reference / 1168561 34.5 / / 1168561 34.8 /

GFEM 4 47524 2.8 0.660 4 47524 3.0 1.433
GFEM 9 106929 108.1 0.020 9 106929 109.3 0.134

GMsFEM 4 47524 3.3 0.286 4 47524 3.0 1.017
GMsFEM 6 71286 7.3 0.013 6 71286 7.3 0.061
GMsFEM 9 106929 19.1 0.005 9 106929 19.0 0.014

Table IV.2: A comparison between the reference fine-mesh solution and the GFEM and
GMsFEM coarse-mesh solutions in a smooth heterogeneous model on Mesh 2. The fine
mesh size is 5 m in both directions and the coarse mesh size is 50 m in both directions.
Nb, N , T and ε are explained in Table IV.1.

Figure IV.4b shows the difference between pGFEM and the reference fine-scale solution p0.

In contrast, Figure IV.4c show the coarse-scale solution pGMsFEM with 20 Hz source frequen-

cy on Mesh 1 computed using our new GMsFEM with 16 multiscale basis functions, and

Figure IV.4d shows the difference between pGMsFEM and the reference fine-scale solution p0.

The two coarse-scale solutions use exactly the same number of degrees of freedom,
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yet it is obvious that our new GMsFEM-based solver is significantly more accurate than

the GFEM-based solver. The errors ε of these two coarse-scale solutions are 58% and

6.4% for the GFEM-based solver and GMsFEM-based solver, respectively. Meanwhile,

the computational time for obtaining the reference fine-scale solution is 34.8 s, and the

computational time for obtaining the GFEM and GMsFEM solutions are 109.1 and 11.9 s,

respectively.

For completeness, we summarize the parameter settings, degrees of freedom, compu-

tational time and accuracy of the fine-scale reference FEM solution and the coarse-scale

GFEM and GMsFEM solutions for Mesh 1 and Mesh 2 in Tables IV.1 and IV.2, respec-

tively.

Both GFEM-based and GMsFEM-based solvers use much fewer degrees of freedom

N compared to the conventional FEM, and the value of N is determined jointly by the

number of elements and the number of basis functions. On both Mesh 1 and Mesh 2, the

relative error of the coarse-scale solutions decreases using more basis functions, but the

computation time also increases correspondingly. We find that our GMsFEM can generate

much more accurate solutions using the same number of basis functions compared with

the GFEM. For instance, the L2-norm error of the GFEM solution on Mesh 1 is 6.2% using

16 multiscale basis functions with a 15 Hz source frequency, and 58% with a 20 Hz source

frequency. In contrast, the error of our new GMsFEM solution with the same number

of multiscale basis functions at 15 Hz is only 1%, and 6.4% at 20 Hz, showing a clear

advantage of our new GMsFEM over the GFEM. For the solutions on Mesh 2 summarized

in Table IV.2, we can obtain similar conclusions.

We also note that our GMsFEM can significantly reduce the computational time for

solving the Helmholtz equation compared to the traditional FEM. Table IV.1 shows that

with 16 multiscale basis functions for Mesh 1, our new GMsFEM-based Helmholtz equa-

tion solver uses only 13.7 s CPU time compared with 34.5 s of that using the traditional
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FEM, a reduction of about 60%. On Mesh 2, the time savings of our GMsFEM are also

fairly obvious, and the time reduction is about 45%.

An interesting result we find through the statistics in both Tables IV.1 and IV.2 is that

for GFEM, using more basis functions may result in prohibitively long computational

time. For instance, on Mesh 1, the elapsed CPU time of GFEM with 16 basis functions at

15 Hz is 109 s, a value that is significantly longer than that of the traditional FEM (34.5 s).

We find similarly large T values at 20 Hz on Mesh 1. 15 Hz and 20 Hz GFEM solutions

with 9 basis functions on Mesh 2 suffer from similar problem. This phenomena is caused

by the ill-conditioned coefficient matrix of the GFEM-based solver. Our GMsFEM-based

solver in contrast does not generate such ill-conditioned matrix, hence we find a significant

reduction in both degrees of freedom and computational time.

