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ABSTRACT 

 

Cerium oxide nanoparticles (CeO2NPs) have received much attention recently 

because of their popular uses in industrial and commercial products. The accumulation 

of CeO2NPs in the environment, especially in natural soils, becomes a potential risk to 

terrestrial plants. Although below-ground vegetables are most likely to accumulate the 

highest concentrations of CeO2NPs, little work has been done to investigate the 

interactions between this plant group and CeO2NPs. In this dissertation, the uptake and 

accumulation of CeO2NPs by Raphanus sativus L. (radish) were evaluated in hydroponic 

and soil systems. 

In the hydroponic system, the accumulation patterns and the effect of Ce on plant 

growth and physiological processes varied with the characteristics of Ce. While active 

transport appeared to be the primary pathway for ionic Ce accumulation in plant tissues, 

adsorption and diffusion of particulate Ce along the radial direction govern the 

accumulation of bulk CeO2 and CeO2NPs accumulation in radish storage roots. The 

intact CeO2NPs could be taken up by the radish fine roots, but the upward transport was 

limited. Ce detected in radish shoots through root exposure is predominantly in the 

dissolved form. Importantly, the transformation of CeO2NPs to ionic Ce on the radish 

fine root surface was first confirmed and the enhanced transformation was attributed to 

the organic acids with low molecular weight (e.g. malic acid) in the roots exudates of 

radish.  
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In the soil system, many soil properties, including the soil texture, mineral 

content, and organic matter content, affect the fractionation of CeO2NPs in soil and their 

bioavailability to radish. Aging of CeO2NPs in soil led to higher availability of dissolved 

Ce in the rhizosphere soil and greater accumulation of Ce in radish shoots. Efforts were 

also made to understand the interactions of CeO2NPs with two major soil components 

(sand and clay). Experimental results and mathematical modeling results indicated that 

adsorption to sand and kaolin (a typical clay) particles had strong impact on the mobility 

of CeO2NPs in soil. The surface properties of CeO2NPs play a crucial role in these 

interactions.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Nanotechnology and Nanoparticles 

The concept of nanotechnology, which involves the manipulation of matter at 

nano-scale, was first introduced in 1959 by Dr. Richard Feynman and first used as a term 

by Professor Norio Taniguchi in 1974.1 In 2015, the market values of nano-enabled 

products were estimated to be worth 3 trillion dollars, accounting for 15% of global 

manufacturing output.2 The applications of engineered nanomaterials (ENMs), which is 

a critical subfield of nanotechnology, has attracted a large amount of attention recently.  

ENMs are defined as engineered materials with at least one external dimension in 

the size range from approximately 1 – 100 nanometers.3 ENMs with all three external 

dimensions at the nanoscale are termed engineered nanoparticles (ENPs).3 Based on 

chemical composition, ENMs are usually classified into three categories: carbonaceous 

ENMs (primarily carbon nanotubes and fullerenes), polymeric ENMs (submicron-sized 

colloidal materials consisting of a polymer or copolymer), and metallic ENMs (including 

both elemental ENMs and metal oxide ENMs).  

Carbonaceous ENMs are one of the key materials in nanotechnology and widely 

applied in the field of wastewater treatment processes, solar cells , microelectronics, 

energy storage, and coating and films, because of their high specific surface area, 

electrical conductivity, thermal conductivity, and tensile strength.4 Most carbonaceous 

ENMs are incorporated into durable products in three different forms (nanotubes, 



 

 

2 

  

nanofibers, and nanoparticles) and are expected to be bound in the matrix throughout the 

life cycle of these products.5 Among the three different forms, carbon nanotubes (CNTs) 

are the most widely used carbonaceous ENMs.  

Over the last two decades, polymeric ENMs that have the properties of both 

nanomaterials and conventional polymer composites have also been widely applied in 

industry, especially in the aerospace/automotive engineering, renewable energy, and 

biomimetic sensor fields.6 The significant mechanical and thermal properties of 

polymeric ENMs include gas impermeability, dimensional stability, and flame 

retardance.6  

Compared with carbonaceous and polymeric ENMs, metallic ENMs, which have 

fascinated scientists and engineers for over a century, have the longest history and are 

now heavily utilized in the field of nanotechnology.7  Currently, the metallic ENMs can 

be synthesized in desired size and shape, and modified with various chemical functional 

groups on the particle surface, which allow them to carry pharmaceuticals, proteins, 

enzymes, antibodies, and nucleotides.7, 8 Thus, metallic ENMs potentially could be 

applied in biomedical technology, magnetic isolation, targeted drug delivery, and 

diagnostic imaging.7  

Overall, the unique optical, electrical and chemical properties of ENMs are 

predominantly due to their very large specific surface area and the quantum nature of the 

energy state at nanometer scale. These novel properties lead to the potential for 

numerous applications of these ENMs in consumer, industrial, agricultural and 
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biomedical products. The applications of several most common ENMs are summarized 

in Table 1.1. 

  

 

Table 1.1. Applications of several most common engineered nanomaterials (ENMs).  

ENMs Products/applications 

Carbon Nano-Tubes (CNTs) 

Composite fibers in materials to improve their 

mechanical, thermal and electrical properties9 

Tips for atomic force microscope probes10 

Scaffolding for bone growth11 

Titanium Oxide 

Nanoparticles (TiO2NPs) 

Photocatalysis12, 13 

Contaminated water remediation14 

Food whitening15 

Cosmetic additive for ultraviolet radiation blocking16 

Cerium oxide nanoparticles 

(CeO2NPs) 

Fuel additive/fuel-borne catalyst17 

Glass abrasive/grinding and polishing materials18 

Therapy material and nanomedicine19-21 

Gold Nanoparticles (AuNPs) 

Nanomedicine for diagnostic, drug delivery, and 

therapeutic purposes22 

Pollution sensing in agriculture23, 24 

Silver Nanoparticles 

(AgNPs) 

Antibacterial component in drugs and textiles to resist 

pathogens25 

Antibmicrobial component in pesticides26 
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Table 1.1. Continued. 

ENMs Products/applications 

Zinc Oxide Nanoparticles 

(ZnONPs) 

UV-absorbers in textiles27 

Additive in ceramics, glass, cement, rubber, paints, 

sunscreen and cosmetic28 

Chemical sensors and solar cells paints29 

Nano-fertilizer and nano-pesticides28, 30 

Copper Oxide Nanoparticles 

(CuONPs) 
Antimicrobial agent31 

Iron(III) Oxide Nanoparticles 

(Fe2O3NPs) 

Nano-fertilizer32 

Biomedicine33 

 

 

In general, the possible fields for the applications of ENMs include advanced 

materials, display technologies, electronics, nutrition, cosmetics, medical drugs, and so 

on.34 The wide applications of ENMs boost their production. The most produced ENMs 

worldwide include TiO2NPs, SiO2NPs, FeOxNPs, AlOxNPs, ZnONPs, CNTs, AgNPs, 

and CeO2NPs. TiO2NPs, as the ENMs with the highest production, are produced up to 

10,000 tons per year.34 FeOxNPs, AlOxNPs, ZnONPs, CNT, AgNPs, and CeO2NPs are 

produced between 100 and 1,000 tons per year.34 Such a large production of ENMs will 

understandably lead to their buildup in the environment during their manufacturing, 

uses, and disposal. Many previous studies have reported the detection of metallic ENMs 

in the waste to the environment.35, 36 For example, CeO2NPs can accumulate in the 
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environment from road runoffs that are contaminated by CeO2NPs exhaust catalysts;37 

TiO2NPs were reported to be released to the environment through industrial and urban 

effluents;38 75-100 μg/L of AgNPs have been detected in washing machine effluent after 

washing of AgNPs containing textiles.39, 40  

The gradual increase of ENMs in the natural environment can be associated with 

potential risks. Although the understanding of the health and safety aspects of ENMs is 

still in its early stage, ENMs usually show more distinct toxicological properties than 

their bulk counterparts.41 The toxicity of ENMs to organisms may stem from both the 

direct toxicity and indirect toxicity.  In terms of the direct toxicity of ENMs, the toxic 

effects on organisms are caused by their high surface reactivity, because the large 

surface area of ENMs could intensify their reactivity and might cause catalysis of redox 

reactions with organic molecules.36, 42 The indirect effects of ENMs on organisms can 

result from the release of their toxic ions or other toxic pollutants carried by ENMs 43. In 

other words, the nano-scale dimension of ENMs is a key consideration in assessing their 

toxicological consequences to plants, animals, and human beings. Therefore, methods 

are required to assess the risks of ENMs in real world environments. 

 Over the last decade, due to environmental and health concerns of ENMs, the 

number of publications dealing with environmental implications of ENMs, including the 

interactions between ENMs and plants, increased dramatically. For example, as shown 

in Figure 1.1, the publications concerning the environment and ENMs rose fivefold 

during the last 10 years. To date, approximately 2200 peer-reviewed original 

publications addressing the environmental implications of ENMs are available in the 
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literature. Among these publications, the number of studies of the interactions between 

ENMs and plants jumped from 9 to 126 during the same period. More specifically, the 

number of investigations on the interactions between CeO2NPs and plants increased 

from 2 to 36. Despite the increasing literature on ENMs, many questions remain. For 

example, the uptake pathways of ENMs by plants and the underlying mechanisms for 

ENM accumulation and transformation in plant tissues are still poorly understood. 

 

 

 

Figure 1.1. Number of peer reviewed research articles or book chapters on the topic of 

environmental implications of ENMs. Analyzed by using Web of Science. The search 

for the environmental impacts of ENMs: “topic= ((Environment) AND (nanoparticle OR 

nanomaterial))”; the search for the interactions between ENMs and plants: “topic= 

((plant) AND (uptake OR interaction) AND (nanoparticle OR nanomaterial))”; the 

search for the interactions between CeO2NPs and plants: “topic= ((plant) AND (uptake 

OR interaction) AND (nano* and Cerium))”. 
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Physicochemical Properties and Applications of CeO2NPs 

Ce is a lanthanide metal and the most abundant (20-60 mg/kg) and reactive rare 

earth element. The oxide of Ce, CeO2, is the most common form for Ce in the earth’s 

crust. CeO2NPs are also one of the most commonly used metallic ENMs in industry and 

consumer productions. Finely divided CeO2 powder usually is used as a polishing agent 

for optical glass.44, 45 CeO2 can be also used in chemomechanical abrasives for insulating 

films due to its strong oxidizing active nature.46 CeO2NPs are also a key abrasive 

nanomaterial for chemical-mechanical planarization (CMP) of advanced integrated 

circuits.47 In addition, CeO2NPs are very effective in UV filtration. CeO2 has a UV cut-

off threshold at around 370 nm. Goharshadi et al.48 demonstrated that most of the UV 

light (200-350 nm) can be blocked by CeO2NPs, which renders CeO2NPs a highly 

promising material for UV blocking in sunscreens and coating materials on sunglasses 

and parasols. 

CeO2 adopts the fluorite structure with a face-centered cubic unit cell. In the 

lattice structure of pure CeO2, each Ce cation is coordinated with eight oxygen anions at 

the corner of a cube while each oxygen anion tetrahedrally coordinated with four Ce 

cations. Oxygen anions (O2-) are removed from the lattice structure to form oxygen 

vacancies, depending on the temperature and oxygen partial pressure.49, 50 The 

electrostatic balance caused by the loss of O2- is offset by the reduction of two Ce4+ to 

Ce3+. Ce3+ on the surface of CeO2NPs could be oxidized back to Ce4+ caused by the 

oxidants in the environment. The density of oxygen vacancy and the percentage of Ce3+ 

on CeO2NPs surface increase at smaller particle sizes.51, 52 A recent study reported that 
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Ce3+ on the surface of uncoated CeO2NPs jumped from 9.7% to 22.9% when the 

nanoparticle size was reduced from 64 to 9 nm.53 Because of the unique redox chemistry 

between Ce3+/Ce4+ on the particle surface, CeO2NPs are one of the most important 

ENMs for a wide range of applications as described above.  

The high capacity of CeO2NPs to donating and storing oxygen can make 

CeO2NPs an ideal catalyst in the diesel fuel to extend and improve fuel burn and reduce 

the ignition temperature.54 Thus, CeO2NPs in the diesel significantly enhance the 

efficacy of the diesel particulate filters to collect the burn-off soot and substantially 

decreases particle mass in the vehicle exhaust.17, 54 Cassee et al.17 reported that  the most 

available commercial fuel borne catalysts (FBC) in the market, including Envirox 

(Energenics Pte Ltd.), Platinum Plus (Clean Diesel Technologies Inc), and Eolys DPX-9 

(Rhodia), all contain CeO2NPs with a size range of 5 to 40 nm. The addition of 

CeO2NPs in the diesel fuel (final CeO2NPs concentration is 5 mg/L 54) makes diesel 

emissions inevitably contain Ce compounds, predominantly nanoscale CeO2.
55 The 

released Ce would follow the runoff and eventually reach soil and natural water bodies.   

The unique redox chemistry between Ce3+/Ce4+ on CeO2 surface also makes 

CeO2NPs a potentially attractive nanomedicine because some previous research has 

demonstrated that CeO2NPs can act as radical scavengers and redox cycling 

antioxidants. For example, Colon et al.56 found that CeO2NPs can protect gastrointestinal 

epithelium against radiation-induced damage by acting as radical scavenger and 

stimulating the production of superoxide dismutase 2 (SOD2) that converts superoxides 

into hydrogen peroxide. Das et al.57 proposed that the presence of the mixed valence 
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states of Ce4+ and Ce3+ on the surface of CeO2NPs makes the CeO2NPs as a regenerative 

hydroxyl radical quencher. The mechanism is illustrated in Figure 1.2.  

 

 

 

Figure 1.2. Schematic of the regenerative property and the ROS scavenging property of 

CeO2NPs.57 

 

 

Moreover, at higher Ce3+/Ce4+ ratio (higher levels of Ce3+ on the particle 

surface), CeO2NPs are efficient scavengers of superoxide (O2
.-) and display the 

superoxide dismutase (SOD) mimetic property:58, 59 

𝑂2
−∙  +  𝐶𝑒3+  +  2𝐻+ → 𝑂2 + 𝐶𝑒

4+ 

𝑂2
−∙  +  𝐶𝑒4+  →  𝑂2  +  𝐶𝑒

3+ 

At relatively lower Ce3+/Ce4+ ratios, CeO2NPs were found to function as efficient 

antioxidant catalase (CAT) mimetics, which convert H2O2 to H2O:59  

𝐻2𝑂2  +  2𝐶𝑒
4+ + 2𝑂𝐻− → 2𝐻2𝑂 +  𝑂2 +  2𝐶𝑒

3+ 
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SOD and CAT play paramount roles in maintaining the redox homeostasis in 

plants. Since CeO2NPs could function as SOD or CAT depending on the Ce3+/Ce4+ ratio 

on the particle surface,60-62 it is reasonable to speculate that exposure to CeO2NPs could 

affect the key biological processes in plants. 

 

Human Exposure to CeO2NPs 

The highest exposure risk posed by CeO2NPs for human beings occurs mainly 

through occupational activities. For example, workers have high risk to inhale CeO2NPs 

during flame spray process used for coating and surface modification of materials.63 In 

order to protect the workers, many countries have issued their own regulations to control 

this hazard. Although no information of CeO2NPs workplace exposure limit (WEL) in 

the US was found, UK, Germany, and Netherlands proposed the WEL for CeO2NPs to 

be 2×107 particles/m3. 64 Also, Australia sets the WEL for CeO2NPs to be 

0.03×Australian inhalable WEL or 0.1×Australian respirable WEL.64  

Aside from the occupational exposures, two other routes through which the 

general public can be exposed to CeO2NPs may be possible: direct ingestion of 

CeO2NPs through drinking water that is contaminated by CeO2NPs and the consumption 

of foods which accumulate CeO2NPs.65 Plants as photosynthetic autotrophs form the 

foundation for many food webs. Consumption of plants represents the primary means by 

which many contaminants enter the food webs, including the human food supply.66 In 

terms of the bioaccumulation of ENMs in food chains, evidence is growing that several 

food crops can accumulate CeO2NPs.36, 67-82 Given the concerns regarding the 
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environmental impacts and health risks of CeO2NPs, understanding the interaction 

between plants and CeO2NPs is critical. Evidence of Ce translocation from roots to 

shoots after plant exposure to CeO2NPs and the propensity of roots to accumulate 

CeO2NPs has been observed in some studies.70, 83 These findings are important from a 

food safety and human health standpoint as they suggest a possible pathway of CeO2NPs 

bioaccumulation in plant tissues. Based on the previous data, the belowground root, 

tubers, and bulb vegetables are more likely to accumulate increased concentrations of 

ENMs than above ground crops due to their direct contact with ENMs in soil. However, 

a small number of investigations in the literature have addressed the interactions of 

ENMs with belowground vegetables. 

 

The Uptake of CeO2NPs by Plants 

Over the last two decades, especially after 2008, the bioaccumulation and 

transformation of ENMs in plants were broadly investigated to elucidate the risks of 

ENMs. Uptake and accumulation of ENMs in plants is an important aspect of plant-

ENM interactions in terms of food safety. Mounting evidence has shown that ENMs (or 

elements of ENMs) can enter into plant root tissues and translocate to the shoots,70, 83-85 

despite the fact that ENMs aggregate in the environment and their particle sizes are often 

much larger than the pore sizes of plant cell walls.86  

Plants develop mechanisms and exhibit specific barriers against intruders from 

the surrounding environment. For example, plant could excrete mucilage/exudates or 

create cell wall thickenings, such as papilla, callose, suberin and lignin deposits, to 
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physically intercept the mechanical intrusion of pathogens.87, 88 Thus, nanoparticles may 

have to overcome the barriers created by plants to reach the vascular tissues. Based on 

previous observations, the pathway for ENMs to transport through the cell surface could 

be (1) passively diffusing through permeable regions of the cuticle, (2) facilitated 

transport due to ENMs surface properties, (3) facilitated transport by natural organic 

matter, (4) facilitated transport due to ubiquitous interactions between nanoparticles and 

microorganisms, and (5) facilitated transport by soil, sediment, or airborne particles.86  

Nanoparticles crossing the cell wall thickenings through one of the pathways 

mentioned above then reach the cell wall. Previous studies show that the living plant cell 

wall, which is semipermeable, has pore sizes under 10 nm 88, 89 and represents a barrier 

for cellular uptake. So the uptake of ENMs across the cell wall largely depends on the 

nanoparticle size, and the pores of the cell wall. However, the pore sizes might be 

significantly underestimated. McCann et al.90 claimed that the porosity of the cell wall is 

more flexible than previously thought and can be larger than 10 nm with a rare 

maximum of 20 nm. Even with the new finding on the pore size of cell walls, the 

physical size comparison of cell wall pores and ENMs is inadequate to interpret the 

accumulation of ENMs by plants. Numerous previous studies have shown that plants are 

capable of taking up ENMs that are larger than the physical pore sizes of root cell walls 

and membranes,91 which contradict the common assumption that ENMs crossing the cell 

wall should be smaller than 20 nm in diameter. It remains unsettled why nanoparticles 

with much larger sizes than the physical openings of plant root cell walls can enter into 
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plant tissues. Partial dissolution and size reduction of nanoparticles may be necessary for 

plant uptake.91 

After crossing the cell walls, ENMs may be transported apoplastically or 

symplastically inside the cells (Figure 1.3). In symplastic pathway, water/minerals and 

possibly ENMs can be transported from the cytoplasm of one cell to another through 

plasmodesmata, which consist of three main layers, including the plasma membrane, the 

desmotubule, and the cytoplasmic sleeve, and finally reach xylem tissue.92, 93 During the 

division and differentiation of meristematic cells, plasmodesmata are formed as narrow 

threads of cytoplasm that pass through the cell walls of adjacent plant cells, allowing 

communication between cells.94 So symplastic transport is strongly controlled by the 

plasmodesmata, which are the only connections of the cytoplasm of adjacent cells.92 

Based on the structure, there are two basic types of plasmodesmata: simple and 

branched.95 Simple plamodesmata consist of a single channel traversing the cell wall, 

while branched plasmodesmata have two or more channels. The diameter of 

plasmodesmata are around 20 – 50 nm.92, 96 The TEM images of ENMs or their 

aggregates in or near plasmodesmata in previous studies show that the nanoparticles fell 

in the size range of 15 to 40 nm in diameter can enter plasmodesmata (Figure 1.3).91, 93 

However, the AgNPs (20-40 nm) were found to be trapped by the plasmodesmata and 

posed a physical blockage of symplastic transport between cells in Arabidopsis thaliana 

plants.91  Similarly, the AuNPs (15-25 nm) aggregated in the plasmodesmata and 

influence the transport of the subsequent AuNPs and other materials. The AuNPs, which 

could actually passed through the plasmodesmata and follow the symplastic pathway to 



 

 

14 

  

the xylem, constitute the major fraction of AuNPs transported upward in woody poplar 

plants (Populus deltoids).93 Due to the scarce investigations and contradictory 

conclusions on the nanoparticles in the plasmodesmata, the significance of symplastic 

pathway for ENMs uptake is still unclear.  

In apoplastic pathway, the apoplast consists of cell walls and intercellular spaces 

outside the plasma membrane, which is permeable.97 Apoplast has little resistance to the 

movement of water, hence facilitates the transport of water and minerals flow in an 

upward direction to the xylem in the roots.97 However, the apoplastic transport in the 

roots is interrupted by the Casparian strips in the endodermis, which block the passive 

flow of water and solutes to the xylem. The water and minerals flow are then move 

through the endodermis by the symplastic pathway (Figure 1.3). Nanoparticles, 

regardless of their surface charge, were mainly observed in the apoplast (cell wall, 

intercellular space, or middle lamellae of roots and the xylem),91, 93, 98-100 indicating the 

transport of ENMs through the apoplastic pathway in the roots. Although the available 

literature has not confirmed the preference of nanoparticle transport (through the 

apoplast or symplast), a growing body of evidence supports the apoplastic pathway. 

Therefore, the apoplastic pathway was considered as the preferred route of the transport 

of ENMs within plants.86 
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Figure 1.3. Key uptake pathways possible for nanoparticles (NPs) into the root and 

illustration of the possible NP pathway from cell to cell through plasmodesmata.93, 95, 101 

 

 

In terms of CeO2NPs, previous studies suggested that Ce element from CeO2NPs 

can be taken up by plant roots and transported to shoots and the extent of transport is 

size and concentration dependent. Based on the literature, it is almost certain that 

CeO2NPs up to 40 nm or even larger can be taken up by plant roots then translocated to 

other parts of plants. For example, after irrigating tomato (Lycopersicon esculentum) 

with solutions containing 10 mg/L of CeO2NPs from seed germination to fruit bearing 

stage, Ce was detected in all tissues including tomato fruits.84  The authors also noticed 

significantly higher Ce concentration in tomato seeds from treated plants than from 

control seeds. A separate study also indicated that Ce may cross the phloem membrane 

and accumulate in cucumber fruits.85 However, whether the Ce detected in tomato or 
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cucumber (Cucumis sativus) fruits remained as CeO2NPs or transformed products was 

not discussed in these studies.  

Due to the low water solubility of CeO2NPs, the detection of Ce in plant shoot 

tissues was previously interpreted as evidence that CeO2NPs are taken up by plants as 

intact nanoparticles. The interpretation appeared to be supported by a previous study 

which showed that the oxidation state of Ce was unaltered in the root tissues after 

CeO2NPs were exposed to four agricultural crops.102 Moreover, López-Moreno et al.70 

confirmed the uptake of Ce by soybean (Phaseolus vulgaris) roots exposed to CeO2NPs 

dispersion by using inductively coupled plasma optical emission spectroscopy (ICP-

OES) and demonstrated the existence of Ce4+ in soybean roots with the help of 

synchrotron X-ray adsorption spectroscopy (XANES), also implying that no 

transformation of CeO2NPs occurred during the uptake process. However, a different 

research group using soft X-ray scanning transmission microscopy (STXM) and near 

edge X-ray absorption spectrometry (XANES) analysis found measurable amount of 

CePO4 in cucumber roots and Ce carboxylates in the shoot.78 Zhang et al.103 observed 

needlelike Ce clusters on root epidermis and in intercellular regions of cucumbers 

exposed to 2000 mg/L CeO2NPs (40 nm) using TEM equipped with EDS, which were 

further confirmed to be CePO4 by XANES. In addition, Ce carboxylates were detected in 

the cucumber stem and leaves, suggesting the transformation of CeO2NPs to Ce3+ during 

CeO2NPs uptake process. A subsequent study confirmed that Ce was present as 

CeO2NPs and CePO4 in the roots of lettuces exposed to CeO2NPs while as CeO2NPs and 

Ce carboxylates in the shoots.104 Another study shows that Ce was primarily shown to 
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exist as CeO2NPs in the root epidermis of kidney beans (Phaseolus vulgaris) exposed to 

CeO2NPs, while 12% of nanoparticles was transformed to Ce3+ compound.105  

The detection of transformed Ce in plant tissues sparked new debate on the 

uptake mechanisms of CeO2NPs by plants. Recently, a new hypothesis has emerged 

which stated that CeO2NPs are reduced to Ce3+ on root surface and then they are quickly 

oxidized back to Ce4+ to form CeO2NPs once they are in plant tissues.76 However, the 

proposition was solely based on the detection of dissolved Ce (assumed to be Ce3+ in the 

publication) with the help of X-ray Absorption Spectroscopy83 or by determining the Zr 

(tracer) in plant tissues76 and no mechanistic rationale or experimental evidence was 

provided. This is particularly fascinating considering that many layers of barriers such as 

the mucilage surrounding plant roots, the cell wall and the membrane must be crossed 

before CeO2NPs can reach the xylem tissues for upward transport. The elucidation of the 

plant uptake mechanisms of CeO2NPs has both significant scientific merit and 

tremendous broader impact because the ENM accumulation by plants represents an 

important pathway for human exposure to ENMs.  

