
 

 

 

 

FACTORS STRUCTURING TREELINE DYNAMICS OF THE NEPAL HIMALAYA 

 

 

A Dissertation 

by 

PARVEEN KUMAR CHHETRI  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

Chair of Committee,  David M. Cairns 

Committee Members, Charles W. Lafon 

 Michael P. Bishop 

 Fred E. Smeins 

Head of Department, David M. Cairns 

 

August 2017 

 

Major Subject: Geography 

 

 

Copyright 2017 Parveen Kumar Chhetri



 

 

  ii 

 

ABSTRACT 

 

The alpine treeline ecotone is an important component of mountain ecosystems of the 

Nepal Himalayas; it plays a vital role in the livelihood of indigenous people and 

provides ecosystem services. However, the region faces a problem of paucity of data on 

treeline characteristics at the regional, landscape, and local scales. Therefore, I applied 

remote sensing and geographic information science approaches to investigate the treeline 

ecotone at the regional (entire Nepal) and landscape (Barun and Manang Valleys) scales. 

Treeline elevation ranges from 3300–4300 m. Abies spectabilis, Betula utilis, and Pinus 

wallichiana are the main treeline-forming species in the Nepal Himalayas. There is an 

east to west treeline elevation gradient at the regional scale. No slope exposure is 

observed at the regional scale; however, at the landscape scale, slope exposure is present 

only in a disturbed area. From the landscape scale study, I found that topography and 

human disturbance are the main treeline-controlling factors in Barun and Manang, 

respectively.  Diverse treeline-forming species and treeline nature observed in the 

landscape and regional scale study suggested more investigation was needed at the local 

scale. Therefore, I established two transects of 20 m width and 120 m length (100 m 

above and 20 m below the forestline) in the Betula utilis sub-alpine forest of the 

Dhorpatan Hunting Reserve in western Nepal to understand the local scale treeline 

dynamics. Poor regeneration was observed above the forestline in both transects 

compared to below the forestline. Low regeneration at the treeline ecotone suggested 

site-specific biotic and abiotic controlling factors. Seedling and sapling establishment 
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above the forestline is limited by a lack of moisture, an absence of suitable microsites, 

and the presence of herbivores. I found the treeline stable at the local scale. I used the 

Maxent species distribution modeling approach to predict the likelihood of treeline 

advance in the Nepal Himalayas by modeling the habitat suitability of three dominant 

treeline species—A. spectabilis, B. utilis, and P. wallichiana—under present and 

alternative future climates. Temperature-related climatic variables and elevation 

explained the greatest amount of variance in the distribution of the study species. Under 

future climate models, I found a regional increase in habitat suitability of all three 

treeline species that predicted a potential for northward and upslope advance. 
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CHAPTER I  

INTRODUCTION  

 

TREELINE ECOTONE 

 

The treeline ecotone is the high-elevation limit of forests, commonly referred to as 

treeline, timberline, or forestline, and represents transitional vegetation zones between 

the closed continuous forest below and the treeless alpine zone above (Paulsen et al., 

2000; Körner, 2012; Singh et al., 2012). In the world, treeline elevations range from near 

sea level, as in northern Canada and Alaska, up to 4700 m above sea level (all elevations 

in this study are above sea level) in Tibet and 5000 m in the Andes of Bolivia and Chile 

(Troll, 1973). Evergreen pinaceae species such as spruce (Picea), fir (Abies), and pine 

(Pinus); other conifers such as hemlock (Tsuga), juniper (Juniperus), and cypress 

(Chamaecyparis); and angiosperms such as birch (Betula) are the most common treeline-

forming species around the world (Jobbagy and Jackson, 2000; Richardson and 

Friedland, 2009). The scientific study of treelines began in the Swiss Alps during the 

16th and 17th centuries (Richardson and Friedland, 2009), and since then many studies 

have been carried out around the world. The special ecological structure and function of 

the treeline ecotone make it a sensitive indicator of global change and a focus of current 

research (Zhang et al., 2001). It is now almost an unequivocal and common concern that 

climate warming will facilitate changes in tree physiognomy, and increased recruitment 

and establishment coupled with increased density within the ecotone and beyond species 
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limit will lead to an upward movement of the treeline (Körner, 2012). Dendroecological 

studies have documented the altitudinal expansion of the treeline ecotone in many 

mountain ranges of the world, including the Green Mountains, United States (Beckage et 

al., 2008); the Polar Urals, Russia (Devi et al., 2008); and the central Swiss Alps, 

Switzerland (Vittoz et al., 2008). Meanwhile, several other studies in the Western 

Mountains, New Zealand (Cullen et al., 2001); the Glacier National Park, United States 

(Klasner and Fagre, 2002); the Central Tianshan Mountains, China (Wang et al., 2006); 

and the Tibetan plateau (Liang et al., 2011) showed no change in the location of the 

treeline ecotone. In a meta-analysis of a global data set of 166 treeline sites, Harsch et al. 

(2009) showed treeline advance at 52% of sites since 1900, stability in 47% sites, and 

treeline recession in only 1% of the sites. These disparate findings imply that the 

spatiotemporal variations in site-specific and species-specific treeline phenomena are 

important study subjects in relation to global, regional, or local environmental changes. 

Most of the studies carried out so far are from North America and Europe, and 

the Himalayan region is still underrepresented. Several researchers (Chhetri et al., 2017; 

Holtmeier, 2009; Schickhoff, 2005; Shi and Wu, 2012) have noticed the variety of 

treeline structure and growth forms in the Himalayas and indicated that little is known 

about the spatial distribution of the treeline ecotone and its relation to climate and 

topography. Covering an understudied area like the Himalayas will help to answer the 

broad ecological question of treeline formation worldwide. Descriptions of treeline 

position, structure, pattern, and dynamics in the Himalayas will provide insights into the 

ecological and biogeographical processes and relationships between the treeline ecotone 
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and climate conditions, the mechanisms of treeline formation, and the responses of tree 

growth and regeneration to climate change (Shi and Wu, 2013).  

 

Himalayan treeline ecotone 

 

Himalayan treeline ecotones show considerable differences in altitudinal position as well 

as in physiognomy and species composition (Chhetri et al., 2017; Schickhoff, 2005). The 

Himalayan region is considered to be a sensitive global climate change (Mishra and 

Mainali, 2017; Xu et al., 2009), and it is believed that the treeline will move upward in 

response to global change, particularly global warming. Upward movement of the 

treeline and encroachment of woody vegetation on alpine meadows are widely reported 

(Beckage et al., 2008; Vittoz et al., 2008); however, few studies have been carried out in 

the Himalayas. In fact, research on timberline ecological conditions in the Himalayas is 

still in its infancy (Chhetri and Shrestha, 2009; Schickhoff, 2005).  

In the eastern Himalayas, researchers estimated that the treeline has shifted 

upwards by 110 m over the past century (Xu et al., 2009). A study of repeated 

photography carried out by Baker and Moseley (2007) indicated that the current 

timberline on Baima Snow Mountain, China, has moved 67 m in elevation and a 

distance of 270 m upslope from its 1923 location. Similarly, in the Himanchal Pradesh, 

Western Himalayas, Dubey et al. (2003) recorded an upwards shift of treeline species by 

19 m and 14 m over 10-year periods on the south and north slopes, respectively. 

Likewise, Panigrahy et al. (2010) recorded an apparent shift on Nanda Devi Biosphere 
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Reserve in the Central Himalayas of around 300 m in timberline since 1960 using 

topographic maps and satellite imagery. Alternatively, a study carried out by Liang et al. 

(2011) in the Tibetan Plateau highlighted the impact of global warming on the increased 

population density of the Smith fir (Abies georgei) rather than the upwards shift of 

treeline position.  Additionally, in remote-sensing-based observations on treeline 

changes in Uttarakhand, India, Singh et al. (2012) mentioned upward shifting of 

vegetation; however, a study by Bharti et al. (2012) based on remote-sensing analysis of 

Landsat imagery indicated that there has been no geographical shift in the upper limit of 

treeline in the Nanda Devi Biosphere Reserve (Uttarakhand), India. Thus, studies have 

revealed a variety of treeline structure and growth forms in the Himalayas. The unique 

environment in the Himalayas—with complex mosaics of anthropogenic, topographic, 

and climatic influences in treeline phenomena—offers many opportunities for 

discovering insights into the ecological and biogeographical processes of treeline 

formation.  

 

Treeline in Nepal  

 

In the Nepal Himalayas, variations in treeline elevations follow particular Himalayan 

patterns. The position of the treeline varies between approximately 3600–4500 m and 

varies between the eastern, central, and western regions (Schickhoff, 2005), with the 

pattern of monsoon rains playing a role (Stainton, 1972). The treeline elevation of 

Eastern Nepal is generally higher than in Western Nepal. For example, the treeline in 
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Eastern Nepal reaches a maximum elevation of 4110 m, the treeline in Central Nepal 

varies from 3048–3962 m, and the treeline in Western Nepal reaches up to 3048 m 

(Manandhar, 2002). In the case of the Nepal Himalayas, Abies spectabilis (Humla, 

Jumla, Mugu; mainly in Central Nepal—Annapurna region, Manasalu region, Langtang 

region; Everest region, Kanchenjunga region, Makalu Barun region [Figure 1-1]), Pinus 

wallichiana (extensive stands in Western Nepal—Humla Jumla region; Manang Valley, 

Manasalu area, etc.), Betula utilis (Manang Valley, Langtang Valley, Khumbu region), 

Larix griffithiana, Rhododendron companulatum, Sorbus microphylla, and Juniperus 

indica are the treeline species. In Nepal, few extensive scientific study has been carried 

out on the treeline area, but in recent years, there has been an increased interest in 

treeline research (Chhetri and Cairns, 2015; Gaire et al., 2014; Shrestha et al., 2014; 

Suwal et al., 2016) triggered by concerns about the climate change and potential shift in 

the high mountain vegetation zone. So far, dendrochronological and dendroecological 

studies on the treelines of Nepal have depicted some site- and species-specific treeline 

dynamics and influences of climatic and non-climatic factors in the ecotone. However, a 

proper investigation into the causes of treeline shift was necessary in order to more fully 

understand the treeline dynamics in the Nepal Himalayas. 
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Figure 1-1: Abies spectabilis treeline from Barun Valley, Eastern Nepal. 

 

In the Nepal Himalayas, there is still a lack of consistent data on treeline 

position, nature, and dynamics at the landscape and plot scales. The treeline ecotone of 

the Nepal Himalayas is characterized by contrasting climatic, orographic, and 

anthropogenic conditions (Chhetri et al., 2017; Schickhoff, 2005). For this study, the 

roles of geomorphic processes and patterns and human disturbance in shaping the spatial 

structure of the treeline ecotone needed to be investigated along with climatic factors. 

Mapping of the treeline ecotone at the landscape scale help to detect both the current and 
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historical position of the treeline ecotone. It also help to differentiate the climatic, 

anthropogenic, and topographic treeline. Remote sensing (RS) and geographic 

information science (GIS) approaches were utilized to know the treeline dynamics at the 

landscape scale, and a field-based dendroecological study was utilized to acquire a more 

comprehensive view of the treeline ecotone dynamics at the plot scale. Studies 

emphasized in the plot scale study helped to understand the change in age structure, 

recruitment pattern, and biological response of individual trees. By combining the 

landscape scale (RS and GIS approaches) and plot scale (dendroecological approach), I 

was able to minimize the risk of over- or underestimating potential treeline advance 

(Mathisen et al., 2013). Therefore, a combination of a landscape-based RS and GIS and 

plot-based dendroecological study was used to investigate cross-scale interaction at the 

treeline ecotone.  

 

RESEARCH QUESTIONS AND OBJECTIVES  

 

In the Himalaya region, this type of cross-scale treeline study had not been carried out 

before; therefore, this comprehensive study combined coarse- and fine- scale techniques 

to address the following research questions: 

1. What are the treeline positions, the species compositions, and the spatial 

patterns? 

2. What kind of structural changes have occurred in the treeline ecotone? 
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3. How will the habitat suitability of treeline species change in future climate 

change scenarios?  

The objectives of this study were:  

1. Map the present treeline and forestline position and identify the species composition 

of the treeline.  

2. Determine the recruitment pattern below and above the treeline. 

3. Investigate how the treeline will respond to future climate-change scenarios.  

 

STUDY AREA 

 

Nepal (26°22′, 30°27′ N and 80°04′, 88°12′ E) is a mountainous country and occupies 

the central part of the Himalayas. The east-west distance across Nepal is approximately 

1000 km, the north-south extent is approximately 200 km, covering 147490 km2 

nationally. The elevation of Nepal ranges from 60 m in the south to over 8500 m in the 

north (Figure 1-2). This huge variation in elevation contribute in a complex topography 

and diverse climate. Nepal is primarily influenced by the South Asian monsoon in 

summer and by westerly winds in the winter. Nepal receives more than 80 % of its total 

precipitation from the summer monsoon, and precipitation varies along an east-to-west 

gradient. This variation in climate and topography results in diverse vegetation zones 

ranging from tropical to alpine (Chhetri et al., 2017).  

 



 

 

  9 

 

 

 

Figure 1-2: Location of study sites. Makalu Barun National Park (MBNP) and 

Annapurna Conservation Area (ACA) were the sites for the landscape scale 

study. Dhorpatan Hunting Reserve (DHR) was the site for the local scale 

study. 

 

Altitudinal position and species composition of the treeline ecotone varies 

considerably in the Himalaya region (Schickhoff, 2005). Treeline position and factors 

structuring the treeline ecotone in different parts of Nepal are unknown. In this study, I 

have select three study sites to represent the Eastern, Central and Western part of Nepal 

(Figure 1-2) to map the existing treeline position and investigate the factors structuring 

the treeline ecotone position and dynamics. I will adopt three spatial scale study, first at 

regional scale to identify the main treeline forming species of the Nepal and how their 

potential distribution could change in climate change scenarios, second at landscape sale 

to differential treeline into climatic, topographic, and anthropogenic types, and third at 
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plot scale to reconstruct the historic treeline and to see the current recruitment pattern. I 

have selected Makalu Barun National Park, Eastern Nepal, and Annapurna Conservation 

Area, Central Nepal for landscape scale study. I selected Dhorpatan Hunting Reserve, 

Western Nepal for local scale study.  

 

Makalu Barun National Park, Eastern Nepal 

 

Makalu Barun National Park (MBNP), Eastern Nepal (Figure 1-2) was established in 

1992 and covers an area of 1500 km2. This study was focused on U-shaped Barun Valley 

in the northern part of the park where upper limit of forest is present. This stream is 

glacially-fed streams and shows evidence of the Pleistocene glaciation at the altitude belt 

with sub-alpine forests today (Carpenter and Zomer, 1996). MBNP lies within the 

subtropical Asian monsoon zone, characterized by a pronounced summer rainfall falling 

between June and September. Abies spectabilis (Himalayan silver fir) is a treeline 

species and covers the south-, north- and east-facing slopes, and treeline ecotone 

elevation range from 3800–4100 m. There is no cattle grazing and timber harvesting in 

the treeline ecotone area, and therefore it can be considered as an undisturbed site. 

 

Annapurna Conservation Area, Central Nepal 

 

Annapurna Conservation Area (ACA), Central Nepal was established in 1985, and it is a 

largest protected area of Nepal. Manang Valley of ACA was selected for this research 
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(Figure 1-2). Manang Valley is a part of the trans-Himalayan arid region of Nepal that 

lies between the Tibetan plateau to the north and the main Himalayan axis to the south 

(Annapurna range). The valley is surrounded by many mountain ridges and steep slopes, 

and climate is characterized by warm dry summers with frequent strong winds, which 

produce xeric conditions. Treeline ecotone range from 3800–4100 m and Pinus 

wallichiana (Blue pine), Betula utilis (Bhojpatra), and A. spectabilis are the treeline 

species. Local people use the treeline ecotone area as pastures, so this area is suitable to 

investigate how agropastoralism interacts with the treeline ecotone dynamics.  

 

Dhorpatan Hunting Reserve, Western Nepal 

 

Dhorpatan Hunting Reserve (DHR), Western Nepal was established in 1983 and 

gazetted in 1987, it covers the area of 1325 km2 and elevation range from 2000–7246 m. 

DHR covers 26.42% of Baglung, 14.13% of Myagdi, and 59.45% of Rukum districts of 

Nepal (Karki and Thapa, 2007). Climate of the DHR varies from sub-tropical in the 

lower elevation to alpine climate in the higher elevation zone. Average annual 

temperature of the reserve is 6.3°C and receives annual precipitation >1000 mm. Long 

term CRU climate data indicated increasing temperature trend and decreasing 

precipitation trend for the region. Common flora of the reserve are Abies spectabilis 

(Silver Fir), Betula utilis (Birch), Pinus wallichiana (Blue pine), Quercus semecarpifolia 

(Oak), Rhododendron arboretum, and Rhododendron campanulatum (Rhododendrons). 

