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ABSTRACT 

 

Externalizing proneness, or impulse control and substance abuse problems, has been 

broadly associated with dysregulation in reward sensitivity.  The goal of this investigation 

was to systematically determine the effects of distinct manifestations of externalizing 

proneness, namely disinhibition and substance abuse, on specific aspects of reward 

processing using a Research Domain Criteria approach.  Additionally, this investigation 

examined whether striatal dopamine moderates the impact of externalizing proneness on 

reward processing.  Striatal tonic dopamine levels were operationalized using spontaneous 

eyeblink rate.  Participants completed disinhibition and substance abuse subscales of the brief 

form Externalizing Spectrum Inventory, and then performed assessments of reward wanting 

and learning, devaluation sensitivity, effort expenditure for rewards, and reward-incentivized 

cognitive control.  Results revealed that disinhibition and substance abuse exerted unique 

effects on reward processing, which were moderated by variation in striatal dopamine levels.  

High-disinhibited individuals with low striatal dopamine showed greater reward wanting and 

preferred less physically effortful, smaller rewards.  Individuals with substance abuse 

problems and high striatal dopamine showed enhanced long-term reward learning, while high 

substance users with low dopamine showed enhanced learning of immediately rewarding 

options, exerted greater cognitive effort to obtain rewards, and showed deficits in reward-

incentivized cognitive control. Substance abuse, independent of striatal dopamine, was 

associated with reduced reward devaluation sensitivity.  Collectively, these results suggest 

that in individuals with externalizing proneness, low striatal dopamine may represent a risk 

factor for addiction or elevated impulse control problems. 
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1. INTRODUCTION 

 Externalizing, or impulse control, problems are pervasive and can have substantial 

consequences. Research from the National Comorbidity Survey shows the incidence rate of 

impulse control disorders, including substance abuse conditions, in the United States to be 

approximately 8% to 9% (Insel & Fenton, 2005; Kessler et al., 1994; Wang et al., 2005). In 

addition, many more individuals exhibit subclinical manifestations of disinhibition and 

substance abuse that also have adverse effects. One prominent domain in which externalizing 

tendencies can engender negative consequences is decision making.  In particular, 

externalizing behavior has been linked to impairments in reward-based decisions that 

contrast short-term versus long-term consequences (Bechara & Damasio, 2002).   

 Despite the prevalence of externalizing proneness and the important consequences of 

reward-based decision-making, research aimed at examining the effects of externalizing 

proneness on specific aspects of reward processing is limited.  One way to systematically 

address this issue is to utilize the Research Domain Criteria (RDoC) framework.  The RDoC 

characterizes reward processing as the Positive Valence Systems domain and includes eight 

unique constructs or sub-constructs of reward processing, such as reward learning, reward 

valuation (reward “wanting”), effort valuation, habit learning, and long-term responsiveness 

to reward (Cuthbert & Kozak, 2013; Insel et al., 2010). Reward wanting, learning, effort 

valuation, and habit learning all depend on ventral striatum dopaminergic functioning 

(Berridge & Robinson, 1998; Hyman, Malenka, & Nestler, 2006; Treadway et al., 2012). 

While work with sustained responsiveness to reward shows that this construct depends on 

dopamine, limited research has been conducted with this construct and involvement of 

striatal dopamine specifically.  Instead, most work has been focused on the role of the 
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orbitofrontal cortex (OFC) and hypothalamus in long-term responsiveness to reward (Elliott, 

Dolan, & Frith, 2000; Weiss, 2005). Thus, the current investigation was aimed at 

investigating (1) the effects of externalizing proneness on reward processing using the RDoC 

framework, and (2) the role of striatal dopamine in moderating these effects.  This not only 

provides a systematic approach to test the proposed research questions, but also contributes 

to the RDoC conceptualization of externalizing behavior.  

1.1 Substance Abuse, Trait Disinhibition, and Dopaminergic Function 

 A clear problem with current research on externalizing proneness and reward-based 

decision-making is that the unique manifestations of externalizing tendencies, namely 

disinhibition and substance abuse, are often conflated (Moeller & Dougherty, 2002).  While 

these two constructs are highly comorbid, they nevertheless represent phenotypically 

distinctive phenomena (Armstrong & Costello, 2002; Finn et al., 2009; Krueger et al., 2007; 

Waldman & Slutske, 2000).  Substance abuse entails recreational or problematic use of drugs 

and alcohol, whereas disinhibition reflects broader tendencies toward nonplanfulness, 

impulsive risk taking, irresponsibility, and alienation from others (Patrick, Kramer, Krueger, 

& Markon, 2013). Thus, a second goal of the current proposal is to test for individual 

contributions of disinhibition and substance abuse on specific aspects of reward processing. 

 Molecular genetic research demonstrates that allelic variation in dopaminergic genes, 

including DRD2 and DRD3, is related both to disinhibitory traits and to substance abuse 

problems (Comings, Muhleman, Ahn, Gysin, & Flanagan, 1994; Derringer et al., 2010; 

Kreek, Nielsen, Butelman, & LaForge, 2005). Moreover, extensive research has 

demonstrated that dopamine plays a critical role in the neural circuitry underlying reward 

learning and wanting (e.g., Berridge & Robinson, 1998; Ikemoto, 2007; Robinson & 
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Berridge, 2000; Wise, 2004). A recent review demonstrated that discrete dopamine-

dependent neurobiological systems underlie wanting and learning aspects of reward 

processing (Baskin-Sommers & Foti, 2015).  Taken together, findings from human 

behavioral and molecular genetic research along with neuroscientific evidence indicate a role 

for genetically based variation in striatal dopaminergic function in general proneness to 

externalizing problems. Although research demonstrates that dopaminergic variation is 

associated with externalizing problems, the exact nature of this relationship for specific 

facets of externalizing problems, such as trait disinhibition and substance abuse (Krueger et 

al., 2007; Patrick et al., 2013), is unclear.  One possibility is that the distinction between 

disinhibition and substance abuse corresponds to differences in striatal dopaminergic 

function. 