 

The Toxicity of CeO2NPs to Plants 

The toxicity of CeO2NPs has been widely investigated for numerous plant 

species. From the plant physiology aspect, the impact of CeO2NPs on plants was 

reported to be species and CeO2NPs concentration dependent. Ma et al.102 showed that 

exposure to 2000 mg/L CeO2NPs (7.2 ± 0.7 nm) in hydroponic system for 5 days had no 

effect on the root elongation of radish (Raphanus sativus), rape (Brassica napus), tomato 
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(Lycopersicon esculentum), wheat (Triticum aestivum), cabbage (Brassica oleracea), 

and cucumber (Cucumis sativus), but inhibited root growth of lettuce (Lactuca sativa). 

The root elongation of alfalfa (Medicago sativa) and tomato (Lycopersicon esculentum) 

treated with 4000 mg/L CeO2NPs was significantly reduced, although the two plants 

were not affected by CeO2NPs exposure at 2000 mg/L.83 The follow-up study from these 

authors showed that the CeO2NPs higher than 2000 mg/L caused increasing of root 

elongation of soybean (Glycine max) seedlings.70 Similar plant responses were reported 

in sand and soil cultivated plants. CeO2NPs (16.5 ± 6.8 nm) higher than 1000 mg/kg in 

sand media diminished the chlorophyll content and significantly inhibited the biomass 

production of romaine lettuce (Lactuca sativa), while low CeO2NPs (10 mg/kg) caused 

no toxic effects on plants.104 An elevated nitrate-N level, which can be converted to 

nitrite and pose risks to human health, was detected in lettuce shoots exposed to 

CeO2NPs higher than 500 mg/kg.104 Zhao et al.77 reported that the fresh biomass of large 

cucumber fruit (Cucumis sativus) exposed to 800 mg/kg CeO2NPs (10 nm) in soil was 

reduced by 31.4%, while exposure to 400 mg/kg CeO2NPs cause no difference in the 

biomass of plant fruits. These authors also found that CeO2NPs at 800 mg/kg in soil 

changed the distribution of Ca in kernels of corn plants (Zea mays), altered quality of 

corn, and reduced the corn yield by 38%.82 For plant exposed to CeO2NPs aerosol, 

species dependent toxic effects were also observed. Hong et al.106 found that foliar 

applied CeO2NPs, either as powder (0.98 and 2.94 g/m3 ) or as suspensions (20 – 320 

mg/L), to cucumber (Cucumis sativus) leaves translocated to cucumber roots. The 

authors also reported that foliar application of CeO2NPs at 200 mg/L altered the 
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nutritional status of cucumber fruit (reduced fruit Zn by 25%) and impacted cucumber 

photosynthetic parameter in seedlings (decreased photosynthesis rate and transpiration 

rate by 22% and 11% respectively).107 Conversely, Birbaum et al.108 found that foliar 

application of CeO2NPs, either as powder at 0.178 g/m3 or as suspension at 50 mg/L, 

resulted in no translocation of CeO2NPs to other parts of corn plants and no 

physiological toxic effects on plant was observed.  

In addition to the physiological responses, CeO2NPs could induce genotoxicity to 

plants and cause molecular responses.109 The genotoxicity of ENMs can be either direct 

or indirect. Direct genotoxicity results from physical interactions with DNA, such as 

influencing stacking forces among DNA bases, impacting phosphorylation, causing 

adduct formation, and altering gene expression/regulation, while indirect genotoxicity 

results from altered gene expression because of reduced DNA repair function or 

antioxidant depletion.109 During ENM exposures, the mechanisms of ENM genotoxicity 

may indeed be more complex and work concurrently. Ma et al.110 found that CeO2NPs at 

50-500 mg/L altered the expression of antioxidant related genes that regulate the sulfur 

assimilation and glutathione biosynthesis and induced genotoxicity to Arabidopsis 

thaliana. Pagano et al.111 identified two genes that were consistently modulated by 

different ENM exposures (La2O3NPs, CuONPs, and CeO2NPs): BIP3 (005u) and ORF31 

(152u). The two genes can be considered potential biomarkers for ENM exposure and 

play a central role in ENMs genotoxicity and molecular response of plants. In summary, 

growing evidence shows that genotoxicity may be a common biotic response to ENM 
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exposure and should be considered when assessing the potential impacts of CeO2NPs on 

plants. 

Numerous studies proposed that the phytotoxic effects of CeO2NPs on plants, 

including the physiology responses and molecular responses of plants to CeO2NPs, were 

mainly caused by the oxidative stress incurred by CeO2NPs and can be elucidated from 

the biochemical aspects.73, 105, 106, 112-114 Under non-optimal conditions, such as pathogen 

attack, wounding, drought, salinity, waterlogging, heavy metal toxicity, nutrient 

deficiency and so on, plants may experience stress and the growth of plants may be 

affected.115 Oxidative stress is induced if the reactive oxygen species (ROS) in plant 

tissues and the ability of plants to counteract or detoxify the harmful effects of ROS was 

imbalanced.116 During the metabolism, respiration, photosynthesis and other biological 

processes in plants, ROS (e.g. superoxide radical (O2
-∙), hydrogen peroxide (H2O2), 

hydroxyl radicals and singlet oxygen (O2
*)) are continuously produced in mitochondria, 

chloroplasts, and peroxisomes.117 ROS exhibit high chemical reactivity due to the 

unpaired electron on the oxygen atom.118 Thus, ROS intend to acquire electrons from 

surrounding cells and molecules. Tightly regulated ROS are involved and exhibit critical 

functions in plants controlling processes such as growth, development, response to biotic 

and abiotic environmental stimuli, and programmed cell death.119 However, excessive 

ROS in plant tissues may cause damage to plants. In general, the negative effects of ROS 

on plant cells include the damage of DNA, lipid peroxidation, oxidations of amino acids 

in proteins, and oxidative deactivation of specific enzymes.120 In order to control the 

production of ROS and detoxify the excessive ROS, plants develop complex and 
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comprehensive mechanisms to scavenge ROS by means of antioxidants 117. For example, 

O2
-∙

 can be converted to H2O2 catalyzed by superoxide dismutase (SOD), including 

MnSOD, FeSOD, and Cu/ZnSOD, through the following reaction:121  

2𝑂2
−∙ + 2𝐻+  

𝑆𝑂𝐷
→   𝐻2𝑂2 + 𝑂2  

In addition, peroxisomal enzyme, such as glycolate oxidase (GOX), can transfer 

O2 molecules to H2O2.
122 

The H2O2 produced from O2
-∙ and O2 was then quenched and converted to H2O 

catalyzed by catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), 

and some other peroxidases.123, 124 

Besides the enzymatic antioxidants, nonenzymatic antioxidants, such as ascorbic 

acid, reduced glutathione, carotenoids, and flavonoids, have also been generated by 

plants against the oxidative stress.123, 125 Similar to the enzymatic antioxidant, 

nonenzymatic antioxidants can serve as electron donors and detoxify ROS. The 

nonenzymatic and enzymatic antioxidants tightly coordinate to protect plants against 

various biotic and abiotic stresses.  

The concentration of H2O2 and the activities of the antioxidants generated by 

plants, including SOD, GOX, CAT, APX, and GPX, are usually act as primary 

indicators of oxidative stress and are investigated in numerous previous studies. Zhao et 

al.126 reported excessive production of H2O2 in corn plants (Zea mays) exposed to 400 – 

800 mg/kg CeO2NPs (10 ± 1 nm) in soil, demonstrating the oxidative stress in plant 

tissues. However, the up-regulation of several enzymes including the heat shock protein 

70, CAT, and APX helped plants adapt to stress induced by CeO2NPs and resulted in 
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minimum injury to plants. Rico et al.127 reported that CeO2NPs (8 ± 1 nm) treatment 

(500 mg/L) altered the enzyme activities of rice (Oryza sative) seedlings and caused 

membrane damage, oxidative stress, and photosynthetic stress in the shoots. Further 

investigation of the interaction between rice and CeO2NPs showed that the CeO2NPs at 

500 mg/L led to higher production of H2O2 g, increased the peroxidase activities, and 

reduced the fatty acid and lignin contents in roots. The study on cilantro (Coriandrum 

sativum) exposed to 125 mg/kg CeO2NPs (8 nm) in soil from the same research group 

showed that the activities of CAT and APX significantly increased in shoots and roots, 

suggesting that CeO2NPs produced oxidative stress in cilantro plants.112 This research 

group also showed that exposure of kidney bean (Phaseolus vulgaris) plants to 

suspensions of CeO2NPs (8 ± 1 nm ) at 62.5 and 125 mg/L increased the soluble proteins 

in roots by 204% and significantly enhanced the GPX activity in leaves, indicating an 

oxidative stress response of kidney bean plants to high concentrations of CeO2NPs.105 

The romaine lettuce (Lactuca sativa) increased the antioxidant enzyme activities, 

including peroxidases and SOD, to defend the oxidative stress induced by CeO2NPs at 

high concentrations (>1000 mg/L), but could not effectively attenuate the stress.104 Ma et 

al.114 found that exposure of CeO2NPs at 10-100 mg/kg in soil led to a significantly 

higher H2O2 in plant tissues of Brassica rapa at floral stage . These authors further 

showed that the second and the third generation of Brassica rapa plants exposed to 10-

1000 mg/L CeO2NPs in soil generated even more H2O2 and experienced higher 

oxidative stress than their parental plants, demonstrating the chronic toxic impact of 

CeO2NPs on plants.113 Moreover, a report shows that even foliar CeO2NPs application 



 

 

23 

  

can modify the antioxidant enzymatic activity, including CAT, APX, and 

dehydroascorbate reductase in in both shoot and root of cucumber (Cucumis sativus).106  

From the literature, it appears that the biochemical responses of plants to 

CeO2NPs is concentration dependent. While many negative physiological and 

biochemical effects of CeO2NPs on plants have been reported as described above, the 

protective property of CeO2NPs was also observed in relatively low concentrations. For 

example, CeO2NPs at 0.1-10 mg/L had either an inconsequential or a slightly positive 

effect on tomato growth and production.84 Exposure of rice (Oryza sativa) to CeO2NPs 

from 62.5 to  125 mg/L decreased the H2O2 concentration in both roots and shoots, and 

the H2O2 generation in the rice roots exposed to 62.5 mg/L CeO2NPs was reported to be 

reduced by 75%.127 The beneficial effects on plant might be attributed to the radical 

scavenging ability of CeO2NPs. The redox reaction between Ce3+ and Ce4+ (Ce3+ → Ce4+ 

+ e-) are highly responsive to the surrounding pH.128 Thus, the differential pH in the 

cytoplasm (∼7.5) and in the extracellular and vacuolar spaces (∼5.5)129 allows the 

transition between Ce4+ and Ce3+ as illustrated in Figure 1.2. Das et al.57 and Deshpande 

et al.52 reported that the presence of the mixed valence states of Ce4+ and Ce3+ on the 

surface of CeO2NPs allows CeO2NPs to scavenge free radicals and makes the CeO2NPs 

as a regenerative ROS quencher. The proposed reactions and mechanism of CeO2NPs’ 

ROS (e.g. H2O2, superoxide and hydroxyl radical) scavenging property was shown in 

previous section and illustrated in Figure 1.2. Data show that the radical scavenging 

ability of CeO2NPs increases as the NPs size and concentration (as low as 10 μM) 

decrease.130, 131 CeO2NPs was reported to induce a protective cellular response in animal 
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cells at low concentration.132, 133 Similarly, the ROS scavenging effect of CeO2NPs could 

be predominant and beneficial in plants exposed to low concentration of CeO2NPs. 

 

Research Hypothesis and Goal 

Because of the potential impacts of CeO2NPs on plants, the risks of CeO2NPs to 

plants can be significant and the Organization for Economic Cooperation and 

Development (OECD) has designated CeO2NPs as a priority pollutant.134 It should be 

realized that the concentrations of CeO2NPs and other ENMs in the environment 

reported from mass flow models are frequently the average concentrations in certain 

media of a specific region and usually relatively low. The low model output makes the 

“hot spots”, which is the primary sink of ENMs in the environment (soils and natural 

water bodies) with significantly higher ENMs concentrations, easy to overlook. For 

example, the average concentration of Ce in the in subsoil around London and in the 

North Yorkshire Dales was 36 - 45 mg/kg, but elevated Ce concentration (108 - 136 

mg/kg) was found in the top 2 cm of soil alongside the M1, M6, and M25 motorways 

due to the exhaust-discharged CeO2NPs from vehicles.37 

In terms of ENM aggregation, surface manipulation in ENM synthesis often 

reduces aggregation. In addition, many factors in the environment (e.g. natural organic 

matters) actually stabilize ENMs.135, 136 A key fact which should be emphasized that 

almost none of the previous studies investigating ENM accumulation in plants 

completely avoided aggregation, however, significant plant accumulation of ENM 

elements has been reported.137 The results from previous studies raised several critical 
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questions: how do ENMs enter into plants against all the physical barriers plant roots 

have assembled? Will ENMs undergo any transformation during the plant uptake 

process and what are the mechanisms if transformation occurs? How do various 

environmental conditions such as soil properties play a role in the plant ENM 

interactions? The answers to these questions will provide more mechanistic insights into 

the interactions between plants and ENMs and may lead to more sustainable applications 

of ENMs in society. The dissertation aims to address these critical questions using 

CeO2NPs as a model nanoparticle. Radish (Raphanus sativus L.) was selected as a model 

plant for this dissertation based on several factors, including the close relevance of this 

crop to US agriculture, the magnitude of consumption by US citizens, and the short 

growth cycle. More importantly, because the main edible tissue of radish is in direct 

contact with soil-borne or waterborne CeO2NPs, it could accumulate higher 

concentrations of CeO2NPs, resulting in higher potential risks to human health by 

consumption of the edible tissue. 

The goal of this dissertation was to understand the uptake and accumulation 

CeO2NPs by a selected belowground vegetable (radish) under different conditions. To 

achieve the overall goal, five hypotheses were developed: 

Hypothesis 1: CeO2NPs can be taken up by radish and the particle size plays a 

critical role in the CeO2NPs-radish interaction. 

Hypothesis 2: The transformation of CeO2NPs occurs on the root surface during 

the uptake of CeO2NPs by radish and plays a critical role in Ce uptake. 
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Hypothesis 3: Soil properties affect the fractionation of CeO2NPs in soil and the 

bioavailability of CeO2NPs to plants. 

Hypothesis 4: The aging of CeO2NPs in soil affects the fractionation of CeO2NPs 

in soil and the bioavailability of CeO2NPs to plants. 

Hypothesis 5: Soil texture and CeO2NPs surface charge are important factors that 

govern the mobility of CeO2NPs in soil. 

To test the above hypotheses, five experiments were conducted 

(1) To examine the uptake and accumulation of CeO2NPs and their bulk/ionic 

counterparts by radish in a hydroponic system.  

(2) To determine the physicochemical properties of Ce in plants and investigate the 

uptake mechanisms of CeO2NPs by radish in a hydroponic system.  

(3) To study the impacts of soil properties on the bioavailability and translocation of 

CeO2NPs to radish.  

(4) To evaluate the aging effects of CeO2NPs on their fractionation in soil and 

bioavailability to radish. 

(5) To explore the underlying mechanisms of interactions between CeO2NPs and soil 

particles. 

Overall, the results of these five experiments established a framework for the 

potential risks of CeO2NPs to belowground vegetables under different conditions. 
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CHAPTER II 

THE UPTAKE AND ACCUMULATION OF CEO2NPS AND THEIR BULK/IONIC 

COUNTERPARTS BY RADISH IN NUTRIENT SOLUTION* 

 

Introduction 

Concerns about the toxicity of ENMs to humans and the environment grow with 

the ever-expanding applications of ENMs. CeO2NPs are released into the environment 

as a component in consumer products or during occupational activities, and are detected 

in wastewater streams and soils.138 Because of the large specific surface area and the 

redox chemistry between Ce3+/Ce4+ on the particle surface, CeO2NPs exhibit unique 

physical, chemical, and biological properties compared with their bulk and ionic 

counterparts. The unique properties of CeO2NPs that are missing from their bulk and 

ionic counterparts could be a double-edged sword: CeO2NPs could introduce oxidative 

stress to plants at high concentrations but they could also function as an antioxidant to 

defend oxidative stress at low concentrations. Although the synthesis of CeO2NPs adds 

desirable physical and/or chemical properties over the bulk or ionic forms, the potential 

environmental health and safety implications of CeO2NPs use have become a serious 

concern.  

                                                 

* Part of this chapter is reprinted with permission from “Uptake and accumulation of 

bulk and nano-sized cerium oxide particles and ionic cerium by radish (Raphanus sativus 

L.)” by Zhang, W.; Ebbs, S. D.; Musante, C.; White, J. C.; Gao, C.; Ma, X., 2015. 

Journal of Agricultural and Food Chemistry, 63, 382-390, Copyright [2015] by 

American Chemical Society. 
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The potential toxicity of CeO2NPs (6−40 nm, unmodified) to bacteria, fish, and 

mammalian cells has been reported.139, 140 Plants, as a food source for humans, play a 

critical role in maintaining ecosystem health and function. Plant uptake of ENMs 

represents a plausible risk for human exposure to these nanoparticles through food 

consumption. Consequently, investigation of the uptake and accumulation of CeO2NPs 

by agricultural crops is not only warranted but also critical to food safety and human 

health. Nanoparticles typically exhibit stronger effects on plants than their bulk 

counterparts. For example, following a 15 day hydroponic exposure, the biomass of 

zucchini plant exposed to silver nanoparticles was 75% less than that of plants treated 

with the same concentrations of bulk silver powder.141 For CeO2 particles, it is well 

accepted that the presence of highly mobile lattice oxygen on the surface could cause 

oxygen vacancy on the surface.52 With the decrease of nanoparticle size, the specific 

surface area and consequently the density of the oxygen vacancy increase. The 

separation of oxygen from the lattice structure generates electrons, which can be used to 

reduce Ce4+ to Ce3+. With increasing oxygen vacancy, the ratio of Ce3+/Ce4+ will 

increase on the surface of CeO2NPs.51, 52 Because Ce3+ is about 14% larger than Ce4+,52 

the conversion of Ce4+ to Ce3+ will strain the lattice structure and increase the reactivity 

and superoxide dismutase (SOD) mimetic activity of the CeO2 particles.58, 59 Therefore, 

particle size is an important consideration in the assessment of the environmental 

toxicity of CeO2. Unfortunately, information on the size effect of CeO2 particles on 

radish development in the literature is very limited. Due to the potential dissolution of 

some metallic nanoparticles, another major question actively investigated in the 
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scientific community of nanotoxicology is the comparative toxicity of nanoparticles and 

the ionic form of the particles. Because of the low solubility of CeO2NPs in liquid 

solutions, ionic Ce was generally not included in the experimental paradigms.70, 73, 85, 142 

However, recent investigations on the biotransformation of CeO2NPs demonstrated the 

enhanced dissolution of CeO2NPs when interacting with plants.53, 71, 76, 104 Therefore, it is 

necessary to acquire a comprehensive understanding and comparison of the fate and 

phytotoxicity of ionic Ce. 

Several studies have addressed the interactions of CeO2NPs with terrestrial 

plants. The results from the previous studies showed that the biological responses of 

plants to CeO2NPs are strongly species-dependent. For example, Gui et al.68 reported 

that CeO2NPs were taken up by lettuce plant and had a positive effect on plant growth at 

100 mg/kg, but inhibited plant growth at 1000 mg/kg. Wang et al.84 found that uncoated 

CeO2NPs (<25 nm) at 0.1−10 mg/L had a slightly positive effect on tomato (Solanum 

lycopersicum L.) growth and yield; Ma et al.102 stated that exposure to uncoated 

CeO2NPs with an average diameter of 7.2 ± 0.7 nm in hydroponic system for 5 days had 

no effects on the root elongation of rape (Brassica napus L.), wheat (Triticum aestivum 

L.), cabbage (Brassica oleracea L.), tomato (Lycopersicon esculentum L.), and 

cucumber (Cucumis sativus L.) at 2000 mg/L, but inhibited root growth of lettuce 

(Lactuca sativa L.). Hernandez-Viezcas et al.80 reported that mesquite (Prosopis juliflora 

velutina) had a higher degree of tolerance for the effect of CeO2NPs (ceria cubic, rods ≈ 

8 × 67 nm) than domesticated crop species and showed no visible signs of stress when 

exposed to 500-4000 mg/L CeO2NPs suspensions. Rico et al.73 indicated that uncoated 
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CeO2NPs with an average size of 231 ± 16 nm up to 500 mg/L induced a concentration-

dependent modification of the oxidative stress and antioxidant defense system in the rice 

seedlings. However, few of these studies focused on the uptake of CeO2NPs by 

belowground vegetables, even though the edible tissues of the belowground plants often 

have direct contact with soilborne CeO2NPs. In this chapter, radish (Raphanus sativus 

L.), which is a popular vegetable with high global consumption, was adopted as a model 

plant.  

The objectives of this chapter were twofold: (1) to evaluate the effects of 

chemical forms (e.g. Ce particles vs. ionic Ce) and physical sizes (e.g. bulk CeO2 and 

CeO2NPs) of Ce on the growth of radish, and (2) to investigate the uptake and 

accumulation of Ce in different forms and sizes by radish tissues. With the two 

objectives, this chapter aimed to test the fundamental hypothesis that CeO2NPs can be 

accumulated by radish. These results may provide in-depth understanding on the 

possible differential accumulation of Ce with different forms and particle sizes by plants 

for subsequent studies.   

 

Materials and Methods 

Chemicals and CeO2NPs characterization 

A laboratory investigation was conducted using hydroponics to minimize 

interferences from the growth media. To determine how different forms of Ce affect the 

growth of radish and the uptake of Ce by radish, four treatments were prepared, all in 



 

 

31 

  

one-fourth strength Hoagland solution143: (1) control (no Ce treatment); (2) 10 mg/L 

bulk CeO2 suspension (Bulk); (3) 10 mg/L CeO2NPs dispersion (NPs); (4) 10 mg/L 

CeCl3 solution (Ion). Dispersion of uncoated CeO2NPs (10 wt % in H2O) and cerium 

(III) chloride heptahydrate were purchased from Sigma-Aldrich (St. Louis, MO). The 

bulk powder of CeO2 was obtained from Strem Chemicals (Newburyport, MA). The size 

and morphology of CeO2NPs and bulk CeO2 were confirmed by a Hitachi H-7650 

transmission electron microscope (TEM) (Hitachi, Tokyo, Japan). Hoagland solution 

(one-fourth strength) was prepared by dissolving an appropriate amount of the modified 

Hoagland basal salt mixture (Phytotechnology Laboratories, Lenexa, KS) with deionized 

water.  

Seed germination and growth conditions 

The radish seeds [Cherriette (F1)] were purchased from Johnny’s Selected Seeds 

(Winslow, ME). Seeds were surface sterilized with 1.25% sodium hypochlorite solution 

for 10 min and then rinsed with deionized water three times. The sterilized seeds were 

germinated on moist filter paper in a Petri dish for 7 days (Figure 2.1a). Healthy young 

seedlings were then transferred to 50 mL polypropylene centrifuge tubes containing one-

fourth strength Hoagland solution and were incubated in a growth cart with a 16-hour 

light/ 8-hour dark cycle (28 °C) to allow the seedlings to further develop (Figure 2.1b). 

The growth cart was equipped with four T5 fluorescent bulbs, providing a light intensity 

of approximately 104 μmol m−2 s−1 of visible light at the height of plant leaves. After 7 

days, the seedlings were transferred from the centrifuge tubes to 100 mL glass jars 

containing the four treatment solutions respectively (Figure 2.1c). Each jar had a floating 
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lid made by Hareline 2 mm thin fly foam (Fishwest, Sandy, UT, USA) so that the plant 

roots were constantly submerged in the treatment solutions. Each treatment had 12 

replicates. The solutions in the jars were carefully replenished without splashing on the 

leaves every other day with the same treatment solution to compensate for 

evapotranspiration. Plants were harvested 35 days after germination (21 days after 

treatment, Figure 2.1d).  

 

 

 

Figure 2.1. Hydroponic cultivation process of radish. (a) Seed germination in Petri dish, 

(b) development of seedlings in 50 mL centrifuge tubes, (c) development of plants in 

100 mL glass jars, (d) plant harvest. 
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Plant physiological responses 

The cumulative transpiration was calculated by summing the daily transpiration 

over the 21-day treatment period. The daily transpiration was recorded by measuring the 

water surface drop in the jar before the solution replenishment. Relative chlorophyll 

content was measured with a SPAD 502 Plus Chlorophyll Meter (Spectrum 

Technologies Inc., Aurora, IL) one day before harvest. The light-adapted Y(II) and dark-

adapted Fv/FM were measured by an OS 1p chlorophyll fluorometer (Opti-sciences Inc., 

Hudson, NH) on the same day the relative chlorophyll was measured. The electrolyte 

leakage of fine roots was conducted following the published procedures with some 

modifications.144, 145 Briefly, the entire fine root system was submerged in 50 mL of 

deionized water and the initial conductivity Cw was measured immediately (Orion ROSS 

Ultra pH/ATC Triode Orion Star A325 Thermo Fisher Scientific, Waltham, MA). The 

conductivity of the solution was measured again as C0 after 3 hours of incubation at 

room temperature. The entire fine roots were then autoclaved at 121 °C for 20 min with 

a Tuttnauer Brinkman 3850 M autoclave to release all electrolytes. The final 

conductivity Ct was measured after the samples cooled to room temperature. The 

percentage of electrolyte leakage was calculated as EL = (C0 − Cw)/(Ct − Cw) × 100.  