This result indicate that as a reduced-order method, GFEM can reduce the number of

unknowns of the discrete system; however, it may introduce non-trivial additional com-

putation cost to the solver because of the resulting ill-conditioned coefficient matrix, and

finally becomes a fairly inefficient Helmholtz equation solver. In contrast, our GMsFEM-

based Helmholtz equation solver can both reduce the number of unknowns and the total

computational time, serving as a memory- and time-efficient Helmholtz equation solver.

IV.2.2 Complex heterogeneous model

In the second example, we validate our new GMsFEM-based Helmholtz equation

solver using the Marmousi model. Figures IV.5(a) and IV.5(b) show the P-wave veloc-

ity c and density ρ of the Marmousi model, respectively. Both the velocity and the density

models contain strong heterogeneities. The model is 10 km in horizontal direction and

2 km in depth, and contains nz × nx = 400 × 2000 fine elements. We set two types of

coarse mesh: Mesh 1 contains Nz ×Nx = 20× 100 coarse elements and Mesh 2 contains

Nz ×Nx = 40 × 200 coarse elements. The source is placed at 0.2 km in depth and 5 km
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Figure IV.5: (a) P-wave velocity and (b) density of the Marmousi model.

in the horizontal direction. Same as the first example, we consider two source frequencies,

15 Hz and 20 Hz, to investigate the accuracy of the coarse-scale solutions.

Figure IV.6 shows the fine-scale reference FEM solution to the Helmholtz equation for

the Marmousi model. The wavefield is fairly complicated due to the complex reflectors

and heterogeneities in the Marmousi model.

We compute the coarse-scale solutions using the aforementioned GFEM- and GMsFEM-

based Helmholtz solvers, and we show the solutions on Mesh 2 for visual comparison.

Figures IV.7a and IV.7c shows the coarse-scale GFEM solutions on Mesh 2 at 15 Hz us-

ing 4 and 9 basis functions, respectively. The differences between the fine-scale reference

solution and the GFEM solutions with 4 and 9 basis functions are shown in Figures IV.7b

and IV.7d, respectively. In this highly heterogeneous model, GFEM with 4 basis functions
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(a) Fine-scale reference solution

Figure IV.6: Fine-scale reference FEM solution of the Helmholtz equation for the Mar-
mousi model. The source frequency is 15 Hz.

is rather inaccurate. Even with 9 basis functions, the error of GFEM-based solver is rather

obvious, especially in the shallow part of the model as shown in Figure IV.7d.

In contrast, Figures IV.8a and IV.8c show the the GMsFEM-based solutions with 4 and

9 multiscale basis functions, respectively. Figures IV.8b and IV.8d show the differences

between the reference solution and the GMsFEM solutions using 4 and 9 multiscale basis

functions, respectively. Compared with those in Figure IV.7, our GMsFEM solutions are

more accurate with the same number of degrees of freedom. The GMsFEM solution with

4 multiscale basis functions is not sufficiently accurate (with 81.9% relative error), but the

GMsFEM solution with 9 basis functions deviates from the reference solution with only

4.2% relative error, compared with 27.6% of GFEM.

Similar with the first example, we give a complete comparison between the fine-scale

reference FEM solution and the coarse-scale GFEM and GMsFEM solutions for the Mar-

mousi model discretized with Mesh 1 and Mesh 2 in Tables IV.3 and IV.4, respectively.

We obtain similar conclusions as for the first example. The computation of the refer-

ence fine-scale FEM solutions takes about 34 s. On Mesh 1, both GFEM- and GMsFEM-

based Helmholtz equation solvers can significantly reduce the computation time using 4, 9

or 16 basis functions. However, because of the strong heterogeneities, neither GFEM nor
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Figure IV.7: GFEM solutions to the Helmholtz equation on Mesh 2. The source frequen-
cy is 15 Hz. (a) GFEM solution with 4 polynomial basis functions, the relative error is
112.5%, and (b) the absolute difference between (a) and the reference solution; (c) GFEM
solution with 9 polynomial basis functions, the relative error is 27.6%, and (d) the absolute
difference between (c) and the reference solution.
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Figure IV.8: GMsFEM solutions to the Helmholtz equation Mesh 2. The source frequency
is 15 Hz. (a) GMsFEM solution with 4 polynomial basis functions, the relative error is
81.9%, and (b) the absolute difference between (a) and the reference solution; (c) GMs-
FEM solution with 9 multiscale basis functions, the relative error is 4.2%, and (d) the
absolute difference between (c) and the reference solution.
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Solution type
15 Hz 20 Hz