Common fauna are Pseudois nayaur (Blue Sheep), Nemorhaedus goral (Goral), 
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Hemitragus jemlahicus (Himalayan tahr), and Moschus chrysogaster (Himalayan musk 

deer). Ground is covered with moss and litter. Betula utilis is a dominant tree species in 

treeline ecotone of DHR. Buki grass (Carex sp.), R. anthropogen and Cassiope fastigiata 

are the dominant species above the treeline.  

 

DISSERTATION CHAPTERS OUTLINE 

 

This dissertation includes four main chapters.  

Chapter 2: I reviewed more than 100 treeline studies that applied RS and GIS 

techniques. This chapter describes how and when researchers started to use RS and GIS 

in their treeline-related studies. In addition, the chapter describes the various types of 

satellite and RS images, techniques, and methods used in treeline studies.  

Chapter 3: This chapter depicts the results obtained from RS- and GIS-based 

treeline mapping at the regional and landscape scales. The chapter describes the species 

composition, current treeline positions, slope exposure effect, and treeline type of the 

Nepal Himalayas. This chapter essentially addresses three main research questions: (1) 

What are the species composition and spatial pattern of treelines? and (2) How and why 

do treelines differ across different locations? To address these research questions, I 

mapped and analyzed the treeline at the regional scale by covering all of Nepal, and at 

the landscape scale by focusing on Barun and Manang Valleys. 

Chapter 4: This chapter describes the results from the study of two transects of 

20 m width and 120 m length (100 m above and 20 m below the forestline) in the Betula 
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utilis sub-alpine forest of DHR in Western Nepal. I address the following research 

questions in this chapter: (1) How do rising temperatures influence recruitment at the 

treeline ecotone? and (2) Is the availability of suitable regeneration microsites an 

important factor in limiting establishment above the forestline? In the study, this analysis 

was performed by comparing age structure and recruitment above and below the 

forestline and by analyzing the spatial patterns of individual establishment.  

Chapter 5: The response of treeline-forming species to global climate change is 

uncertain. Therefore, in this chapter, I discuss how I used the Maxent species 

distribution modeling software to predict the likelihood of treeline advance in the 

Nepalese Himalayas by modeling the habitat suitability of three dominant treeline 

species—Abies spectabilis, Betula utilis, and Pinus wallichiana—under present and 

alternative future climates. I present the result of species distribution modeling that I 

used to determine if the distributions of three common Himalayan treeline-forming 

species are defined by climate and predict if their ranges are likely to expand or contract 

under alternative climatic regimes through an increase or decrease in suitable habitat. 
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CHAPTER II 

REMOTE SENSING AND GEOGRAPHIC INFORMATION SCIENCE 

TECHNIQUES IN STUDIES ON TREELINE ECOTONE DYNAMICS  

 

INTRODUCTION  

 

Ecotones are areas between two biomes, thus comprising heterogeneous landscapes with 

vegetation patches of varying size, shape, and spatial distribution (Weiss and Walsh, 

2009). The treeline ecotone, commonly referred to as the treeline, timberline, or 

forestline, is the upper geographical limit of forests, representing vegetation zones 

between closed continuous forest and the treeless alpine zone (Körner and Paulsen, 

2004). Treeline elevations range from near sea level in northern Canada and Alaska to 

5000 m in the Andes (Troll, 1973). The recent rise in average global temperatures has 

apparently increased recruitment near treelines and led to their positions advancing 

upward, suggesting the need for careful monitoring to understand ecotone shifts in 

response to climate change. The occurrence of treeline altitudinal expansion appears to 

vary geographically, and evidence of this phenomenon is inconsistent across studies 

(Penuelas et al., 2007). Treeline altitudinal shifts are well documented in mountain 

ranges such as the Polar Urals of Russia (Devi et al., 2008) and the central Swiss Alps 

(Vittoz et al., 2008), but not observed in other studies on north Westland, South Island, 

New Zealand (Cullen et al., 2001), Glacier National Park, USA (Klasner and Fagre, 

2002), and the central Tianshan Mountains, China (Wang et al., 2006). Moreover, while 
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increased recruitment (of Pinus in the Pyrenees; Camarero and Gutierrez, 2004) and 

densification in the treeline ecotone (Chhetri and Cairns, 2015; Wang et al., 2016) have 

been observed in multiple studies, other research revealed tree density decreases and 

stable or shrinking treelines (Grace et al., 2002; Kullman, 2007; Zhang et al., 2010). 

These contradictory findings may be at least partially due to the lack of georeferenced 

treelines, a problem that can be addressed using remote sensing (RS) coupled with 

geographic information science (GIS).  

Remote sensing technology obtains geographical data through satellite images or 

aerial photography that can be examined with GIS analytical methods. Monitoring of 

global ecological changes and biodiversity is among the most important contributions of 

RS (Pettorelli et al., 2014). More specifically, RS and GIS have been applied to the study 

of treeline ecology, increasingly supplementing the field-based ecological and 

dendroecological methods that dominate the discipline. Researchers can use RS images 

to detect treelines and then map them with GIS techniques (Danzeglocke, 2005). This 

supplementation is especially useful in low-accessibility, inhospitable regions like the 

Himalayas, where the expense and difficulty of field surveys can make collecting 

detailed information prohibitive (Mishra and Mainali, 2017). Furthermore, the wide 

availability of satellite images allows efficient data collection on a broad (landscape) to 

fine (individual patch) geographic scale. For example, RS sensors such as MODIS 

(moderate-resolution imaging spectroradiometer) and Landsats are capable of landscape-

level images, while higher-resolution satellite sensors like GeoEye, IKONOS, and SPOT 

(Satellite Pour l’Observation de la Terre) can achieve patch- or even tree-level images. 
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Such advances in imaging provide a unique perspective for detection, measurement, and 

monitoring of biophysical factors associated with treelines and their spatial variability 

over time. These data lend themselves to conservation applications such as habitat 

mapping of treeline species or track habitat losses and gains to assess potential threats 

from climate change (Baker et al., 1995; Chhetri et al., 2017; Nagendra, 2001), all 

difficult to achieve with traditional field surveys but far more cost-effective using 

remotely sensed data with GIS (White et al., 1995; Xie et al., 2008).  

In this study, I performed a meta-analysis on RS and GIS use in published 

research on the alpine treeline ecotone. My first objective was to investigate where and 

how RS and GIS have been applied in treeline-related work. My second objective was to 

identify common problems associated with RS and GIS in treeline research, as well as 

techniques used to address them. Finally, my third objective was to examine any existing 

gaps in RS and GIS application to treeline ecology.  

 

MATERIAL AND METHODS 

 

I performed independent literature searches in the following databases: Web of 

Knowledge (Thomson Reuters; https://apps.webofknowledge.com/ accessed on 

01/27/2017), Scopus (Elsevier), BASE (Bielefeld Academic Search Engine; 

http://www.base-search.net/; accessed on 01/28/2017), CAB Direct, and Google Scholar. 

The following search terms were used: treeline, tree line, forestline, forest line, 

timberline, timber line, treeline ecotone, alpine treeline, remote sensing and treeline, GIS 

https://apps.webofknowledge.com/
http://www.base-search.net/
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and treeline, RS and treeline, treeline position, treeline mapping, treeline advance, as 

well as treeline shift (Fissore et al., 2015; Muller et al., 2016). I assumed that prior to 

1980, RS and GIS were uncommon in ecology; thus, I only considered articles published 

from January 1980 to January 2017. I specifically focused on publications related to the 

alpine treeline ecotone and examined their primary data sources, ancillary data sources 

(Digital Elevation Model [DEM], aerial or field photographs), principal techniques, data 

organization (classification approach, manual digitization, algorithm), procedures to 

address image resolution, pre-processing, and post processing issues, as well as accuracy 

assessment methods. I also noted the main research questions addressed, including 

mapping current treeline position, analyzing treeline shift, and factors controlling 

treelines.  

 

RESULTS 

 

General description  

 

I examined 556 treeline-related publications from 1980 to 2017, extracting 103 studies 

that used RS and GIS solely or combined with other techniques to understand treeline 

dynamics. Four were book chapters, six were conference proceedings, and the remaining 

were peer-reviewed articles. Most publications originated from North America, but 

regions worldwide were represented (Figure 2-1a). I observed an increasing frequency of 
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RS and GIS use beginning from 2000 (Figure 2-1c), either independently or in 

combination. The majority of studies did the latter (Table 2-1).  

Remote sensing at various spatial resolutions have been used in treeline studies, 

from low-resolution MODIS (250 m; Danzeglocke, 2005), moderate-resolution Landsat 

(30 m) to high-resolution GeoEye images (0.5 m, Chhetri et al., 2017) and aerial 

orthophotos (1 m, Wallentin et al., 2008; Walsh et al., 2003) (Table 2-2). Most papers 

published in the 1990s used RS images generated from Landsat MSS (Multispectral 

Scanner) and TM (Thematic Mapper), as well as SPOT PAN (Panchromatic) and MX 

(Multispectral) sensors. Recently, satellite images from ALOS (Advance Land 

Observing Satellite) (Guo et al., 2014), GeoEye (Chhetri et al., 2017), IKONOS, and 

WorldView-1 (Zong et al., 2014) have increased in popularity for mapping current and 

potential treelines (Table 2-3). Additionally, researchers are also taking advantage of 

freely available satellite images from ESRI basemaps, and Google Earth (Alatalo and 

Ferrarini, 2017; Jacob et al., 2017; Paulsen and Körner, 2014). In one such study, Klinge 

et al. (2015) used high-resolution ESRI-basemap satellite images to detect upper forest 

boundary in mountainous regions of semiarid central Asia. In developed nations, there is 

widespread use of modern RS techniques such as RADER (RAdio Detection And 

Ranging) and LiDAR (Light Detection and Ranging) (Weiss and Walsh, 2009), whereas 

the high costs associated with these techniques limit their use in developing nations. 

Finally, aerial photographs were mostly used for historical-change detection analysis 

(Luo and Dai, 2013; Mathisen et al., 2013).  
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Figure 2-1: Summary of remote sensing (RS) and geographic information science 

(GIS)-related treeline studies. Breakdowns based on: A. study locations, B. 

study continents, and C. publication year 
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Table 2-1 Type of data use in treeline studies  

 

 

Technique used  No of 

papers 

Top two published journals  

RS only  40 Geomorphology; Journal of Biogeography 

GIS only 18 Arctic, Antarctic, and Alpine Research; 

Physical Geography 

Aerial photos 16 Physical Geography; Arctic, Antarctic, and 

Alpine Research  

Aerial photos, RS, and 

GIS 

19 Journal of Vegetation Science; Physical 

Geography 

 

 

Earlier studies using aerial photographs (Kimball and Weihrauch, 2000; Walsh et 

al., 1994; Walsh et al., 2003), Landsat TM (Allen and Walsh 1996; Brown, 1994a; 

Bryant et al., 1991; Walsh et al., 1992; Walsh et al., 2003; Virtanen et al., 2004), and 

Landsat ETM (Danzeglocke, 2005) images focused on treeline detection and 

identification. These included analysis of treeline elevation or spatial patterns (Allen and 

Walsh, 1996; Baker and Weisberg, 1995; Bryant et al., 1991; Danzeglocke, 2005; 

Kimball and Weihrauch, 2000; Walsh et al., 1992; Walsh et al., 2003; Walsh and Kelly, 

1990); slope exposure effects (Paulsen and Körner, 2001), relations with topographic 

variables (Baker and Weisberg, 1995; Brown, 1994a), the influence of disturbances such 
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as avalanches (Walsh et al., 1994), and predictive modeling (Baker and Weisberg, 1997; 

Walsh et al., 2003; Virtanen et al., 2004).  

 

Table 2-2 An overview of satellite sensors used in treeline studies  

 

 

Sensors Spatial resolution  Temporal range  No. of 

Publications 

ALOS 2.5 – 10 m 2006 1 

AVHRR 1.1 km 1979 2 

GeoEye 0.46 – 1.84 m 2008 2 

IKONOS 1-2 1 – 4 m 1999 3 

IRS  5.8 – 23. 5 m 1988 2 

Landsat MSS 79 m 1972 5 

Landsat TM 30 m 1982 22 

Landsat ETM 15 – 30 m 1993 5 

Landsat ETM+ 15 – 30 m 1999 1 

Landsat 8 15 – 30 m 2012 3 

QuickBird 2 – 8 m 2001 3 

MODIS 250 – 1000 m 1999 2 

SPOT 1-5 2.5 – 20 m  1986 7 

WorldView 1-2 0.46 – 1.80 m 2007 2 
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Table 2-3 Breakdown of different data sources used  

 

 

Data Type Source of Data No. of Papers  

Satellite imagery  GeoEye, IKONOS 11 

Remote sensing imagery  Landsat, SPOT, MODIS 29 

Aerial photograph Orthophoto, orthoimages 16 

Field photographs  Field photos 2 

Digital elevation model  USGS, ASTER, SRTM 69 

Topographic map Survey department of 

studied Nations 

3 

 

Recent studies using GeoEye or IKONOS satellite imagery (Chhetri et al., 2017; 

Guo et al., 2014; Leonelli et al., 2016), hybrid cartographic models (Chhetri, 2017), and 

complex statistical modeling (Alatalo and Ferrarini, 2017) have focused more on 

potential treeline variation (Zhang et al., 2009). Topics include topographical factors 

controlling treeline (Bader and Ruijten, 2008; Guo et al., 2014; Leonelli et al., 2016; 

Resler, 2005), treeline patterns on multiple scales (Chhetri et al., 2017), quantifying 

advance rate (Leonelli et al., 2016; Zhang et al., 2009), models of treeline dynamics 

(e.g., with individual-based modelling; Wallentin et al., 2008), and future expansion in 

climate-change scenarios (Alatalo and Ferrarini, 2017; Chhetri, 2017). For instance, 

several works combined field data, DEM, and statistical techniques (logistic regression) 

to investigate mass elevation effects on the altitudinal distribution of global treelines 
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(Yao and Zhang, 2014; Zhao et al., 2014; Zhao et al., 2015). Recent studies also paid 

more attention to variation in species comprising the treeline, such as examining 

vegetation cover change in the treeline ecotone (Gartzia et al., 2014; Potter, 2016), and 

combining RS with species distribution modeling to predict future distribution trends of 

treeline-forming species (Braunisch et al., 2016; Chhetri et al., 2017) 

Many studies have used GIS to generate DEM and extract geomorphic 

parameters (slope angle, aspect, relief, and curvature) to explain treeline structure. I 

found that ASTER DEM (Advanced Spaceborne Thermal Emission and 

Reflection Radiometer – Digital Elevation Model) was among the most widely used 

(Yao and Zhang, 2014). Notable research includes Bryant et al. (1991), who tested the 

hypothesis that elevation and topographic exposure control treelines via DEM- and 

Landsat TM-based models of New Hampshire’s White Mountain. Additionally, Kimball 

and Weihrauch (2000) used DEM data to correlate elevation, aspect, slope percent, and 

slope shape (concave to convex) with alpine plant distribution pattern throughout New 

England, USA. Digital elevation models produced from GeoEye panchromatic images 

were used to analyze elevational changes to the treeline in the Khibiny Mountains of 

Russia (Mathisen et al., 2013). Treeline studies using DEM also examined how solar 

radiation potential, soil moisture potential, and snow potential affected the treeline 

(Allen and Walsh, 1996; Brown, 1994a; Walsh et al., 1994; Walsh et al., 1998).  
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Statistical techniques used in treeline studies 

 

The most common statistical techniques were unsupervised (Guo et al., 2014) and 

supervised maximum likelihood (Gartzia et al., 2014; Klinge et al., 2015) land cover 

classification, which have been used to map treelines. Others commonly used techniques 

are normalized difference vegetation indices (NDVI), image ratioing, principal 

component analysis (PCA) (Walsh and Kelly, 1990; Zhang et al., 2009), and visual 

interpretation (Groen et al., 2012; Chhetri et al., 2017; Stueve et al., 2011). Logistic 

regressions are frequently employed to clarify how topography controls current and 

future treelines (Bader and Ruijten, 2008; Brown, 1994a; Virtanen et al., 2004; Zong et 

al., 2014), including mass elevation effects on treeline position (Zhao et al., 2014, 2015). 

Correlation analyses and quadratic polynomial curve fitting were also commonly applied 

to study topography effects on treelines (Guo et al., 2014).  