1.2 Dopamine and Distinct Aspects of Reward Processing   

 According to incentive-sensitization theory, associative learning mechanisms 

determine the dopaminergic sensitization to incentive salience, a process by which stimuli 

become rewarding and wanted.  Extensive research has demonstrated that dopamine plays a 

critical role in the neural circuitry underlying reward learning and wanting (e.g., Berridge & 

Robinson, 1998; Ikemoto, 2007; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; 

Robinson & Berridge, 2000; Wise, 2004).  Specifically, a recent review demonstrated that 

discrete dopamine-dependent neurobiological processes underlie wanting and learning 

aspects of reward responding (Baskin-Sommers & Foti, 2015).  The distinction between 

reward wanting and learning processes is crucial to understanding the role of externalizing 

behavior in reward-based decision making. Physiological reward wanting drives approach 

toward reward and enhances reward motivation. Dopamine signals in the ventral striatum 
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connect incentive value to a reward stimulus (Baskin-Sommers & Foti, 2015).  Learning, on 

the other hand, involves dopamine signaling from the ventral striatum to the prefrontal 

cortex, which updates goal representations and associations between a stimulus and its 

outcome (Baskin-Sommers & Foti, 2015; Everitt & Robbins, 2005; Ma et al., 2010; Motzkin, 

Baskin-Sommers, Newman, Kiehl, & Koenigs, 2014).  Dopaminergic neurons in the 

mesolimbic system encode predictions about a reward and update that prediction based on 

feedback from prediction errors, thus signaling the reward value of stimuli in reinforcement 

learning contexts (Berridge, Robinson, & Aldridge, 2009; Flagel et al., 2011; Glimcher, 

2011; Hollerman & Schultz, 1998).  However, it is unclear whether tonic or phasic striatal 

dopamine is the basis for the effects of wanting and learning processes.  

 Tonic dopamine refers to the baseline level of extrasynaptic dopamine in the brain, 

whereas phasic dopamine refers to the spiking activity of dopamine neurons in response to a 

stimulus, such as a reward signal (Schultz, 1998). Trait impulsivity has been associated with 

decreased D2/D3 autoreceptor availability and increased amphetamine-induced dopamine 

release in the ventral striatum (Buckholtz et al., 2010). Drug or alcohol addiction alters the 

balance between the tonic and phasic dopamine system. Frequent drug use increases tonic 

dopamine levels, which inhibits phasic dopamine release (Grace, 1995). Thus, the dopamine 

system is altered in substance abusers such that tonic striatal dopamine levels are elevated 

and the phasic dopamine system becomes desensitized and weakened in its reactivity (Grace, 

1995). As a function of this, individuals may use substances to restore the tonic-phasic 

dopamine system to equilibrium (Grace, 1995, 2000).  

 This disequilibrium between tonic and phasic dopamine makes it especially important 

to examine how tonic dopamine interacts with substance abuse tendencies to affect reward-
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based behavior.  In regard to reward processing, phasic dopamine activity, in particular, has 

been shown to encode reward prediction errors in the striatum (Ljungberg, Apicella, & 

Schultz, 1992; Niv, Daw, Joel, & Dayan, 2007; Schultz, 1998;Waelti, Dickinson, & Schultz, 

2001). On the other hand, tonic dopamine levels encode the average reward rate (Niv et al., 

2007).  Given the distinct role of striatal tonic and phasic dopamine in reward processing and 

the association between externalizing proneness and dopaminergic gene variation, it is 

possible that differences in dopaminergic function moderate the relationship between 

externalizing proneness aspects of reward processing. Thus, a final goal of the proposed 

research is to investigate how striatal dopamine interacts with trait disinhibition and 

substance abuse to affect reward processing. 

1.3 Current Studies  

 The current investigation entailed four studies to assess the interaction between 

striatal dopamine and externalizing proneness on specific aspects of reward processing.  The 

first study was designed to assess the interaction between externalizing proneness and striatal 

dopamine on reward wanting and learning.  Previous research with substance abuse and 

reward-based decision-making shows mixed findings with some studies observing that 

substance abuse predicts poorer associative learning, and thus poorer reward-based decision-

making, on the Iowa Gambling Task (IGT; Bechara, 2003; Bechara & Damasio, 2002).  

However, other studies find no such deficits (Bolla et al., 2003; Ernst et al., 2003).  

Additionally, research on impulsivity, though quite limited, shows no association between 

trait disinhibition and IGT performance (Upton, Bishara, Ahn, & Stout, 2011). With regard to 

reward wanting, a recent review demonstrates that substance abuse has been associated with 

increased preference for immediate hypothetical monetary and drug rewards over delayed 
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reward using the delay discounting paradigm (Yi, Mitchell, & Bickel, 2010).  However, for 

trait disinhibition, only one study has tested for an effect on reward-based decision making 

separate from its association with substance abuse.  This study, by de Wit et al. (2007), 

demonstrated that nonplanful impulsivity predicted preference for immediate rewards, or 

enhanced “wanting”, but overall composite impulsivity reports were not significantly 

predictive of delay discounting preferences. Although research shows that substance abuse 

predicts poorer associative reward learning and nonplanful impulsiveness is associated with 

increased preference for immediate rewards, work on this topic has been somewhat mixed 

and is quite limited in scope. Consequently, Study 1 examined the interaction between 

externalizing proneness and striatal dopamine on reward wanting (using the delay 

discounting paradigm) and reward learning (using a reinforcement learning task).  