Nb N T (s) ε Nb N T (s) ε
FEM reference / 1105041 34.4 / / 1105041 35.5 /

GFEM 4 11556 0.4 1.681 4 11556 0.3 1.544
GFEM 9 26001 2.6 1.299 9 26001 2.4 1.607
GFEM 16 46224 17.8 0.940 16 46224 19.5 1.382

GMsFEM 4 11556 0.4 2.099 4 11556 0.4 1.269
GMsFEM 9 26001 2.2 1.166 9 26001 2.6 1.331
GMsFEM 16 46224 7.9 0.381 16 46224 9.1 0.926

Adaptive GMsFEM 10.0 28923 3.6 0.426 10.0 28923 4.0 1.133
Adaptive GMsFEM 15.9 45990 9.9 0.089 15.9 45990 10.4 0.439

Table IV.3: A comparison of the fine-scale FEM solution and the coarse-scale GFEM and
GMsFEM solutions on Mesh 1 of the Marmousi model. Nb, N , T and ε are explained in
Table IV.1. Mesh 1 contains Nz ×Nx = 20× 100 coarse elements.

GMsFEM produces sufficiently accurate results, even with 16 multiscale basis functions:

the error of the GFEM-based solution is about 94% for 15 Hz source, while the error of

the GMsFEM-based solution is about 38.1%, both are too far away from the reference so-

lution. For 20 Hz source, the errors are even larger. Because the accuracy of the solution

with either GFEM or GMsFEM is directly determined by the number of basis functions

used for the solution, we infer that the insufficient accuracy of the coarse-scale solutions

is probably caused by the insufficient number of basis functions for coarse elements with

low velocity values.

To produce more accurate solutions using our GMsFEM-based solver, we assign dif-

ferent numbers of multiscale basis functions to different coarse blocks based on the ve-

locity values in these coarse elements. The number of basis functions selected in each

neighborhood (Figure IV.9b) is inverse proportional to the harmonic average velocity of

the neighborhood (Figure IV.9a). Results in Table IV.3 show that the adaptive GMsFEM-

based solutions are far more accurate that those of the rudimentary GMsFEM with fixed

number of basis functions in all coarse blocks. For 15 Hz source, the error of the adap-
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Solution type
15 Hz 20 Hz

Nb N T (s) ε Nb N T (s) ε
FEM reference / 1105041 34.4 / / 1105041 35.5 /

GFEM 4 45156 1.9 1.125 4 45156 2.0 1.551
GFEM 9 101601 15.4 0.276 9 101601 14.1 1.283

GMsFEM 4 45156 2.0 0.819 4 45156 2.1 1.254
GMsFEM 9 101601 12.6 0.042 9 101601 12.5 0.259

Adaptive GMsFEM 5.2 58401 4.7 0.107 5.2 58401 4.6 0.331
Adaptive GMsFEM 8.4 94567 14.2 0.021 8.4 94567 13.3 0.159

Table IV.4: A comparison of the fine-scale FEM solution and the coarse-scale GFEM and
GMsFEM solutions on Mesh 2 of the Marmousi model. Nb, N , T and ε are explained
in Table IV.1. Non-integer value for Nb represents the average value of basis functions
number per coarse neighborhood. Mesh 2 contains Nz ×Nx = 40× 200 coarse elements.
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Figure IV.9: (a) Average velocity values in each coarse element of Mesh 2, and (b) the dis-
tribution of number of multiscale basis functions used for each coarse element on Mesh 2.
The maximum number of multiscale basis functions is 9. The number of basis functions
are computed based on the average velocity values in (a). Large-velocity blocks use fewer
basis functions, and more basis functions if lower-velocity.
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tive GMsFEM solution with average 15.9 multiscale basis functions is only about 8.9%,

compared with 38.1% of the GMsFEM-based solution with 16 fixed number of multi-

scale basis functions. For 20 Hz source solutions, none of GFEM, GMsFEM and adaptive