 

Specific applications of RS and GIS in treeline studies 

 

Remote sensing and GIS have been used for various purposes in treeline studies (Table 

2-4). I detail the most widespread applications below. 
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Treeline mapping 

 

Treeline mapping is intended to accurately quantify treeline structure, improving our 

understanding of regional and landscape-scale variation over time, while also allowing 

us to differentiate between climatic, anthropogenic, and topographic treelines (Chhetri et 

al., 2017; Leonelli et al., 2009). Such data are useful for monitoring treeline response to 

climate change (Allen and Walsh, 1996; Chhetri et al., 2017). Mapping has been 

performed with Google Earth and GeoEye images (Chhetri et al., 2017; Leonelli et al., 

2009), Landsat TM and ALOS images (Guo et al., 2014; Walsh and Kelly, 1990), and 

aerial photographs (Bakker and Weisberg, 1995; Resler et al., 2005).  

 

Climate change and treelines 

 

Remote sensing and GIS can detect treeline position and density changes in climate-

change conditions, allowing us to model treeline sensitivity and potential advancement 

under warming temperatures. Studies in this category are classified as investigating 

either observed or predicted treeline variation.  

 Research focusing on observed variation, for example, included studies that 

employ multitemporal Landsat MMS and TM images to obtain NDVI values for 

quantifying treeline change. Alterations to treeline position were observed in some 

instances (Zhang et al., 2009) but not in others (Klasner and Fagre, 2002). Research 

focusing on predicted variation combined climate models with GIS, DEM, and current 
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treeline position to understand potential changes under different climate change 

scenarios (Moen et al., 2004). Similarly, another study assessed how expansion could 

contribute to climate change via decreasing albedo above the forestline (Wit et al., 

2014). Relatively few studies have attempted to test factors that can prevent treeline 

advancement. For example, Alatalo and Ferrarini (2017) investigated how climate and 

topography could act as brakes on global-warming-induced upslope forest expansion.  

 

Factors controlling treelines 

 

Researchers have also employed RS and GIS to understand the effects of other factors 

that structure the treeline structure, such as topography or geomorphology. Multiple 

studies exist that investigated how the alpine treeline ecotone may be influenced by 

topographic variables like snowfall patterns and avalanches (Guo et al., 2014; Walsh et 

al., 1994; Walsh et al., 2003), aspect and slope (Chhetri et al., 2017; Guo et al., 2014; 

Wang et al., 2013), topoclimatic variables (Case and Buckley, 2015), as well as solar 

radiation and soil moisture (Guo et al., 2014). A few studies (e.g., Bader and Ruijten, 

2008) have examined the combined effects of all these variables on treeline patterns 

using statistical methods such as logistic regression models. The importance of 

geomorphological factors have prompted various recommendations (Chhetri et al., 2017; 

Leonelli et al., 2011; Macias-Fauria and Johnson, 2013) of incorporating such variables 

in all studies on treeline dynamics and expansion areas under climate change.  
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Table 2-4 Breakdown of studies based on their reasons for using RS and GIS  

 

 

Purpose  No. of Papers 

Mapping treeline  19 

Analyzing treeline spatial pattern  14 

Quantifying advance rate or change detection 17 

Identifying control of treeline 20 

Treeline structure   11 

Habitat suitability modeling 12 

 

 

DISCUSSION  

 

General discussion 

 

One of the earliest reviews (Roughgarden et al., 1991) synthesizing RS applications in 

ecology emphasized the availability of data on large and synoptic scales. Based on 

information in this publication, I determined that ecologists had begun to use RS 

technology for addressing ecological problems as early as 1984. The use of GIS in 

ecology began a little later, with the earliest example being Steyaert and Goodchild 

(1994). Soon after, RS and GIS were integrated to detect ecological boundaries like the 

treeline ecotone (Fagan et al., 2003; Tueller, 1999). As described, GIS was mostly used 
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in early treeline studies for mapping and to develop models that linked topography with 

treeline vegetation structure (Brown, 1994a, b). Overall, I found that most studies in the 

meta-analysis primarily focused on understanding the quantitative effects of climate 

change on the treeline ecotone.  

The majority of the included studies originated in the USA, likely due to the 

country’s free and widely available RS and GIS data. The US Geological Survey, US 

Agriculture Department, and the National Mapping Center in Denver provide huge 

repositories of RS images (including satellite), DEMs, and aerial photographs. 

Furthermore, these resources are easily accessible via search tools such as 

http://earthexplorer.usgs.gov/. While a relative lack of resources can explain the lower 

number of studies from elsewhere, the dearth of work from South America is probably 

because few treeline sites are present. Overall, however, RS and GIS use in treeline 

studies are on the rise due to greater availability of RS imagery, increased presence of 

high-resolution satellite sensors in space, as well as the development of techniques to 

address pre- and post-processing issues. Importantly, RS and GIS have numerous 

advantages that make them highly desirable in treeline studies. 

 

Advantages of RS and GIS in treeline studies  

 

Vegetation mapping using RS data with GIS is very cost-effective (White et al., 1995), 

and its continued application will play an important role in detecting, quantifying, and 

analyzing environmental response to global climate change (Baker et al., 1995). Besides 

http://earthexplorer.usgs.gov/
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being beneficial for reaching low-accessibility areas (Klinge et al., 2015), RS and GIS 

approaches can allow researchers to find undisturbed treelines that are appropriate for 

the field sampling (Holtmeier and Broll, 2005). Remote sensing and GIS also improve 

treeline classification (e.g., (Chhetri et al., 2017), which is useful for determining what 

treelines (topographic, anthropogenic, or climate) are of interest in a particular study and 

will also enhance treeline monitoring efforts. Moreover, RS and GIS are increasingly 

critical for identifying regions of potential change under global warming (Guo et al., 

2014), including where treelines might advance (Baker and Weisberg, 1997; Chhetri, 

2017).  

Another key advantage to RS and GIS approaches is the increase in flexibility, 

from landscape or regional studies to fine-tuned local studies. This flexibility is 

particularly important because various factors (e.g., geological history, lithology and 

structure, geomorphic process and landforms, and geologic and geomorphic factors) 

influence treelines across broad spatial scales (Butler et al., 2003). Combining RS and 

GIS approaches with field data can address these multiple factors and vastly improve our 

understanding treeline dynamics (Zhang et al., 2009). In areas where field-based 

approaches are not possible at all, RS analysis based on automated-image processing 

offers a fast and reliable alternative (Klinge et al., 2015) for change-detection, forest-

densification, and shrub encroachment studies (Gartzia et al., 2014). Furthermore, high-

resolution satellite imagery is invaluable to studies of micro-scale patterns, species 

composition, and structure at treelines. For example, the latest LiDAR technology can 

clarify canopy structure along the treeline ecotone, providing data on how such structural 



 

 

  30 

 

characteristics influence treeline response to climate change. In sum, these benefits are 

the major reasons behind the substantial increase in treeline studies employing RS and 

GIS when they are available. However, these technologies do have several drawbacks 

that should be considered when electing to use them.  

 

Problems and potential solutions associated with RS and GIS in treeline studies  

 

Multiple factors can influence the reliability of treelines mapped or analyzed using RS 

and GIS, including data type, image quality, georeferencing errors, DEM-related errors, 

accuracy of ground-control points, topographic or atmospheric effects, and 

digitization/interpretation errors (Groen et al., 2012). In the early years of applying RS 

and GIS to treeline science, researchers were primarily confronted with problems related 

to spectral, spatial, and temporal resolutions of RS imagery and DEM (Walsh and Kelly, 

1990). Prior to index calculation or land-cover classifications, preprocessing of RS data 

and predetermination of geographic references were necessary to reduce biases that 

could lead to mapping errors (Walsh et al., 1998). Preprocessing steps included 

radiometric, atmospheric, geometric, and topographic corrections. In both early and 

recent studies (Guo et al., 2014; Walsh et al., 1998; Walsh and Kelly, 1990; Zhang et al., 

2009), I noted relatively little mention of the exact techniques used to address potential 

problems. However, I was able to gather that early techniques used for atmospheric 

correction were TM ratio (Walsh and Kelly, 1990) and histogram normalization (Allen 

and Walsh, 1996; Walsh et al., 1994), while a more recent correction was ATCOR 3 
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(Atmospheric Correction for Flat Terrain) (Braunisch et al., 2016; Danzeglocke, 2005; 

Gartzia et al., 2014). For image enhancement, techniques such as PCA (Walsh et al., 

2003), channel ratio (Walsh et al., 1994), and filters (e.g., low-pass and edge-detection; 

Danzeglocke, 2005) were used.  

Another image processing challenge is topographical effects on spectral 

responses; this phenomenon occurs as a consequence of terrain and daily/seasonal 

changes to solar geometry, which causes illumination differences (Bishop et al., 2003; 

Walsh et al., 2003). Thus, rough and complex terrain in mountainous regions can 

complicate the detection and assessment of alpine treelines. Similarly, areas with high 

topographic relief, such as the Barun Valley of Eastern Nepal, present issues of highly 

variable illumination angles and reflection geometry (Zomer et al., 2002). In response, 

topographic normalization techniques were used to reduce such effects on the spectral 

reflectance of vegetation, thereby improving land cover classification and treeline 

identification. A common normalization method is an empirical regression model based 

on forest cover reflectance and solar illumination (Allen and Walsh, 1996).  

Errors can also occur during orthorectification of aerial photographs due to 

imprecise location and digitization of control points (Baker and Weisberg, 1995). For 

example, areas with relatively few stable ground control points (GCPs) and few obvious 

features identifiable on air photos pose major challenges for georectification (Walsh et 

al., 2003). In an effort to reduce the usage of problematic aerial photographs, researchers 

have provided threshold values: the maximum acceptable root mean-square error during 
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georectification should be less than half of their initial spatial resolution (Simms and 

Ward, 2013).  

Multi-sensor errors arise when comparing data (e.g., NDVI ratio) from one 

sensor to data from another (Zhang et al., 2009). For example, resolution matching 

between historical and modern photographs (e.g., to quantify treeline shift) is a frequent 

source of error, as most historical images are lower in resolution than current images, 

and their validity cannot be confirmed as field data are frequently unavailable (Simms 

and Ward, 2013). Thus, in analyzing historical photographs, spatial interpolation 

techniques such as nearest neighborhood distance and bilinear interpolation (Bader and 

Ruijten, 2008) are used to improve resolution. Similar methods are also applied to 

reduce error when matching the spatial resolution of DEM with RS images, or when 

resampling one imager to match the resolution of another. These issues with resolution 

matching make clear that high-resolution images have both advantages and 

disadvantages.  

Most high-resolution satellite images from GeoEye, Worldview, and Quickbird 

have a short history of data availability, meaning they are less suitable for any long-term 

change detection studies. Furthermore, image availability is frequently diminished by the 

severe climate in alpine areas (Zhang et al., 2009). For example, the Himalaya region is 

under cloud cover from June –September due to the monsoon season. Although this 

problem can be mitigated with cloud-penetrating RS techniques such as microwave 

synthetic aperture radar (SAR) imaging, their high cost limits widespread use. High 



 

 

  33 

 

resolution imageries cover small areas and frequently take up considerable harddrive 

space. In contrast, low-resolution image are free, cover large areas, and are easy to store. 

Despite their relative prevalence, DEMs have several issues. First, high-

resolution DEMs are inaccessible for most developing countries. Currently, occasionally 

error-prone ASTER DEM, at a spatial resolution of 30 m, is the highest resolution freely 

available. Existing errors in ASTER DEM are compounded by the fact that it is typically 

used for generating data such as aspect, slope, curvature, surface roughness, and solar 

radiation index. Such data are then used to analyze variables including treeline spatial 

patterns and slope exposure. Thus, the accuracy of the initially generated data will affect 

subsequent analyses, potentially multiplying any errors. Several techniques have been 

proposed to remove low-quality and terraces in DEMs (Bader and Ruijten, 2008).  

The application of RS and GIS in treeline advancement or change-detection 

studies can lead to over- or underestimation because researchers frequently cannot detect 

seedling/sapling densification or recruitment. Combining RS and dendroecological 

methods considerably minimizes this risk (Mathisen et al., 2013; Treml et al., 2016). 

Indeed, balancing between these two approaches can produce high-quality data that 

helps us understand climate-change effects on the treeline ecotone.  

 

Future directions for RS and GIS applications in treeline studies 

 

Remote sensing and GIS are widely popular techniques used in treeline studies that can 

complement field-based research. Further, a number of newly developed techniques can 
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address many of the associated errors and accuracy-related issues of RS and GIS. For 

example, atmospheric effects in RS imaging can be removed via corrections such as 

ATCOR2 (Atmospheric Correction for Flat Terrain), the COST model (Cosine of the 

Sun Zenith Angle; (Chavez, 1996), FLAASH (Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercubes), and 6S (Second Simulation of Satellite Signal in the Solar) 

(Lopez-Serrano et al., 2016). Similarly, topographic corrections can be performed with 

methods such as the sun-canopy-sensor (SCS; (Gu and Gillespie, 1998) and SCS+C 

(Gao and Zhang, 2009). Orthorectification-related issues in aerial photograph 

digitization can be minimized through collecting precise ground control points using 

differential GPS. Finally, multi-sensor calibration issues can be addressed using methods 

such as the empirical line approach for Landsat 5 TM to Landsat 7 ETM+ (Moran et al., 

2001). 

Various models can incorporate RS and GIS to predict future treeline 

advancement, including the habitat suitability model and species distribution model. 

This combined approach will help us understand how treeline advancement may 

fragment the alpine ecosystem, and how it may influence the habitats of endangered 

species. Remote sensing and GIS can also be incorporated into process-based modeling 

to understand treeline dynamics more systematically (Wallentin et al., 2008). Moreover, 

historical aerial photographs can overcome issues of long-term availability associated 

with high-resolution satellite imagery (Luo and Dai, 2013). I also look forward to the 

high potential of RADAR and LiDAR as they become more available to developing 

countries. Future treeline studies can look forward to aerial photographs taken by 
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unmanned aerial vehicles (UAVs), RS images with high spatial- and radiometric-

resolution, as well as increased accessibility of high-resolution DEM. With the help of 

these technologies, standardized, repeatable, and long-term results should become 

possible (Groen et al., 2012), contributing to the creation of managers strategies that 

conserve the alpine ecosystem against advancing treelines. 

 

CONCLUSIONS 

 

Geographic Information Science analysis combined with high-resolution RS imagery 

can be used for mapping the treeline ecotone, quantifying treeline advancement rate, and 

monitoring treeline change. The use of RS and GIS in treeline studies is increasing 

rapidly as these resources become more widespread and their advantages become well-

known. Notably, RS and GIS techniques increase the scale at which treeline studies can 

be performed, ranging from low-resolution, regional-level to high-resolution, patch-level 

research. In closing, there is no doubt that RS and GIS will greatly advance ecological 

research, especially given the rapidly improvements to such technologies and the 

increasing availability of high-resolution satellite images.    The future will bring new 

data products with higher spectral and spatial resolution. There is therefore a need to 

have a toolkit ready to process data in a way that ensure similar sites are compared. 



* Chhetri P.K. Shrestha K.B. and Cairns D.M. 2017. Topography and human disturbances are major 

controlling factor in treeline pattern at Barun and Manang area in the Nepal Himalaya. Journal of 

Mountain Science 14 (1):119-127 
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CHAPTER III 

CURRENT POSITION, TYPE, AND SPECIES COMPOSITION OF TREELINE AT 

REGIONAL AND LANDSCAPE SCALE * 

 

INTRODUCTION  

 

The treeline ecotone represents high elevation vegetation zones between closed 

continuous forest below and the treeless alpine zone above, and constitutes forestline 

(line connecting uppermost patches of forest) and treeline (the line connecting 

uppermost trees) (Körner, 2012). Most of the early treeline research was limited to 

investigating the role of climate on treeline dynamics and potential response of treeline 

to climate change (McDonald et al., 1998; Wang et al., 2006). Recently, the role of 

human activities such as agropastoralism (Piermattei et al., 2012), and landforms and 

topography (Elliott, 2012; Holtmeier, 2012) in treeline structuring processes have been 

analyzed. Researchers have also shifted their interest toward using Remote Sensing 

(hereafter RS) and Geographic Information Science (hereafter GIS) in studying the 

geomorphic processes and patterns at treeline (Butler et al., 2007; Walsh et al., 2003), 

and treeline position change (Bharti et al., 2012; Singh et al., 2012). Recently, 

Szerencsits (2012) produced a paper on GIS based approximation of treeline in the Swiss 
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Alps, and mentioned that availability of high resolution land cover information provides 

new opportunities for GIS based approach in treeline study.  