Ce uptake, accumulation, and distribution 

At harvest, radish plants were separated into fine roots, storage root, and shoots. 

The fresh and dry biomass of each part were determined before and after drying in an 

oven at 75 °C for 7 days. The Ce concentration in each part of radish was quantified by 

using an inductively coupled plasma mass spectrometry (ICP-MS) after digesting the 
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plant tissues. The dry tissues were ground into fine powders, from which 0.25 g of the 

ground tissues was weighed and mixed with 4 mL of 70% v/v nitric acid. The mixture 

was heated at 95 °C for 20 min and then at 45 °C for 4 min, and the cycle was repeated 

five times. Afterward, 2 mL of hydrogen peroxide was added to the mixture and heated 

using the same temperature cycle until the solution was clear. The digest solution was 

then analyzed by an ICP-MS to obtain the Ce concentration in each radish sample. 

The fresh fine root tips and sections of the storage roots from each treatment 

were observed under a Zeiss LSM 510 META confocal microscope to study the Ce 

distribution in the radish tissues. A laser excitation wavelength of 543 nm was used and 

an emission filter band-pass was set between 530 and 590 nm to collect both the laser 

reflection and the auto fluorescence in the excited region. 

Data analysis 

The results are reported as mean ± standard error of three replicates. One-way 

ANOVA analysis and Duncan’s test for post hoc comparisons were performed with IBM 

SPSS Statistics V22.0 at p<0.05. 

Results 

Characterization of bulk CeO2 and CeO2NPs 

Figure 2.2 shows the TEM images of bulk CeO2 and CeO2NPs in one-fourth 

strength Hoagland solution. Bulk CeO2 were mostly at the micrometer scale, but the 

sizes were not uniform. Particles at the nanoscale were also detected in the bulk 

solutions. The sizes of bulk CeO2 ranged approximately from 100 to 4000 nm. 
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Individual CeO2NPs possessed irregular shapes with an average diameter ranged from 

10 to 30 nm. The average particle size of CeO2NPs, which was 17.2 nm, was obtained 

by measuring the diameter of individual nanoparticles in the TEM image with an 

imaging processing software ImageJ (ver 1.49). The nanoparticles aggregated 

considerably in the Hoagland solution, due to the high ionic strength. The hydrodynamic 

diameter of the nanoparticle aggregates was around 600 nm as measured by DLS. The 

zeta potential of CeO2NPs in the Hoagland solution was approximately −11.9 mV, 

suggesting that the nanoparticles in the suspension were not stable. 

Figure 2.2. TEM images of CeO2 particles (a: bulk CeO2, b: CeO2NPs). 

Plant physiological status 

The radish exposed to bulk CeO2 had the highest total dry biomass, which was 

significantly greater than all other treatments (Figure 2.3a). The biomass of the CeO2NPs 
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treated plants was not significantly different from the control plants. The plant biomass 

exposed to Ce ions was significantly lower than that of all other treatments. When the 

plant tissues were examined separately, the radishes exposed to bulk CeO2, which had 

similar shoot biomass as radishes exposed to CeO2NPs, had significantly higher dry 

shoot biomass than control and plants exposed to Ce ions (Figure 2.3b). The dry weight 

of storage roots across the treatments exhibited patterns similar to those of the total dry 

biomass (Figure 2.3c), but the dry biomass of fine roots did not differ significantly as a 

function of treatment (Figure 2.3d). The distribution of the biomass between the root 

(fine roots + storage root) and shoot compartments was significantly different in 

response to treatment. The shoot/root ratio of dry biomass of Ce ion treated radish (1.34 

± 0.11) was significantly higher than all other treatments, which had similar ratios 

(control: 1.00 ± 0.10; bulk CeO2: 0.95 ± 0.06; CeO2NPs: 1.07 ± 0.07). Visually, there 

was no apparent adverse effect of any of the Ce treatments on the growth and 

development of the radish plants except for the size differences (Figure 2.3e).  
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Figure 2.3. Dry biomass of total radish and different radish tissues treated with 10 mg/L 

of different forms of cerium (a−d). The reported values are the mean of 12 replicates, 

and the error bars represent standard error. Different letters represent significant 

differences between the treatments (p<0.05). (e) Images of typical radish plants from the 

different treatments.  
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In addition to the root biomass, the fine root membrane integrity was 

significantly affected by different forms of Ce. Figure 2.4 indicates that 10 mg/L of 

CeO2NPs and ionic Ce resulted in significantly greater electrolyte leakage compared 

with the control roots. Leakage from fine roots exposed to bulk CeO2 was not 

significantly different from control fine roots.  

 

 

 

Figure 2.4. Electrolyte leakage from radish fine roots grown hydroponically in different 

solutions. The reported values are the average of five replicates in each treatment, and 

the error bars represent standard error. Different letters represent significant differences 

between the treatments (p<0.05).  

 

 

The accumulative transpiration of radish for all treatments was comparable until 

day 21, then the accumulative transpiration of Ce ion treated radish became significantly 

lower than other treatment groups (Figure 2.5).  
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Figure 2.5. Average accumulative transpiration of radish treated with different forms and 

sizes of cerium, n=6.  

 

 

The relative chlorophyll content expressed in percentage is shown in Table 2.1. 

Although all treated radishes had lower relative chlorophyll content, only the bulk CeO2 

and CeO2NPs treated leaves had significantly lower chlorophyll content compared to the 

controls. The average quantum yield of photosystem II (Y(II)) and the FV/FM ratio for 

plants from different treatments are also shown in Table 2.1. The Y(II) was unaffected by 

the treatments. In contrast, only radishes exposed to bulk CeO2 displayed a significantly 

lower value of the FV/FM ratio than the control plants. No significant differences were 

observed between the other Ce treatments. 
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Table 2.1. Relative chlorophyll content expressed as percentage of control of each 

treatment, average Y(II), and FV/FM ratio, n=12. Different letters in the table represent 

significant differences between the treatments (p<0.05).  

 
Relative 

Chlorophyll (%) 

Standard 

error 
Y(II) 

Standard 

error 
FV/FM 

Standard 

error 

Control 100.00 a 2.67 0.774 0.007 0.830 a 0.003 

Bulk 87.22 b 3.84 0.728 0.022 0.757 b 0.026 

NPs 83.69 b 4.24 0.731 0.020 0.780 ab 0.016 

Ion 91.51 ab 4.68 0.697 0.060 0.797 ab 0.020 

 

 

Ce uptake and accumulation 

Exposure to Ce resulted in significantly greater concentrations of Ce element in 

plant tissues. For the treated plants, the Ce concentration (mg Ce/kg tissue) and Ce (μg) 

content were significantly higher in the fine roots than in other tissues (Figure 2.6). 

Among different treatments, the concentration of Ce in the storage root was not 

significantly different between Ce treatments (Figure 2.6a). In the shoot tissues, radishes 

exposed to Ce ions had highest Ce concentration, followed by radishes exposed to bulk 

CeO2 and then radishes exposed to CeO2NPs. The fine roots of radishes exposed to 

CeO2NPs had significantly higher concentration of Ce than the plants exposed to bulk 

CeO2 and Ce ions. When the Ce content rather than the Ce concentration in different 

tissues was compared, Ce content in the storage roots of different treatments was still 

similar (Figure 2.6b). The Ce contents in the shoots of radishes exposed to bulk CeO2 

and Ce ions were not significantly different. However, the Ce content in shoots of radish 

exposed to CeO2NPs was significantly lower than that of radishes exposed to bulk CeO2 
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and Ce ions. In the fine roots, the Ce contents demonstrated patterns similar to the Ce 

concentrations for different treatments. 

 

 

 

Figure 2.6. (a) Ce concentrations and (b) Ce contents in different radish tissues. The 

reported values in panel (a) are the average of four measurements. The reported values in 

panel (b) are the average of three measurements. Errors bars represent standard errors. 

Letters and Greek symbols above bars reflect their statistical grouping. Different letters 

and Greek symbols represent significant differences between the treatments (p<0.05).  
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Cerium localization and distribution in radish root and storage root 

For the fine root tips, the confocal microscopic images were captured both on the 

root surface and at different depths from the root surface. The control had some weak 

signals either from the cerium content in the control tissues or from background 

excitation (Figure 2.7a). In contrast, plant roots from treated plants all generated stronger 

signals (Figure 2.7b− f). However, the signal patterns were noticeably different. On the 

fine root exposed to bulk CeO2, the signals were only detected from the mucilage 

surrounding the root tip in both surface and deeper scanning images (Figure 2.7b, c). 

CeO2NPs were detected on larger areas of the root surface as well as the mucilage on the 

root tip of the plants exposed to CeO2NPs (Figure 2.7d). The signal was even more 

prominent in the deeper scanning planes (Figure 2.7e). For radish fine root exposed to 

Ce ions, the signals were predominantly detected in the surrounding areas of root 

surface. Neither the surface scan nor the deep scan detected significantly stronger signals 

than the controls within the root itself (Figure 2.7f). Figure 2.8 shows the confocal 

images of cut slices of radish storage roots. The control storage root showed little signal 

(Figure 2.8b). In comparison, storage roots from treated plants had strong signals. For 

radish exposed to bulk CeO2, all signals came from the pigmented periderm with a 

random pattern (Figure 2.8c). For radish exposed to CeO2NPs, stronger signals were 

observed in the pigmented periderm. In addition, the nanoparticles appeared to penetrate 

further into the storage root (Figure 2.8d). Ce was detected not only in the periderm but 

also in the secondary vascular tissues in the storage root of radish exposed to Ce ions 

(Figure 2.8e, f) 
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Figure 2.7. Confocal microscopic images depicting the accumulation of cerium in the 

fine roots of radish: (a) control root showing weak signals; (b, c) surface and 

representative deeper scan of fine roots treated by bulk CeO2; (d, e) surface and 

representative deeper scan of fine roots exposed to CeO2NPs; (f) deeper scan image of 

fine roots exposed to cerium ion. The deeper scan images shown were selected from a 

stack of deep scan images for different roots.  
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Figure 2.8. (a) Light microscopic image and confocal images of the transverse section of 

radish storage root treated with different types of Ce: (b) control; (c) bulk CeO2 treated 

radish; (d) CeO2NPs treated radish; (e, f) ionic Ce treated radish. P, periderm; VT, 

vascular tissues.  
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Discussion and Conclusions 

The investigation in this chapter compared the fate and phytotoxicity of Ce in 

three different forms. Several physiological parameters, including the root membrane 

integrity, photosynthesis-related measurements, and biomass parameters, were affected 

by certain forms of Ce at the tested concentration. Whereas the specific mechanisms by 

which Ce compounds may compromise membrane integrity are not known and may 

differ, CeO2NPs and Ce ions resulted in some damage to root membrane integrity as 

indicated by an increase in electrolyte leakage (Figure 2.4). However, the effect was 

significant only for CeO2NPs and ionic Ce. The changes in the integrity of root 

membrane could also alter the membrane potential and potentially the function of the 

membrane.144, 145 Altered plasma membrane integrity and potential are associated with 

changes in the ion fluxes into plant roots.146 Hence, the alteration of membrane integrity 

could potentially influence the concentration of some essential macronutrients or 

micronutrients in radish.  

For the bulk CeO2 and CeO2NPs, in addition to their impact on the membrane, 

physical adsorption on root surface and blockage of nutrient uptake by plant roots may 

also occur. It is possible that such impacts on the roots may have affected the uptake of 

elements such as magnesium or iron, two nutrients associated with the synthesis of 

chlorophyll. A decrease in the concentration of either of these essential nutrients might 

have contributed to the decrease in relative chlorophyll content observed in some 

treatments. Other aspects of chlorophyll synthesis or degradation could have been 

affected as well, and a more detailed study will be required to understand the extent or 
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severity of effects of Ce on chlorophyll metabolism. The significantly lower FV/FM 

values observed for the bulk CeO2 treatment as compared to the control plants suggested 

that photosynthetic electron transport associated with photosystem II was stressed in 

those plants, but not for the other Ce treatments. These results differ from a study with 

plantlets of Medicago arborea in which CeO2NPs was found to have a more negative 

effect on the FV/FM ratio than the same concentrations of bulk CeO2.
147 Other studies 

have shown that the influence of Ce compounds on plant photochemistry differs 

depending on factors such as plant Mn status148 and the presence of salt stress149. 

Definitive conclusions about the comparative phytotoxicity of the Ce ions and CeO2NPs 

cannot be made without further investigation. Even so, the overall effects of all 

treatments on the two photosynthetic parameters measured were modest and perhaps not 

indicative of a significant stress imposed on the plants, particularly given that there were 

no effects observed for any treatments, including the ionic Ce and the CeO2NPs 

treatments.  

The only other indication of a negative effect of treatment with Ce was the 

decrease in biomass observed for the Ce ion treatment. The shoot/root ratio of radish was 

also affected by Ce, primarily through the change of the biomass of the storage roots. 

Because the root thickening is a result of the combined cell division and enlargement of 

secondary xylem and phloem cells that depends on the activity of the vascular 

cambium,150 it is possible that different forms of Ce have different impacts on the 

activity of the vascular cambium. The bulk CeO2 might have enhanced the activity of the 

vascular cambium, whereas ionic Ce inhibited it.  
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The concentration of CeCl3 used in this study was very low, and the impact of 

chloride ion is not expected to be substantial. Parida and Das151 investigated plant salt 

tolerance and salinity effects on plant growth and reported that under 100 mM NaCl 

(3.55 g/L Cl−), chloride demonstrated limited influence on the osmotic adjustment of cell 

membrane. Marcelis and Van Hooijdonk152 also reported that the growth of radish was 

limited by the availability of nutrients at low salinity level (≤ 2 dS m-1). The Cl− in the 

ionic cerium solution used in this study was significantly lower than those reported 

values and was not expected to significantly contribute to the negative effect observed in 

the ionic treatment group. Consequently, the negative effect observed in the ionic 

treatment should be attributed to the ionic Ce. Another caveat about the results is that 10 

mg/L was the concentration of the compounds of CeO2 and CeCl3, not the concentration 

of Ce as an element. Due to the different molecular weight percentage of cerium in CeO2 

and CeCl3, the actual concentration of cerium as an element was 8.14 mg Ce/L in 

CeO2NPs and the bulk and was only 5.68 mg Ce/L in the ionic form. Ce in CeO2 was 

43.5% higher than in the ionic form. If the equivalent concentration of Ce as an element 

was used, the ionic Ce may display an even stronger effect on plant physiology.  

In addition to the yield of edible storage root, the potential accumulation of Ce 

plant tissues was examined. Exposed plants had detectable Ce in all plant tissues, 

including the fine roots, the storage root, and the shoots. The significantly higher Ce 

detected in the shoot tissues of exposed plants indicated that Ce translocation from roots 

to shoot had occurred. The upward transport of CeO2NPs and ionic Ce from roots to 

shoots has been reported in the literature.84, 85 However, no definitive evidence was 
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available to indicate the direct transport of CeO2NPs from roots to shoots. The forms of 

Ce in these tissues, especially the plants exposed to CeO2NPs, were unknown. As 

described in Chapter I, the symplastic pathway and the apoplastic pathways for 

CeO2NPs transport could be blocked in the plasmodesmata and endodermis respectively. 

Several recent studies supported the notion of transformation of CeO2NPs when 

interacting with plants.53, 71, 76, 104 Dissolved Ce was reported to be released from 

CeO2NPs on the root surface. Therefore, the Ce in the plant tissues exposed to CeO2NPs 

might not be nanoparticles. The forms of Ce in plant tissues may affect both their 

toxicity and potential availability to plants and thus further investigation is deserved. For 

the bulk CeO2, the upward transport to radish shoots was unexpected given the particle 

size. One possible source of the Ce detected from the bulk treated shoot tissues was the 

dissolved Ce released from nanoscale particles present in the bulk mixture if the 

transformation of CeO2 did occur. 

When the Ce localization in the storage root was investigated with the confocal 

microscope, signals of Ce in the vascular tissues were observed only in Ce ion treatment, 

suggesting that active transport may function as an important pathway of Ce 

accumulation only for ion treated radishes. In contrast, signals from the CeO2NPs and 

bulk treated radish roots were mainly located on the periderms. Adsorption and diffusion 

of particulate Ce along the radial direction might be a more important pathway for 

CeO2NPs and bulk accumulation in radish storage roots. The active transport of 

dissolved Ce transformed from CeO2 particles and/or the diffusion of CeO2 particles 

from the lenticels on the periderm may possibly occur, but more precise techniques are 
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needed to confirm these assumptions due to low quantity of the penetrated Ce. From the 

food safety point of view, the Ce accumulation in the edible storage root is more 

concerning, and although Ce concentration and content were similar across the Ce 

treatment, the distribution of cerium in the storage roots varied and, consequently, its 

availability to humans would vary. For example, the majority of particulate Ce 

accumulated in the edible tissue could be removed in the food preparation process, 

whereas ionic cerium in the storage roots is more likely to be consumed by humans with 

the storage root.  

In summary, 10 mg/L Ce as CeO2 or cerium chloride could affect the growth of 

radish and could accumulate in the edible storage root and shoot tissues. However, the 

impacts and accumulation patterns varied significantly by the size and chemical form of 

Ce. Ionic cerium displayed the strongest impact on radish root membrane integrity and 

growth, followed by CeO2NPs and then the bulk. Whereas different forms cerium of all 

accumulate in radish tissues, their accumulation potential and distribution patterns 

differed considerably. As a result, potential exposure and risk to human health through 

diet exposure to different sizes and forms of Ce may vary, and these differences should 

be considered when the food safety of cerium in the environment is evaluated. 
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CHAPTER III 

THE TRANSFORMATION OF CEO2NPS INTERACTING WITH RADISH 

 

Introduction 

Previous investigations and results in Chapter II have shown that CeO2NPs 

accumulated in radish and many other agricultural crops,107, 153-156 hence enter the 

produce food chain and eventually accumulate in the human body and cause health risks. 

For example, Mittal and Pandey157 demonstrated that exposure to CeO2NPs (<25 nm) at 

1 µg/mL - 100 µg/mL for 3 – 48 hours could cause morphological alterations, reduction 

of the antioxidant level, and DNA damage of human lung cells.  

The results in Chapter II also demonstrated that different forms (e.g. particles vs. 

ion) of Ce may affect both toxicity and potential availability of Ce to radish. Due to the 

low solubility of CeO2 and the limitation of detection instruments, a few previous studies 

reported that Ce in plant tissues remained as CeO2NPs after plant uptake.85, 142  However, 

several recent publications suggest that Ce transformation could occur when interacting 

with plants.68, 76, 103, 158 Although Chapter II demonstrated the uptake of Ce by radish 

exposed to CeO2NPs, the results were obtained through strong acid digestion, which 

only provided information on the total concentrations of Ce element. The unique features 

of CeO2NPs were not obtained due to the digestion process. Because of the importance 

                                                 

 Part of this chapter is reprinted with permission from “Elucidating the mechanisms for 

plant uptake and in-planta speciation of cerium in radish (Raphanus sativus L.) treated 

with cerium oxide nanoparticles” by Zhang, W.; Dan, Y.; Shi, H.; Ma, X., 2017. Journal 

of Environmental Chemical Engineering, 5, 572-577, Copyright [2017] by Elsevier. 
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of the physicochemical states of Ce to its food safety implications, the physicochemical 

properties of Ce in plant tissues after plant exposure to CeO2NPs need to be understood.   

CeO2 is generally deemed as a sparingly soluble compound that is chemically 

stable in the environment. However, dissolution does occur under certain circumstances. 

For example, Schwabe et al.53 found that reductants in plant growth media could adsorb 

on CeO2NP surfaces and reduce the surface Ce4+ to Ce3+. The release of Ce3+ from 

CeO2NPs was greater in plant rhizosphere than in the growth medium.76 Zhang et al.103 

reported the detection of CePO4 in cucumber roots and cerium carboxylates in cucumber 

shoots by investigating the chemical valence state of Ce using near edge X-ray 

adsorption fine structure (XANES) and X-ray scanning transmission microscopy 

(STXM). However, whether these compounds were formed after CeO2NPs were taken 

up by plants or formed before they were taken up by plants was not discussed. Gui et 

al.68 also found that Ce in lettuce roots treated with 50 – 1000 mg/kg CeO2NPs in potting 

soil was present in the Ce(III) and Ce(IV) oxidation states. Because CePO4 and Ce 

carboxylates were detected in lettuce roots but not in soil, the authors interpreted the 

results as evidence of in-planta transformation of CeO2NPs. Very recently, Dan et al.158 

investigated the uptake of CeO2NPs by four different plant species using a highly 

sensitive single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) 

technology and reported common presence of dissolved Ce in plant tissues. In spite of 

these observations, questions remain concerning the mechanisms for CeO2NPs uptake by 

plants and the location of transformation (e.g. within plant tissues or in the environment) 

as well as the composition of Ce in plant tissues following their uptake.  Therefore, 
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further investigations are warranted of the physicochemical properties of Ce within and 

out of the plant tissues during CeO2NPs uptake to gain more insights on the CeO2NPs 

uptake mechanisms. 

To study the physicochemical properties of Ce in plant tissues, a method that 

could effectively extract Ce from plant tissues without altering its properties is 

necessary. Enzymatic digestion by proteases or pectinases has been successfully used to 

solubilize biological materials and extract engineered nanoparticles.159, 160 A recent 

breakthrough in extracting ENMs from plant tissues with Macerozyme R-10 provides a 

unique opportunity to elucidate the uptake mechanisms of CeO2NPs by plants and to 

determine the chemical properties of Ce in plant tissues.161, 162 In this study, the same 

enzymatic extraction method with Macerozyme R-10 was applied.  

Three pathways of Ce uptake by radish are possibile: (1) the intact CeO2NPs are 

taken up by the fine roots and the storage root of radish and translocated to the shoots; 

(2) the CeO2NPs is transformed to dissolved Ce ions and taken up by the radish roots, 

then translocated to the shoots; (3) the CeO2NPs which are taken up by the radish roots 

are transformed to dissolved Ce within the plant tissues, then translocated to the shoots. 

To help resolve the pathways of Ce uptake and transformation, this investigation is 

designed (1) to determine the physicochemical properties of Ce in radish following plant 

exposure to different types of Ce, and (2) to further investigate the mechanisms for 

CeO2NPs plant uptake and in-planta speciation. 
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Materials and Methods 

Ce preparation and characterization 

A bench scale hydroponic experiment was conducted with radish. Four 

treatments were prepared: (1) control (no Ce treatment); (2) 10 (mg Ce)/L CeO2NPs 

dispersion; (3) 10 (mg Ce)/L bulk CeO2 suspension; (4) 10 (mg Ce)/L CeCl3 solution. 

Dispersion of uncoated CeO2NPs (10 wt% in H2O) and cerium (III) chloride 

heptahydrate crystals were purchased from Sigma-Aldrich (St. Louis, MO). The bulk 

powder of CeO2 was obtained from Strem Chemicals (Newburyport, MA). Dispersion of 

uncoated CeO2NPs (10 wt % in H2O) was filtered through a 10 kDa Amicon Ultra-4 

Centrifugal Filter unit to remove the dissolved Ce in the dispersion. The CeO2NPs 

residue on the filter was air-dried at room temperature. The bulk CeO2 was filtered 

through a P8 grade filter paper and air-dried at room temperature. The dried CeO2NPs 

and bulk CeO2 were resuspended in water by sonication. The newly obtained dispersions 

were diluted to obtain suspensions of the targeted concentration. The size and 

morphology of CeO2NPs and bulk CeO2 were determined by a Tecnai G2 F20 

transmission electron microscope (TEM) (FEI, Hillsboro, OR, USA) and a JEOL 6400 

scanning electron microscope (SEM) (JEOL USA, Inc. Peabody, MA, USA) 

respectively. The TEM image of CeO2NPs, SEM image of bulk CeO2, and their 

corresponding particle size distributions are shown in Figure 3.1. Most CeO2NPs fell in 

the size range of 10–40 nm, with an average size of 15.51 nm. The average particle size 

was obtained by measuring the diameter of over 100 individual nanoparticles with an 
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imaging processing software ImageJ (ver 1.49). Bulk CeO2 particles had a broader size 

distribution ranging from 2 to 13mm, with an average size of 6.2 mm. 

 

 

 

Figure 3.1. (a) The TEM image of CeO2NPs, (b) the SEM image of bulk CeO2, and the 

corresponding particle size distribution.  

 

 

Plant cultivation and harvest 

Sterilized radish [Cherriette (F1)] seeds, purchased from Johnny’s Selected Seeds 

(Winslow, ME, USA), were germinated in Petri dish for 5 days. Healthy young seedlings 

were then transferred to 50 mL polypropylene centrifuge tubes containing quarter 

strength Hoagland solution (Phytotechnology Laboratories, Lenexa, KS, USA). Plants 
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were incubated in a growth cart with a 16-hour light/8-hour dark cycle (28 °C) to allow 

the seedlings to further develop. After two weeks, the seedlings were transferred to the 

prepared Ce suspension/solution for 5 days. Each treatment had three replicates. The 

suspension/solution in the tubes was replenished daily with the same suspension/solution 

to compensate for transpiration. The daily water consumption of each plant was 

recorded. The plants were sacrificed at day 24 after germination.  