GMsFEM solutions is sufficiently accurate, but our adaptive GMsFEM provides the most

accurate solution. Obviously, more multiscale basis functions should be used to improve

the accuracy.

We obtain similar conclusions for Mesh 2 with those on Mesh 1 by comparing the

FEM, GFEM, GMsFEM and adaptive GMsFEM solutions shown in Table IV.4. It is obvi-

ous that the our new GMsFEM-based solver can approximate the reference solution with

much higher accuracy compared with the GFEM-based solver. Table IV.3 and Table IV.4

also indicate that using similar number of degrees of freedom and computational time,

the adaptive GMsFEM that uses different numbers of multiscale basis functions in differ-

ent coarse blocks can be more accurate than the GMsFEM that uses a fixed number of

multiscale basis functions in every coarse block.

IV.3 Concluding remarks

We develop a GMsFEM for Helmholtz equation by using multiscale basis functions.

We construct the basis function space by selecting the eigenfunctions corresponding to

several smallest eigenvalues obtained from local eigenvalue problem. With these basis

functions, we can greatly reduce the dimension of the coefficient matrix for Helmholtz

equation. We show by two examples with a homogeneous model and Marmousi model that

our method can greatly reduce the dimension of the system and computational time with

very small error. Future work includes extending our method to 3D and elastic Helmholtz

equations.
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V. REVERSE TIME MIGRATION BASED ON GENERALIZED MULTISCALE

FINITE ELEMENT FORWARD MODELING ?

V.1 Introduction

Wave equation imaging and inversion methods offer strong potential for providing

detailed, accurate insights into subsurface structure. By avoiding the limits of algorithms

based on asymptotic ray theory, such approaches are able to utilize complex, multiple

arrivals from the seismic wavefield to generate solutions [52]. Reverse time migration

(RTM) has been developed as a wave equation approach to improve seismic imaging in

areas of complex structure [12, 62, 86, 15, 77, 56]. In addition to exploration tasks, it has

found applications in larger scale crustal imaging [74].

RTM relies on full waveform modeling of both the recorded wavefield and the seismic

waves generated by the source, so the solution can be computationally expensive, espe-

cially when applying conventional finite difference methods. Recent work has proposed

several approaches to accelerate modeling to reduce computational cost. For example,

in [74] Fomel proposed a wavefield extrapolation based on a lowrank approximation of a

space-wavenumber matrix symbol that estimates a small set of locations and wavenumbers

that provide a reliable solution. Another important method is that of Nunes and Minkoff

[65], who apply subgrid upscaling to accelerate wave equation solutions by carrying out

part of the computation on a coarse grid that incorporates the influence of heterogeneity

present on a detailed, fine grid model [57, 78, 79]. Both of these general approaches can

be considered as forms of model reduction.

We apply a different multiscale method as a computational engine for RTM. This al-

?This chapter is reprinted with permission from ”Fast solver for Helmholtz equation using multiscale ba-
sis functions” by Gibson Jr, Richard L., and Shubin Fu, 2015. SEG Technical Program Expanded Abstracts
2015, pp. 4137-4142. Copyright [2017] by SEG.
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gorithm, the generalized multiscale finite element method (GMsFEM), is similar to the

operator-based approach of Korostyshevskaya and Minkoff [57]. While traditional finite

element schemes will apply, for example, arbitrary polynomial bases, the main idea of

GMsFEM [36, 26] is to instead use a fine scale grid to solve for basis functions that are in

turn used to solve the wave equation on a coarse grid defined on the same model domain.