Remote sensing is a widely used technique for detecting forestline and treeline 

positions (Zong et al., 2014). Remotely sensed vegetation mapping using digital 

geographical data is cost-effective (White et al., 1995), and will play an important role in 

detecting, quantifying, and analyzing the spatial responses of landscapes to global 

climate change (Baker et al., 1995). The use of imagery is particularly useful in rugged 

and inaccessible terrain of the Himalaya. Treeline ecotones are important landscapes, 

and need monitoring in the context of global climate change. Only a few data are 

available on the treeline characteristics at regional and landscape scales from the Nepal 

Himalaya. Studies carried out so far (Chhetri and Cairns, 2015; Gaire et al., 2014; 

Schickhoff et al., 2015; Shrestha et al., 2014; Suwal et al., 2016; Tiwari et al., 2016) 

have focused on treeline pattern at local (plot) scale only using a dendroecological 

approach. In the Nepalese Himalaya, treeline ecotones are characterized as climatic 

(natural), orographic, or anthropogenic. Therefore, landscape scale studies on climatic, 

topographic and anthropogenic treeline are needed. RS and GIS based treeline mapping 

at the regional and landscape scales will elucidate species composition, current treeline 

positions, slope exposure effect and treeline type. Therefore, in this study I am 

addressing two main research questions: 1) what is species composition and spatial 

pattern of treelines? (2) how and why do treelines differ across different locations? To 

address these research questions I mapped and analyzed treeline at the regional scale 
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covering the entire Nepal, and that at the landscape scale focusing on Barun and Manang 

Valley. 

 

MATERIALS AND METHODS  

 

Study area  

 

Nepal is a mountainous country located between 26°22′, 30°27′ N and 80°04′, 88°12′ E, 

and occupies the central part of the Himalaya. The country has an east-west distance 

approximately 1000 km, the north-south extent is approximately 200 km, and the area 

147181 km2. The elevation ranges from 60 m in the south to over 8000 m in the north 

(Figure 3-1), which could contribute in a complex topography and varied climate. Nepal 

is primarily influenced by the South Asian monsoon in summer and westerly winds in 

the winter. It receives more than 80% of its total precipitation during the summer 

monsoon, and varies along an east to west gradient. Due to this variation in climatic 

patterns and topography, Nepal has climates ranging from tropical to alpine, and 

contains the vegetation zones that are associated with these climates.  

U-shaped Barun Valley (Figure 3-1) is located in the north of the Makalu Barun 

National Park (hereafter MBNP), Sankhuwasabha, Eastern Nepal. The valley shows 

evidence of Pleistocene glaciation at the elevational belt of sub-alpine forests (Carpenter 

and Zomer, 1996). The area receives pronounced rainfall during the monsoon period 

(June to September). Abies spectabilis (Himalayan silver fir) is the dominant tree 
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species, and covers the treeline ecotone elevation, which ranges from 3800–4100 m 

(Chhetri and Cairns, 2015, 2016). Human disturbance, such as cattle grazing and timber 

harvesting, is minimal in the forests. Manang Valley is a part of the Annapurna 

Conservation Area (ACA), Manang, Central Nepal (Figure 3-1). The valley separates the 

Tibetan Plateau to the north and the main Himalayan axis of the Annapurna range to the 

south, and is part of the trans-Himalayan arid region of the country. The climate is 

characterized by warm dry summers with frequent strong winds, which produce xeric 

conditions. The treeline ecotone occurs between 3800–4100 m, and is dominated by 

Pinus wallichiana (Himalayan blue pine), Betula utilis (Himalayan birch), and Abies 

spectabilis (Himalayan silver fir). 
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Figure 3-1: Study sites in Eastern (Sankhuwasabha - Barun Valley) and Central 

(Manang - Manang Valley) Nepal.  

 

Treeline mapping and spatial pattern analysis 

 

Regional scale  

 

For mapping and analyzing the treeline at the regional scale, I used a land cover map 

prepared by the European Space Agency (ESA; 300-m spatial resolution) in 2010, a land 

cover map of Nepal prepared by the International Center for Integrated Mountain 

Development (ICIMOD; 30m spatial resolution; Uddin et al., 2015) in 2010, and a GIS 
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database of Nepal prepared by ICIMOD. I mapped treelines by connecting the 

uppermost forest patches (Paulsen and Körner 2001). The Shuttle Radar Topography 

Mission Digital Elevation Model (SRTM-DEM; 90-m spatial resolution) was obtained 

from the United States Geological Survey (USGS; http://earthexplorer. usgs.gov/; 

accessed on 14 November 2014), and was used for assigning elevations to the mapped 

treelines and generating slope angle and slope aspect maps. All of the mapped treelines 

were resampled to a 300-m resolution for further analyses. Ancillary data, such as 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery, 

Google Earth imagery and topographic maps (1:50000, obtained from the Department of 

Surveys, Government of Nepal), GIS layers, field photographs, and field observations 

were also used. To verify the treeline mapping, Global Positioning System (GPS) 

locations of forty-one treeline sites were obtained from the field survey and published 

literature. These points were overlaid with the treelines in order to determine the 

accuracy of the regional treeline mapping. 

 

Landscape scale   

 

Preprocessed high-resolution Digital Globe images (GeoEye) for Barun Valley (0.5-m 

spatial resolution, acquired on 10 Nov. 2006) and Manang Valley (2 m spatial 

resolution, acquired on 11 Nov. 2008) were obtained from the Digital Globe Foundation. 

An ASTER DEM (30-m resolution) was obtained from the USGS 

(http://earthexplorer.usgs.gov/; accessed on 17 April 2014). Topographic parameters 
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such as slope and aspect were generated using ESRI’s ArcGIS 10.1 software. Treelines 

and forestlines were manually mapped using an interactive image interpretation 

procedure following tonal, textural, contextual, size, shape, shadow, association, and site 

patterns of the forest edge and uppermost patches of trees (Zong et al., 2014). 

Identification was also conducted using topographic maps, Normalized Difference 

Vegetation Index (NDVI)-based maps, supervised and isodata classification maps, and 

field-based knowledge. Ancillary data (previously obtained for the regional-scale 

treeline analysis) were incorporated into this phase of the analysis. All of the mapped 

forestlines and treelines were resampled to a 30-m resolution for further analyses. The 

DEM was used to assign the elevations of forestlines and treelines. Mean treeline 

elevation was calculated for each slope direction for both the study sites. An analysis of 

variance (ANOVA) was conducted to identify significant differences between sites and 

slopes. Mapping reliability was verified using field-based GPS locations. Forty and fifty-

five random verification points were selected in Barun and Manang, respectively.  

A climatic treeline is characterized by the absence of any rock outcrops or steep 

slopes immediately above the treeline, and a rock outcrop or steep slope above the 

treeline indicates a topographic treeline. Rock outcrops and steep slopes were identified 

by overlaying the contour lines. Treelines were classified as anthropogenic if human 

settlements were identified adjacent (near) to the treeline ecotone area. A slope map 

generated from the DEM was overlaid with the treeline map to calculate treeline slopes. 

The mean slope was calculated for each aspect using the DEM. I used Relative Radiation 

Index (RRI) to determine whether south-facing slopes received more solar radiation than 
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other slopes (Oke, 1987). RRI was also used to see the relation between mean RRI value 

of aspect and treeline elevation.  

 

Possible biases in our analysis  

 

I assumed that the upper limit of a closed forest represents the treeline in the regional-

scale analysis, because detecting trees in land cover maps with a 300-m spatial 

resolution is difficult.  Errors in land cover maps or DEMs might have caused errors in 

treeline mapping. The ASTER DEM error was 15 m and the SRTM DEM error 90 m; 

therefore, the DEM error was within the range of ecotone lengths. However, the DEM 

error is systematic and independent of slope exposure (Paulsen and Körner, 2001). 

 

RESULTS  

 

Regional scale  

 

Approximately 1800 km of treelines are mapped, and 80% of the field-based treeline 

observations matched the treelines generated here (Figure 3-2). The nonaligned 20% 

field-based treelines are attributed to either errors in the GPS coordinates or in mapping. 

Abies spectabilis, B. utilis, and P. wallichiana are the main treeline-forming species 

(Figure 3-2). In some locations (mostly central Nepal), treeline forming species are 

associated with other species, such as Rhododendron campanulatum (bell rhododendron) 
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and Juniperus indica (black juniper). Abies spectabilis dominated treelines in eastern 

Nepal and B. utilis is the dominant treeline species in western Nepal. In central Nepal, P. 

wallichiana, A. spectabilis, and B. utilis formed the treeline. Betula utilis is the dominant 

treeline species on north-facing slopes and A. spectabilis is the dominant treeline species 

on south-facing slopes. Treeline elevation ranges between 3300–4400 m (Figure 3-2). 

Treelines in Eastern and Western Nepal are at higher and lower elevations, respectively, 

than 4000 m. Juniperus indica formed the highest treeline in Nepal, with a mean treeline 

elevation of 4421 m (Table 3-1). No slope-exposure effect is observed at the regional 

scale treeline pattern (Figure 3-3). Average treeline elevation of south-, north-and other 

aspects are similar.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  45 

 

Table 3-1 Mean treeline elevation of treeline species and dominating slope aspect based 

on regional-scale treeline analysis 

 

Species  Mean treeline elevation 

(m)  

Mean aspect 

Birch 3918 North 

Birch-Fir 4037 North 

Birch-Rhododendron 3908 North 

Fir 4050 South 

Fir-Birch-Rhododendron 4041 South 

Fir-Hemlock-Oak 3612 South 

Fir-Pine 4070 South 

Juniper 4421 South-West 

Pine 3813 West 

Pine-Birch 4288 South 
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Figure 3-2: Nepalese regional (A) and landscape scale (B- Manang, C - Barun) 

treeline and forestline patterns. Yellow triangles are Global Positioning 

System (GPS) - collected forestline positions, and red circles are GPS 

collected treeline positions in the field. Sources: European Space Agency, 

International Center for Integrated Mountain Development, and Digital 

Globe. 

 

Landscape scale   

 

Forestlines and treelines at the two study sites are presented in Figure 3-2. The overall 

accuracy of the mapping is 83% (Table 3-2). Results from mapping revealed that the 

mean forestline elevations are higher in Barun Valley than in Manang Valley (Table 3-

3). However, the mean treeline elevation is highest in Manang Valley. The highest 
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treeline elevation (4218 m) is recorded in Barun Valley. Mean treeline ecotone length is 

calculated as 8 m and 154 m in Barun and Manang elevations significantly differed 

between the study sites (n = 2) (F = 112, p< 0.01). The mean treeline elevation is similar 

on different aspects in Barun Valley; however, in Manang Valley, the mean treeline 

elevation on south-facing slopes is lower than on north-facing slopes (Figure 3-3). When 

treeline elevation is considered regardless of study site, there is no significant variation 

with aspect (n = 8) (F = 0.03, p < 0.01). The highest treelines in Barun Valley are 

recorded on south-west- and south-east-facing slopes, whereas in Manang Valley they 

are found on west-facing slopes (Figure 3-4). South- facing slopes at all of the study 

sites have higher RRI values than north-facing slopes (Table 3-4). No relation is found 

between RRI and treeline elevation. Slope angles ranged from 19° to 37° and from 29° 

to 39° in the Barun and Manang valleys, respectively (Table 3-4). No significant 

relationship is found between slope angle and mean treeline elevation at both study sites. 

The majority of treelines in Barun Valley are of the topographic type whereas in Manang 

Valley, they are climatic (Figure 3-5). A small portion of Barun Valley treeline and 

major portion of south-facing slope of Manang Valley treeline is anthropogenic. 
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Figure 3-3: Mean treeline elevations at different slope exposures at two study sites 

and overall.  Notes: Aspect: N = North, E = East, S = South, W = West.  

 

 

 

Figure 3-4: Frequency distribution of treeline elevations in respect to aspect at two 

study sites.  
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Figure 3-5: Treeline type (Anthropogenic, Climatic and Topographic) in A. Barun 

Valley and B. Manang Valley. 

 

Table 3-2 Accuracy assessment of landscape-scale mapping results with field-based 

Global Positioning System (GPS) positions 

 

 

Mapping 

classificati

on 

Field-based GPS data (Reality) Classific

ation 

total  

Accur

acy Barun  Manang  

Forestline Treeline Forestline Treeline 

Forestline  17 3 24 0 41 82% 

Treeline  3 17 0 21 38 84% 

Field-

based total 

20 20 30 25 Overall accuracy: 

83% 
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Table 3-3 Forestline and treeline elevations estimated from Digital Globe satellite 

imagery in two regions of Nepal 

 

 

Elevation (m) Barun  Manang 

Forestline   

Maximum  4201 4066 

Minimum  3574 3174 

Mean  3915 3773 

Standard deviation  86 175 

Treeline   

Maximum  4218 4162 

Minimum 3687 3560 

Mean 3923 3927 

Standard deviation  94 113 
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Table 3-4 Relationships between treeline elevation, slope angle, and Relative Radiation 

Index (RRI) 

 

 

 Aspect 

  

Barun  

  

Manang 

  

Elevation 

(m) 

Slope 

(degrees) 

RRI 

Elevation 

(m) 

Slope 

(degrees) 

RRI 

East 3911 28 0.75 3880 29 0.72 

North 3897 31 0.51 3964 32 0.48 

North-East 3907 36 0.51 3966 29 0.59 

North-West 3891 19 0.71 3935 33 0.53 

South 3931 30 0.96 3816 39 0.95 

South-East 3944 26 0.90 3882 29 0.89 

South-West 3934 37 0.88 3843 37 0.89 

West 3937 30 0.78 3929 33 0.69 
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DISCUSSION 

 

Regional scale  

 

This study has demonstrated the effectiveness of RS and GIS techniques for mapping 

forestlines and treelines. The results obtained from our regional mapping corroborate the 

information produced from other techniques (Chhetri and Cairns, 2015; Chhetri et al., 

2016; Gaire et al., 2014; Schickhoff, 2005; Schickhoff et al., 2015; Shrestha et al., 2014; 

Suwal et al., 2016; Tiwari et al., 2016). Abies spectabilis, a dominant component of sub-

alpine forest ecosystems of the Himalaya, forms the majority of the treeline in Nepal 

(Shi and Wu, 2013). Juniperus indica was the highest treeline-forming species in Nepal, 

as it is in Tibet, where the highest treeline in the Northern Hemisphere has been reported 

(Miehe et al., 2007).  

This study demonstrated that treeline elevation decreases from east to west which 

follows the east-west decreasing pattern of monsoon rain (Stainton, 1972). Chaudhary 

(1998) reported a similar decreasing trend (4000 m at east, 3800 m at center and 3650 m 

at west). However, Brauning et al. (2004) and Schickhoff (2005) reported several 

treelines at elevations between 4100–4200 m in Western Nepal might be attributed to the 

continental climate of this region. However, long snow cover and the short growing 

season compensate for the favorable summer temperatures (Schickhoff, 2005). The east-

west gradient of treeline elevation may also be a result of latitudinal variation; a decrease 
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of one degree latitude roughly corresponds to a 100-m decrease in treeline elevation (Shi 

and Wu, 2013).  

  

Landscape scale  

 

Slope aspect is one of the main influencing factors on the vegetation structure and 

composition of treeline ecotones (Danby and Hik, 2007). This is because south-facing 

slopes are warmer, as they receive sunlight for longer diurnal periods than north-facing 

slopes (Dubey et al., 2003). The higher RRI values found on south-facing slopes 

(compared to north-facing slopes) at all of my study sites supported the above argument. 

Other studies have found no effect of slope exposure on treeline elevation (e.g., Paulsen 

and Körner, 2001; Wang et al., 2013) and my results are similar to those reported in 

these studies.  I did not find any significant differences in treeline elevations between the 

Barun and Manang valleys. Interestingly, treelines on south-facing slopes in the Manang 

Valley were at lower elevations than those on north-facing slopes, suggesting human 

activities are responsible for lowering treeline below its potentiality. In this valley, 

south-facing slopes are more suitable for human settlement; therefore, they are affected 

by agropastoralism (timber and fuel wood harvesting, and clearing of the forest for 

increasing grazing area). The lower treeline elevation on south-facing slopes may also be 

related to a lack of sufficient water, as the valley is in a rain-shadow area and receives 

relatively low annual precipitation. North-facing slopes are less exposed to sunlight, and 
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provide a suitable environment for shade-tolerant genera such as Abies and Betula 

(Paudel and Vetaas, 2014).  

The large variations in treeline elevations at our study sites highlight the 

importance of regional as well as local factors in controlling treeline elevations. Based 

on treeline ecotone length, the treelines at both sites were of the diffused type. However, 

most of the treelines in the Barun Valley were topographic. Some climatic treelines were 

also observed. Geomorphic features such as steep slope, exposed rock surface, and 

active landform (landslide, rockslide) may control the majority of the treeline in Barun 

area. The north-facing slope of Manang Valley was dominated by climatic treelines, 

with only a few anthropogenic treelines. Majority of the treelines of the south-facing 

slope Manang Valley were anthropogenic treelines because of more favorable area for 

human settlements. In the Himalaya, south-facing slopes receive much more solar 

radiation than north. Therefore, majority of human settlements and pasturelands are 

located on the south-facing slope.   