At harvest, plants were separated into three sections: fine roots, storage root, and 

shoots. The storage root and fine roots were washed with 50 mL CaCl2 solution (5 mM) 

five times to remove the adhering Ce on the tissue surfaces. To determine the CaCl2 

washing effectiveness, plant roots collected from an individual plant were evenly 

divided into two groups, with one rinsed with DI water only and the other one rinsed 

with 5 mM CaCl2 solution five times. The unwashed and washed fine roots were then 

observed under a Tescan Vega 3 scanning electron microscope (SEM) (Tescan USA Inc. 

Warrendale, PA, USA) to check the washing effectiveness (Figure 3.2). The SEM 

images indicated that the majority of Ce deposit on root surface was removed by 

washing. The washing solutions and the growth media were collected and filtered 

through 10 kDa Amicon Ultra-4 Centrifugal Filter units to separate the dissolved Ce 

from the particulate Ce. The concentrations of dissolved Ce in the filtrates of washing 

solutions and growth media were determined by a NexION 300 inductively coupled 

plasma-mass spectrometry (ICP–MS) (Perkin Elmer, Waltham, MA, USA). A fraction 

of the washing solution and the growth media was also acid digested to determine the 

total Ce in them. The acid digestion was performed using a DigiPREP MS hot block 

https://www.youtube.com/watch?v=L-FYh2z9mi0
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digester (SCP science, Clark Graham, Canada). 5 mL of 70% (w/w) nitric acid (Certified 

ACS Plus) was add to 1 mL of the washing solution or the growth medium and heated at 

95 °C for 4 hours. After cooling down to room temperature, 3 mL of 30% (w/w) H2O2 

(Certified ACS) was added to the mixture and heated in the hot block at 95 °C for 

another 2 hours to completely digest the sample. The Ce was then quantified by an ICP-

MS as the total Ce in the washing solution or the growth medium after proper dilution. 

 

 

 

Figure 3.2 SEM images of (a) unwashed radish fine root exposed to CeO2NPs and (b) 

CaCl2 washed radish fine root exposed to CeO2NPs. The bright spots on the root surface 

represent Ce element which were confirmed by EDS.  

  

 

Enzymatic extraction, acid digestion, and ICP-MS detection of Ce from plant 

tissues 

The enzymatic extraction of Ce from plant tissues in this study was conducted 

following the recently developed procedure.161, 162 The washed tissues were cut into 
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small pieces with a blade, from which 0.5 g was weighed and mixed with 9 mL of 20 

mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH = 5, adjusted by NaOH). 

The mixture was homogenized in a centrifuge tube using a handheld homogenizer. One 

mL of 30 mg/mL Macerozyme R-10 enzyme (prepared in 20 mM MES) was then added 

into the mixture. The mixture (10 mL) was shaken (250 rpm) at 37 °C for 24 hours. 

Afterward, 4 mL of the digestate was filtered through a 10 kDa Amicon Ultra-4 

Centrifugal Filter unit. The Ce in the filtrate was quantified by ICP–MS as the dissolved 

Ce in plant tissues. Another 4 mL aliquot of enzyme digestate was acid digested to 

determine total Ce in plant tissues following the same protocol mentioned above. 

TEM imaging of the enzymatic digestate 

Drops of the last 2 mL of remaining enzymatic digestate were air-dried on a 

TEM copper grid and then observed under a Tecnai G2 F20 TEM equipped with an 

energy dispersive spectroscopy (EDS) at 200 kV to examine the physical and chemical 

form of Ce microscopically. 

Artificial root exudates (ARE) study 

The simplified ARE contained a mix of low molecular weight organics 

previously reported to occur in plant root exudates: glucose (50 mM), succinic acid (25 

mM), malic acid (25 mM), and serine (12.5 mM).163-165 The pH of the simplified ARE 

was measured (pH=2.45) by using a pH meter (Orion ROSS Ultra pH/ATC Triode Orion 

Star A325 Thermo Fisher Scientific, Waltham, MA). The simplified ARE, the four 

individual components at the same concentration as in the ARE, and HCl solution at the 

same pH with simplified ARE (pH=2.45) were mixed with 10 mg/L CeO2NPs dispersion 
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in a centrifuge tube. The CeO2NPs dispersion at 10 mg/L in DI water was prepared as a 

reference. The mixtures were shaken (250 rpm) on a shaker for 5 days (the same time 

frame as Ce exposure process of radish). Afterwards, the mixtures were filtered through 

10 kDa Amicon Ultra-4 Centrifugal Filter units. The dissolved Ce in the filtrate was 

measured by ICP– MS. The total Ce in the mixtures were determined by acid digestion 

as mentioned above, followed by ICP–MS. The ratios of dissolved Ce to total Ce in the 

mixtures were then calculated. 

Data analysis 

The results are reported as mean ± standard error of three replicates. One-way 

ANOVA analysis and Duncan’s test for post hoc comparisons were performed with IBM 

SPSS Statistics V22.0. Different letters in the Figures represent significant differences 

among the treatments when the p value was <0.05. 

Results 

Radish physiological status 

The fresh biomass of different radish tissues was shown in Figure 3.3. The bulk 

CeO2 had no impact on the biomass of radish. Exposure to CeO2NPs resulted in 

significantly greater fresh biomass of the storage root than control. The fresh biomass of 

shoots and storage root exposed to Ce3+ ions was significantly lower than that of all 

other treatments. None of the treatments affected the fresh biomass of fine roots when 

compared to the control, but the fine root biomass of the bulk CeO2 treated radish was 

significantly higher than that of radish exposed to Ce3+ ions. 
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Figure 3.3. Average fresh biomass of radish tissues (n=3) and the illustration of radish 

separation. The error bars represent standard error. The data were statistically analyzed 

by one-way ANOVA and Duncan’s test for post hoc comparisons. Different letters 

represent significant differences among the treatments (p<0.05).  

 

 

Ce uptake and physicochemical transformation 

The concentrations of Ce in plant tissues were shown in Figure 3.4. The total Ce 

concentration was highest in plant tissues exposed to Ce3+ ions, followed by the plants 

exposed to CeO2NPs, which was significantly lower than Ce3+ treated plants but 

significantly higher than bulk CeO2 treated plants or the control. The average 

concentrations of total Ce in the shoots exposed to both bulk CeO2 and CeO2NPs were 
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not statistically different from control plants (p>0.05 in one-way ANOVA analysis). 

Similar to the total Ce concentrations in plant tissues, exposure to Ce3+ ions resulted in 

significantly greater concentrations of dissolved Ce in all radish tissues, while no 

dissolved Ce was detected in the storage root and fine roots of the control radish. 

Dissolved Ce was also detected in tissues treated with bulk CeO2 and CeO2NPs. 

However, they were significantly lower than that detected in plant tissues exposed to 

ionic Ce3+. The concentrations of dissolved Ce in the storage root and fine roots of bulk 

CeO2 treated radish were significantly lower than those treated with CeO2NPs, 

indicating a significant impact of particle size on the release of dissolved Ce from CeO2 

particles.  

 

 

 

Figure 3.4. Average Ce concentration in radish tissues (n=3). The error bars represent 

standard error of the mean. Different letters represent significant differences among the 

treatments (p<0.05) determined by One-way ANOVA analysis followed by Duncan’s 

test for post hoc comparisons.  
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The ratios of the dissolved Ce to total Ce in the growth media and washing 

solution at harvest are shown in Table 3.1. The concentration of dissolved Ce in the 

washing solution and growth medium of control plants was negligible. The dissolution 

of CeO2NPs and bulk CeO2 in the growth media was minimal. However, significant 

concentrations of dissolved Ce and higher ratios of dissolved Ce to total Ce were 

detected in the washing solutions of fine roots and storage root from CeO2 treated plants 

compared with control. The washing solution of radish roots exposed to CeO2NPs have 

significantly higher ratio of dissolved Ce to total Ce than that of radish roots exposed to 

bulk CeO2. 

 

 

Table 3.1. Concentrations of dissolved Ce and the ratio of dissolved Ce to total Ce in the 

growth media and washing solution at harvest (mean ± standard error, n=3).  

Dissolved Ce Control Bulk  NPs Ion 
Washing solution (μg/L) 0.16±0.08 0.51±0.12 23.03±2.42 414.33±54.15 
Growth media (μg/L) 0.22±0.11 0.45±0.18 0.21±0.14 2049.33±425.34 
     

Dissolved Ce / Total Ce Control Bulk NPs Ion 
Washing solution (%) - 0.24±0.02 4.21±0.55 - 
Growth medium (%) - 0.02±0.00 0.024±0.01 - 
 

 

CeO2NPs were detected by SEM and confirmed by EDS in the unfiltered 

enzymatic digestate of fine roots exposed to CeO2NPs (Figure 3.5a). However, no 

CeO2NPs was found in the enzymatic digestates of shoots and storage root of radishes 
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exposed to CeO2NPs (Figure 3.5b, c). No Ce particles were detected in any radish tissues 

exposed to bulk CeO2.  

 

 

 

Figure 3.5. TEM images of (a) the enzymatic digestate of fine roots exposed to 

CeO2NPs, (b) the enzymatic digestate of shoots exposed to CeO2NPs, and (c) the 

enzymatic digestate of storage root exposed to CeO2NPs. The EDS spectrums under the 

TEM images show the detected elements in selected areas (red frame in image).  

 

 

Larger particles were found in the digestates of radish storage root and fine roots 

exposed to ionic Ce3+ only (Figure 3.6a, b). An X-ray analysis on the elemental 

composition of the particles indicated higher contents of P in addition to Ce, suggesting 
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that the particles might be in the form of CePO4. No Ce particles were found in the 

enzymatic digestate of shoots exposed to Ce3+ ions. 

 

 

 

Figure 3.6. TEM images of (a) the enzymatic digestate of storage root exposed to Ce3+ 

ions, and (b) the enzymatic digestate of fine roots exposed to Ce3+ ions. The EDS 

spectrums under the TEM images show the detected elements in selected areas (red 

frames in images).  

 

 

Artificial root exudates (ARE) in vitro study 

The amount of dissolved Ce released from CeO2NPs in water without any 

additive, glucose solution, and serine solution was insignificant after 5 days (Figure 3.7). 

In contrast, the dissolution of CeO2NPs was significantly enhanced by succinic acid, 

malic acid, the simplified ARE, and HCl. The ratio of dissolved Ce to total Ce was 
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highest when CeO2NPs mixed with the ARE, followed by the malic acid solution, the 

succinic acid solution, then the HCl solution at pH=2.45. 

 

 

 

Figure 3.7. The ratios of dissolved Ce to total Ce in the reference (CeO2NPs dispersion 

only) and in the mixtures of CeO2NPs and artificial root exudates. Different letters 

represent significant differences among the treatments (p<0.05) determined by One-way 

ANOVA analysis followed by Duncan’s test for post hoc comparisons.  

 

 

Discussion and Conclusions 

The results shown in the Figure 3.3 are consistent with our previous observation 

that the Ce3+ ions inhibited radish growth and demonstrated phytotoxicity at 10 mg/L. 

Meanwhile, CeO2NPs at the tested concentration enhanced the growth of radish storage 
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roots. Several previous studies also reported that various concentrations of CeO2NPs had 

positive impacts on the plants growth. Gui et al.68 reported that lettuce (Lactuca sative 

L.) treated with 100 mg/kg CeO2NPs in potting soil grew significantly faster than control 

plants. Rico et al.74 found 500 mg/kg CeO2NPs in potting soil could improve wheat 

(Triticum aestivum L.) growth, shoot biomass, and grain yield by 9.0%, 12.7%, and 

36.6% respectively. The follow-up study of this research group revealed similar 

conclusions for tomatoes (Solanum lycopersicum L.) that 62.5 mg/kg CeO2NPs in 

potting soil produced higher total number of tomatoes and 500 mg/kg CeO2NPs 

increased the shoot length of tomatoes.166 Yang et al.167 found CeO2NPs at 200 and 500 

mg/L on agar plates stimulated root and shoot growth and root elongation of Arabidopsis 

thaliana. Similar to the CeO2NPs, Ce3+ ions at low concentrations (0.1 - 2.5 mg/L) were 

observed to be beneficial for cowpea plants (Vigna unguiculata L.).168 Thus, Ce at low 

concentrations was often used as an additive in micro-fertilizer to promote growth and 

development of crops.169 However, negative impacts on the growth of cowpea plants 

were induced when Ce3+ ion concentration was above 10 mg/L. Liu et al.170 showed that 

the growth of rice seedlings (Oryza sativa L.) was stimulated in the present of Ce3+ ions 

under 14 mg/L, but was significantly inhibited at the higher Ce3+ ion concentrations. 

Apparently, 10 mg/L was considered as high concentration for Ce3+ ions to introduce 

significantly negative effects on the fresh biomass of radish storage root and shoots.  

Intact CeO2NPs, which had a particle size distribution similar to the primary 

CeO2NPs dosed in the growth medium (Figure 3.1), were detected in the unfiltered 

enzymatic digestate of fine roots exposed to CeO2NPs (Figure 3.5a). The SEM images of 
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the unwashed and the washed radish fine roots (Figure 3.2) indicated that the majority of 

the CeO2NPs adhered on the root surface had been removed by CaCl2 washing. 

Therefore, the CeO2NPs detected in the digestate of fine roots should be mostly from the 

nanoparticles penetrated into radish fine roots. Several previous studies have also 

demonstrated the uptake of CeO2NPs by crop roots visualized by confocal microscope, 

TEM or μ-XRF 80, 142, 156, 171. The detection of CeO2NPs facilitated by TEM provided 

further evidence of direct uptake of CeO2NPs by plant roots. However, no CeO2NPs 

were found in the enzymatic digestates of shoots and storage root of radishes exposed to 

CeO2NPs (Figure 3.5b, c), indicating that the upward transport of CeO2NPs in radish 

was limited. Due to the detection of CeO2NPs in plant fine roots and the dissolved Ce in 

all radish tissues treated with CeO2NPs alone, there are two possibilities for the origin of 

the dissolved Ce: (1) CeO2 dissolution within the fine roots after they entered into the 

root tissue or (2) part of the CeO2NPs dissolved in the rhizosphere and both dissolved Ce 

and CeO2NPs were taken up by plant fine roots, but only the dissolved Ce was 

transported from roots to shoots. Based on the concentrations of dissolved Ce and the 

ratios of dissolved Ce to total Ce in the growth media and washing solution at harvest 

shown in Table 3.1, dissolution of CeO2NPs and bulk CeO2 in the growth media was 

minimal. The results agreed well with the data in the artificial root exudates study that 

CeO2NPs dissolution in water without plants was insignificant after 5 days (first column 

in Figure 3.7). Significant concentrations of dissolved Ce and higher ratios of dissolved 

Ce to total Ce were detected in the washing solutions of fine roots and storage root from 

CeO2 treated plants. The concentration of dissolved Ce in the washing solution of 
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control plants was negligible. CeO2NPs at 10 mg/L in this study were positively charged 

and the zeta potential of the nanoparticles was over +40 mV measured by a dynamic 

light scattering instrument (Malvern Zetasizer Nano-ZS90, Westborough, MA). CaCl2 at 

5 mM could reduce the Debye length of CeO2NPs and cause CeO2NPs aggregation, but 

they were not expected to cause dissolution of CeO2.
172 Thus, the high concentrations of 

dissolved Ce in the washing solution reflected the higher percentage of dissolved Ce in 

the rhizosphere, indicating the dissolution of Ce from CeO2 particles. The higher ratio of 

dissolved Ce to total Ce in the washing solution from CeO2NPs treatment also indicated 

that the location of CeO2NPs transformation was root surface. In addition, the 

quantitative calculation of the dissolved Ce in the collected washing solutions (250 mL) 

and plant tissues from CeO2NPs treatment showed that the amount of dissolved Ce was 

highest in the surface deposit, followed by fine roots, storage root and then the shoots. 

These results suggest the dissolution of CeO2NPs in the rhizosphere before ionic Ce was 

taken up by plant roots. This finding was consistent with the results reported by Schwabe 

et al.76 that CeO2NPs was more active to release Ce3+ on the root surface.  

The enhanced dissolution of CeO2 on root surface was attributed to the root 

exudates from radish. Plant roots release a wide range of compounds such as, ions, free 

oxygen, enzymes, mucilage, and a diverse array of carbon-containing molecules.173 

Among them, sugars, low molecular weight organic acids, and amino acid are the most 

common.174 Lettuce root exudates improved the solubility of TiO2NPs and Fe3O4NPs in 

the rhizosphere.175 Stegemeier et al.176 also found that the root exudates of Alfalfa 

(Medicago sativa L.) could partially dissolve Ag2S-NPs, making the nanoparticles more 
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bioavailable to plants. In this in vitro study, we showed that the low molecular weight 

organic acids in root exudates including succinic acid and malic acid are primarily 

responsible for the enhanced dissolution of CeO2NPs (Figure 3.7). Higher CeO2NPs 

dissolution caused by organic acids with lower molecular weight in root exudates might 

be a primary mechanism for CeO2NPs uptake and translocation to the shoots. Malic acid 

caused significantly higher CeO2NPs dissolution than succinic acid. Malic acid has 

lower pKa1 (3.4) than succinic acid (pKa1=4.2),177 implying that pH might be one of the 

factors governing the CeO2NPs transformation for two organic acids. This finding was 

consistent with a previous report that the percentage of Ce3+ ions released from 

CeO2NPs (20 nm) increased from 0.25% to 3.1% as pH decreased from 7 to 4 in soil.178 

The dissolution of CeO2NPs in acidic environment can be ascribed to the partial 

reduction of Ce4+ to Ce3+ and the dissolution rate increased with increasing reaction 

temperature and acid concentration:179, 180  

4𝐶𝑒𝑂2(𝑠) +  12𝐻(𝑎𝑞)
+  → 4𝐶𝑒(𝑎𝑞)

3+ + 6𝐻2𝑂 + 𝑂2(𝑔) 

However, the ratio of dissolved Ce to total Ce in the HCl solution at pH=2.45 

was significantly lower than that in the ARE solution, the malic acid solution, and the 

succinic acid solution, suggesting that pH is not the only factor that caused the CeO2NPs 

dissolution. According to the standard redox potential for Ce4+ at 25 °C is:181 

𝐶𝑒4+ + 𝑒−  →  𝐶𝑒3+    𝐸0 = +1.44 V. 

The standard redox potentials for the two organic acids are:182 

𝑂𝑥𝑎𝑙𝑜𝑎𝑐𝑒𝑡𝑎𝑡𝑒 + 2𝐻+ + 2𝑒−  →  𝑚𝑎𝑙𝑎𝑡𝑒    𝐸0 = −0.166 V 

𝐹𝑢𝑚𝑎𝑟𝑎𝑡𝑒 + 2𝐻+ + 2𝑒−  →  𝑠𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒    𝐸0 = +0.031 V 
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The electrode potentials for the redox reactions between Ce4+ and the two organic acids 

are positive (1.606 V for Ce4+/malate and 1.409 V for Ce4+/succinate), suggesting the 

reactions proceed spontaneously. Therefore, the redox reactions between low molecular 

weight organic acids and CeO2NPs are deemed as another factor contributing to the 

enhanced dissolution. Previous literature has also demonstrated that organic acids are 

able to reduce Ce4+ to Ce3+. For example, the ascorbic acid can react with CeO2 to form 

Ce3+:183  

2𝐶𝑒𝑂2 +  3𝐶6𝐻8𝑂6  → 𝐶𝑒2𝑂3 + 3𝐶6𝐻6𝑂6 +  2𝐻2𝑂 

Other organic acids, such as gallic acid, vanillic acid, caffeic acid are also reported as 

reductants to transform Ce4+ in CeO2 to Ce3+.183 It is worth noting that root exudates for 

a plant species change with age. Therefore, the extent of CeO2NPs dissolution may vary 

depending on the growth stage of exposure time. This might partially explain our 

previous observations that the phyto-impact of CeO2NPs differ at different plant growth 

stages.  

The concentrations of total Ce in all treated radish tissues were significantly 

higher than the concentration of dissolved Ce in the corresponding tissue, indicating the 

presence of undissolved Ce within plant tissues. Dan et al.158 found particulate Ce in 

plant tissues spiked with dissolved Ce only using the same enzymatic extraction method 

adopted in this study. The authors attributed it to the attachment of dissolved Ce on the 

undigested plant tissue colloids so that the SP-ICP-MS mistakenly reported this adsorbed 

Ce as particulate Ce. Therefore, the concentration of measured dissolved Ce was 

probably lower than the actual concentration of dissolved Ce within plant tissues. 
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Another potential reason was the re-formation of particulate Ce. CePO4 was reported as 

an undissolved form of Ce following the Ce3+ uptake process.68, 103 The chemical 

speciation of Ce may change during the upward transport of dissolved Ce in the plant 

tissues. Larger particles were found in the digestates of storage root and fine roots of 

radish exposed to ionic Ce3+ only (Figure 3.6). An X-ray analysis on the elemental 

composition of the particles indicated higher contents of P in addition to Ce, suggesting 

that the particles might be in the form of CePO4. If CeO2NPs were reduced to Ce3+ in the 

rhizosphere and Ce3+ was taken up by plants and formed insoluble CePO4, then Ce in 

plant tissues could be present as a mixture of intact CeO2NPs, dissolved Ce, and Ce salts 

after plants are exposed to CeO2NPs.  

In summary, the conversion of CeO2NPs to dissolved Ce, most likely on the root 

surface or in the rhizosphere and caused by the radish root exudates. The dissolved Ce 

and part of the CeO2NPs could be directly taken up by radish fine roots. Particulate Ce 

salt such as CePO4 was formed from Ce3+ ion exposure. Within radish root tissues 

exposed to CeO2NPs, Ce could be present as a mixture of CeO2NPs, dissolved Ce, and 

Ce salts. The co-existence of various forms of Ce complicates the health implications of 

Ce in plants and this phenomenon needs to be considered when the potential human 

exposure to Ce through plant consumption is investigated.  
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CHAPTER IV 

THE IMPACT OF SOIL PROPERTIES ON THE FATE AND BIOAVAILABILITY OF 

CEO2NPS TO RADISH IN SOIL 

 

Introduction 

Most previous studies on the uptake and accumulation of CeO2NPs by plants, 

including the investigations reported in Chapter II and III, were conducted in hydroponic 

systems. The hydroponic cultivation could provide a sterile and controlled environment 

for plant development. However, while hydroponic studies provide valuable information 

on the potential mechanisms of plant uptake and accumulation of CeO2NPs, increasing 

efforts are dedicated to elucidating the uptake and accumulation of CeO2NPs by plants in 

soil systems to obtain a more realistic understanding of the fate and impact of CeO2NPs 

on plants. For example, after tomato plants were irrigated with 0.1-10 mg/ L of CeO2NPs 

solutions in soil, Ce was accumulated in tomato (Solanum lycopersicum L.) roots and 

shoots, including the edible tissues, with the root being the primary tissue of 

accumulation.84 Zhao et al.82 also reported low translocation of CeO2NPs from root to 

shoot in corn plants (Zea mays L.) grown in soil and noticed that 800 mg/kg CeO2NPs 

did not affect plant photosynthesis throughout the exposure but significantly reduced the 

corn yield. Another recent study demonstrated that CeO2NPs did not affect the growth of 

                                                 

 Part of this chapter is reprinted with permission from “Bioavailability of cerium oxide 

nanoparticles to Raphanus sativus L. in two soils” by Zhang, W.; Musante, C.; White, J. 

C.; Schwab, P.; Want, Q.; Ebbs, S. D.; Ma, X., 2017. Plant Physiology and 

Biochemistry, 110, 185-193, Copyright [2017] by Elsevier. 
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lettuce (Lactuca sativa L.) at low concentrations (50 mg/kg and 100 mg/kg) in potting 

soil, but significantly inhibited biomass production and disrupted plant stress responses 

at 1000 mg/kg.68 While these soil-based studies provide significant new information on 

the fate and impact of CeO2NPs in the ecosystem, none of these studies has closely 

examined the impact of soil properties on the toxicity and bioavailability of CeO2NPs to 

terrestrial plants.  

Plant uptake of metals in soil depends on both the soluble fraction of total metal 

and the capability of soil to release the metals, and both factors can be affected by soil 

properties.184 Previous studies have shown that metal mobility in soil, which is related to 

the bioavailability of the metal, is governed by many factors including the soil 

characteristics (e.g. soil texture, pH, organic matter content, acidification, and redox 

processes); the nature of contaminants (e.g. the chemical forms of pollutants and the 

binding state); and the environmental conditions (e.g. temperature and water regime).185-

187 Thus, the effects of soil properties on the fractionation of the CeO2NPs in soil serves 

as an important focal point for assessing their bioavailability to plants.  

In the past decades, several extraction methods were developed to evaluate the 

mobility and fractionation of metals in soil. Sequential selective extraction, which is one 

of the most applied techniques in soil analysis, is defined as the use of a series of 

selective reagents to solubilize the solid material successively into specific fractions.188 

A three-step sequential extraction procedure for soil and sediment analysis known as the 

BCR (Bureau Commune de Reference of the European Commission) method, proposed 

in 1993189 and later modified by Rauret et al.190 is widely used for the determination of 
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extractable trace metals in soils and sediments. This three-step sequential extraction 

method separates the metal of interest into four fractions: the exchangeable, water/weak 

acid soluble metal (F1); the metal bound to Fe-Mn oxides (F2); the metal bound to 

organic matter (F3) and the metal bound to silicate minerals in the residual fraction (F4). 