These bases are determined by solving physically based spectral problems and therefore

capture the influence of fine-scale heterogeneity. Selecting only the most dominant modes

from these spectral problems leads to a reduced-order approximation of the solution with-

out sacrificing the accuracy. In contrast to the operator-based upscaling approach [78],

which requires solutions on the fine-grid at each time step, another key advantage of GMs-

FEM is that the computation of basis functions is done only once for any proposed earth

model. This creates tremendous advantages for RTM, where solutions must be computed

not only for a large number of sources and receivers, but also potentially to sample many

proposed velocity models.

In this chapter, we will first review the GMsFEM algorithm for acoustic media to help

explain its implementation and how it can lead to significant reductions in computational

cost. We then show for the first time imaging results obtained when using GMsFEM for

RTM with a simple test model and show that not only can the GMsFEM generate accurate

migration images, but it can be used straightforwardly to generate approximate solutions

that are obtained rapidly but are still accurate enough to identify optimal velocity models.

V.2 Method

Our goal is to implement a new multiscale reverse time migration algorithm using the

acoustic wave equation
1

κ

∂2u

∂t2
= ∇ · (1

ρ
∇u) + f (V.1)
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where ρ is the density and κ is bulk modulus. We implement RTM in a conventional

way, by first numerically simulating forward propagation of the acoustic wavefield from

the source to the subsurface space. We then time reverse the data recorded at receivers,

and back propagated that recorded wavefield into the image space. The migration output

is simply the crosscorrelation of these two wavefields at each image point. Our primary

emphasis is to explore the application of GMsFEM to achieve more rapid results, and

further developments could examine more complex image conditions [58].

In summary, the GMsFEM approach we use has several key conceptual points:

1. The model domain Ω has a fine grid with potentially complex, high contrast hetero-

geneity, and a coarse grid is superposed on that mesh

2. In an offline stage, basis functions are computed for each coarse mesh cell once for

a velocity model

3. In an online stage, a discontinuous Galerkin algorithm applies the basis functions to

simulate propagation on the coarse grid.

There are significant savings in CPU time, both because of the model reduction achieved

by solving the wave equation on a coarsened mesh and because the bases are only com-

puted in the offline stage. For RTM, this means they are only computed one time for the

velocity model of interest; the same bases are used for all sources and for backpropagation

of all data. This is especially important for large problems, and the offline cost becomes a

negligible part of the computational effort. In addition, if the velocity model is updated in

some portion of the model, the bases need only be recomputed in that region.

Below we summarize the most important aspects of the GMsFEM for acoustic waves

[26], noting that we have also implemented the algorithm for elastic, anisotropic media

[43].
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V.2.1 Discontinuous Galerkin solution: online stage

Though the final algorithm will carry out the offline stage first, we begin the discussion

of the method by outlining the discontinuous Galerkin algorithm used for the online stage

on the coarse grid to help motivate the need for basis functions. We discretize Ω into a

set of coarse grid blocks and then divide each block into a finer grid (Figure V.1). Let TH
be the set of all coarse grid blocks, and EH will be all edges of interior coarse elements.

Then there are N coarse grid blocks, and the number of fine grid nodes on the boundary

of each coarse cell is np. For each interior coarse grid edge e ∈ EH , the average of some

quantity v on e is {v}e = v++v−

2
, and the discontinuity of some u is [u]e = u+−u−, where

u± = u|K± . K− and K+ are the two coarse grid blocks sharing the common coarse edge

e. We assume that the normal vector on e is pointing from K+ to K−. In addition, for the

coarse edge e that lies on the boundary ∂Ω, we define {v}e = v and [u]e = u assuming

the unit normal vector on e is pointing outside the domain.