 Study 2 assessed interactions between externalizing proneness and striatal dopamine 

on reward disengagement.  While enhanced learning of action-reward contingencies may be 

beneficial in some situations, such as academic or job-related contexts where increased 

studying or working may lead to better grades and promotions, this is not always the case.  

For example, when action-reward associations are learned between a drug and its rewarding 

properties, then enhanced reward learning may serve as a risk factor for transitioning from 

recreational drug use to addiction (Hogarth et al., 2013).  Thus, Study 2 used a reinforcement 

learning task with a devaluation component, whereby one option becomes devalued, to test 

both reward learning and disengagement, or “devaluation”.   

 The purpose of Study 3 was to investigate the possible interaction between 

externalizing proneness and striatal dopamine on a reward-based decision-making task in 

which one must expend effort to receive rewards.  This tests the “effort valuation” construct 
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in the RDoC framework.  Because the delay discounting paradigm does not entail effort-

based decision-making, one remaining question is whether striatal dopamine alters reward 

wanting in individuals with higher externalizing behaviors when one has to expend effort to 

receive rewards.  Previous work on effort expenditure demonstrates that ventral striatal tonic 

dopamine depletion reduces willingness to expend effort to obtain rewards in rats (Treadway 

et al., 2009).  The discrepancy in these findings, in which diminished tonic dopamine leads to 

enhanced encoding of reward prediction errors but also reduces effort expenditure for such 

rewards, emphasizes the need to understand how tonic DA interacts with trait disinhibition to 

predict effort-based decision-making.   

Using the RDoC framework, substance use disorders have been characterized as 

dysregulation of the positive valence systems and cognitive control domains (Sanchez & 

Cruz-Fuentes, 2016).  Therefore, Study 4 was designed to compare reward wanting and 

inhibitory control demands and their relationship with externalizing proneness.  Although by 

name trait disinhibition encompasses behaviors characterized by a lack of inhibitory control, 

research on stop signal task performance, a cognitive control task that assesses behavioral 

inhibitory control, finds no significant associations with overall trait impulsiveness; instead, 

only the motor impulsiveness subscale correlates with poorer stop signal task inhibitory 

control (Enticott, Ogloff, & Bradshaw, 2006; Shen, Lee, & Chen, 2014).  In contrast, a 

considerable amount of work has shown that substance abuse is associated with poorer 

inhibitory control on the stop signal task (e.g., Ersche et al., 2011; Goudriaan et al., 2005; Li 

et al., 2006; Monterosso et al., 2005; Moreno et al., 2012).  The purpose of Study 4 was to 

determine how inhibitory control is affected by reward valuation by providing an immediate 

reward for correct inhibition. 
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2. STUDY 1: REWARD WANTING AND LEARNING

Study 1
1
 was designed to assess the influences of general externalizing proneness and

its specific manifestation in the form of substance abuse on reward learning and behavioral 

choices, and the role of variations in striatal dopamine levels (as indexed by spontaneous 

eyeblink rate) in moderating this relationship.  Previous research shows that substance abuse 

is related to poorer associative learning on the Iowa Gambling Task (Bechara, 2003; Bechara 

& Damasio, 2002).  In contrast, however, superior associative learning for drug stimuli and 

reward outcomes is a proposed mechanism for transitioning from recreational drug use to 

addiction (Hogarth, Balleine, Corbit, & Killcross, 2013).  Thus, the current research on the 

relationship between substance abuse and reward learning appears mixed.  

Because tonic dopamine encodes the average reward rate, while phasic dopamine 

encodes reward prediction errors (Ljungberg et al., 1992; Niv et al., 2007; Schultz, 1998; 

Waelti et al., 2001), dopamine may interact with substance abuse to affect reward-based 

associative learning.  In particular, elevated tonic dopamine levels may enhance learning of 

the long-term average rewards associated with each reward option.  Low tonic dopamine 

levels may lead to larger phasic spikes in response to reward prediction errors, and thus 

enhanced associations of the immediate action-reward contingencies (Daw, 2003; Niv et al., 

2007).  Thus, high tonic dopamine levels may operate to enhance updating of reward values 

and thereby facilitate learning of the long-term average reward rates of differing options. In 

contrast, low tonic dopamine may result in poorer associative learning due to over-reliance 

on immediate action-reward contingencies at the expense of long-term action-reward 

contingencies. 

1
*Reprinted with permission from “Striatal Dopamine, Externalizing Proneness, and Substance Abuse Effects

on Wanting and Learning during Reward-Based Decision-Making” by K. A. Byrne, C. J. Patrick, and D. A. 

Worthy, 2016. Clinical Psych Science, 4, 760-774. Copyright 2016 by SAGE Publishing. 

http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full
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Given that nonplanful impulsivity is associated with enhanced preference for 

immediate rewards, trait disinhibition appears to be associated with increased reward 

wanting.  Based on this limited research, I predicted that individuals with more disinhibitory 

tendencies and low tonic dopamine levels (larger phasic spikes in response to reward stimuli) 

would show enhanced reward wanting preferences.  

For all studies, a power analysis was conducted using G*Power to determine the 

appropriate sample size.  The results revealed that a sample of 91 would be needed to have 

80% power and a medium effect size to detect an effect with a regression with five predictors 

(eyeblink rate index of striatal dopamine, Disinhibition, Substance Abuse, EBR X 

Disinhibition, and EBR X Substance Abuse); thus, a sample size of at least 91 participants 

was obtained for each study.  

2.1 Participants 

A total of 93 undergraduate students (48 females; age range = 18–22) completed the 

delay discounting task for partial course credit in their introduction to psychology course. Of 

these, 67 (36 females) also performed the reward learning task. 