 

CONCLUSIONS  

 

Abies spectabilis, Betula utilis and Pinus wallichiana are the main treeline forming 

species of the Nepal Himalaya. Abies spectabilis and B. utilis are dominant in the 

treeline ecotone of Barun and Manang Valley, respectively. Slope aspect is not 

important in determining treeline position at the regional scale. However, at the 
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landscape scale, slope aspect affected treeline elevation, particularly at undisturbed 

locations. This indicated that factors controlling the treeline structure are strongly scale 

dependent. Treeline type delineation dominate Barun and Manang Valley respectively, 

suggesting that topographic and anthropogenic variables are the important factors in 

structuring the treeline ecotone. Information on treeline type obtained from this 

landscape scale study will help predict the responses of forestlines and treelines to 

temperature changes. Future studies investigating geomorphological and land use pattern 

near treeline, and treeline ecotone processes in order to understand treeline responses to 

environmental change in the Nepal Himalaya. 
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CHAPTER IV 

LOW RECRUITMENT ABOVE TREELINE INDICATES TREELINE STABILITY 

UNDER CHANGING CLIMATE IN DHORPATAN HUNTING RESERVE, 

WESTERN NEPAL 

 

INTRODUCTION  

 

Alpine treeline ecotones are the upper limit of subalpine forest and one of the most 

distinct vegetation boundaries we have on the earth’s surface. Altitudinal treelines are a 

fundamental component of high-mountain landscapes that are strictly linked to past and 

present climate regimes. Therefore, they act as a reliable monitor of the impacts of 

climate change on vegetation dynamics, and documenting treeline dynamics provides an 

opportunity for predicting tree responses to future climate changes (Srur et al., 2014). It 

is believed that treelines will advance upward with temperature increases (Körner, 

2012). Upward advances of treelines will fragment the alpine ecosystem and ultimately 

change the alpine landscape. However, to know with certainty whether a treeline will 

advance, we need to understand the different factors that control it. The causes of alpine 

treeline formation have been discussed extensively over the past 100 years (Holtmeier 

and Broll, 2007; Körner, 2012). 

Temperature plays a primary role in controlling treeline position (Greenwood et 

al., 2015). Treelines are advancing in response to a warming climate throughout the 
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globe (Greenwood et al., 2015). Most of the underlying hypotheses of this advance are 

linked to climatic drivers, and growing seasonal temperature is the most widely 

acceptable primary control. Therefore, treelines should shift upslope in response to rising 

global mean temperatures. Treelines may respond rapidly to climate warming by 

exhibiting changes in elevation and structure, and there is considerable interest in 

investigating variations in treeline position and identifying the mechanisms of treeline 

formation. Several studies have been carried out to account for this change in treeline 

ecotones worldwide. Treelines can respond to climate change in various ways, such as 

treeline position shift, infilling of the treeline ecotone, increase in recruitment, decrease 

in mortality rate, increase in radial growth, and increase in intermodal growth pattern. 

Many studies have indicated that treelines are advancing and that this advancement is 

directly related to recruitment pattern. Many advancing treelines have high recruitment 

above the treeline or have shown an increase in density of individuals within the ecotone 

(Truong et al., 2006). Studies carried out in areas like Canada, Norway, and the Indian 

Himalayas indicate treeline advance; where as some treelines are stable in the Rocky 

Mountains (United States), Europe, and New Zeeland. Moreover, this mixed trend is 

reflected in Harsch et al. (2009) study, in which they reviewed more than 200 studies 

from 166 sites. They found that the treeline had advanced in 52% of the sites, remained 

stable in 47% sites, and receded in 1% of the sites. They also noted that at most of the 

166 sites, temperatures had increased. Many studies have indicated that infilling is 

occurring within the treeline ecotone rather than treeline advance (Ameztegui et al., 
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2016; Batllori et al., 2009; Camarero and Guiterrez, 2004). Therefore, no clear trend 

exists to support the hypothesis that treelines are advancing in response to climate 

change and treelines are advancing in one particular area and not in another.  

Studies in Nepal have reported mixed findings: some indicated a stable treeline 

(Schwab et al., 2016; Shrestha et al., 2014), others reported that the treeline had shifted 

upward (Gaire et al., 2014; Suwal et al., 2016; Tiwari et al., 2016), and others found that 

infilling or densification had occurred   (Chhetri and Cairns, 2015; Gaire et al., 2016). 

Therefore, there is spatial heterogeneity in the treelines of Nepal (Schwab et al., 2016), 

so more studies on these understudied areas and diverse tree species are needed to 

understand the treeline dynamics. Most of the treeline-related studies from Nepal are 

concentrated on gymnosperms species such as Abies spectabilis (Chhetri and Cairns, 

2015; Gaire et al., 2014). Very few studies (Gaire et al., 2016) focus on angiosperms like 

B. utilis. Thus, it is hard to know how B. utilis treelines are responding to recent 

temperature changes. This is important because in the Nepal Himalayas, B. utilis forms 

the highest treeline (above A. spectabilis) (Shrestha et al., 2007), and B. utilis is the most 

dominant treeline-forming species in the Nepal Himalayas (Chhetri et al., 2017).  In this 

study, I established two transects in Western Nepal to understand the treeline dynamics 

of B. utilis and addressed the following research questions: (a) is rising temperature 

triggering an increase in recruitment at the treeline ecotone? and (b) is the availability of 

suitable regeneration microsites an important factor limiting establishment above the 

forestline? I addressed these research questions by comparing age structure and 
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recruitment above and below the forestline and by analyzing the spatial pattern of 

individual establishment.  

MATERIALS AND METHODS 

Study area 

This study was carried out in the Rugakharka area at the Barse Block of the Dhorpatan 

Hunting Reserve (DHR), Western Nepal (Figure 4-1). DHR was established in 1983 and 

gazetted in 1987; it covers an area of 1325 km2, and its elevation ranges from 2000–

7246 m. The DHR covers 26.42% of the Baglung District, 14.13% of the Myagdi 

District, and 59.45% of the Rukum District of Nepal (Karki and Thapa, 2007). The 

climate of the DHR varies from sub-tropical in the lower elevation to alpine in the higher 

elevation zones. The average annual temperature of the reserve is 6.3°C, and the annual 

precipitation is > 1000 mm (Figure 4-2a). Long-term climatic research unit (CRU) 

climate data indicate an increasing temperature trend (y = 0.0085x – 10.20, R2 = 0.31, p 

< 0.01, n = 114) and a decreasing precipitation trend (y = −0.154x + 424.37, R2 = 0.07, p 

< 0.05, n = 114) for the region (Figure 4-2b). Seasonal trend analysis of temperature and 

precipitation data indicate a significant temperature rise in winter (y = 0.0139x – 28.41, 

R2 = 0.36, p < 0.01, n = 114) and autumn (y = 0.0116x – 18.10, R2 = 0.23, p < 0.01, n = 
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114), and a significant decrease in precipitation in summer (y = −0.045x + 110.05, R2 = 

0.14, p < 0.05, n = 114) seasons (Figure 4-2c,d,e,f). 

Common flora of the reserve are Abies spectabilis (silver fir), Betula utilis 

(birch), Pinus wallichiana (blue pine), Quercus semecarpifolia (oak), Rhododendron 

arboretum, and Rhododendron campanulatum (rhododendrons). Common fauna are 

Pseudois nayaur (blue sheep), Nemorhaedus goral (goral), Hemitragus jemlahicus 

(Himalayan tahr), and Moschus chrysogaster (Himalayan musk deer) (Karki and Thapa, 

2007). The ground is covered with moss and litter. Betula utilis is a dominant tree 

species in the treeline ecotone of DHR. Buki (Tussock) grass (Carex sp.), R. 

anthropogen, and Cassiope fastigiata are the dominant species above the treeline. 

Study transects were established in the upstream area of Simudar Khola. In the 

upper Simudar Khola Valley, the subalpine forest extends from 3550–3900 m. In the 

valleys, the forest is dominated by A. spectabilis, and associated species are B. utilis and 

R. companulatem. Above 3700 m, B. utilis is the dominant species. Human disturbances 

were minimal in the treeline ecotone area. Only a few cut stumps were present; cattle 

dung and fire marks were absent. Cattle grazing (water buffalo) is concentrated near 

lower-elevation river valleys, and many grazing sites were observed during the field 

visit. However, in the open area above the treeline, domesticated sheep and wild sheep 

were present. 
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Figure 4-1: Study area. (A) Inset map showing location of Dhorpatan Hunting 

Reserve (DHR), nearby district headquarter (Baglung), CRU grid points 

location, and Nepal capital city (Kathmandu); (B) Map showing DHR 

elevation zone and study site in right-middle part; (C) Field photograph of 

treeline of Betula utilis from study site.  
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Figure 4-2: Climate of the study area. (a) and (b) showing average monthly 

temperature and precipitation trend of the region. (c) - winter, (d) - spring, 

(e) - summer, and (f) - autumn showing seasonal temperature and 

precipitation trend. 
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Field method 

 

A topographically uniform area was identified in the field to establish two transects on a 

northeast facing slope. First, the forestline was identified in the field based on 30% 

canopy cover in a 20 x 20 m sq area (Chhetri and Cairns, 2015). Then a 20 m wide 

transect was extended 100 m above the forestline and 20 m below the forestline. 

Geographic coordinates of the four corners of the transects were recorded using a 

Garmin GPS map 78 handheld unit (accuracy 3–5 m). Zhang et al. (2009) suggested that 

forest around the treeline may be more responsive to global warming than at the treeline 

alone, so I extended our transect 20 m below the forestline. The origin for each transect 

(x, y = 0, 0) was located at the lower left side of the transect facing the upslope. The 

location of each individual within the transects was recorded at the center of the stem to 

analyze the spatial point pattern of individuals distributed.  

All the individuals of B. utilis within the transects were enumerated and 

classified into three height classes: trees (> 2 m), saplings (0.5–2 m), and seedlings (< 

0.5 m). All the individuals of B. utilis within the transects were mapped (latitude, 

longitude, elevation), and morphometric features (height, diameter at breast height 

[DBH]) were measured. For the trees, DBH was measured at 1.3 m aboveground using a 

diameter tape. A clinometer was used for measuring the height of trees > 2 m, and a 

measuring tape was used for measuring the height of individuals < 2 m. A total of 68 (45 

for A, and 23 for B) trees were sampled and mapped; among these, six trees were dead. 
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Tree-ring cores from the base of each tree were collected using an increment borer to 

determine the age. The age of the 90 seedlings and 15 saplings was determined using the 

whorl count method (Chhetri and Cairns, 2015; Gaire et al., 2016). To check the 

accuracy of the whorl count, 16 cut samples (10 seedlings and six saplings) were also 

collected.  

 

Laboratory method 

 

Collected tree-ring cores were air dried at room temperature and mounted in wooden 

frames. A belt sander was used to enhance the visibility of the tree ring. Pith was 

missing from 10% of the samples and corrected using the curvature of the innermost ring 

(Speer, 2010). Tree-ring cores were cross-dated using visual cross-dating by matching 

patterns of relatively wide and narrow rings to remove false and missing rings (Fritts, 

1976; Gaire et al., 2017). A spaghetti plot (ring width pattern) generated from the 

Program Library in R (dplR) software was also used for the visual cross-dating (Bunn, 

2008). 

 

Age structure, recruitment pattern and density  

 

Stand dynamics were analyzed by classifying individuals into 10-year age classes. 

Decadal age-class frequency distribution helps to reduce dating error (Trant and 
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Hermanutz, 2014). Age structures were developed separately for above- and below-

forestline individuals. The density of seedlings, saplings, and trees above and below the 

forestline was calculated to see the regeneration trend. For calculation of the density, 

only the first 20 m of the transect length was considered above the forestline, instead of 

the 100 m surveyed length, in order to stay consistent with the 20 m below-forestline 

length surveyed.  

 

Spatial pattern analysis  

 

Spatial pattern analysis was carried out to see whether the distribution pattern of 

individuals within the transect is completely random, clustered, or regularly distributed. I 

used the Ripley’s K(t) statistical method to determine the spatial pattern in establishment 

(Elliott, 2011; Ripley, 1977). I converted K(t) into L(t) by applying a square-root 

transformation (Elliott, 2011; Ripley, 1977): 

L(t) = [K(t)/π]1/2 − t  

where t is the distance between individuals based on Euclidean measurement. The 

function L(t) stabilizes its variance and has an expected value of approximately zero 

under the Poisson assumption (Lingua et al., 2008). The spatial pattern is defined as 

clustered, random, or uniform if the L(t) values are greater than, equal to, or lower than 

the confidence envelopes, respectively (Lingua et al., 2008). 
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RESULTS 

 

Treeline ecotone and morphometry  

 

The Betula utilis forest extends from the river valley at 3500 m to about 3900 m in the 

Rugakharka area of DHR, Western Nepal. The forestline of B. utilis was observed at 

3897 m and 3890 m in Transects A and B, respectively. The treeline was observed at 

around 3905 m and 3891 m in Transects A and B, respectively. No seedling or sapling 

was observed above the treeline in Transect A, and the uppermost sapling was observed 

at 3895 m in Transect B, which is also the species limit (Table 4-1 and Figure 4-3). The 

B. utilis treeline stands are young, with the average age of trees being 53 years and 62 

years in Transects A and B, respectively. The oldest individual was 129 years old in 

Transect A. Age/elevation, DBH/elevation, and height/elevation relationships indicated 

that age, DBH, and height do not decrease with increasing elevation (Figure 4-4). A deep 

moss layer was absent above the forestline area in both the transects. Seedlings and 

saplings below the forestline were observed in areas covered by moss with litter. 

Seedlings were emerging from a moss layer. A significant part of the seedlings were 

under the moss. Ten seedlings uprooted for sampling indicated that about 45% of the 

total height was under the moss cover. Due to the thick moss layer, seedlings 1–5 years 

old were not observed or were not visible. Our seedlings counts are therefore likely 

conservative estimates of the number of seedlings present.  



 

 

67 

 

 

Figure 4-3: Spatio-temporal variation in recruitment of Betula utilis in study 

transects. 

 

Table 4-1 Description of the study transects  

 

 

 Transect A Transect B 

GPS coordinates  28.5510N, 83.1748E 28.5513 N, 83.1742E 

Average slope (º) 38 37 

Forestline (m) 3897 3890 

Treeline  (m) 3905 3891 

Species limit (m) 3905 3895 
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Figure 4-4: Elevation and morphometric relationship. a. elevation and age, b. 

elevation and DBH, c. elevation and height. 

 

Age structure, recruitment pattern, and density  

 

The age structure curves derived for the below-forestline site in both transects were 

nearly reverse J-shaped (Figure 4-5). No clear reverse J-shaped age structure curve was 

noted for the above-forestline area. Most of the individuals in Transect A and all the 

individuals in Transect B were established after 1900. Poor regeneration was observed 
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above the forestline (Figures 4-3 and 4-5). Saplings were absent above the forestline in 

Transect A. In Transect A, no seedlings or saplings were observed above the forestline, 

but in Transect B, there were a few seedlings and saplings present above the forestline. 

A significant number of seedlings and saplings were recorded below the forestline in 

both transects (Figure 4-3 and Table 4-2).  

 

 

 

Figure 4-5: Age structure of Betula utilis above (AFL) and below forestline (BFL). 
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Table 4-2 Density of seedling, sapling, and tree below forestline (BFL) and above 

forestline (AFL)  

 

 

Density  

(Stems/Hectare) 

Transect A Transect B 

BFL AFL BFL AFL 

Tree 875 250 475 100 

Sapling 100 0 250 175 

Seedling 1175 275 950 125 

 

 

Spatial pattern analysis  

 

The most recently established individuals (seedlings and saplings) were concentrated 

near the lower elevation of both transects (Figure 4-6). The spatial distribution pattern of 

seedlings and saplings in the transect suggests that they were establishing away from the 

canopy of the likely parent trees. In Transect A, L(t) values were greater than the 

confidence envelopes for both trees (after 1.5 m distance), and seedlings and saplings 

suggested clumping (Figure 4-7). In Transect B, the L(t) value for trees was within the 

confidence envelope, so trees were not clumped. On the other hand, the L(t) value 

distribution suggested clumping for seedlings and saplings (Figure 4-7).  
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Figure 4-6: Spatial pattern of Betula utilis individuals within Transects A and B. 

Individuals are grouped into three classes (trees, saplings, and seedlings). 

The y-axis is along the elevational gradient and covers 20 m below the 

forestline and 10 m above the treeline of entire transect (120 m * 20 m). 