We will apply the symmetric Interior Penalty Discontinuous Galerkin (IPDG) method

[46] to develop a discretized solution. Let VH = {φi}Nb
i=1 be a finite dimensional function

space that is made up of basis functions φi(x) that are continuous inside each coarse grid

block but are in general discontinuous across coarse grid edges globally. Then, the IPDG

method is: find uH ∈ VH such that

∫
Ω

1

κ

∂uH
∂t2

v + aDG(uH , v) =

∫
Ω

f v, ∀ v ∈ VH , (V.2)
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where the bilinear form aDG(u, v) is defined by

aDG(u, v) =
∑
K∈T H

∫
K

1

ρ
∇u · ∇v +

∑
e∈EH

(
−
∫
e

{1

ρ
∇u · n}e [v]e

−
∫
e

{1

ρ
∇v · n}e [u]e +

γ

h

∫
e

1

ρ
[u]e [v]e

)

where γ > 0 is a penalty parameter and n denotes the unit normal vector on e. Expressing

uH by uH(x, z, t) =
∑Nb

i=1 di(t)φi(x), then equation (V.2) in matrix form is

M
d2U

dt2
+KU = F (V.3)

where the mass matrix M , stiffness matrix K and the right hand side vector F are

Mij =

∫
Ω

1

κ
φj φi, Kij = aDG(φj, φi), Fi =

∫
Ω

f φi. (V.4)

U is a vector defined by U = (di(t)). Let ∆t > 0 be the time step size and let Un =

(di(tn)). We use the classic second order central finite difference method for the time

discretization. The fully discretized problem is to find Un+1 such that

M
Un+1 − 2Un + Un−1

∆t2
+KUn = F n. (V.5)

V.2.2 Computation of basis functions: offline stage

The online stage utilizes the discretized solution V.5, but it requires the calculation first

of the basis functions that form the basis space VH . We decompose the space VH(K) into

two orthogonal components, VH(K) = V 1
H(K)+V 2

H(K). The first, V 1
H(K), is determined

93



K

Figure V.1: A sketch of the mesh, where K is an example of coarse grid block, and the
thin lines show the fine mesh blocks.

as follows. For a given fine grid node xi on the boundary of K, we first solve

∇ · (ρ−1∇wi,K) = 0 (V.6)

with the Dirichlet boundary condition wi,K(xi) = δi,j on ∂K . Let

Ṽ 1
H(K) = span{w1,K , · · · , wnp,K}.

Not all of these functions are required, and we will use a local spectral problem to identify

the most important. This spectral problem is

1

h

∫
∂K

qµv = µ

∫
K

1

ρ
∇qµ · ∇v, ∀ v ∈ Ṽ 1

H(K). (V.7)

We sort the eigenvalues µ in decreasing order, namely, µ1 ≥ µ2 · · · and the correspond-

ing eigenfunctions are denoted by qi. The most dominant mode is represented by the

eigenfunctions with large eigenvalue. We select the first Li eigenfunctions so that the

sum of the corresponding eigenvalues is a large percentage of the total energy E, which

is the sum of all eigenvalues. The space V 1
H(K) is then spanned by the functions qi,j ,

i = 1, 2, · · · , Li, j = 1, 2, · · · , N . Because these functions are computed by variations in
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boundary conditions, they are referred to as boundary basis functions.

The space V 2
H(K) is designed to capture the interior modes of each coarse grid block

from the solution of the eigenvalue problem zλ = −λ∇ · (ρ−1∇zλ) with zero Dirichlet

boundary condition. As before, we order the eigenvalues and choose the most dominant

modes to construct multiscale basis functions; those determined from this approach are

interior basis functions.

The cost of GMsFEM is O(n2
bN

2), where nb is the number of basis selected on each

coarse block, while the cost of FEM on fine gird is O(Nf ), where Nf is the total elements

of the fine grid. We can see that if nb is small, GMsFEM can be much faster than FEM.

V.3 RTM example results

We use a simple heterogeneous model to test the RTM with GMsFEM (Figure V.2).