2.2 Materials and Design  

Externalizing Spectrum Inventory–Brief Form.  To assess disinhibitory/externalizing 

tendencies, I administered the Disinhibition and Substance Abuse subscales from the 

Externalizing Spectrum Inventory–Brief Form (ESI-BF; Patrick et al., 2013). The 

Disinhibition subscale consisted of 20 items that assess general externalizing proneness (i.e., 

proclivities toward reckless-impulsive behavior, and affiliated traits; Krueger et al., 2007), 

and includes questions about problematic impulsivity, irresponsibility, theft, impatient 

urgency, fraud, alienation, planful control, and boredom proneness. The Substance Abuse 

subscale contained 18 items pertaining to use of and problems with alcohol and other drugs. 

http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-66
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-51
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For each scale, item responses were made using a 4-point Likert-type scale (true, somewhat 

true, somewhat false, or false). Both the Disinhibition and Substance Abuse subscales show 

strong validity in relation to relevant criterion measures (Patrick & Drislane, 2015; Venables 

& Patrick, 2012), and both exhibited very high internal consistency within the current sample 

(αs = .94 and .95). It is important that the ESI-BF Disinhibition scale is a measure of an 

individual’s general proclivity for externalizing problems, whereas the ESI-BF Substance 

Abuse scale indexes a distinct manifestation of this broad disinhibitory liability—namely, 

problematic use of alcohol/drugs. 

Spontaneous Eyeblink Rate (Tonic Dopamine Index). Spontaneous eyeblink rate 

(EBR) was used as an index of striatal tonic dopamine (Karson, 1983). Specifically, previous 

research demonstrates that faster spontaneous EBR is indicative of elevated dopamine levels 

in the striatum (Colzato, Slagter, van den Wildenberg, & Hommel, 2009; Karson, 1983; 

Taylor et al., 1999).  More recently, spontaneous eyeblink rate has been shown to have a 

strong correlation with dopamine D2 receptor density, which mediates tonic dopamine levels, 

in the ventral striatum and caudate nucleus (Groman et al., 2014; Slagter et al., 2015). 

Following previous published research (e.g., Chermahini & Hommel, 2010; Colzato 

et  al., 2009; De Jong & Merckelbach, 1990; Ladas, Frantzidis, Bamidis, & Vivas, 2013), I 

used electrooculogram (EOG) recording to assess spontaneous EBR as an indirect index of 

available levels of tonic dopamine in the striatum. To record EBR, I followed the procedure 

described by Fairclough and Venables (2006), in which vertical eyeblink activity was 

recorded from Ag/AgCl electrodes positioned above and below the left eye, with a ground 

electrode placed on the center of the forehead. All EOG signals were filtered (at 0.01–10 Hz) 

and amplified using a Biopac EOG100C differential corneal–retinal potential amplifier. 

http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-65
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-79
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-79
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Eyeblinks were defined as phasic increases in EOG activity of >100 µV and occurring within 

intervals of 400 ms or less over the recording interval. Eyeblink frequency was quantified 

using manual count. All recordings were collected during daytime hours of 11 a.m. to 4 p.m. 

because previous work has shown that diurnal fluctuations in spontaneous EBR can occur in 

the evening hours (Barbato et al., 2000). A black fixation cross (“X”) was displayed on a 

wall at eye level 1 m from where the participant was seated. Participants were instructed to 

look in the direction of the fixation cross for the duration of the recording and avoid moving 

or turning their head. Eyeblinks were recorded for 6 min under this basic resting condition. 

Each participant’s EBR was determined by computing the average number of blinks across 

the 6-min recording interval. 

Reward Wanting.  The delay discounting task (Richards, Zhang, Mitchell, & Wit, 

1999) was utilized to assess reward-related wanting.  Within the Research Domain Criteria 

(RDoC) framework (Cuthbert & Kozak, 2013), delay discounting is an experimental 

paradigm that relates to the approach motivation construct under the Positive Valence 

Systems domain. Previous research indicates that the RDoC approach motivation construct 

corresponds to physiological reward wanting (Baskin-Sommers & Foti, 2015). In the delay 

discounting task, participants indicated whether they would prefer a smaller amount of 

money immediately or a larger amount of money after a time delay (e.g., “Would you prefer 

$2 now or $10 after 30 days?”). A preference for immediate reward indicated greater 

disregard for (discounting of) the delayed reward option and, by inference, a higher degree of 

“wanting” for immediate reward. The dependent measure was the area under the curve; lower 

values indicate greater discounting of future rewards and thus enhanced reward wanting.  

http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-70
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-70
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-21
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-4
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Reward Learning.  To examine reward learning, I utilized a complex reinforcement-

learning (RL) task, a type of paradigm enumerated under the RDoC reward learning 

construct. This task involves a choice-history-dependent reward structure and has been used 

extensively in previous research to investigate learning of immediate and delayed reward 

outcomes (Cooper et al., 2014; Worthy, Byrne, & Fields, 2014; Worthy, Cooper, Byrne, 

Gorlick, & Maddox, 2014; Worthy, Gorlick, Pacheco, Schnyer, & Maddox, 2011; Worthy, 

Otto, & Maddox, 2012). In the task, participants repeatedly chose between two options to 

learn which option led to the best outcome. One option, the Increasing option, offered fewer 

points on each trial compared with the second option, but rewards for both options increased 

over time as it was selected more frequently. The second option, the Decreasing option, 

offered more points on each trial but as this alternative was chosen more often, rewards for 

both options decreased in value. Thus, participants needed to choose between both options to 

learn that the Increasing option was advantageous because it offered more points in the long-

run. The dependent measure was the proportion of trials that individuals selection the optimal 

Increasing option.  