 

 

 

Figure 4-7: Ripley’s K(t) for the trees, saplings, and seedlings combined in two 

transects. The gray area is the confidence envelopes (99%). The square-root 

transformation, L(t), was applied.  
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DISCUSSION 

 

The observed forest is characteristic of a young stand; the stand age is less than 100 

years. Similar young stands of B. utilis and other species were recorded from other 

treeline sites in the Nepal Himalayas (Gaire et al., 2016). Betula utilis is the dominant 

species around the treeline ecotone in the Dhorpatan region and forms an abrupt treeline; 

this observation was similar to findings by Gaire et al. (2014) in the Manasulu region 

and Shrestha et al. (2007) in the Manang region. The Betula utilis treeline in DHR is not 

advancing because the potential for upward migration of the treeline would be evidenced 

by an abundance of seedlings and saplings above the treeline (Mathisen et al., 2014). 

Here, such abundance is lacking. The lack of a significant relationship between 

age/elevation, DBH/elevation, and height/elevation also suggests that the treeline is not 

advancing in response to climate warming. Treeline formation is associated with its 

sensitivity to climate warming, and diffuse treelines are more sensitive than abrupt 

(Harsch and Bader, 2011). It is therefore possible that form is the reason that the treeline 

in this area is not advancing.  

The low number of young individuals above the forestline indicates that infilling 

of the treeline ecotone and treeline advancement has not been occurring in the last few 

decades in this area. The reverse J-shaped age structure below the forestline indicates 

that the forest is regenerating. However, regeneration above the forestline is poor and 

insufficient to trigger treeline advance. Forest regeneration or recruitment at the treeline 
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ecotone is influenced by viable seed production, seed dispersal limitation, and seedling 

competition with ground vegetation (Wallentin et al., 2008). The presence of many 

seedlings and saplings below the forestline suggests that seed production is not the 

limiting factor here. Betula utilis seeds have wings that help in wind dispersal (Moen et 

al., 2004), so dispersal is not the limiting factor. Moreover, many studies, such as Zhang 

and Fang (2004) and Ren et al. (2015), have reported that B. utilis produce high seed 

yield, so I do not consider seed production to be the limiting factor.  

One of the factors that leads to differences in above- and below-forestline 

seedling and sapling density is related to moss and litter. Good regeneration below the 

forestline is due to litter and moss layer cover. This layer helps to trap the moisture for a 

longer time and helps to regenerate seeds. This layer also provides immediate shelter 

from solar radiation. High solar radiation can lead to fatal seedling desiccation (Germino 

et al., 2002). Therefore, a suitable microsite for B. utilis seedling regeneration would 

have moss cover and herbaceous cover to protect it from sunlight and provide moisture. 

On the contrary, in the DHR, the area above the forestline is devoid of litter and moss 

layer. In fact, the area above the forestline is mostly covered by Buki (Tussock grass). In 

this open area, seedlings are exposed to high solar radiation and to low overnight 

temperatures and nighttime sky, thus putting seedlings in a more disadvantageous 

position than Tussock grass (Germino and Smith, 2000; Maher and Germino, 2006). 

Low B. utilis recruitment was also observed in the treeline area of Langtang, Manasulu, 

and Sagarmatha (Liang et al., 2014). Liang et al. (2014) pointed out that low 
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regeneration and the stable treeline of B. utilis is due to increasing moisture stress 

because the B. utilis treelines of the Himalayas are drought influenced. An increasing 

temperature trend and decreasing precipitation trend may create drought stress on 

younger individuals of B. utilis in the Dhorpatan region. Consequently, there is a chance 

that low moisture availability is responsible for low recruitment above the forestline.  

There should be a spatial pattern of seedling establishment below the forestline 

because Shrestha et al. (2007) and Hughes et al. (2009) found that seedlings of Betula 

spp. could not establish under their own closed canopy. Low light and thick litter under 

the canopy may prevent seedling establishment (Shrestha et al., 2007). I also observed 

that most of the seedlings and saplings were established away from the canopy of 

B. utilis, but only in areas covered by moss that ensure moisture needed for germination 

and seedling establishment. This indicates that there is some level of moss cover that 

balances protection in the absence of the negative effects of too much moss cover. The 

importance of moss in the seedling establishment of Picea crassifolia on the Qilian 

mountain in the Tibetan plateau (Wang et al., 2017) and for other species in the study 

area is highlighted by similar finding from other treeline dynamics studies. Spatial 

pattern analysis suggests clustering of seedlings and saplings away from the canopy of 

the big trees. Clumping of seedlings and saplings suggests a requirement of microsites 

for their establishment. Local microsite heterogeneity in both transects possibly 

contributed to the clumping in seedlings and saplings (Wang et al., 2012). Clumping in 

the case of younger individuals was also recorded in other species (Chen et al., 2010; 
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Wang et al., 2012). The clumping in seedlings and saplings being much stronger than 

that observed for adult trees suggests that microsites are more important for the 

establishment of juveniles but that eventually competitive processes will result in the 

death of closely established trees. 

As in Barun Valley, Eastern Nepal (Chhetri and Cairns, 2015), and Rolwaling 

Himal, Central Nepal (Schwab et al., 2016), dense Rhododendron campanulatum shrubs 

are absent in Dhorpatan, so dense shrub cover can be ruled out as a factor in preventing 

recruitment. There are two possibilities that can account for the absence of recruitment 

above the forestline. One is the lack of microsites (thick moss cover with litter), and the 

other is the presence of herbivores above the forestline. The edge of the subalpine B. 

utilis forest in the Dhorpatan area is the main grazing site for domesticated sheep and 

wildlife (blue sheep). I observed signs of browsing on seedlings and saplings above the 

forestline. Browsing in the treeline area prevents regeneration, and, in areas of intense 

browsing, very few saplings and young trees would be found above the forestline (Moen 

et al., 2004; Speed et al., 2010). The presence of browsers above the forestline would 

prevent the treeline’s upward movement due to the browsers feeding on seedlings and 

saplings already weakened by adverse climatic conditions and competition from field 

layer plants (Moen et al., 2004). The palatability of field layer vegetation (Tussock 

grass) above the forestline is higher than below-forestline vegetation (Rhododendron). 

Therefore, the area above the forestline is more affected by herbivory than the area 

below the forestline. This is an alternative explanation for the presence of more 
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seedlings and saplings below the forestline. These disturbances caused by herbivores and 

the lack of microsites override the effect of warming. Therefore, there is little potential 

for any treeline advance in this area in the future until herbivore husbandry is ceased, 

and suitable microsites develop.  

 

CONCLUSIONS  

 

Betula utilis forms the abrupt treeline in DHR, Western Nepal, and very few individuals 

are present above the forestline. In spite of the increasing temperature trend, low 

regeneration at the treeline ecotone suggests that site-specific biotic and abiotic factors 

are controlling the treeline dynamics. Seedling establishment above the forestline is 

limited by a lack of moisture, absence of suitable microsites, and presence of herbivores. 

To properly investigate the effect of herbivores at the treeline, enclosure experiments are 

needed. Similarly, the open sky exposure effect can by studied by creating artificial 

disturbances or canopy cover above the treeline or by transplantation in a controlled 

area. 
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CHAPTER V 

CLIMATE CHANGE DRIVES TREELINE ADVANCE IN THE NEPAL HIMALAYA 

 

INTRODUCTION  

 

Mountain plant communities are sensitive to climate driven range shifts (Telwala et al., 

2013). As treeline ecotones invade high elevation, alpine tundra biomes shrink or shift 

upslope. Previous work has shown treelines are distributionally linked to temperature 

(Gehrig-Fasel et al., 2007; Körner, 2012), with new trees prevented from establishment 

at higher elevation by short growing seasons or belowground permafrost limiting root 

establishment. As climate has warmed, many treelines around the planet have shift 

upward (Gaire et al., 2014; Greenwood and Jump, 2014; Harsch et al., 2009). 

Nevertheless, not all sites have responded the same, with some species and regions 

remaining stable or actually retreating (Harsch et al., 2009). Within regions already 

threatened by habitat change, estimating the degree to which future climatic shifts may 

influence treeline habitat suitability is essential for both scientific understanding and 

conservation planning. Tundra lost to treeline expansion (Moen et al., 2004) reduces the 

habitat for endangered tundra species. For instance, the endangered snow leopard in the 

Himalayas could lose as much as 30% of their habitat under future warming scenarios 

and observe an increase in competition from other cat species (Forrest et al., 2012; 
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Lovari et al., 2013). This combination of factors has the potential to severely reduce 

Himalayan biodiversity. 

Species Distribution Modeling (SDM) provides a baseline for predicting a 

species response to climate change (Hernandez et al., 2008). SDM is an emerging toolset 

that examines the relationship- between species distribution and landscape variables to 

map habitat suitability for a species in a region (Shrestha and Bawa, 2014). This model 

can be used to determine if other regions might support a species today and also use 

predictions of future landscapes to map how habitat suitability for a species may change 

in the future (Randin et al., 2009). SDM helps elucidate the niche requirements of a 

particular species (i.e., the Hutchinsonian environmental niche), which may assist in the 

development and assessment of conservation efforts. There are several existing 

approaches to SDM (e.g. DOMAIN, Maxent, and GARP) that vary in model 

construction and assumptions (Elith and Graham, 2009). Of these, Maxent performs 

better than other programs when using small sample sizes, operates with presence only 

data, and avoid error prone absence records (Ellith et al., 2006; Kumar, 2012; Pearson et 

al., 2007). In addition, Maxent provides a continuous surface output that distinguishes 

between areas with greater or lesser predictive certainty (Phillips et al., 2006). Previous 

analysis has found the software to provide reasonably good estimates of species range 

shifts with climate change (Hijmans and Graham, 2006). Recently, this approach has 

been applied to gain a better understanding of treeline dynamics in response to warming 

and to understand existing process-pattern relationships (Schickhoff et al., 2015).  
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The Himalayas contain an expansive area of understudied treeline habitat that is 

likely to respond to ongoing climate change. The Himalayas contain a high altitudinal 

gradient, complex topography, high warming rate, biodiversity hotspots, and close 

proximity to indigenous communities (Xu and Grumbine, 2014). These features make 

the Himalayas a unique environment where treeline related studies carried out elsewhere 

cannot be generalized. Therefore, studies focusing on the distribution of treeline species 

in the Himalayas are needed to understand and conserve Himalayan ecosystems (Singh 

et al., 2013). Previous studies of treeline in this area have indicated mixed treeline 

response to climate change over a limited area (Chhetri and Cairns, 2015; Gaire et al., 

2014; Shrestha et al., 2014; Suwal et al., 2016). The degree to which these trends scale 

up to broader patterns remains unresolved. Modeling approaches to identify 

contemporary climatic limits of Himalayan treeline species ranges and predict 

distributions under alternative future climatic regimes have not yet been conducted 

(Schickhoff et al., 2015). Recently, modeling studies of the environmental niches of 

Betula utilis in Uttarakhand, India (Singh et al., 2013) and the Himalayan range 

(Schickhoff et al., 2015) have been carried out, both indicating potential habitat shift. 

We wish to add to this knowledge, examining representative Himalayan species to gauge 

the future of this region. 

In this study, I used species distribution modeling to determine if the 

distributions of three common Himalayan treeline forming species are defined by 

climate and predict if their ranges are likely to expand or contract under alternative 
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climatic regimes through an increase or decrease in suitable habitat. The study area is the 

country of Nepal, which covers the majority of the Himalayan range and has observed 

significant shifts in climate within the last 50 years (Shrestha and Devakota, 2010). The 

three study species, Abies spectabilis (D. Don), Betula utilis (D. Don), and Pinus 

wallichiana (A. B. Jacks), are important components of the Nepalese sub-alpine 

ecosystem and are dominant within the Nepalese Himalayan treeline (Chhetri et al., 

2017). I address two questions: 1) which topo-climatic variables best explain the 

distributions of Himalayan treeline forming species in Nepal? To answer this question I 

examined the relationship between the contemporary distributions of my study species 

with the underlying climatic (19 variables) and topographic variables (five variables) 

that define each location. 2) Will the distribution of Nepalese treeline forming species 

likely expand or contract under future climatic shifts? I examine how habitat suitability 

of the three study species will shift under three alternative future climate scenarios 

within the Nepalese Himalayas and compare the elevational range of future suitable 

habitat to contemporary distribution. 
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MATERIAL AND METHODS 

 

Study area 

 

Analysis of climate records has indicated that temperature in the Nepalese Himalayas is 

increasing at a higher rate relative to other mountains of the world, especially since the 

1950s (Shrestha and Devkota, 2010). This warming has progressed at a steady rate since 

the mid-1970s and is more pronounced at higher elevation. In addition, precipitation has 

increased by 13 mm per year on average while the number of rainy days has decreased 

by 0.8 days per year, suggesting more intense rainfall (Shrestha et al., 2000). These 

changes not only threaten the large stores of fresh water in the form of ice and glaciers at 

high elevations in the Himalayas, but also threaten the plant and animal life native to this 

area. Several climate models (CIMP 5, LARS-WG, PRECIS HadCM3, and RegCM3) 

have predicted a steady increase in temperature throughout Nepal accompanied by a 

decrease in monsoon rainfall in the north and an increase in the south (NCVST, 2009; 

Shrestha and Aryal, 2010). 

 

Species selected for the modeling 

 

Abies spectabilis (D. Don), B. utilis (D. Don), and P. wallichiana (A. B. Jacks) are 

dominant treeline species in the Nepalese Himalayas (Chhetri et al., 2017). Abies 
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spectabilis (Himalayan silver fir) is a tall pyramidal evergreen tree growing in the sub-

alpine forests of the Himalayas. It is found within the elevational range of 2800–4000 m 

in Nepal (Ghimire and Lekhak, 2007; Stainton, 1972). This tree is characterized by low 

branching with dense foliage. At the upper limits of its elevational range, it is usually 

associated with B. utilis and Rhododendron spp. The sub-alpine A. spectabilis forest is a 

unique habitat for the endangered Ailurus fulgens (Red panda). Betula utilis (Himalayan 

birch) is a plant native to the Himalayan region and is found across an elevational range 

of 2700–4500 m. It grows up to 20 m in height and grows among scattered conifers such 

as A. spectabilis and P. wallichiana with an undergrowth of shrubs such as 

evergreen Rhododendron spp. This tree grows in moist areas of the Himalayas, 

particularly in gullies where the snow remains into the late spring and summer. Betula 

utilis composes treeline vegetation throughout the Nepalese Himalayas and dominates 

among broadleaved angiosperm tree species in the Himalayas at sub-alpine elevations 

(Shrestha et al., 2007). Betula utilis forests are a habitat of the endangered Moschus 

chrysogaster (musk deer). Blue pine (P. wallichiana) is an evergreen conifer found in 

the Himalayan region from 1800–4200 m (Ghimire et al., 2011). This tree is generally 

found in valleys and foothills, occasionally in pure stands but often in association with 

other species such as A. spectabilis and B. utilis. Pinus wallichiana prefers a drier 

environment than A. spectabilis and B. utilis, and therefore its distribution is primarily 

concentrated in the drier central and western parts of Nepal. Pinus wallichiana is an 

important source of timber and fuel for villagers in mountain valleys and is also 
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important part of the mountain ecosystem (Ghimire et al., 2011). The sub-alpine zone 

occupied by these species in the Nepalese Himalayas is a center of agropastoralism, 

making it highly prone to additional disturbance that may exacerbate climate induced 

shifts in this area.  

 

Species occurrence data 

 

I gathered species occurrence data from several sources: my field surveys carried out in 

different parts of Nepal (2004 – 2011), distribution records in previous literature, the 

Global Biodiversity Information Facility (http://www.gbif.org), and the Flora of Nepal 

database (http://www.padme.rbge.org.uk/floraofnepal/index.php?page=home). I checked 

herbarium records for georeferencing error, misidentification, and duplication with field 

survey and records collected from the published literature.  I only included records 

collected after 1980 in my analysis to reduce potential error related to geographic 

coordinate accuracy. I used a total of 240 records for modeling: 94 for A. spectabilis, 85 

for B. utilis, and 61 for P. wallichiana (Figure 5-1). Presence records were included in 

the model to increase the spatial extent of the study area.  
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Figure 5-1: The distribution records of Abies spectabilis (94 records), Betula utilis 

(85 records), and Pinus wallichiana (61 records) collected from GBIF, 

Flora of Nepal, locations identified in previous publications, and field 

survey.  

 

Topo-climatic variables  

 

To examine spatial climatic variation within the study area, I gathered nineteen 

bioclimatic variables with a 30 arc second (∼1 km) spatial resolution from the 

WorldClim - Global Climate Data (http://www.worldclim.org) (Hijmans et al., 2005) 

(Appendix I). Additionally, I determined the topographic characteristics of Nepal 

(eastness, elevation, northness, topographic position index (TPI), solar illumination 

index (SII)) from the ∼1 km spatial resolution Digital Elevation Model (DEM) obtained 

http://www.worldclim.org/
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from Diva GIS (http://www.diva-gis.org/ (Oke and Thomposon, 2015; Weiss, 2001)). 