The assignment of chemical pools of these fractions is functional and not literal. Very 

little has been done to attempt to demonstrate that the portions of metals removed by the 

given extractants actually belong to the assigned chemical pools. Zhong et al.187 

suggested that the first three fractions of the metals in soil were the potentially 

bioavailable and hazardous fractions to plants. According to the research of Li et al.184, 

F1 represents the most active, mobile and bioavailable phase of the metal. These authors 

used the BCR method to study the bioavailability of Zn, Cu, Pb Cd, Hg, and As in 

topsoil and found that soil physicochemical properties (e.g. pH, organic matter, and clay 

content) affected metal fractionation in soil and their bioavailability to plants. The 

successful application of the BCR method to estimate the bioavailability of heavy metals 

in soil to plants provides a potentially useful method to evaluate the availability of 

engineered metallic nanoparticles under similar exposure scenarios. 

 Chapter II and III demonstrated that Ce from CeO2NPs could be taken up from 

hydroponic solutions by radish and accumulated in the radish tissues, introducing 

potential health risks to humans through the food chain. Similar experiments need to be 

conducted in soils to provide further clues on the interactions between CeO2NPs and 

plants in a realistic environment.  
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The objectives of this investigation were to (1) use an effective soil sequential 

extraction method (BCR method) to evaluate the fractionation of CeO2NPs in soils with 

different properties; (2) to assess the bioavailability of CeO2NPs to radish in soils; and 

(3) to determine the impact of soil properties on the distribution of Ce in plant tissues. 

Materials and Methods 

CeO2NPs characterization 

Dispersion of uncoated CeO2NPs (<25 nm; 10 wt% in H2O) was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). The shape and size distribution were determined 

by a Tecnai G2 F20 transmission electron microscope (FEI, Hillsboro, OR). The 

hydrodynamic diameter and zeta potential of CeO2NPs at 500 mg/L in water were 

measured by a dynamic light scattering instrument (Malvern Zetasizer Nano-ZS90, 

Westborough, MA). The surface speciation of CeO2NPs was investigated with an X-ray 

photoelectron spectroscopy (XPS) (Omicron multriprobe MXPS system, Scienta 

Omicron, Germany). 

Soil characterization and preparation 

Two types of soil were used in this study: commercially-purchased topsoil 

(Timberline Top Soil, Oldcastle Inc., Atlanta, GA) and an agricultural soil (Alfisols) 

collected from a farmland in Carbondale, IL (Figure 4.1a). The weight percentages of 

sand, silt and clay of the two soils were determined through wet sieve analysis and 

hydrometer test.191 The commercial topsoil was classified as loamy sand and the 

farmland soil was classified as silt loam according to the USDA soil texture 

classification. The ASTM D2974 method (Standard Test Methods for Moisture, Ash, 
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and Organic Matter of Peat and Organic Soils) was used to determine the organic matter 

content in soil. The soil was first dried in an oven at 105 °C for 24 hours. The dry soil 

was weighed and then combusted at 440 °C for 24 hours. The loss in mass was assumed 

to be due entirely to the oxidation of organic matter. The soil routine analyses, including 

the measurements of pH, conductivity, nitrate-N, and some macro- and micronutrients, 

were conducted in the Soil, Water and Forage Testing Laboratory at Texas A&M 

University following established protocols. Briefly, soil pH and conductivity were 

determined with a slurry with a 1:2 soil:deionized water ratio. The slurry was vigorously 

stirred and then allowed to settle for a minimum of 30 min at room temperature before 

the measurements. Both the pH and the conductivity were determined with an Orion Star 

A325 pH/conductivity portable multiparameter meter (Thermo Scientific, Beverly, MA). 

Nitrate-N was extracted from soil with a 1 N KCl solution and reduced to nitrite through 

a cadmium column and then quantified by an UV−vis spectrophotometer in a FIAlab-

2500 analyzer system (FIAlab Instruments, Inc., Bellevue, WA). The micronutrients 

(Cu, Fe, Mn, and Zn) were extracted using a solution containing 5 mM 

diethylenetriaminepentaacetic acid (DTPA), 10 mM CaCl2, and 100 mM 

triethanolamine. The phosphorus, K, Ca, Mg, Na, and S were extracted using the 

Mehlich III extractant. The extracted micronutrients, phosphorus, K, Ca, Mg, Na, and S 

were determined by an inductively coupled plasma optical emission spectroscopy (ICP-

OES) (SPECTRO Analytical Instruments, Kleve, Germany). 

The growing pots for radish were established by adding 150 g of dry soil to a 

plastic container. CeO2NPs dispersion and deionized water were added to the container 
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in different proportions so that the soil was saturated to 100% of field capacity and at the 

same time reached the targeted concentration of CeO2NPs homogeneously. Four 

concentrations of CeO2NPs were prepared for each type of soil: control, 100, 500, and 

1000 (mg Ce)/(kg dry soil). The concentrations were chosen based on the most 

frequently used concentrations in the literature for the fate and phytotoxicity study of 

metal oxide nanoparticles to terrestrial plants.192 Each treatment had six replicates. 

Altogether, 24 such containers were prepared for each soil. The soil were incubated for 

one day before radish seeds were sowed.  

 

 

 

Figure 4.1. (a) Commercially-purchased topsoil and an agricultural soil collected from a 

farmland in Carbondale, IL. (b) Radish seeds germination. (c) Mature radishes before 

harvest. 
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Seed germination and growth conditions 

Radish seeds [Cherriette (F1)] were purchased from Johnny's Selected Seeds 

(Winslow, ME). Three seeds were placed approximately 15 mm beneath the soil surface 

in each container with soils containing different concentrations of CeO2NPs. After 

germination, each container was thinned to one seedling (Figure 4.1b). 

Plants were irrigated with quarter strength Hoagland's solution to a constant mass 

(230 g after irrigation) daily from Day 6 to Day 15 after sowing. The soil was then 

irrigated to the same constant mass with half strength Hoagland's solution until harvest 

(Day 31). Quarter and half strength Hoagland solution were prepared by dissolving an 

appropriate amount of the modified Hoagland's basal salt mixture purchased from 

Phytotechnology Laboratories (Lenexa, KS) in deionized (DI) water. Plants were 

incubated on a growth cart with a 16 hours photoperiod at 28 °C and ambient humidity. 

The growth cart was equipped with four T5 fluorescent bulbs, providing a light intensity 

of approximately 104 mmol/m2 s at the height of plant shoots. Relative chlorophyll 

content was measured with a SPAD 502 Plus Chlorophyll Meter at Day 26 and was 

expressed as a percentage of the control plants. Plants were harvested at Day 31 (Figure 

4.1c). 

Ce fractionation in soil 

At harvest, plants were gently removed from the soil for further analysis (details 

described below). The soil was homogenized and then three samples were randomly 

collected from three containers in each treatment and extracted with the modified BCR 

method to determine the fractionation of CeO2NPs in soil. The dry soil sample was first 
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extracted with 20 mL of 0.11 M acetic acid solution by shaking at 250 rpm for 16 hours 

at 22 ± 5 °C and centrifuged at 3000 g for 20 min to obtain the exchangeable fraction 

(F1). The residue was then resuspended and extracted by 20 mL of 0.5 M hydroxylamine 

hydrochloride solution at pH 1.5 and shaken at 250 rpm for 16 hours at 22 ± 5 °C. The 

mixture was centrifuged similarly as described above to obtain the reducible fraction 

(F2). The residue was then resuspended and mixed with 30% H2O2 and shaken at 250 

rpm for 1 hour at room temperature, followed by another hour of shaking at 250 rpm at 

85 ± 2 °C with a closed cap. The volume of the mixture was reduced to less than 1.5 mL 

by further heating at the same temperature without cap. Following the volume reduction, 

an aliquot of 5 mL of 30% w/v H2O2 was added and the heating process was repeated 

until the volume was reduced to about 0.5 mL. Afterwards, 25 mL of 1 M ammonium 

acetate solution at pH 2 was mixed with the residue for 16 hours at 22 ± 5 °C and the 

mixture was centrifuged at 3000 g for 20 min to extract the oxidizable fraction (F3). The 

residue fraction (F4) was extracted by aqua regia following the ISO 11466 protocol; 4.5 

mL of HCl (12.0 M) and 1.5 mL of HNO3 (15.8 M) was added drop-wise to 0.5 g of 

residue from the F3. The mixture was left at room temperature for 16 hours and then was 

transferred to a 50 mL reaction vessel connected to a reflux condenser. The reaction 

vessel was heated until reflux conditions were reached and was continuously heated for 

2 hours (the condensation zone is lower than 1/3 of the height of the condenser). The 

condenser was further rinsed with 10 mL HNO3 (0.5 M) and the rinsing solution and 

additional HNO3 (0.5 M) were collected and added to the reaction vessel until they 

reached the 50 mL scale line. The supernatant solution of each fraction was analyzed for 
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Ce by an Agilent 7500ce Inductively Coupled Plasma Mass Spectrometry (Agilent 

Technologies, Santa Clara, CA). 

SEM characterization of Ce in soil 

To visualize and characterize the Ce in soils, air dried control and 1000 mg/kg 

treated loamy sand and silt loam soils were fixed on a double-sided adhesive tape, which 

was adhered to the specimen holder, and were analyzed using FEI Quanta FEG450 

scanning electron microscope (SEM) equipped with an Energy Dispersive X-ray 

Spectroscopy (EDS). The SEM imaging of soil samples was performed by applying 

accelerating voltages of 10 kV. The concentration of 1000 mg/kg CeO2NPs, the highest 

concentration used in this study, was selected to ensure the detection of CeO2NPs by 

SEM. 

Plant uptake and accumulation of Ce 

After plants were carefully removed from the soil, they were separated into 

shoots, storage root and fine roots. The separated tissues were rinsed with deionized 

water to remove all adhering soil particles and dried in an oven at 105 °C for 30 min, 

then at 75 °C for seven days prior to dry weight determination. After drying in the oven, 

three replicates in each treatment were randomly chosen. The dried shoot, storage root, 

and fine root tissues were ground into fine powders and digested in 4 mL of 70% (v/ v) 

nitric acid. The nitric acid digest was heated at 95 °C for 20 min and then at 45 °C for 4 

min. The cycle was repeated until all the dry tissues was dissolved. Afterwards, 2 mL of 

H2O2 was added to the mixture. The mixture was heated using the same temperature 

cycle until the solution was clear. The digest solutions of storage roots and shoots were 
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then analyzed by an Agilent 7500ce ICP-MS (Agilent Technologies, Santa Clara, CA). 

The digest solution of fine roots was analyzed by a Thermal Scientific iCAP 6500 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) due to the high 

cerium concentration in the fine root tissue. 

Distribution of Ce in radish shoots and storage roots 

Rest three replicates from the control and 500 mg/kg treatment group grown in 

both soils were used as representatives to illustrate the Ce localization in the radish 

storage roots and shoots. The whole fresh storage root was divided into three layers with 

a precision knife: the periderm (Peri), the intermediate layer (L1), and the inner layer 

(L2). The thicknesses of the periderm and the intermediate layer were approximately 1 

mm and 5 mm respectively. Each fresh shoot was divided into two sections: the edges 

(S1) and the main leaf area (S2). The width of the edges was about 5-7 mm. The cutting 

method is illustrated in Figure 4.2. The subsections of the storage roots and shoots were 

oven dried and digested as described above for the whole tissues. The digest solutions 

were analyzed by ICP-MS. 
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Figure 4.2. Schematic illustration of the cutting method of the radish storage root and 

shoot used for Ce uptake distribution. Peri: the periderm; L1: the intermediate layer; L2: 

the inner layer; S1: the edges of leaves; S2: the main leaf area.  

 

 

Data analysis 

The statistical analyses of experimental data were one-way and two-way 

ANOVA using IBM SPSS Statistics V22.0. The Duncan test was conducted for post hoc 

comparisons. A student t test was conducted to determine the significance of soil impact 

at the same concentration. Statistical significance was accepted when p < 0.05. 

 

Results 

Ce and soils characterization 

The TEM image of CeO2NPs and the size distribution of the CeO2NPs are shown 

in Figure 4.3a & b. The size distribution was obtained by measuring 112 individual 
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nanoparticles on the TEM image with ImageJ. Most of the nanoparticles had 

quadrilateral or polygonal shapes and fell in the size range of 10-25 nm in diameter with 

an average nanoparticle size of 19.1 nm. The hydrodynamic diameter and zeta potential 

of CeO2NPs at 500 mg/L in water were 107.3 nm and 45 ± 0.41 mV respectively. The 

XPS spectra of Ce on the surface of CeO2NPs are shown in Figure 4.3c. 12.4% of Ce on 

the surface was in the form of Ce3+, as calculated through the XPS peak fitting software 

XPSPEAK 4.1. 

 

 

 

Figure 4.3. Characterization of CeO2NPs. (a) TEM image of CeO2NPs; (b) the size 

distribution of the CeO2NPs in the TEM image; (c) the XPS spectra of Ce on the surface 

of CeO2NPs. Ce3+ and Ce4+ produced characteristic sets of XPS peaks at characteristic 

binding energy values shown in (c).  
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The average organic matter contents were 11.87± 0.56% for loamy sand and 2.21 

± 0.04% (average ± standard error, n = 3) for silt loam. The weight percentages of sand, 

silt, and clay are listed in Table 4.1. The results of the soil routine analyses conducted in 

the Soil, Water and Forage Testing Laboratory at Texas A&M University are listed in 

the Table 4.2.  

 

 

Table 4.1. The percentages of sand, silt, and clay in two types of soil.  

 Topsoil Illinois soil 

Clay 6.27% 19.06% 

Silt 18.13% 65.14% 

Sand 75.60% 15.80% 

Classification Loamy sand Silt loam 

 

 

Table 4.2. Properties and concentrations of common elements in two soils. 

Analysis Units 
Loamy 

sand 

Silt 

loam 

pH - 6.87 6.58 

Conductivity umho/cm 358 275 

Nitrate-N mg/kg 2 13 

Phosphorus mg/kg 46 16 

Potassium mg/kg 213 111 

Calcium mg/kg 3620 3660 

Magnesium mg/kg 391 241 

Sulfur mg/kg 61 10 

Sodium mg/kg 39 11 

Iron mg/kg 40.33 11.95 

Zinc mg/kg 4.86 0.84 

Manganese mg/kg 9.94 8.22 

Copper mg/kg 1.60 0.52 
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Plant physiological status 

The dry biomass of storage roots and shoots are shown in Figure 4.4. For both 

soils, treatment with 100 and 500 mg/kg CeO2NPs were not associated with significant 

differences between the treated plants and their controls. Plants exposed to 1000 mg/ kg 

CeO2NPs had significantly greater dry biomass of the storage root than all other treated 

and control plants in loamy sand. The same treatment led to significantly lower dry 

biomass of storage roots than that of 500 mg/kg treated radishes in silt loam but was not 

statistically different than the control. When the biomass of radishes grown in two soils 

at the same concentration was compared, the storage roots of control, 100 mg/kg, and 

500 mg/kg CeO2NPs treated radishes were significantly greater in silt loam than in 

loamy sand. At the highest concentration, the difference of the storage root biomass 

between the two soils was not significant. In contrast to the storage root biomass, the 

shoot biomass was not affected by CeO2NPs exposure for either soil. However, 

significant differences were noticed between the soil types at control and 100 mg/kg 

treatment. Radishes grown in silt loam soil from the two concentration groups had 

significantly higher shoot biomass than the plants grown in loamy sand. The relative 

chlorophyll contents, expressed as percentages of controls, are shown in Table 4.3. No 

significant differences were observed across the treatments. 
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Figure 4.4. Dry biomass of radish tissues treated with different concentrations of CeO2 

NPs in two different soils. The error bars represent standard error (n=4). Different letters 

in lower case and upper case represent significant differences between the treatments in 

loamy sand and silt loam respectively (p<0.05). Asterisks indicate significant differences 

between two soils at same CeO2 dosing concentration (p<0.05).  

 

 

Table 4.3. The relative chlorophyll content of treated radish shoots expressed as the 

percentage of controls, data represent the mean and standard error (n=7).  

  Control (%) 100 mg/kg (%) 500 mg/kg (%) 1000 mg/kg (%) 

Loamy sand 100±3.14 102.35±1.61 101.49±1.62 100.68±1.88 

Local 100±2.26 98.82±2.82 99.98±2.03 102.72±3.27 

 

 

Ce fractionation in soil 

The percentage of each fraction in the two soils is illustrated in stacked bars in 

Figure 4.5. F4 was the dominant fraction of CeO2NPs in both soils. The percentage of F4 

was higher in silt loam (60.8-78.2%) than in loamy sand (58.6-70.5%) at the same 

concentration, but only the difference at 100 mg/kg was statistically significant. F1 was 

the smallest fraction and accounted for less than 0.11% in loamy sand and 0.22% in silt 
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loam. While the relative percentage of F2 was comparable between the two soils, the 

loamy sand always contained significantly higher oxidizable fraction (F3) than silt loam 

at the same concentration (15.8-17.8% for loamy sand vs. 9.07-11.8% for silt loam). The 

distribution of CeO2NPs among these four fractions changed with concentration. In 

general, with the increase of concentration, the percentage of F1 and F2 decreased while 

the percentage of F4 increased in both soils. The percentage of F3 was relatively stable 

across the concentration ranges employed in this study. 

 

 

 

Figure 4.5. Percentage of cerium fractionation in (a) loamy sand and (b) silt loam 

determined by the modified BCR sequential extraction procedure. The results shown on 

the table beneath the figures represent the average and standard error of three replicates. 

The F1 fraction was too small to see in the treated soils.  
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The actual concentrations of individual fractions are presented in Fig. 4.6a. As 

the most abundant rare earth element on the earth's crust, both soils contained high 

background concentration of cerium. The background Ce was 52.5 ± 1.87 mg/kg dry soil 

in the loamy sand and 77.2 ± 5.25 mg/kg dry soil in the silt loam respectively. Due to the 

high background concentrations of Ce, the fractionation of dosed CeO2 was calculated 

by subtracting the Ce concentration in each individual fraction of the control soil from 

the concentrations in the corresponding fractions of the treated soil. The results are 

presented in Figure 4.6b. Both the dosing concentration and soil type were significant 

factors affecting the fractionation of CeO2NPs in soil according to the two-way ANOVA 

analysis. In general, the silt loam contained higher F1 than the loamy sand and the 

difference was significant for 500 mg/kg treatment (Figure 4.6b). The silt loam 

contained significantly lower F2 and F3 than the loamy sand in 500 and 1000 mg/kg 

treatment. The silt loam had significantly higher F4 than the loamy sand in 100 mg/kg 

but the differences in F4 were not significant in higher concentrations (Figure 4.6b). It 

has been reported that CeO2NPs cannot be fully dissolved in aqua regia.193 Therefore, it 

is likely that some Ce residues remained in the soil and was not included in the four 

fractions reported here.  
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Figure 4.6. (a) The actual Ce concentrations in different soil fractions and (b) the 

adjusted Ce concentrations by subtracting the Ce concentration in corresponding fraction 

of the control soil. The error bars represent standard error (n=3). Different letters in 

lower case and upper case represent significant differences between the treatments in 

loamy sand and silt loam respectively (p<0.05). Asterisks indicate significant differences 

between two soils at the same CeO2NPs dosing concentration (p<0.05).  
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Figure 4.7. SEM images of soil samples of. (a): loamy sand control; (b): loamy sand 

1000 mg/kg; (c): silt loam control; (d): silt loam 1000 mg/kg. Table below images shows 

the weight percentage of detected elements in selected area (red frames in images).  
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To further probe the differences of CeO2NPs behaviors in the two soils, SEM 

analysis was conducted. The SEM images shown in Figure 4.7 were acquired with 

samples from control and 1000 mg/kg treatment. EDS analysis was conducted in the 

selected area (red frames in the images) to detect the component elements. The main 

components of the two soils were silica and oxygen. In control samples from both soil 

types, no Ce was detected by the EDS even though ICP-MS analysis showed that both 

soils contained high background Ce. However, in 1000 mg/kg treatment, the Ce weight 

percentages were 7.23% and 8.05% in loamy sand and silt loam, respectively. The Ce 

signals in both soil indicate that the CeO2NPs were mainly attached to the edge of soil 

particles. Individual particle aggregates could be seen in the treated loamy sand, but not 

in the silt loam soil. 

Ce uptake and accumulation 

Ce was detected in all plant tissues; however, the total accumulation of Ce in 

plant biomass was relatively small compared with the total Ce added to the system. The 

concentrations and the total mass of Ce in different plant tissues are presented in Figure 

4.8a. Due to the high background Ce concentration in control plants, the accumulation of 

the dosed Ce in different plant tissues was calculated by subtracting the Ce concentration 

in different plant tissues of the control plants from the corresponding tissues of treated 

ones and the results are presented in Figure 4.8b. Even though the accumulation of Ce in 

all tissues increased with increasing concentration in general, a dose response 

relationship was not apparent, especially for the shoot tissues. The comparison of Ce 

accumulation by plants grown in two soil types indicated that the radish fine roots and 
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storage root from the loamy sand usually possessed higher Ce concentration than the 

same tissues collected from the silt loam. The Ce concentration in the shoot showed 

opposite trend between these two soils. However, none of these differences were 

significant except for the Ce in the fine roots from 100 mg/kg treatment. 

 

 

 

Figure 4.8. (a) The actual Ce concentrations in different radish tissues and (b) modified 

Ce concentrations in different radish tissues after the Ce concentrations in the control 

plants were subtracted from the corresponding tissues of treated plants. The error bars 

represent standard error (n=3). Samples without error bars indicate that the error bars are 

too small to see on the figures. Different letters in lower case and upper case represent 

significant differences between the treatments in loamy sand and silt loam respectively 

(p<0.05). Asterisks indicate significant differences between two kinds of soil at same 

CeO2NPs dosing concentration (p<0.05).  
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Ce localization in radish storage roots and shoots 

The Ce concentrations in different sections of radish storage roots and shoots are 

shown in Table 4.4. The average Ce concentration in the periderm (Peri) of radish 

storage roots from 500 mg/kg was more than ten times higher than that of control in both 

soils. However, large variations were observed between replicates from the same 

treatment group. Ce concentrations in the intermediate layer (L1) and the inner layer 

were comparable to the control plants in both soils. In radish leaves, the Ce 

concentrations in the edge section (S1) of treated and control plants were similar for both 

soils. However, the average Ce concentration in the main leaf area (S2) was significantly 

higher (almost three times) from 500 mg/kg treated radish than from control plants in the 

silt loam. No difference was observed for the main leaf area in control plants and 500 

mg/kg treated plants in loamy sand. 

 

 

Table 4.4. The cerium concentration in different parts of radish, data represented the 

mean and standard error (n=3). Different letters represent significant differences between 

the treatments.  

Soil Type Treatment Peri (mg/kg) L1 (mg/kg) L2 (mg/kg) 

Loamy sand 
Control 11.40±3.06 7.45±1.38 11.09±1.83 

500 mg/kg 112.90±52.35 10.88±1.61 9.40±1.67 

Silt loam 
Control 8.91±0.76 10.43±2.09 8.07±2.97 

500 mg/ kg 127.06±56.25 11.49±1.18 8.61±0.32 

    

Soil Type Treatment S1 (mg/kg) S2 (mg/kg) 

Loamy sand 
Control 18.83±1.67 8.85±0.42ab 

500 mg/kg 23.12±0.49 9.81±1.57ab 

Silt loam 
Control 22.90±4.23 7.00±0.52b 

500 mg/ kg 18.26±3.14 20.58±7.29a 
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Discussion and Conclusions 

Although plant uptake of CeO2 NPs from soil has been observed previously, the 

influence of soil properties on CeO2 NPs bioavailability has not been fully understood. 

However, once Ce enters soil through wastewater irrigation or biosolid amendment, 

particle bioavailability may depend heavily on the physical and chemical properties of 

soil, as noted for other elements.186 The results of this study confirmed that the 

accumulation and translocation of CeO2NPs in plant tissues could be affected by soil 

type due to the impact of soil on CeO2NPs fractionation.  

CeO2NPs are generally perceived as stable in the environment, but dissolution 

under certain circumstances (e.g. interacting with plants) have been reported. The 

presence of chelating agents in the soil may also enhance the dissolution by forming 

complexes with Ce3+ on the surface of CeO2NPs.53 F1 was considered to include both 

the dissolved ions and dissolved nanoparticles. Due to the low solubility of CeO2NPs 

and possibly the rapid adsorption of dissolved ions to the solid phase, F1 represented a 

negligible fraction in both soils in this study even though the concentration of F1 

increased with concentrations (<0.16% for the dosed CeO2NPs). Water soluble Ce at low 

concentration is generally not considered as toxic and has been used as an additive to 

fertilizer.169 The F1 in silt loam was invariably higher than that in loamy sand at the 

same concentration (difference was not significant at 1000 mg/kg). Therefore, the 

differences of F1 may partially explain the generally higher dry biomass of radish 

storage root and shoots in silt loam than in loamy sand (Figure 4.4). This observation 
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was also consistent with the finding in Chapter III that CeO2NPs at low concentration 

could improve the biomass of radish storage root.  