The model, which includes two high contrast, thin layers with an anticline-like structure

and a thin, horizontal layer, is comparatively simple to make it easy to identify artifacts

and potential errors in migration images. It is 2000 m horizontally and vertically, and the

coarse grid has 50× 50 cells that are 40 m on each side. The fine grid has square cells that

are 4 m in size and is 500× 500. The background velocity and density are 2500 m/s and

2400 kg/m3, while the velocity and density for the anticline layers are 2650m/s and 2500

kg/m3, and the velocity and density of the thin horizontal layer are 3000 m/s and 3000

kg/m3. We computed synthetic seismograms using a Ricker wavelet with central frequen-

cy 30 Hz. Therefore, there are only two coarse grid elements per wavelength at the central

frequency and the minimum wavelength is the same as the coarse cell dimension. The full

set of synthetic seismograms used 51 sources on the upper surface, located from x=0 m to

x=2000 m at equal increments in distance. The results were computed for 101 receivers

equally spaced on the upper surface. The synthetic data were calculated using a first order

FEM method on the fine grid, and the direct waves were muted prior to migration. The
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Figure V.2: Earth model used to test RTM results.

RTM image was then generated for the entire model domain.

We first test the influence of the number of basis functions on RTM images using

GMsFEM. Utilizing a smaller number of bases will normally produce less accurate (more

approximate) results, but computation time will decrease too. A comparison of the RTM

images computed with the reference FEM solution on the fine grid with those from GMs-

FEM using 8, 12 and 16 total basis functions illustrates these tradeoffs (Figure ??). In

each case, we apply equal numbers of boundary and interior bases. This first test applied

a homogeneous migration velocity model with the correct background velocity, 2500 m/s.

A visual comparison suggests that the image result with 16 basis functions is essentially

the same as the reference image (Figures V.3a, V.3d). The image for 8 basis function-

s (Figures V.3b) has oscillations suggesting dispersion errors. Measuring the difference

between multiscale and fine-scale images using the L2 norm, the results for 8, 12 and

16 bases are 45.2%, 11.6% and 4.7%, respectively. The small discrepancy for 16 basis

functions confirms the accuracy of that result. Computation times decreased by 80.1%,

64.2% and 38.3% for these same numbers of bases; here the time ratio does include the

offline cost as well as the online simulation time. These times can be further reduced for

GMsFEM-RTM if bases were computed in a parallel manner; since each coarse cell is

independent for the offline stage, it is embarrassingly parallel.

96



0

500

1000

1500

2000

D
ep

th
 (

m
)

0 500 1000 1500 2000
Distance (m)

(a) RTM result with FEM
on fine grid

0

500

1000

1500

2000

D
ep

th
 (

m
)

0 500 1000 1500 2000
Distance (m)

(b) RTM result with GMs-
FEM using 8 bases

0

500

1000

1500

2000

D
ep

th
 (

m
)

0 500 1000 1500 2000
Distance (m)

(c) RTM result with GMs-
FEM using 12 bases

0

500

1000

1500

2000

D
ep

th
 (

m
)

0 500 1000 1500 2000
Distance (m)

(d) RTM result with GMs-
FEM using 16 bases

Figure V.3: Comparision of RTM results from the fine grid solution and from GMsFEM
with different numbers bases when using a homogeneous migration velocity equal to the
background velocity in Figure V.2, 2500 m/s.

As a point of comparison, we also show examples of GMsFEM-RTM images when

the migration velocity model includes that two thin anticline layers (Figure V.4). In this

case, the results are very similar to those obtained with the homogeneous velocity model

(Figure V.3). A close examination does show that there are some subtle artifacts present

when the more detailed velocity model is applied, especially near the upper surface of the

image space. This is not surprising, since it is known that including high contrast features

in the velocity model can create such artifacts with RTM [58].

These previous results help to demonstrate the potential savings in computational cost

if we employ GMsFEM as the computational engine in the migration work flow. However,
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Figure V.4: Comparison of RTM results from the reference, fine-grid FEM and the
GMsFEM-RTM using 16 bases. The RTM utilized a velocity that included the two shal-
low, anticline layers (Figure V.2).

this work flow will often include the task of completing migrations with a range of velocity

models to select an optimal migration velocity field. In this case, a primary goal may be to

rapidly generate trial results for many models, many of which will be inadequate for qual-

ity migrations. While applying GMsFEM-RTM with a low number of bases will include

some errors such as those seen in Figure V.3b, the results do show that the images still

produce a correct overall structural image with a significant decrease in CPU time. This

suggests that computing a set of images for a range of trial velocities with a small number

of bases may be an effective means of selecting migration velocities. To demonstrate this,

we present the migration images generated with only 8 basis functions but for two cases,

one with a velocity field that is too slow (2000 m/s) and one that is too fast (3000 m/s).