2.3 Procedure 

Participants began the study by completing demographic questionnaires (age, gender, 

and the number of hours slept the previous night) and the ESI-BF Disinhibition and 

Substance Abuse subscales followed by 100 trials of the reward learning task. Participants 

were given a goal of earning at least 7,200 points on the task, which would require them to 

select the optimal Increasing option on more than 60% of the trials. After the reward learning 

task, participants completed the delay discounting task. The session ended with a 6-min 

assessment of EBR.  Then, participants were debriefed about the nature of the study. 

http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-20
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-85
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-86
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-86
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-87
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-88
http://cpx.sagepub.com/content/early/2016/02/06/2167702615618163.full#ref-88
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2.4 Data Analysis 

To evaluate my first hypothesis regarding the association between the EBR index of 

striatal dopamine and the individual differences and performance measures, bivariate 

correlations were conducted. I anticipated that negative correlations would be observed 

between delay discounting reward preference and the EBR index as well as between ESI-BF 

Disinhibition and the EBR index, whereas a positive relationship between reward learning 

performance and EBR was expected.  

To test my other two hypotheses pertaining to the interaction between the EBR index 

of striatal dopamine and externalizing tendencies, separate hierarchical regression analyses 

were conducted for the delay discounting and reward learning tasks. These analyses provided 

for evaluation of the separate and interactive effects of continuous variations in externalizing 

tendencies and dopamine levels on decision making. Gender, age, and hours slept were 

included as covariates in both regression analyses to control for possible effects of these 

variables. Thus, the predictors for both delay discounting (“reward wanting”) and reward 

learning regressions were identical. Results from the delay discounting preferences reward 

learning regressions were used to assess for effects of externalizing proneness and its 

interaction with striatal dopamine on reward wanting and learning, respectively. 

2.5 Results and Discussion 

Descriptive Statistics. Examination of the spontaneous EBR results revealed that one 

participant’s data was excluded because EBR in this case was more than three standard 

deviation units above the mean and thus represented an outlier. After this exclusion, 

individual EBRs ranged from 4.33 to 38.83 blinks/min (M = 17.31, SD = 8.81). Scores on the 

ESI-BF Disinhibition subscale ranged from 0 to 51 (M = 15.39, SD = 13.60) and the range of 
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scores on the ESI-BF Substance Abuse subscale ranged from 0 to 34 (M = 13.36, SD = 7.46). 

No outliers were observed in responses to the ESI-BF subscales.  

Correlational Analyses. Bivariate correlations (rs) were computed between each of 

the measures collected (i.e., EBR index of striatal dopamine and Substance Abuse and 

Disinhibition scales of the ESI-BF) and performance on the delay discounting task and the 

reward learning task (Table 1). ESI-BF Disinhibition and Substance Abuse scores were 

positively correlated as expected with one another (cf. Patrick et al., 2013), r = .46, p < .01. 

Substance Abuse scores, and to a lesser extent Disinhibition scores, showed negative 

associations with the EBR index of tonic dopamine level, although these correlations were 

also nonsignificant. 

Regression Analysis for Reward Wanting Task. A three-step hierarchical multiple 

regression analysis was conducted to examine the effect of disinhibition, substance abuse, 

and striatal dopamine, as measured by eyeblink rate, on delay discounting performance.  In 

the first step, gender, age, and hours slept were entered as covariates. Omnibus prediction at 

this step of the model was marginally significant, F(3, 88) = 2.42, p = .07.  Gender did not 

emerge as a significant predictor at this step (p=.52), but hours slept showed a significant 

relationship (β = .23, p = .03), indicating that sleep was associated with less discounting of 

delayed rewards, and age showed a marginally significant predictive association, β = .17, p 

=.10.  In the second step of the model, disinhibition, substance abuse, and striatal dopamine 

(as indexed by EBR) were entered to evaluate their independent predictive associations with 

delay discounting.  The model as a whole was not significant at this step (p =.56), and none 

of the predictors evidenced an independent association with delay discounting preferences, ps 

>.30.  In the third step of the model, interaction terms for striatal dopamine by disinhibition 
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and striatal dopamine by substance abuse were entered as predictors.  The addition of these 

terms accounted for a significant proportion of the variance in delay discounting, ΔR
2 

= .06, 

F(8, 83) = 3.19,  p<.05.  At this step of the model, the Striatal Dopamine X Disinhibition 

interaction (β = .29, p = .01) contributed significantly to prediction of delay discounting 

choices, whereas striatal dopamine (p = .91), disinhibition (p = .18), substance abuse (p = 

.84) and the Striatal Dopamine X Substance Abuse interaction (p = .69) were not predictive 

of delay discounting preferences.  

Next, simple regression lines for the effect of disinhibition on delay discounting at (a) 

the mean for striatal dopamine, (b) one standard deviation above the mean for striatal 

dopamine, and (c) one standard deviation below the mean striatal dopamine were performed.  

Striatal dopamine, disinhibition, and substance abuse variables were centered prior to 

creating the centered interaction terms. The simple regression slope coefficients when 

centered at the mean (β = -.17, p = .18) and one standard deviation above the mean (β = .09, 

p = .54) were not significant, but the simple regression slope coefficient for one standard 

deviation below the mean significantly predicted delay discounting, β = -.43, p =.02, such 

that at low levels of striatal dopamine individuals higher in disinhibition tended to discount 

future rewards at a greater rate.  This result suggests that the impact of increasing 

disinhibition on delay discounting performance varied as a function of tonic dopamine level 

as indexed by EBR, such that high-disinhibited individuals with low tonic dopamine showed 

the most aberrant delay discounting performance, and thus the strongest reward wanting 

preferences. 