Fe-Mn oxides, considered as secondary minerals, exist primarily in the clay 

fraction.194, 195 The concentrations of Fe in two soils listed in Table 4.2 implied that 

loamy sand contained significantly higher Fe oxides than silt loam. Therefore, higher F2 

in loamy sand was expected. The results (Figure 4.6b) showed that F2 in the loamy sand 

was significantly higher than that in the silt loam at higher CeO2NPs dosing 

concentrations (500 and 1000 mg/kg), suggesting the significance of mineral content on 

the fractionation of Ce in soils.  

The oxidizable fraction (F3) of CeO2 is believed to be associated with organic 

matter in soil. The higher organic matter content in loamy sand soil is consistent with the 

generally higher F3 in this soil than in the silt loam. Natural organic matter can enhance 

the mobility of NPs in porous media by increasing charge and steric stabilization.196 

Zhao et al.126 studied the uptake of CeO2NPs by corn grown in soils and concluded that 

organic matter improved the mobility and bioavailability of CeO2NPs to corn, resulting 

in higher accumulation of Ce in corn roots. The consistently higher Ce concentration in 

the fine roots and storage roots of radish grown in loamy sand was consistent with the 

relative organic matter contents in these two soils. These findings support the theory that 

natural organic matter plays an important role in regulating the mobility and 

bioavailability of engineered nanoparticles to plants.196 

One intriguing observation of this study was the disparity of roots and shoots 

with regard to CeO2NPs accumulation from different soils. As described above, the 



 

 

95 

  

radish storage roots and fine roots generally contained higher Ce concentration in loamy 

sand. However, the concentrations of Ce in shoot tissues followed the opposite trend 

between the soils. It is postulated that the low translocation of Ce in the loamy sand is 

associated with the low F1 in that soil. Previous research suggested that engineered 

nanoparticles in plant roots are translocated up through the xylem tissues along with 

water,194 which makes the water soluble fraction more readily transferred to the shoot 

tissues. The study in Chapter III also indicates that the dissolved Ce is easier for plants to 

transport from roots to shoots. A recent study also demonstrated that negatively charged 

humus colloids in soil could chelate with positively charged CeO2NPs and reduce their 

mobility and bioavailability in soil.72 Consequently, the upward transport of CeO2NPs 

from root to shoot will be limited in soil grown plants and the extent of transport may 

depend significantly on the amount of water soluble fraction. Our results agreed with the 

observation of the low root to shoot translocation of CeO2NPs in organic matter enriched 

soil, but contradicted a previous study which indicated that organic matter enriched soil 

facilitated the uptake and translocation of CeO2 NPs by corn.126 The discrepancies may 

derive from the use of different CeO2NPs and different plant species and require further 

investigation.  

Following the uptake of Ce, whether the different soil fractionation would affect 

the distribution of Ce in different plant tissues was evaluated. Consistent with the 

previous investigation in Chapter II, Ce was predominantly accumulated in the 

pigmented periderm of radish storage roots for both soils (Table 4.4). Another recent 

study on the interactions between CeO2NPs and carrot (Daucus carota L.) also reported 
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that the accumulation of Ce principally in the taproot peel and the shoots, with 

significantly lower Ce concentration in the edible flesh.197 Notably, even though the 

average concentration in the periderm was ten times higher in the 500 mg/kg treated 

radish than the control radish in this study, high variability between the replicates of 

treated radish was noticed (51.7-217 mg/ kg dry tissue for loamy sand and 45.5-236 

mg/kg dry tissue for silt loam). The high variability likely was due to the unequal 

adsorption of CeO2NPs on the skin surface of the storage root and the incomplete rinsing 

process during harvest. The similar Ce concentration in the intermediate and inner layers 

of the treated and control plants suggested that Ce accumulation in the flesh is limited. 

Altogether, the results indicate that a primary pathway for Ce accumulation in radish 

storage roots was physical adsorption on the surface and radial diffusion toward the 

center which is minimal in this study. The Ce concentration in S2 section of the shoot 

tissue grown in silt loam was three times higher than their corresponding controls, but 

such difference was not observed in the sandy loam. Our finding is consistent with the 

higher shoot concentration in CeO2NPs treated radish in silt loam and substantiates our 

earlier contention that F1 was more readily translocated from radish roots to shoots. A 

previous study indicated that the Ce taken up from roots is transported to leaves through 

leaf vein vasculature with the transpiration stream78 and our results appeared to support 

that conclusion. However, the results from this study suggested that most of the Ce 

transported with the transpiration stream is in the dissolved form, not the nanoparticles.  

In summary, soil characteristics were shown to be an important factor affecting 

the soil fractionation and subsequent bioavailability of CeO2NPs to plants. The 
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accumulation of Ce in radish belowground tissues correlated well with the sum of the 

first three fractions (R2=0.98 and 0.78 for loamy sand and silt loam respectively), 

suggesting that these fractions were bioavailable to plant roots. However, only the 

exchangeable fraction correlated well with the element amounts shown to transport from 

roots to shoots (R2=0.97 and 0.89 for loamy sand and silt loam respectively). In addition 

to their bioavailability, the distribution of Ce in different plant tissues was also affected 

by the physicochemical properties soils, indicating that the specific soil properties must 

be an important consideration in the assessment of the fate and transport of engineered 

nanoparticles in the environment. 
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CHAPTER V 

THE AGING EFFECTS ON THE FATE AND BIOAVAILABILITY OF CEO2NPS TO 

RADISH IN SOIL 

 

Introduction 

The wide application of CeO2NPs in industry and consumer products inevitably 

leads to the release of these ENMs to the environment. CeO2NPs likely will continue to 

build up in the environment, and the prospect of high CeO2NPs concentrations in the 

environment has raised concerns because of their potential impact on the ecosystem. 

Although numerous studies on the interactions between CeO2NPs and plants have been 

conducted, almost all of them used freshly prepared CeO2NPs. A more realistic scenario 

is that CeO2NPs would persist in the soil or sediment for a long period of time after 

releasing into the environment. Increasing evidence shows that the properties of metal 

contaminants including engineered metallic nanoparticles change with time due to 

various physical, chemical and biological processes in the environment.198-200 Thus, 

understanding the aging effect of CeO2NPs in soil on their fate and bioavailability is 

necessary for assessing the environmental risks of CeO2NPs.  

 Current understanding on the aging process of ENMs is still in its fledgling stage 

but developing rapidly. Coutris et al.199 found that the bioaccessibility of uncoated 

                                                 

 Part of this chapter is reprinted with permission from “Effects of aging on the fate and 

bioavailability of cerium oxide nanoparticles to radish (Raphanus sativus L.) in soil” by 

Zhang, W.; Dan, Y.; Shi, H.; Ma, X., 2016. ACS Sustainable Chemistry & Engineering, 

4, 5424-5431, Copyright [2016] by American Chemical Society. 
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AgNPs increased due to the continued release of Ag+ from nanoparticles. Diez-Ortiz et 

al.201 also reported that the bioavailability of uncoated AgNPs to earthworm in soil 

increased during aging process (52 weeks in soil) as a result of dissolution. Although 

CeO2 has low solubility and is not expected to dissolve extensively in bulk soil, higher 

dissolution of CeO2NPs has been reported in the rhizosphere of plant roots53 and was 

demonstrated in Chapter III. The presence of chelating agents in the soil may also 

enhance the dissolution CeO2 by forming complexes with Ce3+ on the surface of 

CeO2NPs.53 So whether CeO2NPs would behave similarly as AgNPs during aging 

process needs to be specifically examined.  

Numerous studies have shown that the bioavailability of dissolved, adsorbed, and 

solid phase metallic ions in soil change with time because of the various physical and 

chemical processes.198 The adsorption of heavy metal ions onto the soil particle surface 

occurs through three mechanisms: inner-sphere surface complexation due to the siloxane 

cavity, outer-sphere surface complexation, and adsorption due to diffuse ion swarm (or 

diffuse layer).202 The first mechanism, which is also described as “specific adsorption”, 

takes place in permanent charge clay minerals and on the surface of metal oxides and 

organic matter. The latter two, which are relatively weaker and generally described as 

“nonspecific adsorption”, occur at pH dependent mineral surfaces, including the edges of 

individual kaolinite platelets, Fe-Mn oxides, aluminum hydroxide, and organic matter. 

Outer-sphere complexes can transform to inner-sphere complexes over time, and solid 

phases can increase in crystallinity, both of which decreases solubility and 

bioavailability of heavy metal ions.202 Precipitation can immobilize the metal ions by 
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decreasing the solubility of the metal compounds. Because of these metal ion retention 

mechanisms, the bioavailability of contaminant metal ions usually decreases during the 

aging process.200 In addition to dissolution, CeO2NPs also display unique surface redox 

chemistry between Ce3+ and Ce4+ on the NP surface, depending on the surrounding 

environment. For example, Kuchibhatla et al.203 found that Ce3+ could be formed from 

Ce4+ in the presence of hydroperoxy species: 

𝐶𝑒4+  +  𝐻𝑂2  →  𝐶𝑒
3+  + 𝐻+  +  𝑂2 . 

Those processes that could take place after the release of CeO2NPs suggest that 

aged CeO2NPs may display fates and impacts on the environment quite differently from 

those of fresh CeO2NPs. However, no studies have been performed to examine the 

effects of aging of CeO2NPs on the fate and bioavailability of CeO2NPs to plants. By 

applying a well-established sequential extraction method, the effect of aging on 

CeO2NPs fractionation in soil was evaluated. From the fractionation results, information 

on how aging process affects the interactions between CeO2NPs and soil particles and 

their bioavailability could be derived. In this chapter, the fractionation of CeO2NPs in 

soil was assessed with the modified BCR (Bureau Commune de Reference of the 

European Commission) sequential extraction method190 and an EDTA partial extraction 

method.  

The objectives of this study were (1) to investigate the aging effects of CeO2NPs 

on their fractionation in soil; (2) to determine the aging effects on the bioavailability of 

CeO2NPs to radish; and (3) to examine the effects of aging effects on the nutritional 

status of radish bulbs. 
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Materials and Methods 

CeO2NPs characterization 

Uncoated CeO2NP powder (10−30 nm) was purchased from US Research 

Nanomaterials (Houston, TX). The shape and size of NPs were confirmed by a Tecnai 

G2 F20 transmission electron microscope (TEM) (FEI, Hillsboro, OR). An X-ray 

photoelectron spectroscope (XPS) (Omicron multiprobe MXPS system, Scienta 

Omicron, Taunusstein, Germany) was used to investigate the surface speciation of 

CeO2NPs. 

Soil characterization and preparation 

The same agricultural soil collected from a farmland in Carbondale, IL, as used 

in the previous chapter, was used in this study. On the basis of the weight percentages of 

sand, silt, and clay (Table 4.1), the soil was classified as silt loam according to the U.S. 

Department of Agriculture soil texture classification. The soil routine analyses, including 

the measurements of pH, conductivity, nitrate-N, and some macro- and micronutrients, 

were conducted in the Soil, Water and Forage Testing Laboratory at Texas A&M 

University following established protocols. Briefly, soil pH and conductivity were 

determined with a slurry with a 1:2 soil:deionized water ratio. The slurry was vigorously 

stirred and then allowed to settle for a minimum of 30 min at room temperature before 

the measurements. Both the pH and the conductivity was determined with an Orion Star 

A325 pH/conductivity portable multiparameter meter (Thermo Scientific, Beverly, MA). 

nitrate-N was extracted from soil with a 1 N KCl solution and reduced to nitrite through 

a cadmium column and then quantified by an UV−vis spectrophotometer in a FIAlab-
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2500 analyzer system (FIAlab Instruments, Inc., Bellevue, WA). The micronutrients 

were extracted using a solution containing 5 mM diethylenetriaminepentaacetic acid 

(DTPA), 10 mM CaCl2, and 100 mM triethanolamine. The extracted micronutrients 

were then determined by inductively coupled plasma optical emission spectroscopy 

(ICP-OES) (SPECTRO Analytical Instruments, Kleve, Germany). The organic matter 

content was determined by measuring the loss of mass during combustion at 440 °C for 

24 hours, following the ASTM D 2974 method (Standard Test Methods for Moisture, 

Ash and Organic Matter of Peat and Organic Soils). The average organic matter content 

was 2.21 ± 0.04% (average ± standard error; n = 3). 

Three treatment scenarios were prepared: control soil (no addition of CeO2NPs), 

soil with 1000 mg of freshly spiked CeO2NPs as Ce element per kilogram of dry soil 

(Fresh soil), and soil with the same concentration of CeO2NPs but aged for 7 months 

(Aged soil). The CeO2NPs aging was performed as follows. The soil was first mixed 

with a known amount of CeO2NPs manually in a covered container to achieve the 

targeted concentration (1000 mg/kg) and shaken on a shaker table at 250 rpm for 2 

months. The mixture was then stored in a covered container for an additional 5 months. 

The water content of Aged soil was maintained at 20%. The Fresh soil was prepared by 

mixing the soil with CeO2NPs similarly and shaking on a shaker table at 250 rpm for 24 

hours before the experiment. 

Ce fractionation in soil 

Before seeds were sowed, the fractionation of CeO2NPs in the soils described 

above was analyzed following an established BCR extraction protocol with slight 
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modifications.190 A half-gram of dry soil was randomly collected from each prepared 

soil and transferred to a 50 mL centrifuge tube. The soil was mixed with 20 mL of a 0.11 

M acetic acid solution by being shaken at 250 rpm for 16 hours at room temperature. 

The mixture was then centrifuged at 3000g for 20 min. The Ce in the supernatant was 

considered as the exchangeable fraction (F1). The residue was then resuspended and 

extracted with 20 mL of a 0.5 M hydroxylamine hydrochloride solution at pH 1.5 by 

being shaken (250 rpm) and centrifuged under conditions similar to those described 

above to obtain the reducible fraction (F2). The residue from F2 was again resuspended 

and mixed with 30% (w/v) hydrogen peroxide (H2O2). The mixture was kept at room 

temperature with a loosely closed cap for 1 hour. The container was then closed and 

heated at 85 ± 2 °C in a water bath for an additional hour. Afterward, the volume of the 

mixture was reduced to less than 1.5 mL by further heating in a water bath without a cap. 

Another aliquot of 5 mL of 30% (w/v) H2O2 was added, and the heating process was 

repeated. The oxidizable fraction (F3) was then extracted with 25 mL of a 1 M 

ammonium acetate solution at pH 2 by being shaken at 250 rpm for 16 hours and 

centrifuged at 3000g for 20 min at room temperature. The ISO 11466 protocol was 

applied to extract the residual fraction (F4) by further digesting the residue from F3 

using aqua regia. A mixture of 4.5 mL of HCl (12.0 M) and 1.5 mL of HNO3 (15.8 M) 

was added to the centrifuge tube that contained the residue from F3. The residue was 

resuspended in the aqua regia and transferred to a 50 mL reaction vessel that was 

connected to a reflux condenser. The reaction vessel was heated on a hot plate for 2 

hours under reflux. Afterward, the condenser was rinsed with HNO3 (0.5 M). The rinsing 
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solution and additional HNO3 (0.5 M) were collected and added to the reaction vessel 

until the solution level reached 50 mL. The Ce in the supernatant of each fraction was 

quantified by a NexION 300 inductively coupled plasma mass spectrometry (ICP-MS) 

(PerkinElmer, Waltham, MA). Three replicates were prepared and analyzed for each 

treatment. 

In addition, the concentration of Ce3+ in each soil was determined through a 

separate ethylenediaminetetraacetic acid (EDTA) partial extraction. Previous research 

has shown that both the dissolved Ce3+ ions and the Ce3+ adsorbed or precipitated with 

PO4
3− on the surfaces of CeO2NPs and soil particles can be successfully extracted with 

EDTA.53, 204 Briefly, an additional 0.5 g of dry soil was randomly collected from each 

prepared soil and transferred to a 50 mL centrifuge tube. Twenty milliliters of 100 

μmol/L EDTA acid disodium salt dehydrate was added to the soil. The mixture was 

shaken at 250 rpm for 7 days at room temperature. Then the mixture was centrifuged at 

3000g for 20 min. The supernatant was collected and filtered through a 10 kDa Amicon 

Ultra-4 Centrifugal Filter unit (EMD Millipore, Darmstadt, Germany) for 45 min at 4000 

rpm. The soluble Ce in the filtrate was quantified by ICP-MS. For each soil, three 

replicates were analyzed. 

Seed germination and growth conditions 

The growing pots were established by adding 150 g of dry soil to a plastic 

container (total volume of ∼266 mL). Deionized water was added to the growing pots to 

saturate the soil to 100% of field capacity. Radish seeds [Cherriette (F1)], purchased 

from Johnny’s Selected Seeds (Winslow, ME), were geminated in Petri dishes for 5 
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days. Healthy seedlings were transferred to the growing pots incubated on a growth cart 

with a 16 h photoperiod at 28 °C. The light in the growth cart was provided by four T5 

fluorescent bulbs. The light intensity was approximately 104 μmol m-2 s-1 at the height of 

growing pots. Radishes in the growing pots were irrigated daily with a quarter strength 

Hoagland’s solution to a constant mass (230 g after irrigation for the whole pot) from 

day 6 to day 30 after sowing. Daily Hoagland’s solution usage was recorded to estimate 

the cumulative transpiration of plants. Nine radish seedlings were grown for each 

treatment. 

Ce uptake and accumulation in plants 

On day 30 after sowing, plants were carefully removed from soil and rinsed with 

deionized water and then a 5 mM CaCl2 solution three times to remove the adhering soil 

particles and Ce on the root surface. A separate study in our lab suggested that the 

adopted washing procedure can remove approximately 93.9 and 67.0% of Ce from the 

surface of storage root and fine roots, respectively. After washing, the radishes were 

divided into shoots, storage root, and fine roots. The separated plant tissues of three 

replicates were randomly chosen from each treatment and dried in an oven at 95 °C for 7 

days before the dry weight measurement. The dry tissues were digested using a 

DigiPREP MS hot block digester (SCP science, Baie-d’Urfe, QC, Canada). Four 

milliliters of 70% (v/v) nitric acid (Certified ACS Plus) was mixed with the ground plant 

tissues, and the mixture was held at room temperature overnight to predigest the tissues. 

Then the mixture was digested in the hot block at 95 °C for 4 hours. After the mixture 

had cooled to room temperature, 2 mL of 30% (w/v) H2O2 was added, and the mixture 
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continued to be digested at 95 °C for an additional 2 hours, following the procedures 

reported in previous chapters. Finally, the Ce concentration in the mixture was 

quantified by ICP-MS. 

Plant nutritional status 

The storage roots of three other replicates were randomly chosen from each 

treatment and dried similarly as described above. The measurement of the total protein 

(calculated from the N percentage) and some common minerals in the dry tissues was 

conducted at the Soil, Water and Forage Testing Laboratory at Texas A&M University. 

The plant nitrogen is determined by a high-temperature combustion process. Nitrate in 

plant tissues was first extracted with a 1 M KCl solution and then reduced to nitrite 

through a cadmium column before it was quantified by an UV−vis spectrometer in the 

same FIAlab-2500 analyzer system as mentioned above. Plant minerals were determined 

by a SPECTROBLUE FMX26 ICP-OES instrument after digestion with 70% (v/ v) 

nitric acid. 

Data analysis 

The experimental data are presented as means ± the standard error of three or 

more replicates. One-way analysis of variance and Duncan’s test for post hoc 

comparisons were performed with IBM SPSS Statistics V22.0. Statistical significance 

was attained when the p<0.05. 
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Results 

CeO2NPs and soil characterization 

The TEM image of CeO2NPs and the size distribution of the CeO2NPs were 

shown in Figure 5.1a & b. Most nanoparticles have an irregular polygonal shape. A few 

nanorods were also found in the powder. The size distribution and average size were 

obtained by measuring 185 individual NPs with image processing software ImageJ 

version 1.49. Most CeO2NPs fell in the size range of 6−24 nm (Figure 5.1b), with an 

average size of 10 nm. The XPS spectra of Ce on the surface of CeO2NPs was shown in 

Figure 5.1c. The results indicated that around 8% of the Ce on the nanoparticle surface 

was in the form of Ce3+, as determined by the XPS peak fitting software XPSPEAK 

version 4.1. 

 

 

 

Figure 5.1. Characterization of CeO2NPs. (a) TEM image of CeO2NPs; (b) size 

distribution of CeO2NPs; (c) XPS spectra of Ce on the surface of CeO2NPs.  
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The results of the soil routine analyses conducted in the Soil, Water and Forage 

Testing Laboratory at Texas A&M University were listed in the Table 5.1.  

 

 

Table 5.1 Properties and concentrations of common elements in the soil used in this 

study.  

Analysis Units Results 

pH - 7.50 

Conductivity umho/cm 279 

Nitrate-N mg/kg 12 

Phosphorus mg/kg 16 

Potassium mg/kg 103 

Calcium mg/kg 3672 

Magnesium mg/kg 244.67 

Sulfur mg/kg 10 

Sodium mg/kg 12 

Iron mg/kg 11.93 

Zinc mg/kg 0.83 

Manganese mg/kg 9.43 

Copper mg/kg 0.52 

 

 

Ce fractionation in soil 

The percentages of different Ce fractions in soils are illustrated in stacked 

columns in Figure 5.2. F4 was the predominant fraction for all soils. F1 was considered 

to include both the suspended CeO2NPs and Ce3+. It was the smallest fraction and 

accounted for only <0.73% of all treatments because of the low solubility of CeO2NPs 

and its low dissolution rate. After dosing CeO2NPs to the soils, the percentage of F2 

decreased dramatically, while the percentage of F4 significantly increased.  
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Figure 5.2. Percentage of Ce fractionation determined by the modified BCR sequential 

extraction procedure. The results shown on the table beneath the figures represent the 

average and standard error of three replicates (n=3). The F1 fraction was too small to see 

in the treated soils.  

 

 

The measured concentrations of individual fractions for each treatment are 

presented in Figure 5.3. Ce is the most abundant rare earth element in the earth’s 

crust.205 As expected, the control soil contained high background concentration of Ce. 

The summation of four Ce fractions in control soil by BCR method was 39.2 ± 1.2 

mg/kg. Both the Fresh and Aged soil have Ce concentrations significantly higher than 

those of the control soil in F1, yet no significant difference was observed between these 

two treated soils. The sum of the first three fractions in the control soil, the Fresh soil 
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and the Aged soil was shown in Figure 5.4. No significant difference between the Fresh 

soil and the Aged soil was found either.  

 

 

 

Figure 5.3. Average concentrations of Ce in different fractions of soil as determined by 

the BCR sequential extraction. The error bars represent the standard error (n = 3). 

Different letters represent significant differences among the treatments (p< 0.05). 

Samples without error bars indicate that the error bars are too small to see in the figures.  
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Figure 5.4. The sum of the first three fractions extracted by modified BCR method in 

three different soils. (n = 3). The error bars represent the standard error (n = 3). Different 

letters represent significant differences among the treatments (p < 0.05).  

 

 

 

Figure 5.5. Average concentrations of CeEDTA in three different soils (n = 3). The error 

bars represent the standard error (n = 3). Different letters represent significant 

differences among the treatments (p < 0.05).  

 

 

 

The results from the EDTA partial extraction are illustrated in Figure 5.5. The 

Aged soil had the highest Ce3+ concentration, followed by that of the Fresh soil. Control 
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soil had the lowest Ce3+ concentration. The differences of Ce3+ in the three soil were 

significant (p<0.05). 

 

 

 

Figure 5.6. Average concentrations of Ce in different radish tissues (n = 3). The error 

bars represent the standard error (n = 3). Different letters represent significant 

differences among the treatments (p < 0.05).  

 

 

Ce uptake and accumulation 

Ce was detected in all plant tissues, including the radish tissues from controls. 

The concentrations of Ce in different plant tissues are presented in Figure 5.6. Exposure 

to both Fresh and Aged soils resulted in Ce concentrations significantly higher than 
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those in control plants. No significant difference in Ce concentration was found in the 

storage root or fine roots of plants grown in the Fresh and Aged soils. However, the 

radish shoots grown in Aged soil contained a Ce concentration significantly higher than 

that in the shoots in Fresh soil. 

Plant physiological and nutritional status 

The accumulative transpiration of radishes in three different soils is illustrated in 

Figure 5.7. Neither the freshly spiked nor the aged CeO2NPs caused any significant 

differences in plant transpiration. 

Figure 5.7. The Average accumulative transpiration of radish grown in three different 

soils (n=9). Error bars represent standards error. No significant difference was detected 

between different treatments.  
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The treatment with freshly spiked and aged CeO2NPs increased the average fresh 

biomass of radish shoots by 5.65 and 10.41%, respectively, and the biomass of fresh 

storage root by 1.27 and 6.10%, respectively, compared with control plants, even though 

the increase was not statistically significant (Figure 5.8). Table 5.2 shows the 

concentrations of several major macro- and micronutrients in storage roots. There were 

no significant differences among three treatments. CeO2NPs at 1000 mg/kg did not cause 

any significant changes in plant nutritional status. 

 

 

 

Figure 5.8. Average fresh and dry biomass of radish tissues grown in three different soils 

(n = 9). The error bars represent the standard error. Different letters represent significant 

differences among the treatments (p < 0.05).  
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Table 5.2. Protein and minerals in the storage roots of radishes grown in three different 

soils. The results shown on the table represent the average and standard error of three 

replicates.  