Eastness (sine of aspect) and northness (cosine of aspect) are the linear component of 

aspect. TPI is the measure of surface undulation that allows an area to be classified both 

as its topographic position (e.g. ridge top, valley bottom, mid-slope) and landform 

category (e.g. gentle valleys, plains, steep narrow canyons, open slope). SII 

approximates the amount of direct solar radiation that hits an area as a function of its 

aspect, slope, and elevation. I included these variables in the model to account for 

variation in environmental conditions, such as solar radiation, soil moisture, and snow 

cover (Carlson et al., 2013).  

I removed redundant climatic or topographic variables from my analyses that 

were highly correlated (Pearson correlation coefficient (r) greater than 0.9) with other 

variables. This resulted in ten variables: isothermality (quantifies how large the day to 

night temperatures oscillate relative to the summer to winter (annual) oscillations), 

annual temperature range, mean temperature of the coldest quarter, precipitation of the 

driest month, precipitation seasonality, precipitation of the warmest quarter, precipitation 

of the coldest quarter, eastness, northness, TPI, and SII (Appendix II). I retained 

elevation in spite of its high correlation with other variables because elevation has 

significantly improved the predictive ability of SDM models for other high elevation 

plant species (Oke and Thomposon, 2015), and elevation is considered an important 

determinant of species distributions in mountain habitat (Körner, 2012).  

http://www.diva-gis.org/
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I obtained data for three downscaled future global climate models (GCM) from 

the Coupled Model Intercomparison Project Phase 5 (CMIP5, IPPC Fifth Assessment) 

from the Consultative Group on International Agriculture Research (CGIAR)’s Climate 

Change, Agriculture and Food Security (CCAFS) climate data archive 

(http://www.ccafs-climate.org/), and the Global Coupled Atmosphere-Ocean General 

Circulation Model (BCC-CGCM1.0) developed by the Beijing Climate Center. These 

models are based on the IPCC fifth assessment report (AR5) that modeled greenhouse 

gas emission trajectories, called Representative Carbon Pathway (RCP). The first, RCP 

2.6, is based on a reduction in greenhouse gas concentration (hereafter lowest 

emissions). According to this lowest emissions scenario, global annual greenhouse gas 

emissions peak in between 2010 – 2020, and temperatures are projected to increase in 

range 0.3 – 1.7 °C. The second, RCP 6.0, is based on a stable greenhouse gas 

concentration (hereafter stable emissions). Stable emissions assume that emissions peak 

around 2080 and then decline, with temperature increasing by 0.8 – 3.1 °C. The last, 

RCP 8.5, proposes an increase in greenhouse gas concentration (hereafter highest 

emissions). Highest emissions assume greenhouse gas emissions continue to increase 

throughout 21st century, with temperature increasing 1.4 – 4.8 °C by 2100. For each 

model, I examined the predicted future climate under each scenario at two different time 

periods (2050 and 2070). The 2050 time period is average for 2041 – 2060, and 2070 is 

average for 2061 – 2080 period. The supplementary table S3 indicates climatic range 

and mean values in current and forecasted scenarios.  
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Species distribution model  

 

I used the maximum entropy (Maxent) software version 3.3.3k (Phillips et al., 2006) to 

conduct species distribution modeling. Maxent uses a machine learning process that 

estimates the habitat suitability of a species in an area based on the association between 

landscape variables and known distribution records (Kumar and Stohlgren, 2009). The 

Maxent model works well with presence only data (Elith et al., 2011) and is capable of 

identifying contemporary and future habitat suitability under alternative climate 

scenarios (Hijmans and Graham, 2006). This generates an indication of a species 

likelihood to expand or contract its range if new habitat is likely to become available or 

occupied habitat is likely to become unsuitable. It is less sensitive to sample size than 

other SDM packages (Wisz et al., 2008) and is one of the most popular SDM programs, 

with more than 1500 published applications since 2006 (Merow et al., 2013).  

I ran my Maxent analysis using the following parameter values in my 

simulations: random test percentage, 30%; regularization multiplier, 1; maximum 

number of background points, 10000; maximum iterations, 5000 or until convergence; 

convergence threshold, 0.00001; and crossvalidated replicated run type. I set the model 

to remove duplicate presence records at the spatial resolution of the topo-climatic 

variables (Soria-Auza et al., 2010), so that I included only one presence record within 

the ~1 km2 grid cell for each species. I ran 15 replicates for each species and averaged 

the results. The program created background data by using known occurrence points. I 
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used a Jackknife test to measure the performance of topo-climatic variables in the model, 

reporting the importance in explaining the species’ occurrence and the quantity of 

unique information each variable provides (Baldwin, 2009). I used the omission and 

predicted area curve and area under the receiver operating characteristic curve (AUC) to 

assess the quality of the model (Fielding and Bell, 1997). The omission and predicted 

area curve is a threshold-dependent binomial test that compares the extrinsic omission 

rate to the proportional predicted area, where close fit of the two measure indicates a 

good fit. The extrinsic omission rate is the proportion of known species occurrence 

locations withheld from the model construction that fall into pixels where the model 

predicts the habitat as being unsuitable to a species and should be a lower value in a 

good model. The proportional predicted area is the fraction of all the pixels that are 

predicted as suitable for the species (Phillips et al., 2006). The AUC is commonly used 

to assess model fit in the Maxent literature, and it represents the probability that a known 

occurrence locality will be classified as more suitable than a random background point 

(Gallardo et al., 2015; Merow et al., 2013). An AUC value of 0.5 – 0.7 indicates a poor 

model fit, an AUC value of 0.7 – 0.9 indicates a moderate model fit, and an AUC value 

> 0.9 indicates a good model fit (Franklin, 2010; Shrestha and Bawa, 2014). The final 

raster product for the study area contains pixel values between 1 (high habitat suitability) 

and 0 (low habitat suitability). I used a standard cutoff, where I assigned pixels with 

values greater than 0.5 as being suitable at that location (Kumar and Stohlgren, 2009; 

Porfirio et al., 2014). To determine if the distributions of Himalayan treeline forming 
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species are primarily defined by climatic or topographic variables in Nepal (question 1), 

I compared the contribution of each climatic and topographic variable contributed to the 

final contemporary SDM. 

To determine if habitat suitability of Nepalese treeline forming species are likely 

to expand or contract under predicted future climatic shifts (question 2), I compared the 

elevation and range area of the contemporary habitat suitability surface to that in the 

alternative future models. I estimated the total area of suitable habitat for the three 

species under current and future climatic conditions in ArcGIS 10.2 by using the raster 

to polygon and calculate geometry tools. I also calculated suitable habitat for each 

species as a fraction of the land area of the country of Nepal. To determine potential 

changes in the elevational distribution of treeline species, I extracted the elevation values 

of the pixels from the predicted and current distribution maps generated by the model 

using the DEM (Shrestha and Bawa, 2014). I converted the predicted occurrence and the 

DEM raster into polygons using ArcGIS 10.2. To determine if the elevation shifted 

significantly between the contemporary and three alternative future models for each 

species, I used an independent sample t-test to compare the mean elevation values of the 

suitable habitat under current and future climate scenarios (Shrestha and Bawa, 2014).  
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RESULTS 

 

I developed SDMs for three study species on the basis of 240 presence records. 

Omission and predicted area curves indicated moderate to good model fit for the three 

study species (Figure 5-2). All of the observed omission rates on training samples and 

omission rates in test samples were close to the predicted omission rates. The models for 

all three treeline species performed better than random as indicated by the average test 

AUC values for the 15 replicate runs of A. spectabilis (0.89 ± 0.05), B. utilis (0.87 ± 

0.05), and P. wallichiana (0.87 ± 0.06) (Figure 5-3).  

The distribution of suitable habitat for the three treeline species under current 

climatic conditions is presented in Figure 5-4. My models indicate that present suitable 

habitat for A. spectabilis, B. utilis, and P. wallichiana cover 5130 km2, 9822 km2, and 

9764 km2, respectively. I have presented the area and percent of country covered in 

Table 5-1. The model also predicted that the most suitable habitat for A. spectabilis and 

B. utilis was in the eastern and central part of Nepal, and the most suitable habitat for P. 

wallichiana was in the central part of Nepal.  
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Figure 5-2:  Omission and predicted area curves for (a) Abies spectabilis, (b) Betula 

utilis, and (c) Pinus wallichiana. 
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Figure 5-3: Area under the ROC curves (AUC) and AUC values for (a) Abies 

spectabilis, (b) Betula utilis, and (c) Pinus wallichiana. 
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Figure 5-4: Suitable habitat for the three study species under current and future climatic conditions under three emissions 

scenarios (lowest, stable, and highest)
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Table 5-1 Area with habitat suitable (habitat suitability > 0.5), measured as 1 x 102 km2, 

for the three treeline species under current climate and the three alternative future 

climate change scenarios. Percent of Nepal with suitable habitat is within parentheses.  

 

 

 

 

A Jackknife test (Figure 5-5) indicated that for all three species elevation is the 

most important predictor of habitat suitability. The climatic variables isothermality and 

mean temperature of the coldest quarter were consistently important predictors for all 

three species. The percent of each variable to the final model is presented in Table 5-2. 

Elevation, isothermality, mean temperature of the coldest quarter, precipitation of the 

coldest quarter, and topographic position index had the greater influence on the 

distribution of A. spectabilis. Elevation, mean temperature of the coldest quarter, 

isothermality, eastness, and precipitation of the warmest quarter had greater influence in 

 Current                         Future climate change scenario 

Lowest 

emissions 

Stable emissions Highest emissions 

2050 2070 2050 2070 2050 2070 

A. 

spectabilis 

51 (3.5) 100 

(6.8) 

178 

(12.1) 

44  

(3.0) 

90  

(6.1) 

217 

(14.7) 

279 

(19.0) 

B. utilis 98 (6.7) 206 

(14) 

129 

(8.7) 

360 

(24.4) 

363 

(24.6) 

156 

(10.6) 

266 

(18.1) 

P. 

wallichiana 

98 (6.6) 117 

(7.9) 

96  

(6.5) 

117 

(8.0) 

51  

(3.5) 

114 

(7.7) 

92  

(6.3) 
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distribution of B. utilis. The distribution of P. wallichiana depended primarily on 

elevation, isothermality, topographic position index, mean temperature of the coldest 

quarter, and temperature annual range.  

 

 
 

 

Figure 5-5: Jackknife test of the relative importance of predictor topo-climatic 

variables for (a) Abies spectabilis, (b) Betula utilis, and (c) Pinus 

wallichiana. Blue bars indicate the importance of individual variables 

relative to all topo-climatic variables (red bar). 
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Table 5-2 Percent contribution of the topo-climatic variables in each species distribution 

model for the three study species.  The variables I examined were isothermality (Bio 3), 

temperature annual range (Bio7), mean temperature of coldest quarter (Bio11), 

precipitation of driest month (Bio14), precipitation seasonality (Bio14), precipitation of 

warmest quarter (Bio18), precipitation of coldest quarter (Bio19), topographic position 

index (TPI), and solar illumination index (SII). 

 

 

Abies spectabilis Betula utilis Pinus wallichiana 

Variable Percent 

Contribution 

Variable Percent 

Contribution 

Variable Percent 

Contribution 

Elevation 39.9 Elevation 38.8 Elevation 39.4 

Bio3 28.7 Bio11 24.4 Bio3 21.4 

Bio11 11.9 Bio3 20.9 TPI 10.1 

Bio19 05.1 Eastness 03.8 Bio11 09.4 

TPI 

Bio18 

Bio7 

Bio15 

Northness 

Eastness 

Bio14 

SII 

04.3 

03.2 

02.1 

01.6 

01.0 

01.0 

00.6 

00.6 

Bio18 

Bio15 

TPI 

Northness 

Bio19 

Bio14 

Bio7 

SII 

03.3 

03.2 

02.1 

02.0 

01.0 

00.4 

00.1 

00.0 

Bio7 

Bio19 

Bio18 

Eastness 

Bio15 

Northness 

Bio14 

SII 

07.8 

05.2 

02.5 

02.0 

01.6 

00.3 

00.2 

00.0 

 

The proportion of suitable habitat for the three study species varied under the 

alternative climate scenarios (Figure 5-2). The model predicted that suitable habitat area 
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for A. spectabilis will increase under all three emissions scenarios in 2050 and 2070. The 

increase in area is greater in 2070 than in 2050, except under the stable emissions 

scenario, where a dip in suitable habitat is predicted in 2050 (Table 5-1). The average 

elevation of A. spectabilis was higher under all warming scenarios (Table 5-3, Fig. 5-6a). 

The model predicted that the suitable habitat area for B. utilis will increase in both area 

(Table 5-1) and elevation (Table 5-3, Figure 5-6b) under all emissions scenarios in 2050 

and 2070. The model predicted that the suitable habitat for P. wallichiana will not 

significantly decrease or increase except for stable scenarios in 2070 (Table 5-1). 

Nevertheless, the average elevation of P. wallichiana, was higher in all warming 

scenarios (Table 5-3, Figure 5-6c). 
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Table 5-3 Mean average elevation (m) and standard deviation of the current suitable 

habitat and the future suitable habitat of the three treeline species under the three future 

climate change scenarios. I compared all future elevation estimates to current using an 

independent sample t-test. All comparisons were significant (p < 0.001).  

 

 

a. Abies spectabilis 

Emissions Current 2050 2070 

  3367±721     

Lowest 

 

3488±673 3642±810 

Stable 

 

3544±591 3783±791 

Highest   4032±802 4212±993 

 

b. Betula utilis 

Emissions Current 2050 2070 

  3477±633     

Lowest 

 

3971±733 3782±671 

Stable 

 

4121±978 4105±1034 

Highest   4155±674 4311±857 

 

c. Pinus wallichiana  

Emissions Current 2050 2070 

  2907±748     

Lowest 

 

3025±806 2968±770 

Stable 

 

3009±808 3120±743 

Highest   3002±858 3253±842 
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Figure 5-6a: Change in average elevation of suitable habitat for the three study 

species (a. Abies spectabilis) under future climate change scenarios (lowest, 

stable, and highest). 
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Figure 5-6b: Change in average elevation of suitable habitat for the three study 

species (b. Betula utilis) under future climate change scenarios (lowest, 

stable, and highest). 
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Figure 5-6c: Change in average elevation of suitable habitat for the three study 

species (c. Pinus wallichiana) under future climate change scenarios 

(lowest, stable, and highest). 

 

DISCUSSION  

 

The distribution of suitable habitat for treeline species in the Nepalese Himalayan 

Mountains is likely to shift in response to climate change. The species distribution of the 

three study species examined here were mostly explained by climatic variables, 

indicating climatic shifts will likely influence future habitat suitability. Explicit analysis 

confirmed this conclusion. My simulations indicated the habitat suitability of three 
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treeline species will shift toward higher elevation under future predicted climate, with 

the possibility of undergoing an overall range expansion under alternative future climate 

models. These predicted shifts have serious consequences for both forest and tundra 

species in this area.  

The contemporary SDMs performed well in describing current patterns when 

examined through observational and statistical analysis. All model AUC values are close 

to 0.90, which is considered a moderately-good fit (Kramer-Schadt et al., 2013), and 

comparable to values obtained in similar studies within this region (Rhododendron spp. 

AUC = 0.78 (Kumar, 2012), B. utilis AUC = 0.92 (Schickhoff et al., 2015)). My model 

results matched the actual existing range of these species based on the authors’ local 

field-based knowledge, existing land cover maps, and ecological maps of Nepal. In 

Eastern Nepal, the distribution of suitable habitat for A. spectabilis indicated dominance 

in three conservation areas (Kanchenjunga Conservation Area, Makalu Barun National 

Park, and Sagarmatha National Park) where the species is in fact the dominant forest 

cover species. Similarly, B. utilis is the dominant species in Langtang National Park and 

Annapurna Conservation Area where the model predicted most of the suitable habitat to 

be distributed. The model predicted the current distribution of suitable habitat of P. 

wallichiana to be concentrated in the drier areas of Central and Western Nepal, in areas 

like Rara National Park and Annapurna Conservation Area where the species is 

dominant.  