Regression Analysis for Reward Learning Task.  The same predictors used in the 

analysis of delay discounting were entered across three steps of a counterpart regression 
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model for reward learning task performance, operationalized as the average proportion of 

Increasing optimal option selections on the task.  Omnibus prediction at step 1 of the model, 

at which gender, age, and hours slept were added, was significant, F(3,64) = 6.05, p < .01, 

with gender (β = .46, p < .01) but not age (p = .63) or hours slept (p = .30) emerging as 

distinctly predictive of reward learning performance.  Consistent with previous research 

(Byrne & Worthy, 2015), males selected the optimal option more frequently than females.  

The increase in overall prediction was not significant at step 2 of the model (ΔR
2 

=.01, F(6, 

61) = 0.16, p = .92), in which disinhibition, substance abuse, and striatal dopamine were 

included as predictors, but none of these variables accounted uniquely for variance in reward 

learning performance, all ps >.50.  In the last step of the model, interaction terms for striatal 

dopamine by disinhibition and striatal dopamine by substance abuse were entered.  A 

significant increase in overall prediction was again evident (ΔR
2 

= .13, F(8, 59) = 5.76, p < 

.01), in this case with the Striatal Dopamine X Substance Abuse interaction effect (β = .41, p 

< .01) showing unique predictive associations.  The effect of striatal dopamine on reward 

learning performance was marginally significant (β = .23, p = .07), whereas substance abuse 

(p = .63), disinhibition (p = .23), and the Striatal Dopamine X Disinhibition interaction (p = 

.59) contributed negligibly. Based on the relationship between EBR and substance abuse, 

evidence from the regression analysis suggests that heightened striatal dopamine moderates 

reward learning in high-substance abuse individuals, leading to enhanced performance.  

Simple regression lines for the association of substance abuse with reward learning 

performance at (a) the mean for striatal dopamine, (b) one standard deviation above the mean 

for striatal dopamine, and (c) one standard deviation below the mean for striatal dopamine 

were also conducted.  As with the delay discounting analysis, predictor variables were 
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centered before the interaction terms were created.  The simple regression slope coefficient 

for the mean (β = .07, p = .63) was not significant, but the slope coefficients for one standard 

deviation above (β = .54, p = .02) and below (β = -.41, p =.04) the mean significantly 

predicted reward learning performance.  

 Discussion. These results provide evidence that baseline tonic dopamine levels 

moderate the effects of disinhibition and substance abuse on reward processing. Specifically, 

in the delay discounting task that assessed reward wanting, disinhibitory tendencies were 

associated with stronger preferences for immediate reward only for individuals with lower 

tonic dopamine levels. At moderate and high levels of tonic dopamine we observed no 

relationship between disinhibition and preferences for immediate versus delayed reward.  A 

potential implication of this result is that high-disinhibited individuals with low striatal tonic 

dopamine may compose a maximum-liability group.  There was no effect of substance abuse 

in this task.  

In contrast, for reward learning, a crossover interaction between tonic dopamine and 

substance abuse was observed. At higher tonic dopamine levels, substance abuse was 

associated with enhanced reward learning. At lower tonic dopamine levels, an opposing 

inverse relationship between substance use and reward learning was evident, reflecting 

comparatively poorer performance for individuals reporting higher levels of substance use. 

These results suggest that learning of long-term action-reward contingencies depends on 

tonic dopamine levels in substance abusers. The implication could be that higher levels of 

tonic dopamine might facilitate improved reward learning in individuals with high levels of 

substance use. Alternatively, alcohol or drug users with high tonic dopamine levels may be 

strategically reward-oriented rather than impulsively driven by immediate desires.  Thus, a 
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dissociative effect of disinhibition and substance abuse was found for reward wanting and 

learning, and these effects depended on striatal tonic dopamine levels. 

This study is the first to demonstrate that disinhibition and substance abuse exert 

different effects on reward processing, depending on variations in striatal tonic dopamine 

levels. Specifically, these results provide support for the hypothesis that these distinct 

components of externalizing behavior are differentially related to reward wanting and 

learning. I conclude that externalizing problems may reflect either an enhanced desire for 

rewards or augmented associative linking of reward stimuli to their outcomes. Although 

associative learning regarding reward values and reward predictors may initially be 

beneficial, it can lead to negative consequences, such as addiction, in certain disposed 

individuals across time. 

Accelerated reinforcement learning of reward options may be beneficial in some 

situations, such as academics and career goals. However, when the reward is a harmful, like a 

drug, increased tonic dopamine may still promote learning of action-reward contingencies 

and lead to difficulty in reward disengagement (Dagher & Robbins, 2009). Therefore, Study 

2 was designed to assess the long-term consequences of how baseline dopamine levels 

interact with substance abuse and disinhibition.  To address this issue, Study 2 used a 

devaluation paradigm to gauge reward disengagement after reward learning has occurred. 
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3. STUDY 2: HABIT LEARNING AND DEVALUATION 

The purpose of Study 2 was to follow up on the reward learning results from Study 1 

and determine whether striatal dopamine enhances both reward learning and disengagement, 

or devaluation, of action-reward contingencies, or if its effects are specific to reward learning 

in individuals with substance abuse problems. While numerous studies demonstrate that 

substance abuse is associated with increased perseveration on reversal learning tasks and the 

Wisconsin Card Sorting task, research on substance abuse and disengagement from 

previously reinforced behaviors in humans is very limited (Ersche et al., 2008; Fontes et al., 

2011; Hoff et al., 1996; Madoz-Gurpide et al., 2011; Woicik et al., 2009). One possible 

prediction is that similar interactions between striatal dopamine and substance abuse that are 

expected for reward learning would also be observed for reward disengagement as measured 

by devaluation sensitivity.  Specifically, at high levels of tonic dopamine individuals with 

substance abuse problems may show better reward learning and disengagement. This 

outcome would demonstrate that striatal dopamine is a protective factor of addiction—

individuals may use substances recreationally without becoming addicted to them because 

they can easily disengage from those reward associations.  Alternatively, once striatal 

dopamine facilitates the association between an option and its reward, disengaging from 

those associations may no longer be dopamine-dependent; thus, regardless of dopamine 

levels, once reward associations are well-learned and become habit-based, individuals with 

substance abuse problems may struggle to disengage from the learned strategy.  Because 

work on disinhibition and devaluation has not been investigated to my knowledge, analyses 

for disinhibition were exploratory.   
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3.1 Participants 

Ninety-one undergraduate students (61 females; age range 18 - 22) completed the 

study for partial course credit in their introduction to psychology course.  