  N (%) Protein (%) P (ppm) K (ppm) Ca (ppm) 

Control 1.86±0.09 11.62±0.56 2774±140 31878±1615 3994±161 

Freshly spiked 1.84±0.12 11.51±0.74 2828±189 32377±1432 4126±341 

Aged 1.94±0.22 12.20±1.40 2581±139 32953±3763 4196±311 

      

  Mg (ppm) Na (ppm) Zn (ppm) Fe (ppm) Cu (ppm) 

Control 1298±145 3634±406 10.81±0.84 159±68 2.32±0.17 

Freshly spiked 1350±157 3696±440 10.62±2.24 126±20 2.23±0.23 

Aged 1485±108 4951±1391 10.81±2.19 127±20 2.11±0.18 

      

  Mn (ppm) S (ppm) B (ppm)     

Control 10.42±1.68 6233±451 13.64±0.62     

Freshly spiked 10.43±1.23 6404±700 13.22±0.93   

Aged 10.61±1.45 6234±633 13.32±1.69     

 

 

Discussion and Conclusions 

In this chapter, the effect of aging on CeO2NPs fractionation and environmental 

transformation in soil was evaluated. Although F1 extracted by BCR method represented 

the most bioavailable fraction, it did not contain all Ce3+ ions in the soil. Rare earth 

phosphates, including Ce phosphate, have been reported as insoluble materials in soil 

because of their very low solubility products (logKsp
0 = -26.2±0.15 for CePO4).

206 The 

phosphorus concentration in the soil used in this study was 16.33 mg/kg (Table 5.1). 

Inorganic phosphorus in soil was mainly in phosphate form.207 So the Ce3+ dissolved in 

the liquid phase or on the CeO2NPs surface (Figure 5.1c) could potentially form 

particulate CePO4 and precipitate out of the solution. This part of Ce3+ in the CePO4 may 
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not be accounted for in the determination of F1 due to the low solubility of CePO4 in 

water or acetic acid.204 However, this fraction of Ce3+ could still be available to plants 

due to the interactions between plant roots and CePO4. It should be noted that while the 

sum of the first three fractions of Ce based on BCR extraction can be bioavailable to 

plant roots, it is the F1 fraction that are most likely to be transported to plant shoots and 

the total concentration of Ce3+ reflects the transportable Ce from roots to shoots.208 

Hence, F1 could not be a sufficiently reliable indicator of Ce bioavailability to plant 

shoots when studying aging effects. Therefore, the independent EDTA partial extraction 

was conducted to determine the total concentration of Ce3+ in different soils. Golden and 

Wang209 reported that the Ce-acetic acid complex formation constant at 25 °C (log Kf) is 

1.68, while the log Kf of Ce-EDTA complex is 16.80. So EDTA can strongly bond to all 

Ce3+, including the Ce3+ in CePO4 (if present) and those attached to CeO2NPs surfaces, 

and form soluble Ce-EDTA complex.204 The results from the EDTA partial extraction 

showed that the Aged soil had the highest Ce3+ concentration, followed by the Fresh soil, 

and then control soil (Figure 5.5). These results indicated that the dosed CeO2NPs were 

able to release Ce3+
 ions, and aging increased the release of Ce3+. A possible explanation 

for the heightened Ce3+ in the Aged soil might be the oxidation state switching of Ce 

between +3 and +4 on CeO2NPs surface. The oxidation state of Ce on the nanoparticle 

surface strongly depends on the environment and time.203 After adsorption of a reductant 

or an oxidant onto the metal compound, an electron transfer may occur between the 

metal and adsorbate gradually.202 For example, Schwabe et al.53 concluded that the 

ferrous iron in the growth media could be adsorbed onto the CeO2NPs surface and 
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reduce the surface Ce4+ into Ce3+.  Over time, the Ce3+ could dissolve in soil solution or 

be complexed with the organic matter in soil. The complex then detached and 

equilibrated with the soil solution. The decreasing percentage of Ce3+ on the nanoparticle 

surface might drive the reduction process producing more Ce3+ from Ce4+. The 

observation in Chapter III suggests that the low molecular organic acids in the soil (if 

present) could enhance the release of Ce3+ from CeO2NPs during aging process. Other 

processes such as the microbial activities in soil might also contribute to the higher Ce3+ 

concentration in the Aged soil and the detailed mechanisms for higher release of Ce3+ 

during aging needs further investigation. 

Based on the BCR protocol, F2 contained the cerium bound to Fe-Mn oxides in 

soil. Fe-Mn oxides primarily exist in soil as secondary minerals which are normally in 

the clay fraction, including birnessite ((Na0.3Ca0.1K0.1)(Mn(IV)Mn(III))2O4·1.5H2O), 

ferrihydrite (Fe10O15·9H2O), goethite (α-FeOOH), hematite (α-Fe2O3), lepidocrocite (γ-

FeOOH), lithiophorite (LiAl2(OH)6Mn(IV)2Mn(III)O6), maghemite (γ-Fe2O3), magnetite 

(FeFe2O4), and so on.202 According to Table 5.1, the Fe (Fe(OH)3) and Mn (MnO2 

(pyrolusite)) concentrations in the soil used in this study were 11.93 mg/kg and 9.43 

mg/kg respectively. So considerable amounts of Fe-Mn oxides existed in soil. The zeta 

potential of CeO2NPs in water suspension at pH=7 was measured as +45.13 mV by a 

zetasizer (Malvern Zetasizer Nano-ZS90, NY). Due to the negative charge of Fe-Mn 

oxides, the positively charged uncoated CeO2NPs and Ce cations could be adsorbed on 

these metal oxide surface through non-specific adsorption.202 It was also reported that 

CeO2NPs could be retained by heteroaggregation with clay colloids in soil and increase 
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the Ce concentration in this fraction.178 As a result, higher F2 concentration in CeO2NPs 

dosed soils than in control soil was expected. At stable pH, temperature, humidity, and 

organic matter content, the weathering process of these minerals would be slow 

(timescale in years).202, 210 Thus the effects of seven months of aging on F2 might be 

very minimal and cannot be reflected by the BCR method in this study. 

The relative percentage of Ce in F3 was similar in all soils and fell in the range of 

7.59% to 9.31% (Figure 5.2). When the actual Ce concentration in F3 was compared 

across the treatments, it showed the same pattern as F1 and F2 that although Ce 

concentrations in Fresh and Aged soil were significantly higher than that in control soil, 

no significant difference existed between the F3 Ce concentrations in the two dosed soils 

(Figure 5.3). F3 is associated with the organic matter in soil. The batch soil system (no 

organic matter source) and stable environmental condition such as relatively stable pH, 

temperature, and humidity of soil, might keep the organic matter stable during the aging 

process and led to non-significant difference of F3 in the Fresh and Aged soils. 

F4 was the dominant fraction of Ce in all three soils. The percentage increased 

significantly from 52.9% in the control soil to 80.4% and 81.0% in the Fresh and Aged 

soil respectively after the introduction of CeO2NPs, yet no significant difference was 

observed between these two dosed soils. In summary, the BCR sequential extraction 

results indicated that the introduction of CeO2NPs significantly increased the Ce 

concentrations in all fractions, and the majority of added CeO2NPs stayed in the residual 

fraction F4, which was hardly bioavailable to plants. The insignificant differences of Ce 

concentrations between the Fresh and Aged soils demonstrated that aging effects on Ce 
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fractionation in soil could not be reflected by BCR sequential extraction method. 

However, based on the EDTA partial extraction results, it can be seen that the dosed 

CeO2NPs were able to release Ce3+, and aging led to greater release of Ce3+. 

In addition to the Ce fractionation in soil, the aging effects on Ce uptake by 

plants was examined. The previous studies reported in Chapter IV demonstrated that the 

Ce concentration in radish storage roots and the sum of first three fractions of CeO2NPs 

in soil are linearly correlated. The similarity of the sum of the first three fractions in the 

Fresh and Aged soils (Figure 5.4) might be the primary reason for the comparable Ce 

concentration in the storage root grown in both soils. The previous investigation also 

showed that the Ce concentration in radish shoots only exhibited strong correlation with 

F1. Considering the higher Ce concentration in the shoots of radish grown in Aged soil 

and higher Ce3+ concentration in this soil, the higher concentration of Ce in radish shoots 

grown in Aged soil could be attributed to the higher Ce3+ in the Aged soil. Thus, the 

Ce3+
 fraction extracted by EDTA could be a better indicator of bioavailability of 

CeO2NPs to plant shoots rather than the acetic acid extracted fraction through BCR 

method. Gui et al.68 reported that Ce in the roots of lettuce treated with 50 – 1000 mg/kg 

CeO2NPs in potting soil presented a mixed oxidation states of Ce3+ and Ce4+, implying 

the transformation of CeO2NPs to Ce3+. Schwabe et al.76 proposed that the Ce3+ could be 

released from CeO2NPs in plant rhizosphere and taken up by plant roots. The results in 

Chapter III confirmed that Ce3+ could be released from CeO2NPs on the root surface 

because of the low molecular weight organic acid in plant exudates and the ions are 

readily transported to radish shoots. While it is still unclear why aging enhanced the 
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dissolution of CeO2NPs, it is possible that biological activities which result in the 

increase of low weight organic molecules in Aged soil may contribute to this process. 

Regardless of the mechanisms, it is clear now that the significantly higher Ce3+ in the 

Aged soil, which was more bioavailable to plants, is deemed as a significant source of 

Ce in the radish shoots. 

When the plant physiological status was evaluated, neither the freshly spiked nor 

the aged CeO2NPs was found to cause any significant differences in plant transpiration. 

However, the treatment with freshly spiked and aged CeO2NPs increased the average 

fresh biomass of radish shoots by 5.65% and 10.41% respectively; and the biomass of 

fresh storage root by 1.27% and 6.10% respectively compared with control plants, even 

though the increase was not statistically significant (Figure 5.8). Chapter IV shows that 

the dry biomass of radish shoots and storage root was unaffected by 1000 mg/kg 

CeO2NPs in the same silt loam soil. However, several previous studies, including the 

investigation in Chapter III, have shown that low concentrations of CeO2NPs could 

enhance plant growth.68, 74, 114 Notably, the Aged soil exhibited a more beneficial effect 

on radish growth than Fresh soil. Based on our analysis, the Ce3+ concentrations was 

significantly higher in the Aged soil than in Fresh soil. Water soluble Ce at low 

concentrations is generally not phytotoxic and has been used as fertilizers for crops.169 

Therefore, the beneficial effect of CeO2NPs on plant biomass, albeit insignificant, could 

be partially attributed to the higher concentrations of Ce+3 in these soils. 

Plant nutrients can be divided into two general categories: macronutrients and 

micronutrients. Macronutrients such as carbohydrate, protein, and fat provide calories or 
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energy, while micronutrients consisting both macrominerals (e.g. Ca, P, Mg, K, Na, Cl, 

and S) and microminerals (e.g. Fe, Mn, Zn, Cu, Cr, Co, F, I, Mo, and Se) as well as 

vitamins play important roles in maintaining the physiological and biochemical 

functions of plants.211 Table 5.2 showed that CeO2NPs at 1000 mg/kg did not cause any 

significant changes on plant nutritional status, including the concentrations of several 

major macro/micro-nutrients in the storage roots. Zhao et al.77 investigated the effects of 

CeO2NPs on cucumber fruit quality and found that the CeO2NPs at 800 mg/kg did not 

cause any significant changes on the concentrations of several macro- and micronutrients 

in cucumber. Rico et al.74 also reported that minerals (with the exception of sulfur) in the 

grains of wheat were not affected by CeO2NPs at 125 and 500 mg/kg. Although the 

underlying mechanisms for the interactions between CeO2NPs and nutrient uptake are 

unclear, this study agrees well with previous reports that the nutrients in the edible 

tissues of several crops, including radish, was not significantly affected by CeO2NPs. 

In summary, the aging process of CeO2NPs in soil did not cause any significant 

differences of Ce fractionation in soil as determined through the BCR sequential 

extraction. However, the aging process significantly enhanced the releasing of Ce3+ from 

CeO2NPs and resulted in significantly higher Ce concentration in radish shoots. The 

results also indicated that the biomass of radish tissues and the nutritional status were not 

affected by either freshly spiked or aged CeO2NPs.  
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CHAPTER VI 

THE INTERACTION BETWEEN CEO2NPS AND SOIL PARTICLES 

 

Introduction 

Literature as well as the results from previous chapters have shown that 

CeO2NPs can be taken up by edible plants and transferred through the food chain, posing 

potential risks to humans. The risks associated with the trophic transfer of CeO2NPs in 

soils depend on the mobility of CeO2NPs in soil and their bioavailability to organisms.212 

Soil properties such as the soil texture and the content of organic matters strongly 

affect the fate and transport of ENMs in soil.213-215 The soil texture, defined by the 

percentages of sand, silt, and clay, is a key factor governing ENMs mobility and 

bioavailability in soil. For example, Schlich and Hund-Rinke215 suggested that the sand 

and clay content is the most important parameter affecting the mobility and 

bioavailability of AgNPs to microorganisms in soils. Cai et al.213 investigated the 

combined effects of ionic strength and clay particles (bentonite and kaolinite) on the 

transport of titanium oxide nanoparticles (TiO2NPs) in quartz sand column and found 

that clay particles could alter the mobility of TiO2NPs. Therefore, it is critical to further 

investigate the interactions of ENMs with different components of soil particles to gain 

further mechanistic understanding on the mobility and bioavailability of ENMs in soil.  

The literature is inconsistent with regard to the use of terminology in the 

investigation of the interactions between ENMs and soil particles. For example, both 

heteroaggregation216 and adsorption213, 214, 217 were used in studies with ENMs and clay 
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particles.  In this chapter, due to the large size difference between nano-scale ENMs and 

micron-scale soil particles, their interaction was defined as an adsorption process of 

spherical ENMs onto a flat surface of sand or clay.  

The adsorption of ENMs on soil particles could be affected by many factors 

including the surrounding pH and surface charge of the nanoparticles and soil 

particles.178, 214, 218 This chapter focused on investigating the adsorption of both 

positively charged CeO2NPs (CeO2NPs(+)) and negatively charged CeO2NPs 

(CeO2NPs(-)) onto sand and clay. Ottawa sand and kaolin were used to represent the 

sand and clay particles in soil. Ottawa sand is almost entirely composed of naturally 

rounded grains of nearly pure quartz. Kaolin is one of the most common clay minerals 

and is mainly made of kaolinite that is composed of Al-substituted octahedral sheets and 

Si-substituted tetrahedral sheets in a 1:1 relationship. Due to the unique properties of 

ENMs compared with conventional environmental pollutants, the extended Derjaguin-

Landau-Verwey-Overbeek (XDLVO) theory was employed to model the adsorption of 

CeO2NPs onto soil particles and the homoaggregation of CeO2NPs themselves, in 

addition to the measurement and model fitting of the adsorption isotherms. The classic 

DLVO method calculates the thermodynamic surface interactions between two particles 

or between a particle and a surface by summing van der Waals and electric double-layer 

potentials to determine the net interaction force. The DLVO model has been successfully 

used to calculate the interaction energies between ENMs and soil particles. For example, 

Sotirelis and Chrysikopoulos219 constructed the DLVO potential energy profiles between 

graphene oxide (GO) nanoparticles and quartz sand and successfully explained the 
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significant impact of ionic strength on the adsorption of GO nanoparticles onto quartz 

sand using the DLVO model. Buettner et al.220 also employed the DLVO theory to 

predict the aggregation of CeO2NPs in NaCl and CaCl2 electrolytes. However, the 

application of classic DLVO model for ENM soil interactions may be an 

oversimplification because other short range interactions (such as short range hydration 

forces, structure forces, and specific chemical interaction) may play important roles in 

the particle-surface and particle-particle interactions. In this study, the CeO2NPs(-) were 

coated with Polyvinylpyrrolidone (PVP). With the adsorbed polymer layer, classic 

DLVO model is insufficient to accurately predict the ENMs-soil interactions.218, 221 

Therefore, the steric repulsion force defined as the sum of osmotic and elastic repulsive 

energies was also considered. Song et al.222 and Stebounova et al.223 have successfully 

applied the XDLVO to model the interactions between PVP-coated AgNPs and 

biological hydrophobic surfaces and provided the fundamental methodology for the 

application of XDLVO theory for PVP coated CeO2NPs in this chapter. 

The aims of this study were to (1) to determine the impact of surface properties 

of CeO2NPs on their interactions with sand and kaolin and the homoaggregation of the 

nanoparticles; (2) to assess the feasibility of three adsorption isotherm models for data 

fitting on the interactions of CeO2NPs with sand and clay; and (3) to investigate the 

adsorption mechanisms of CeO2NPs onto sand and kaolin using XDLVO model. 

 

 

 



125 

Materials and Methods 

Nanoparticles preparation and characterization 

Two types of CeO2NPs were used: CeO2NPs(+) without coating and CeO2NPs(-) 

coated with PVP. The CeO2NPs(+) dispersion (10 wt. % in H2O <25 nm particle size) 

was purchased from Sigma-Aldrich (St. Louis, MO), while CeO2NPs(-) dispersion (20 

wt. % in H2O 30-50 nm particle size) was purchased from US Research Nanomaterials 

Inc. (Houston, TX). The shape and size of both CeO2NPs were determined by a Tecnai 

G2 F20 Transmission Electron Microscope (TEM) (FEI, Hillsboro, OR). Six 

concentrations of CeO2NPs dispersions were prepared: control (0 µg/L), 500 µg/L, 5 

mg/L, 50 mg/L, 200 mg/L, and 500 mg/L. The zeta potentials of both CeO2NPs at the 

concentrations mentioned above were measured by a dynamic light scattering instrument 

(Malvern Zetasizer Nano-ZS90, Worcestershire, UK). 

Sand and kaolin characterization  

The Ottawa sand obtained from U.S. silica (Ottawa, IL) and the kaolin purchased 

from Acros Organics (Geel, Belgium) were used to represent sand and clay in soil. The 

Ottawa sand was sieved through Mesh No. 35 and collected on Mesh No. 45 to obtain 

sand particles within the size range of 355 to 500 µm in diameter. The sieved sand was 

submerged in 10% (v/v) HNO3 in a flask and placed on a shaker at 150 rpm for two 

hours to remove impurities on sand surface. The acid washed sand was then rinsed by DI 

water until the pH of rinsing water was approximately the same as the unused DI water. 

The clean sand was then dried at 105 °C overnight. The kaolin powder with particle 
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sizes of 1.0 to 1.8 µm was used as received. The density of the kaolin provided by the 

manufacturer was 1.8×103 - 2.6×103 kg/m3.  

The specific surface area (SSA) of the Ottawa sand was estimated based on the 

assumption that all sand particles were spherical with an average diameter of 427 µm. 

The SSA of kaolin was estimated based on the density and particle size of the kaolin 

particles provided by the manufacturer.  

The point of zero charge (PZC) of Ottawa sand determined from streaming 

potential experiments using conductivity water as streaming solution (KCl solution, 

conductivity < 0.1 μΩ-1cm-1) was below 2 224. The PZC of kaolin was measured by 

potentiometric acid-base titration using NaCl for ionic strength control. Before titration, 

the DI water used in titration was boiled for 10 minutes to remove all dissolved CO2. 

The temperature was controlled at 25 °C during the titration process. Three solutions 

were prepared: a blank without kaolin, two kaolin dispersions at 100 mg/L concentration 

with different ionic strengths (0.1 M and 0.15 M). The titration was performed by 

gradually adding 0.1 M NaOH to increase pH of three solutions from 3 to 9. The surface 

charge density (σ0) of kaolin was then calculated with the following equations:225 

𝛤H+ − 𝛤OH− =
𝑐NaOH(𝑣b−𝑣d)

𝑠∙𝛾∙𝑉
       Equation 6.1 

𝜎0 = 𝐹(𝛤H+ − 𝛤OH−)         Equation 6.2 

where ΓH
+- ΓOH

- represents the net uptake of H+ ions or release of OH- ions; cNaOH is the 

concentration of titrant; vb is the volume of the titrant added in the blank titration and vd 

is the volume of the titrant added to the kaolin dispersion to achieve the same pH as in 

the blank solution; s is the specific surface area of kaolin; γ is the mass concentration of 
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kaolin (mass of kaolin divided by the volume of the total liquid medium V); and F is the 

Faraday constant. The PZC was the pH at which the σ0 was zero. 

Adsorption study 

A batch experiment was carried out in 50 mL polypropylene centrifuge tubes. 

The temperature was controlled at 25 °C. Approximately 5 g of washed sand or 0.5 g of 

kaolin was added to the 50 mL polypropylene tubes. Thirty mL of CeO2NPs dispersions 

at different concentrations (500 µg/L, 5 mg/L, 50 mg/L, 200 mg/L, and 500 mg/L) was 

then added to the tubes. All tubes were shaken at 250 rpm for 7 days on an Excella E24 

incubator shaker (New Brunswick Scientific, Enfield, CT) and kept stationary for 3 days. 

The supernatant of each tube was carefully collected and digested by aqua regia 

following the ISO11466 protocol with slight modifications: 6 mL of HCl (12.0 M) and 2 

mL of HNO3 (15.8 M) was added drop-wise to 1 mL of the supernatant; the mixture was 

left at room temperature for 16 hours and then was transferred to a 50 mL reaction vessel 

connected to a reflux condenser; the reaction vessel was heated until the reflux condition 

was reached (condensation zone was lower than 1/3 of the height of the condenser) and 

was continuously heated for 2 hours. The concentration of Ce content in the digested 

solution was quantified by a NexION 300 inductively coupled plasma-mass 

spectrometry (ICP-MS) (Perkin Elmer, Waltham, MA). All adsorption samples were 

replicated three times. 

A separate set of CeO2NPs dispersions at the same concentrations as used in the 

batch experiment (500 µg/L to 500 mg/L) were prepared without any sand or kaolin and 

digested by aqua regia similarly. The Ce concentrations of the digested solutions 

https://www.youtube.com/watch?v=L-FYh2z9mi0
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measured by ICP-MS were used to obtain a digestion efficiency calibration curve. The 

actual cerium concentration in the supernatant at the end of adsorption study was 

calibrated from the digestion efficiency curve. The amount of cerium attached to the 

sand or koalin at termination was defined as qe (mg/g), and the concentration of Ce 

remaining in the liquid was defined as Ce (mg/L). qe was calculated from Ce based on the 

mass balance of cerium in each tube. 

Imaging of adsorbents 

Scanning electron microcopy (SEM) photographs were used to examine the size, 

morphology of CeO2NPs and surface structure of the sand or koalin after adsorption. 

The sand or kaolin mixed with 500 mg/L CeO2NPs dispersion were carefully collected 

from the polypropylene tubes after the batch experiment and air-dried for 1 week. The 

air-dried particles were fixed on a double-sided adhesive tape, attached to the specimen 

holder, and were analyzed using a SEM equipped with an energy dispersive 

spectroscopy (EDS) detector (FEI Quanta FEG450 SEM, Hillsboro, OR). 

XDLVO calculation 

XDLVO was used to calculate the interaction energies between CeO2NPs and 

sand/kaolin (sphere-plate), as well as between CeO2NPs and CeO2NPs (sphere-sphere) at 

25 °C. The ionic strength of all CeO2NPs dispersions were relatively low and assumed to 

be 0.1 mM, which adapted from previous studies.226, 227 The sphere-plate interaction 

energies that equal to the sum of the four interactions (electrostatic double layer 

repulsion, Van de Waals attraction, osmotic repulsion, and elastic repulsion) were 

calculated using the following equations:221 
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𝑉𝑋𝐷𝐿𝑉𝑂(ℎ) = 𝑉𝐸𝐷𝐿(ℎ) + 𝑉𝑉𝐷𝑊(ℎ) + 𝑉𝑂𝑆𝑀 + 𝑉𝐸𝐿𝐴𝑆    Equation 6.3 

𝑉𝐸𝐷𝐿(ℎ) = 𝜋𝜀0𝜀𝑟𝑝 {2𝜓𝑝𝜓𝑐 ln [
1+exp(−𝜅ℎ)

1−exp(−𝜅ℎ)
] + (𝜓𝑝

2 +𝜓𝑐
2) ln[1 − exp (−2𝜅ℎ)]}    

          Equation 6.4 

𝑉𝑉𝐷𝑊(ℎ) = −
𝐴123𝑟𝑝

6ℎ(1+
14ℎ

𝜆
)
       Equation 6.5 

𝑉𝑂𝑆𝑀(ℎ) =

{
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  Equation 6.6 

𝑉𝐸𝐿𝐴𝑆(ℎ) = {
2𝜋𝑟𝑝𝛷𝑃𝑑

2𝜌𝑃𝑘𝐵𝑇
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{
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3−𝑠/𝑑
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𝑠

𝑑
) , ℎ < 𝑑

0, ℎ ≥ 𝑑
 

          Equation 6.7 

For sphere-sphere calculations (homoaggregation), the interaction energies of 

electrostatic double layer and Van der Waals forces were calculated as follows: 

𝑉𝐸𝐷𝐿(ℎ) = 2𝜋𝜀0𝜀𝑟𝑝𝜓𝑝
2 𝑘𝐵𝑇ln[1 + exp (−𝜅ℎ)]    Equation 6.8 

𝑉𝑉𝐷𝑊(ℎ) = −
𝐴121𝑟𝑝𝑘𝐵𝑇

12ℎ(1+
14ℎ

𝜆
)
       Equation 6.9 

where VXDLVO, VEDL, VVDW, VOSM, and VELAS denotes the total, electrostatic double layer 

repulsion, ,Van de Waals attraction, osmotic repulsion, and elastic repulsion 

respectively; h is the separation distance between the CeO2NPs and the interface; ε0 is 

the vacuum permittivity (8.854 × 10-12 C2 N-1 m-2); ε is the dielectric constant of the 

water (78.5 for water at 25 °C); κ is the inverse Debye length (1/m); ѱp and ѱc are the 

surface potentials of the particles (CeO2NPs) and the collector (sand/clay); rp is the 

average radius of CeO2NPs; λ is the characteristic wavelength, which is often assumed to 



130 

be 100 nm;228 A123 and A121 are the Hamaker constants for the particle-water-collector 

(1.0 × 10-20 J for CeO2NPs across water ) and particle-water-particle (5.57 × 10-20 J for 

CeO2-CeO2)
229 respectively; d is the thickness of the polymer layer (assumed to be the 

stern layer thickness of 1.5 nm);  ФP is the volume fraction of polymer (calculated to be 

0.1 for PVP based on the NP size and PVP thickness and assumed to be 0 for 

CeO2NPs(+)); v1 is the volume of water molecule (2.99×10-29 m3); χ is the Flory-

Huggins solvency parameter (assumed to be 0.45 for PVP)230; Mw is the molecular 

weight of polymer (average 4×104 g/mol for PVP); ρP is the density of polymer (1.2 

g/cm3). The total interaction energy is dimensionless after dividing VXDLVO by the 

product of the Boltzmann constant kB (1.38 × 10-23 J K-1) and the absolute temperature T 

(297 K). 