The primary topo-climatic variables describing the contemporary models for my 

three study species were insightful given existing knowledge of the ecology of treeline 
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species. Elevation is the most important predictive variable in the model for all three of 

my species. Elevation may not be directly associated with plant physiology, however it 

plays an important role in controlling atmospheric pressure, solar radiation, precipitation, 

and cloud cover (Oke and Thompson, 2015). Thus, elevation is a strong indicator of 

climatic variables that influence physiology. Mean temperature of coldest quarter is one 

of the most important climatic variables explaining the contemporary distribution 

models for all three study species. This finding is consistent with ecological studies that 

have found the upper altitudinal distribution limit of many treeline species is often 

determined by low temperature conditions (Körner, 2012). Additionally, mean 

temperature of coldest quarter and isothermality are related to growing season length, 

which is a secondary factor that has been identified to limit treeline distribution (Körner, 

2012). We should remain conservative in over interpreting these findings as I removed 

variables that were highly correlated with those included in my model, and simple 

spatial autocorrelation is an inherent effect in any climatic study (Kumar, 2012). 

Nevertheless, the strong climatic associations I observed do suggest, in the absence of 

other limitation, ongoing climate change will influence the distribution of these treeline 

species.  

Although the shift in suitable habitat distribution varied under the alternative 

future climatic scenarios, there is a high likelihood of treeline advance in the future for 

the three study species. In terms of change in the area of suitable habitat, my models 

predicted minimal levels of expansion for A. spectabilis and P. wallichiana relative to B. 

utilis, which will double or triple under stable and highest emissions scenarios. This is 
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likely due to differences in species-specific requirements that define their distributions. 

Pinus wallichiana prefers dry valleys and foothills and is an early successional species 

(Ghimire et al., 2011). In contrast, both A. spectabilis and B. utilis grow on moist north-

facing slopes (Ghimire and Lekhak, 2007). Abies spectabilis has a broader distribution 

than B. utilis, often occurring on south-facing slopes. Betula utilis is often found in areas 

that receive snowmelt water from mountain peaks above treeline (Shrestha et al., 2007). 

Future distribution range will depend on how these species specific microsites will 

change. General Circulation Models (GCMs) project warmer days and nights in the 

future, which will result in more snow melt that benefits B. utilis more than A. 

spectabilis and P. wallichiana. Western Nepal is drier than eastern Nepal and monsoon 

precipitation is projected to increase in Western Nepal which will make western parts 

more suitable for tree establishment. My model indicated that B. utilis will occupy most 

of the future Western Nepal in both stable and highest emissions scenarios. 

Nevertheless, I saw average treeline extent advancing under all future climatic scenarios. 

Many climate models (including CIMIP 5: Shea et al., 2015; LARS-WG: Agarwal et al., 

2015; PRECIS HadCM3 and RegCM3 ECHAM5: NCVST, 2009) project an increase in 

Himalayan winter temperature, which will prolong the growing season making the area 

above the treeline more favorable for treeline species. These results are similar to 

previous studies examining species in this area. Schickhoff et al. (2015) predicted B. 

utilis habitat will shift northward throughout all of the Himalayas under future climate 

change scenarios. Zomer et al. (2014) indicated that sub-alpine conifer forest zones will 

shift upward by over 400 m between 2000 and 2050. On the other hand, Kumar (2012) 
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predicted that the habitat of Rhododendron spp. will shrink under future climate change 

scenarios in the Sikkim region of the Indian Himalayas, so not all species will 

necessarily follow this same path.  

Potential shifting habitat of these plants might have huge implications for many 

species in this area that have dependent associations for survival. For instance, habitat of 

treeline species such as A. spectabilis make up the suitable habitat of endangered 

species, such as the red panda (Ailurus fulgens) which prefer to spend most of its time in 

the branches and on the trunk of A. spectabilis trees (Panthi et al., 2012). Similarly the 

endangered Himalayan musk deer (Moschus chrysogaster) prefer moderate to steep 

sloped closed canopy of A. spectabilis and B. utilis sub-alpine forest (Subedi et al., 

2012). These species are losing their habitat because A. spectabilis and B. utilis are under 

human pressure for timber and fuel wood (Jnawali et al., 2011). Therefore information 

generated from modeling approaches similar to this study can be utilized for 

conservation planning and management of endangered species, predicting areas that may 

be negatively affected by contracting habitat or those that will be opening up for 

potential expansion.  

These results should be couched within the limitations of using a topo-climatic 

approach for predicting future distributions (Macias-Fauria and Johnson, 2013; Zong et 

al., 2014). Limitations not included in this analysis may prevent these species from 

occupying the entirety of their fundamental niche in the future. This could include 

dispersal limitations of each species (Boisvert-Marsh et al., 2014), which may limit a 

species ability to establish in newly available suitable habitat. In addition, my 
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projections do not factor in human disturbance (timber and fuel wood harvesting), 

herbivory (cf. Cairns and Moen, 2004), plant physiology, soil type, snow cover, or land 

cover. Human disturbance and topographical factors can limit upslope treeline advance 

(Leonelli et al., 2009). Shrestha and Bawa (2014) emphasized the need for high 

resolution environmental data that captures microclimates, edaphic conditions, 

vegetation dynamics, and landscape heterogeneity in SDMs. Kollas et al. (2014) also 

emphasized the use of high spatial resolution temperature data for predictive modeling 

of temperature-based niche envelopes recommending the use of topo-climatic variables 

with a resolution of less than 100 m. They also suggested the use of absolute minimum 

temperatures in modeling instead of long term means because minimum temperatures 

determine the phenology of tree species at the cold limit. Building on higher resolution 

datasets in future studies will improve the accuracy of these results. High resolution 

climate data is not available for Nepal. Nevertheless this study provides a null model of 

expectations using the best available data, isolating climatic influences outside of other 

ecological limitations, providing essential information for future management. 

 

CONCLUSIONS 

 

The model produced a good fit of contemporary species distributions, identifying 

suitable habitat of the three dominant treeline forming species of the Nepalese 

Himalayas under present and potential future climates. This approach would be useful 

for application on other treeline species from the region. Results indicate that the treeline 
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ecotone is likely to transition throughout this region and will likely have significant 

impacts on the associated plant and animal species. Models predicted that the area above 

the existing treeline will become suitable for tree establishment. Nevertheless, this 

establishment will be controlled by factors like natural or human disturbances and 

ecological interactions with the surrounding shrub communities. Future work examining 

disturbance factors, species interaction, and inclusion of high resolution satellite imagery 

and a digital elevation model will improve the accuracy of this work. In addition, for 

those species expanding, the pattern of migration along the expanding front could 

significantly influence the amount of genetic variation and chance for local adaptation in 

this ever changing environment. Future studies examining these effects using emerging 

landscape genetic tools (Johnson et al., 2016) will be especially informative for future 

planning.  
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CHAPTER VI 

CONCLUSIONS 

 

Geographic Information Science analysis combined with high-resolution RS imagery 

can be used for mapping the treeline ecotone, quantifying treeline advancement rate, and 

monitoring treeline change. The use of RS and GIS in treeline studies is increasing 

rapidly as these resources become more widespread and their advantages become well-

known. Notably, RS and GIS techniques increase the scale at which treeline studies can 

be performed, ranging from low-resolution, regional-level to high-resolution, patch-level 

research. In closing, there is no doubt that RS and GIS will greatly advance ecological 

research, especially given the rapid improvements to such technologies and the 

increasing availability of high-resolution satellite images.      

Remote sensing and GIS based regional scale study indicated that Abies 

spectabilis, Betula utilis and Pinus wallichiana are the main treeline forming species of 

the Nepal Himalaya. Abies spectabilis and B. utilis are dominant in the treeline ecotone 

of Barun and Manang Valley, respectively. Slope aspect is not important in determining 

treeline position at the regional scale. However, at the landscape scale, slope aspect 

affected treeline elevation, particularly at undisturbed locations. This indicated that 

factors controlling the treeline structure are strongly scale dependent. Treeline type 

delineation dominate Barun and Manang Valley, respectively, suggesting that 

topographic and anthropogenic variables are the most important factors in structuring the 

treeline ecotone. Information on treeline type obtained from this landscape scale study 
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will help predict the responses of forestlines and treelines to temperature changes. Future 

studies should investigate geomorphological and land use pattern near treeline, and 

treeline ecotone processes at local scale in order to understand treeline responses to 

environmental change in the Nepal Himalaya.   

Dendroecological based local scale study in DHR, Western Nepal indicated that 

Betula utilis forms the abrupt treeline in, and very few individuals are present above the 

forestline. In spite of the increasing temperature trend, low regeneration at the treeline 

ecotone suggests that site-specific biotic and abiotic factors are controlling the treeline 

dynamics. Seedling establishment above the forestline is limited by a lack of moisture, 

absence of suitable microsites, and presence of herbivores. To properly investigate the 

effect of herbivores at the treeline, enclosure experiments are needed. Similarly, the open 

sky exposure effect can by studied by creating artificial disturbances or canopy cover 

above the treeline or by transplantation in a controlled area. Local scale study hinted 

treeline stability, and how this treeline will response in future climate change scenario 

can be studied through species distribution modeling approach.  

The Maxent model produced a good fit of contemporary species distributions, 

and identified suitable habitat of the three dominant treeline forming species (Abies 

spectabilis, Betula utilis and Pinus wallichiana) of the Nepalese Himalayas under 

present and potential future climates. This approach would be useful for application on 

other treeline species from the region. The results indicate that the treeline ecotone is 

likely to transition throughout this region and will likely have significant impacts on the 

associated plant and animal species.  Models predicted that the area above the existing 
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treeline will become suitable for tree establishment. Nevertheless, this establishment will 

be controlled by factors like natural or human disturbances and ecological interactions 

with the surrounding shrub communities. Future work examining disturbance factors, 

species interaction, and inclusion of high resolution satellite imagery and a digital 

elevation model will improve the accuracy of this work. In addition, for those species 

expanding, the pattern of migration along the expanding front could significantly 

influence the amount of genetic variation and chance for local adaptation in this ever 

changing environment. Future studies examining these effects using emerging landscape 

genetic tools (Johnson et al., 2016) will be especially informative for future planning. 
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APPENDIX I: TOPO-CLIMATIC VARIABLES USED IN THE MAXENT MODEL 

Variable 

code 

Variable type Data Source Resolution Range and mean  

BIO1 Annual mean temperature WorldClim 30 arc sec (~1 km) -16.6 – 24.8 (14.0 °C) 
BIO2 Mean diurnal range: mean 

of monthly (max temp–

min temp) 

WorldClim 30 arc sec (~1 km) 6.4 – 14.3 (11.1 °C) 

BIO3 Isothermality: 

(bio2/bioP7)*100 

WorldClim 30 arc sec (~1 km) 3.8 – 5.1 (4.4%) 

BIO4 Temperature seasonality 

(SD*100) 

WorldClim 30 arc sec (~1 km) 3527 – 6089 (4821) 

BIO5 Maximum temperature of 

warmest month 

WorldClim 30 arc sec (~1 km) -4.9 – 39.0 (25.1 °C) 

BIO6 Minimum temperature of 

coldest month 

WorldClim 30 arc sec (~1 km) -32.3 – 11.1 (3.9 °C) 

BIO7 Temperature annual range 

(BIO5–BIO6) 

WorldClim 30 arc sec (~1 km) 16.2 – 31.2 (24.7°C) 

BIO8 Mean temperature of 

wettest quarter 

WorldClim 30 arc sec (~1 km) -10.0 – 29.5  (18.7 °C) 

BIO9 Mean temperature of 

driest quarter 

WorldClim 30 arc sec (~1 km) -22.0 – 23.5  (8.6 °C) 

BIO10 Mean temperature of 

warmest quarter 

WorldClim 30 arc sec (~1 km) -9.7 – 30.8 (19.2 °C) 

BIO11 Mean temperature of 

coldest quarter 

WorldClim 30 arc sec (~1 km) -23.1 – 18.1 (7.1 °C) 

BIO12 Annual precipitation WorldClim 30 arc sec (~1 km) 53 – 1234 (1373.1 mm) 

BIO13 Precipitation of wettest 

month 

WorldClim 30 arc sec (~1 km) 301 – 4446 (358.9 mm) 

BIO14 Precipitation of driest 

month 

WorldClim 30 arc sec (~1 km) 0 – 22  (5.72 mm) 

BIO15 Precipitation seasonality 

(coefficient of variation) 

WorldClim 30 arc sec (~1 km) 54 – 135 (99.7 mm) 

BIO16 Precipitation of wettest 

quarter 

WorldClim 30 arc sec (~1 km) 140 – 3239 (892.9 mm) 

BIO17 Precipitation of driest 

quarter 

WorldClim 30 arc sec (~1 km) 5 – 104 (45.5 mm) 

BIO18 Precipitation of warmest 

quarter 

WorldClim 30 arc sec (~1 km) 122 – 3239 (743.6 mm) 

BIO19 Precipitation of coldest 

quarter 

WorldClim 30 arc sec (~1 km) 5 – 182  (67.7 mm) 

DEM Elevation DIVA GIS 30 arc sec (~1 km) 61 – 8384 (2104 m) 

Eastness  Eastness DEM 30 arc sec (~1 km) -1 – 1 

Northness Northness DEM 30 arc sec (~1 km) -1 – 1 

TPI Topographic position 

index 

DEM 30 arc sec (~1 km) -573 – 939 (0.12) 

SII Solar illumination index DEM 30 arc sec (~1 km) 0 – 113 (12.8) 
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APPENDIX II: CORRELATIONS AMONG DIFFERENT TOPO-CLIMATIC VARIABLES.  

 

Note: Variables highlighted in bold are used in the model. Bio 3 (isothermality), Bio 7 (temperature annual range), Bio 

11 (mean temperature of coldest quarter), Bio 14 (precipitation of driest month), Bio 15 (precipitation seasonality), Bio 

18 (precipitation of warmest quarter), Bio 19 (precipitation of coldest quarter), eastness, northness, SII, and TPI are 

the uncorrelated variables. 
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APPENDIX III: CLIMATIC VARIABLE RANGE AND MEAN VALUE IN 

CURRENT AND FORECASTED SCENARIOS  

Climatic 

variables  

Variables range and mean 

Current 

climate  

Forecasted scenarios 

Lowest Emission (RCP 

2.6) 

Stable Emission (RCP 

6.0) 

Stable Emission (RCP 

6.0) 

2050  2070  2050 2070 2050 2070 

BIO3 3.8–5.1   

(4.4 %) 

3.8–5.2  

(4.5 %) 

3.9–5.2   

(4.5 %) 

3.8–5.1   

(4.4 %) 

3.9–5.3 

(4.5 %) 

3.8–5.2   

(4.4 %) 

4.0–5.6   

(4.7 %) 

BIO7 16.2–31.2  

(24.7 °C) 

15.9–31.1  

(24.1 °C) 

15.6–31.0  

(24.0 °C) 

16.4–31.6  

(24.6 °C) 

15.4–

31.3 

(23.8°C) 

16.5–

32.2 

(24.5 °C) 

15.5–31.3  

(23.4 °C) 

BIO11 -23.1–18.1  

(7.1 °C) 

-21.2–

19.7  

(9.1 °C) 

-21.2–19.8  

(9.1 °C) 

-21.0–19.8  

(9.4 °C) 

-19.9–

20.9 

(10.4 °C) 

-20.2–

20.5 

(10.0 °C) 

-18.6–22.0 

(11.5°C) 

BIO14 0–2.2   

(0.5 mm) 

0–2.7  

(0.6 mm) 

 0–3.3   

(0.3 mm) 

 0–4.4  

(1.6 mm) 

 0 – 3.8   

(1.7 mm) 

 0 – 2.6   

(0.6 mm) 

 0–3.1   

(0.7 mm) 

BIO15 5.4–13.5  

(9.9 mm) 

5.4–13.0  

(9.8 mm) 

5.4–13.1  

(9.8 mm) 

3.8–12.6  

(9.0 mm) 

4.5–12.7  

(9.3 mm) 

5.9–13.6  

(9.8 mm) 

6..4–140  

(10.1 mm) 

BIO18 12.2–

323.9  

(74.3 mm)        

16.7–

330.1  

(71.3 mm)        

16.0–329.3 

(74.7 mm)        

11.1–328.8 

(72.7 mm)        

20.3–

334.6 

(67.1 

mm)        

17.0–

477.1 

(84.8 

mm)        

15.6–431.2 

(97.6 mm)        

BIO19 0.5–18.2   

(6.7 mm) 

0.9–19.8  

(7.5 mm) 

1.5–20.8   

(8.0 mm) 

1.3–18.9   

(7.6 mm) 

2.2–21.8   

(9.7 mm) 

0.6–21.8 

(8.7 mm) 

0.5–19.9   

(7.4 mm) 

 

Note: Trend of variables used in the model is presented only. Bio 3 (isothermality), 

Bio 7 (temperature annual range), Bio 11 (mean temperature of coldest quarter), 

Bio 14 (precipitation of driest month), Bio 15 (precipitation seasonality), Bio 18 

(precipitation of warmest quarter), Bio 19 (precipitation of coldest quarter), 

 

 