3.2 Materials and Design 

Externalizing Spectrum Inventory–Brief Form.  As with Study 1, the ESI-BF was 

used to measure disinhibition and substance abuse.  

Spontaneous Eyeblink Rate (Tonic Dopamine Index). Spontaneous EBR was used as 

an index of striatal tonic dopamine. The same procedure that was described in Study 1 was 

followed for Study 2 to measure EBR. 

Two-Stage Reinforcement Learning Devaluation Task. In order to test the effect of 

substance abuse on both reward learning and disengagement, a two-stage reinforcement 

learning task in combination with a devaluation procedure (Gillan, Otto, Phelps, & Daw, 

2015) was utilized.  During the reinforcement learning phase, participants completed two 

concurrent two-stage reinforcement learning tasks that were structurally equivalent, but had 

unique stimuli and rewards that were recorded separately.  In this task, individuals gain 

experience with two situations (“states”) and reward outcomes in order base future decisions 

on (Gläscher et al., 2010). These states were indicated by two difference trial types: gold 

trials and silver trials. On the first stage of each trial, individuals choose between two 

options, each of which has a distinct probability of transitioning to a unique second state 

stimulus (a point box; Figure 3).  Stimuli in the second state then either provide a reward in 

the form of points or provide no reward.  Each first-stage option has a 70% chance of leading 

to a “common” second-stage state and a 30% chance of leading to a “rare” second-stage 

state.  The probability that the point boxes in the second stage contained a reward varied 
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across the task based on independent Gaussian random walks (SD=.025) with a minimum 

probability of 25% and maximum probability of 75%.  Rewards were portrayed in points 

such the point boxes contained either 0 (unrewarded) or 100 (rewarded) points. After the 

second stage, the amount of points earned was stored in a gold (gold trial type) or silver 

(silver trial type) container. The cumulative amount earned was displayed throughout the 

reinforcement learning phase. For each trial, choosing an option in the first step cost 5 points.  

Thus, if the point box led to 0 points, then there was a net loss of 5 points for that trial and 

the 5 points were deducted from the cumulative total.  If the point box yielded 100 points, 

then there was a net gain of 95 points that were added to the cumulative total.  The optimal 

strategy in this phase was to learn which first-stage options yielded common point boxes in 

the second stage for each trial type and choose those options.  

 In the devaluation phase, participants were informed that one of their point containers 

(i.e., gold) was full, and that they would no longer be able to store points in that container.  

Even if the point box contained 100 points, participants were informed that the points would 

not be deposited in the container, and they would only be charged the 5 points for that trial. 

The other point container (i.e., silver) still had room, and they could still keep points for 

those trial types. Thus, the trial type where the container was full (i.e., gold) became 

devalued. The optimal strategy was to respond the same way in this phase as the 

reinforcement learning phase for the valued trial type that still has room (i.e, silver), and 

choose not to respond for the devalued trial type where the container was full (i.e., gold).   

The dependent measure as devaluation sensitivity which was computed by subtracting the 

number of devalued trials that participants responded on from the number of valued trials that 

participants responded on. A model-based and model-free metric was also computed based 
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on whether participants stayed or switched following a rewarded or unrewarded trial (model-

free) and whether the option on the current trial led to a common or rare box (model-based). 

3.3 Procedure 

Participants first completed a 6-min assessment of EBR.  They then completed 

demographic questionnaires (age, gender, and the number of hours slept the previous night), 

the ESI-BF Disinhibition and Substance Abuse subscales.  Next, participants completed 200 

trials of the reinforcement learning phase of the two-stage reinforcement learning devaluation 

task followed by 50 trials of the devaluation phase.  Following the conclusion of these 

procedures, participants were debriefed about the study. 

3.4 Data Analysis 

In order to assess individual differences in model-free and model-based behavior 

during the reinforcement learning task, model-based and model-free metrics were computed.  

A mixed-effects logistic regression analysis for Reward (Rewarded vs. Unrewarded) X 

Transition type (Common vs. Rare) predicting stay probability was performed using the lme4 

module of the R statistical package, version 3.0.1. Trial types (silver coded as 0, gold coded 

as 1) were computed independently in the analysis such that reward and common/rare states 

pertained to the previous outcomes for that trial type.  For instance, for a trial in which 

participants selected an option on a gold trial type, the reward and common/rare outcome 

variables were computed based on the trial preceding that trial type.  Reward, second state 

outcome (common or rare), their interaction, and participants were included as random 

effects. The specific syntax for the mixed-effects logistic regression was: Stay ~ 

Reward*Transition + (1 + Reward*Transition | Participant).  From this analysis, individual 

beta weights were retrieved.  The betas from the Reward variable were used as the model-
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free metric, and the betas from the Reward X Transition type interaction were designated as 

the model-based metric.  

To evaluate my first hypothesis regarding the association between the individual 

differences and performance measures (devaluation sensitivity, model-based index, and 

model-free index), correlations were computed. I predicted that a negative correlation would 

be observed between substance abuse and the devaluation sensitivity measure, whereas a 

positive correlation would be observed between substance abuse and the model-free index.  