Figures V.5 and V.6 compare these GMsFEM results to the corresponding fine-grid ref-

erence results. While the artifacts in the GMsFEM result are evident, the general spatial

structure of the features in the images are still correct and would allow a selection of the

optimal velocity model.

The tradeoff in computational speed and accuracy in these images can be controlled by

varying the number of bases. Once the velocity model is determined, increasing the num-
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Figure V.5: Comparison of RTM results with FEM and GMsFEM with 8 bases using a
migration velocity equal to 2000 m/s (the correct value is 2500 m/s).
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Figure V.6: Comparison of RTM results with FEM and GMsFEM with 8 bases using a
migration velocity equal to 3000 m/s (the correct value is 2500 m/s).

ber of bases for later results will allow more reliable estimation of not only the general

structural image, but also more subtle variations in amplitude or geometry that are indica-

tive of stratigraphic features. In addition, it is possible to apply spatial adaptivity in the

basis function computations. Specifically, tests using the elastic GMsFEM show that nor-

mally fewer bases can be used when average velocity in a coarse cell is larger [43]. This

is consistent with the results above that show larger dispersion errors when the number of

bases begins to be too small. Applying the larger number of basis functions only where
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required by lower velocities, and smaller wavelengths, will help to gain computational

speed in imaging.

V.4 Concluding remarks

The GMsFEM algorithm for acoustic wave propagation utilizes basis functions com-

puted from materials properties specified on a fine, heterogeneous model grid to simulate

propagation on a coarse grid. We show the first results of applying this method to RTM,

and the examples demonstrate how the selection of basis functions can be tuned to obtain

faster, though somewhat less accurate migration images. Increasing the number of bases

reduces artifacts with an increase in computational cost, but the results are still obtained

more rapidly than with a comparable computation applied on the original fine grid. In

addition, utilizing a small number of bases can help to rapidly test a number of velocity

models to optimize the migration model prior to computing more detailed migration im-

ages, thereby producing a significant savings in the total time required for the migration

work flow.
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VI. CONCLUSIONS

In this dissertation, we study some applications of the GMsFEM. We now summarize

each component.

In Chapter II, the GMsFEM for the second-order formulation of the static linear elas-

ticity equation in in high contrast media is investigated. We consider continuous Galerkin

and discontinuous Galerkin coupling methods. For both methods, we systemically study

the main ingredients of the GMsFEM. We introduce the construction of snapshot space,

offline space and oversampling. We also provide convergence analysis for both coupling

techniques. Numerical results are presented to verify the efficiency of our method.

In Chapter III, we study the HDG-GMsFEM for the first-order formulation of the static

linear elasticity equation in in high contrast media. We discuss three methods of construct-

ing the edge-based multiscale basis. We demonstrated the efficiency and robustness these

methods with two highly heterogeneous model. The oversampling and randomized snap-

shot techniques are also considered. In addition, the applications of our method for the

nearly incompressible media are shown.

In Chapter IV, the GMsFEM for the helmholtz in variable density media is introduced.

We systemically study the performance of the GMsFEM in terms of computational cost

with a homogeneous and heterogeneous model. We show the advantages of using spectral

basis functions instead of polynomials. Adaptive GMsFEM based on the velocity distri-

bution is adopted in numerical experiments, which further reduce the coarse system.

In Chapter V, we consider a more practical application of GMsFEM. We apply the

GMsFEM for the reverse time migration, a very popular method of seismic imaging. The

numerical examples demonstrate how the selection of basis functions can be tuned to ob-

tain faster, though somewhat less accurate migration images. In addition, utilizing a small
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number of bases can help to rapidly test a number of velocity models to optimize the mi-

gration model prior to computing more detailed migration images, thereby producing a

significant savings in the total time required for the migration work flow.
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