 Model fitting with adsorption isotherms 

Three commonly used adsorption isotherm models were assessed for their 

feasibility to fit the adsorption data obtained in the batch study: (1) Langmuir; (2) 

Freundlich; (3) Dubinin-Radushkevich (D-R) model. 

The Langmuir model describes the formation of a monolayer adsorbate on a 

perfectly flat surface of the adsorbent with no corrugation, and assumes that no further 

adsorption and interactions between adsorbate and adsorbent takes place.231 This model 

assumes that the adsorption sites on the surface of adsorbent are homogenous. Langmuir 

adsorption parameters were determined by transforming the Langmuir equation into a 

linear form 

1

𝑞𝑒
=

1

𝑄0
+

1

𝑄0𝐾𝐿𝐶𝑒
Equation 6.10 
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where Q0 is the maximum monolayer adsorption capacity (mg/g) and KL is the Langmuir 

isotherm constant (L/mg). 

 Freundlich isotherm is a semi-empirical model that describes the adsorption on a 

heterogeneous surface and is mathematically expressed as Equation 6.11:217 

log 𝑞𝑒 = log𝐾𝑓 +
1

𝑛
log 𝐶𝑒       Equation 6.11 

where Kf indicates the adsorption capacity (mg/g)(L/g)n and n the adsorption affinity. 

 D-R isotherm describes the adsorption process onto a heterogeneous surface 

following a pore filling mechanism.232 The linear expression of D-R isotherm model is 

illustrated as: 

ln 𝑞𝑒 = ln 𝑞𝑠 − 𝑘𝑎𝑑𝜀
2        Equation 6.12 

𝜀 = 𝑅𝑇 ln [1 +
1

𝐶𝑒
]        Equation 6.13 

𝐸 =
1

√2𝑘𝑎𝑑
         Equation 6.14 

where qs is the theoretical adsorption capacity (mg/g); kad is the D-R isotherm constant 

related to the free energy of sorption per mole of the sorbate as it migrates to the surface 

of the adsorbent from infinite distance in the solution (mol2/kJ2); ε is the characteristic 

energy derived from D-R equation (kJ2/ mol2); E is the free energy of the adsorption 

(J/mol) and reflects the nature of adsorption (e.g. physical vs. chemical adsorption). 
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Results 

Characterization of CeO2NPs, Ottawa sand, and kaolin  

 The TEM images and particle size distributions of CeO2NPs(+) and CeO2NPs(-) 

are shown in Figure 6.1. Both CeO2NPs have irregular polygonal shape. The size 

distributions and average sizes of both particles were obtained by measuring individual 

nanoparticles on the TEM images with an image processing software ImageJ 1.49. Most 

CeO2NPs(+) fell in the size range of 10-20 nm, with an average size of 15.5 nm, 

consistent with the sizes reported by the vendor. On the other hand, the CeO2NPs(-) had 

a wider size distribution and larger average size than reported by the manufacturer. , the 

size of CeO2NP(-) ranged from 20-90 nm, with the average size of 62.5 nm.  

The pH of CeO2NPs dispersion at different concentrations and the zeta potential 

of CeO2NPs in the corresponding dispersion are tabulated in Table 6.1. The PZC of 

uncoated CeO2NPs has a theoretical value of 7 and was experimentally reported to be 

6.8±0.1.233, 234 The surface charge of CeO2NPs(+) as represented by the zeta potential 

fell in the range of +41.33 to +48.23 at pH<6, indicating the high stability of the 

dispersion. The zeta potential of CeO2NPs(+) decreased to +20.63 mV as pH increased 

to 6.1 at the lowest concentration. Because of the PVP coating, the zeta potential of 

CeO2NPs(-) was strongly negative at pH near 7, ranging from -35.3 to -51.57. 
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Figure 6.1. TEM images and particle size distributions of CeO2NPs(+) (a & c) and 

CeO2NPs(-) (b & d). 

 

 

Table 6.1. The pH of CeO2NPs dispersion at different concentrations and the zeta 

potential of CeO2NPs in corresponding dispersion. 

 pH Zeta potential (mV) 

 CeO2NPs(+) CeO2NPs(-)_ CeO2NPs(+) CeO2NPs(-) 

500 µg/L 6.10 7.04 +20.63 -35.3 

5 mg/L 5.98 7.04 +41.33 -40 

50 mg/L 5.10 7.05 +48.23 -45.43 

200 mg/L 4.85 7.13 +47.3 -51.8 

500 mg/L 4.63 7.2 +45.13 -51.57 
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The PZC of kaolin measured in this study was around 3.7-4 (Figure 6.2), in 

agreement with the previously reported values of 3-6.235, 236 Therefore, both Ottawa sand 

and kaolin in CeO2NPs dispersions displayed a negative surface charge in the 

experimental conditions. The results are summarized in Table 6.2.  

 

 

Table 6.2. Surface properties of Ottawa sand and kaolinite. 

Material 
Specific surface 

area (m2/g) 
PZC 

Zeta potential 

at pH=7 (mV) 

Zeta potential at 

pH=4.6 (mV) 

Ottawa sand 0.0053 <2224 -31224 -23224 

Kaolinite 18 3.7-4 -34236 -29236 

 

 

 

Figure 6.2. Potentiometric titration curves of kaolin. Supporting electrolyte, NaCl: (1) 

0.1 M, (2) 0.15 M. 
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Adsorption and homoaggregation study 

  The adsorption isotherms for CeO2NPs and sand/clay are shown in Figure 6.3. 

CeO2NPs(+) demonstrated greatest adsorption with kaolin, followed by the CeO2NPs(-) 

and kaolin. Strong electrostatic attraction between the oppositely charged nanoparticles 

and kaolin surface as well as the large SSA of kaolin relative to the sand were ascribed 

as key factors for the strong adsorption between CeO2NPs (+) and kaolin. The 

adsorption between CeO2NPs and sand was significantly weaker than the adsorption 

between CeO2NPs and kaolin, regardless of surface charge on CeO2NPs. CeO2NPs(-) 

showed lowest adsorption with sand.  

Figure 6.4 and Figure 6.5 show the SEM images of sand and kaolin before and 

after the adsorption in 500 mg/L CeO2NPs dispersion, with the corresponding EDS 

spectrums in selected areas. Figure 6.5 illustrates that both types of CeO2NPs mostly 

concentrated on the concave and convex areas of sand after adsorption. The average size 

of CeO2NPs(+) in Figure 6.4, as measured using ImageJ 1.49, increased from 15.5 nm to 

52.6 nm and 47.7 nm on sand surface and kaolin surface respectively. Similarly, the 

average size of CeO2NPs(-) increased from 62.5 nm to 76.7 nm and 204 nm on sand 

surface and kaolin surface respectively. The homoaggregated CeO2NPs(+) were densely 

and evenly distributed on the kaolinite surface, while the homoaggregated of CeO2NPs(-

) were scattered on the kaolinite surface.  
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Figure 6.3. The original, Freundlich, and D-R isotherms for the adsortpion of CeO2NPs 

onto sand and kaolin. qe (mg/g) is the amount of Ce adsorbed per unit weight of 

adsorbent at equilibrium, and Ce (mg/L) is the equilibrium concentration of Ce remaining 

in the liquid. The error bars represent the standard error (n=3). Points without error bars 

indicate that the error bars are too small to see in the figures. 
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Figure 6.4. The SEM images of sand and kaolin before and after the adsorption by 500 

mg/L CeO2NPs dispersion with the corresponding EDS spectrum in selected areas: (a) 

sand without CeO2NPs; (b) sand with CeO2NPs(+); (c) sand with CeO2NPs(-); (d) kaolin 

without CeO2NPs; (e) kaolin with CeO2NPs(+); (f) kaolin with CeO2NPs(-). 

 

 

 

Figure 6.5. The SEM images of sand mixed with 500 mg/L CeO2NPs dispersion with 

corresponding EDS spectum: (a) sand without CeO2NPs; (b) sand with CeO2NPs(+); (c) 

sand with CeO2NPs(-). 
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Table 6.3. The model constants and correlation coefficients of Langmuir isotherm, 

Freundlich isotherm, and D-R isotherm for the adsorption of CeO2NPs onto sand and 

Kaolin. 

Adsorbate CeO2NPs(+) CeO2NPs(-) 

Adsorbent Sand Kaolin Sand Kaolin 

Langmuir     

Qo (mg/g) -3.3289 -0.4487 -0.0116 -0.4146 

KL (L/mg) -0.0071 -0.3715 -0.1041 -0.2151 

R2 0.9999 0.9824 0.9786 0.9521 

Freundlich     

Kf (mg/g 

(L/mg)1/n) 0.0215 0.4962 0.0046 0.1630 

n 1.4128 0.9282 1.1115 1.5538 

R2 0.9133 0.8391 0.7958 0.8231 

D-R     

kad (mol2/J2) 0.0009 0.0013 0.0022 0.0012 

qs (mg/g) 0.4018 14.0385 0.3190 3.6881 

E (J/mol) 23.5702 19.6116 15.0756 20.4124 

R2 0.9103 0.8810 0.9646 0.9983 

 

 

Adsorption isotherm  

The adsorption parameters from model fitting are listed in Table 6.3. Langmuir 

isotherm led to negative adsorption capacities, indicating that the adsorption process did 

not follow the monolayer adsorption of Langmuir model. Freundlich isotherm fitted the 

adsorption data favorably but derived a low value of adsorption affinity (n) for the 
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system of CeO2NPs(+) and kaolin. Based on R2, D-R isotherm showed the best fit to the 

adsorption data. The fitting curves are shown in Figure 6.3.  

 

 

 

Figure 6.6. XDLVO interaction energy profiles for adsorption of CeO2NPs onto sand 

and kaolin and homoaggregation of CeO2NPs at 500 mg/L concentration as a function of 

the separation distance. 

 

 

XDLVO modelling 

The calculated XDLVO interaction energies between soil particles and CeO2NPs 

and between CeO2NPs are plotted in Figure 6.6. The primary energy barrier in kaolin-

CeO2NPs(-) system was significantly higher than that in sand-CeO2NPs(-) system. The 
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interaction energy profiles for adsorption of CeO2NPs(+) and sand/kaolin had no 

primary energy barrier. For homoaggregation, the primary energy barrier CeO2NPs(-) 

was five times higher than that between CeO2NPs(+).   

 

Discussion and Conclusions 

Due to the electrostatic force, the adsorption of CeO2NPs(+) with both sand and 

kaolin was greater than those of CeO2NPs(-). Not surprisingly, CeO2NPs(+) 

demonstrated greatest adsorption with kaolin, while CeO2NPs(-) had poorest adsorption 

with sand. Barton et al.237 measured the nanoparticle affinity for heteroaggregation in 

environmental matrices and reported similar results that CeO2NPs(+) had higher affinity 

to negatively charged activated sludge than CeO2NPs(-). The differences on the 

adsorption of these two types of CeO2NPs on sand and clay generally agreed with the 

interaction energy profiles calculated by the XDLVO along the surface charge line of 

CeO2NPs (Figure 6.6a). However, the energy barrier appeared to contradict with the 

high adsorption of CeO2NPs on kaolin. We attributed the phenomenon to the much 

larger SSA of kaolin. To gain further insights on the mechanisms, the concentration of 

CeO2NPs on solid was normalized on SSA and the normalized adsorption isotherms 

based on adsorbent surface area are shown in Figure 6.7. The higher normalized 

adsorption capacity of sand for CeO2NPs(-) compared to that of kaolin (Figure 6.7) was 

in line with the finding in Figure 6.6 that the energy barrier of the sand-CeO2NPs(-) 

interaction was lower than that of the kaolin-CeO2NPs(-) interaction.  
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Figure 6.7. The normolized adsorption isotherms based on the adsorbent suface area. q’
e 

(mg/m2) is the amount of Ce adsorbed per unit surface area of adsorbent at equilibrium, 

and Ce (mg/L) is the equilibrium concentration of Ce remaining in the liquid. The error 

bars represent the standard error (n=3). Points without error bars indicate that the error 

bars are too small to see in the figures. 

 

 

The absence of the energy barriers for the interactions between CeO2NPs(+) and 

sand/kaolin implied that CeO2NPs(+) could be easily attracted onto sand and kaolin and 

agreed with the observation that most of CeO2NPs(+) absorbed onto kaolin. Due to the 
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low SSA of sand and the unevenly distributed surface charge, sand adsorbed 

significantly fewer CeO2NPs(+) than kaolin did, but still adsorbed around two times 

more of CeO2NPs(+) than CeO2NPs(-).  

Because of the absence of the energy barriers, CeO2NPs(+) would adsorb onto 

sand and kaolin without preference and the normalized adsorption capacities of kaolin 

and sand for CeO2NPs(+) should be comparable. However, the normalized adsorption 

capacity of CeO2NPs(+) on kaolin was only about one-hundredth of that on sand (Figure 

6.7). It is likely that the aggregation of kaolin particles during adsorption process that 

caused the reduction of the accessible surface area of kaolin might be one reason for the 

hundredfold differences between SSA-normalized adsorption capacities of these two 

materials.   

Irrespective of higher energy barriers, the net adsorption of CeO2NPs on unit 

mass of kaolin was greater than onto sand. Kim et al.238 reported similar results that 

zero-valent iron nanoparticles retained to a larger extent on kaolinite surfaces than 

reactive surfaces of sand at pH=6. The results agreed well with the earlier observation 

that the retention of ENMs is higher in fine-textured soils containing more clays and less 

sand.239 For example, Cornelis et al.214 reported that the retention of silver nanoparticles 

(AgNPs) in natural soils was strongly correlated with the soil clay content because of the 

adsorption of AgNPs on clay minerals. Zhou et al.240 reached the same conclusion after 

studying the interactions of TiO2NPs and AgNPs with clay (montmorillonite) that clay 

particles are capable of destabilizing and immobilizing ENMs in aqueous environments 

by electrostatic attraction. Our previous study in Chapter IV showed that the 
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bioavailability of CeO2NPs to radish roots, which  was strongly associated with the 

mobility of CeO2NPs in soil, was lower in silt loam soil (19.6% clay) than in loamy sand 

soil (6.27% clay).208 Although other factors, such as the natural organic matter and 

microorganisms in soil could also affect the bioavailability of CeO2NPs, the strong 

adsorption of CeO2NPs onto clay observed in this study reveals another mechanism for 

the reduced bioavailability of CeO2NPs in soil. From this perspective, clay particles may 

be potentially used as an ENMs controlling agent by limiting the transport of ENMs in 

soil.240 

During the adsorption process, the stability of the suspended ENMs could be 

disrupted by soil particles.240 Wang et al.241 demonstrated that kaolin particles could 

destabilize TiO2NPs and AgNPs in aqueous environments and cause homoaggregation 

of ENMs. The homoaggregation is a critical process that governs the size distribution, 

solubility, and toxicity of ENMs. Our results also showed the increase of the CeO2NPs 

size on the surface of sand and clay particles, suggesting homoaggregation of CeO2NPs 

(Figure 6.4). This phenomenon can be interpreted by the XDLVO interaction energy 

profiles as well. The energy barriers illustrated in Figure 6.6 indicate the energy required 

to form homoaggregation of CeO2NPs. The low energy barrier of CeO2NPs(+) curve 

implied that the homoaggregation could be easily formed during the adsorption. The 

energy needed for homoaggregation of CeO2NPs(-) was significantly higher than that of 

CeO2NPs(+), but still lower than the energies required to form sand- CeO2NPs(-) and 

kaolin-CeO2NPs(-) adsorption, indicating the inevitability of homoaggregation. Based 

on the SEM images of the adsorbates, the size of CeO2NPs(+) increased by 239.4% after 
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interacting with sand, while the size of CeO2NPs(-) only increased by 22.7% on the sand 

surface after homoaggregation (Figure 6.4). Although the size increases of CeO2NPs(+) 

(207.7%) and CeO2NPs(-) (226.4%) on kaolin surface were comparable, significantly 

more homoaggregated CeO2NPs(+) were found on the kaolin surface than the 

homoaggregated CeO2NPs(-). The above observations from SEM images were 

consistent with the conclusion from the comparison of two energy barriers that the 

homoaggregation of CeO2NPs(+) could be more easily formed than that of CeO2NPs(-). 

The adsorption between CeO2NPs(-) and soil particles, as well as the 

homoaggregation of CeO2NPs(-) highly depend on the volume fraction of the coating 

polymer (PVP) when the interaction distance was less than the coating thickness. 

Equation 6.8 indicates that the volume fraction of PVP is a function of the maximum 

surface concentration of PVP on the particles. In this chapter, the volume fraction of the 

PVP was calculated to be 0.1, which was relatively conservative compared to previous 

reports.222, 242 The steric repulsion would increase rapidly with the increase of maximum 

surface concentration of PVP, and makes the adsorption of CeO2NPs(-) onto soil 

particles more difficult than the adsorption of CeO2NPs(+) onto corresponding particles. 

Therefore, the surface conditions of ENMs was as critical as the surface charge when 

assessing the interactions between ENMs and soil particles.  

The bioavailability and risks of CeO2NPs to plants were demonstrated to be 

strongly correlated to the nanoparticle size in Chapter II and III. The homoaggregation 

of CeO2NPs during the adsorption process significantly increased the particle size of 

CeO2NPs and hence could reduce the bioavailability of CeO2NPs in soil. Moreover, the 
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XDLVO modeling implied the significance of the CeO2NPs surface coating on their 

homoaggregation process and suggested that the modification of CeO2NPs surface 

chemistry could alter the level of their homoaggregation and affect the bioavailability of 

CeO2NPs in soil as well. 

Heavy metal contaminants are retained by soil through three main mechanisms: 

adsorption, surface precipitation, and chemical bonding.202 Among these three 

mechanisms, adsorption is considered as the dominant mechanism for the transport 

processes of metal contaminants.243 For the transport and attachment of ENMs to 

environmentally relevant surfaces, adsorption was also proposed as a controlling 

process.244 To determine whether the adsorption is the dominant mechanism for the 

adsorption of ENMs on soil particles, three commonly used adsorption isotherm models 

were employed to fit the adsorption data. Clearly, based on the discussion above, the 

assumption of monolayer adsorption by the Langmuir model does not apply to the 

interactions of ENMs and sand or kaolin due to the homoaggregation of CeO2NPs and 

the uneven energy distribution on the sand and kaolin surfaces. Huang et al.245 reported 

that the surface charge distribution of sand strongly correlates with its morphology. 

Regions with more complex morphology, including the concave and convex parts, have 

greater charge density. The SEM images of sand before and after CeO2NPs adsorption 

indicated that the CeO2NPs mostly concentrated on the concave and convex parts of 

sand (Figure 6.5). For the kaolin, Tombacz and Szekeres246 stated that the entire platelet 

of kaolinite would be negatively charged with a non-uniform charge density at pH higher 

than the PZC. In another word, the energy distribution on the surfaces of sand and kaolin 



 

 

146 

  

is uneven. Thus, the Langmuir isotherm failed to predict the adsorption of CeO2NPs onto 

sand and kaolin. In Freundlich isotherm, Kf is directly proportional to the adsorption 

capacity. The Kf of the CeO2NPs(+) kaolin binary system was the highest, while the Kf 

of the CeO2NPs(-) sand binary system was the lowest, consistent with the experimental 

observation. Another parameter in the Freundlich isotherm, the calculated adsorption 

intensity n, indicates the degree of favorability of adsorption. Treybal247 stated that 

larger value of n implies stronger interaction between adsorbent and adsorbate, while the 

values of n in the range 1-10 indicate a favorable adsorption process. The derived values 

of n shown in Table 6.3 contradicted with the experimental observation that CeO2NPs(+) 

displayed greatest adsorption onto kaolin. As a result, Freundlich isotherm is not 

appropriate to describe the adsorption in which the electrostatic attraction dominates. 

The D-R isotherm distinguishes the physical and chemical adsorption of adsorbate with 

its free energy, E. The relatively low value of E in all adsorption processes (<1 kJ/mol) 

implied a physical adsorption process.248 The calculation of E was also consistent with 

the finding from XDLVO modeling that the physical electrostatic interactions were 

always dominant during the approaching process of CeO2NPs to soil particles (Figure 

6.6). Labille et al.216 investigated the heteroaggregation of TiO2NPs with clay colloids 

(smectite) and came to the same conclusion that the affinity of TiO2NPs to clay was 

mainly driven by electrostatic interactions. The process of CeO2NPs(+) adsorbing to 

kaolin had the highest theoretical isotherm saturation capacity (qs), which agreed well 

with the experimental results. The high values of R2 for all adsorption scenarios explored 
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in this study indicates that D-R isotherm successfully fitted all experimental data and 

could potentially model the adsorption of CeO2NPs on soil components.  

In summary, the surface charge of CeO2NPs as well as the surface coating 

conditions were critical when assessing the adsorption of CeO2NPs with soil components 

and homoaggregation of CeO2NPs. Soil texture was further demonstrated as a key factor 

to govern the mobility of ENMs in soil and the clay content in soil must be considered 

when assessing the bioavailability and risks of ENMs to plants. The D-R model was 

found to fit the adsorption well between CeO2NPs and soil particles. This chapter 

provide some insights into the interactions between CeO2NPs and basic soil particles. 

However, the composition and properties of natural soil are much more complicated than 

the simplified soil in this experiment. Future studies should take more soil components 

into consideration to gain further understanding on the fate and transport of CeO2NPs in 

terrestrial environment. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE STUDIES 

 

Conclusions 

The potential toxicity and accumulation of engineered nanomaterials (ENMs) in 

agricultural crops has become an area of great concern and intense investigation. In this 

dissertation, the uptake and accumulation of CeO2NPs by Raphanus sativus L. (radish) 

have been evaluated in both hydroponic and soil systems.  

The results demonstrated the complexity of Ce uptake by plants. The surface 

charge of CeO2NPs, the aging process of CeO2NPs in soil, and soil properties, including 

the soil texture, mineral content, and organic matter content, are all important factors 

governing the fractionation of CeO2NPs in soil and subsequent bioavailability to radish. 

The intact CeO2NPs could be taken up by the radish fine roots, but the upward transport 

to the shoots was limited. The transformation of CeO2NPs to ionic Ce (Ce3+) on the 

radish fine root surface or rhizosphere was confirmed in this study and the low 

molecular organic acids exuded from fine roots were deemed as a key factor for the 

enhanced transformation. The aging process of CeO2NPs in soil could also enhance the 

transformation of CeO2NPs to ionic Ce and lead to higher Ce3+ concentration in bulk 

soil. The ionic Ce, which could cause potential risks to radish plants, was found to be 

more readily transported to and accumulated in the radish shoots and can reform 

particulate Ce salt within plant tissues.  
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Future Studies 

Because of many restraints during the investigation, some questions remain and 

deserve more detailed investigations in future studies. From the aspect of phytotoxicity, 

the genomic responses of plants to ENMs exposure would worth studying to gain an in-

depth understanding of the toxicity of ENMs to plants. The low molecular weight 

organic acids in root exudates were found to be able to enhance the dissolution of 

CeO2NPs. However, whether the enhancement by organic acids is a general and critical 

mechanism for the metallic ENMs is still unknown. The underlying chemical 

mechanisms of the interactions between ENMs and organic acids are still elusive and 

worth clarifying in the future. Root exudates are known to differ with plant 

developmental stage, both in composition and in relative quantities of each compound. 

Thus, the uptake efficiency of metallic ENMs for plants might be significantly affected 

by the developmental stages and worth further investigation if it is the case that root 

exudates play a critical role in the uptake of ENMs. In addition, the significance of 

microbial community to the uptake of ENMs worth investigation. In most of the 

previous uptake studies, either in the hydroponic system or in the soil system, the effects 

of microorganisms, such as bacteria, fungi, and algae, were often overlooked. However, 

the unique exudate cocktails released by plants could attract a specific microorganism 

community and influence the rhizosphere environment, hence affect the uptake of ENMs 

by plants. Moreover, whether the unique attributes of ENMs, such as particle size, 

particle surface charge, and crystal structure of ENMs, will be able to minimize or 

facilitate the accumulation of ENMs in plants based on the mechanisms for ENMs to 
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penetrate into plant tissues needs to be further tested. From this perspective, the 

improvement of nano-fertilizers (in terms of the active ingredient delivery efficiency) 

might be a new direction of ENMs uptake study and a promising application of the 

nanotechnology. 
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