In addition, two other regression analyses were conducted for this measure to test whether 

striatal dopamine interacts with substance abuse to influence devaluation sensitivity and 

model-free behavior.   

Next, to assess relationships between substance abuse and model-based behavior, I 

performed regression analyses for this outcome that (1) tested the prediction that substance 

abuse would negatively predict model-based learning, and (2) explored the possibility that 

substance abuse interacts with striatal dopamine to influence model-based strategies. These 

analyses allowed for testing the separate and interactive effects of continuous variations in 

externalizing tendencies and dopamine levels on devaluation and model-free behavior. Given 

the lack of a priori predictions for trait disinhibition, I conducted both full and reduced model 

analyses for each outcome measure.  The predictors in the full model included striatal 

dopamine (as indexed by EBR), substance abuse, disinhibition, the striatal dopamine X 

substance abuse interaction term, and the striatal dopamine X disinhibition interaction term.  

The reduced model predictors consisted of striatal dopamine (as indexed by EBR), substance 

abuse, and their interaction term. 
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3.5 Results and Discussion 

Descriptive Statistics. Individual EBRs ranged from 4.17 to 40.17 blinks/min (M = 

15.63, SD = 7.28). Scores on the ESI-BF Disinhibition subscale ranged from 0 to 46 (M = 

12.21, SD = 7.71) and the range of scores on the ESI-BF Substance Abuse subscale ranged 

from 0 to 45 (M = 14.02, SD = 12.27). 

Correlational Analyses. Correlations were computed between the independent 

measures (EBR index of striatal dopamine, ESI-BF Substance Abuse, and ESI-BF 

Disinhibition) and the outcomes measures (devaluation sensitivity index, model-free index, 

and the model-based index). Table 2 shows correlations between all variables. ESI-BF 

Disinhibition and Substance abuse subscales were positively correlated as expected (cf. 

Patrick et al., 2013), r = .49, p < .01.  As predicted, substance abuse was negatively 

correlated with devaluation sensitivity, r = -.24, p < .05 (Figure 4).  Disinhibition was not 

significantly correlated with any of the outcome measures.  However, the EBR index showed 

a significant negative correlation with devaluation sensitivity (r = -.21, p = .04).  None of the 

demographics variables (gender, age, sleep) were associated with devaluation sensitivity (ps 

> .40). 

Regression Analysis for Devaluation Sensitivity. A hierarchical regression analysis 

was conducted to examine the effect of Substance Abuse, Disinhibition, and striatal 

dopamine (as indexed by EBR) on devaluation sensitivity.  In the first step, the first-order 

terms (substance abuse, disinhibition, and striatal dopamine) were entered in the model.  

Omnibus prediction at this step of the model was significant, R
2 

= .11, F(3, 82) =  3.41, p = 

.02.  Substance abuse was a significant predictor of devaluation sensitivity, β = -.31, p = .01.  

Disinhibition was also significant (β = .26, p = .03), but striatal dopamine was a 
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nonsignificant predictor at this step, ps > .10. In the second step of the model, striatal 

dopamine X substance abuse and striatal dopamine X disinhibition interaction terms were 

entered in the model.  The omnibus prediction at this step approached significance, ∆R
2 

= .02, 

F(5,80) = 2.06, p = .08, but none of the individual predictors emerged as significant, p > .10.   

I also examined results for a reduced model including substance abuse, striatal 

dopamine, and their interaction term as predictors of devaluation sensitivity.
2
  In the first step 

of the model, substance abuse was a marginally significant predictor, β = -.18, p = .09, while 

EBR was nonsignificant, p >.10.  However, the omnibus prediction at the step was 

nonsignificant, p = .11.  Similarly, when the interaction term was entered in the second step 

of the model, the omnibus test and the predictors were nonsignificant, p > .10. The reduced 

model with disinhibition, striatal dopamine, and the substance abuse X striatal dopamine 

interaction did not reveal any significant effects, ps > .15.   

Regression Analysis for the Model-Free Index. A parallel set of regression analyses 

was used to test for effects of the predictor variables on model-free behavior.  In the first step 

of the model, none of the first-order predictors were significantly associated with the model-

free index (ps > .07), and the omnibus test was nonsignificant, p = .26.  In the second step of 

the model when the interaction terms were added to the model, the omnibus test was 

significant, ΔR
2 

= .08, F(5,79) = 2.33, p = .05.  Substance abuse (β = -1.04, p < .01) and the 

striatal dopamine X substance abuse interaction term (β = 1.08, p < .01) were significant 

predictors of model-free behavior during the reinforcement learning phase.  While 

                                                           
2
 I also conducted logistic regression analyses for the data in Study 2 as the distribution for devaluation 

sensitivity was relatively bimodal.  For the full model, substance abuse was significantly related to devaluation 

sensitivity in the first step of the model (β = -.26, p = .04), although the omnibus test was nonsignificant, F(3, 

80) = 1.76, p = .16. The interaction terms were not significant in the second step of the full model, ps > .20.  

However, in the reduced model in which substance abuse, striatal dopamine, and their interaction term were 

included as predictors of devaluation sensitivity (dichotomized), substance abuse (β = -.17, p = .12) did not 

reach significance.  



 
 

26 
 

disinhibition was a marginally significant predictor (β = .55, p = .09), EBR and the striatal 

dopamine X disinhibition interaction were nonsignificant predictors, p > .30.  Thus, as with 

the devaluation sensitivity regression analysis, a reduced model with substance abuse, striatal 

dopamine and their interaction terms was also performed.   

As in the full model, neither substance abuse nor striatal dopamine predicted 

significantly in the first step of this reduced model, and the omnibus prediction coefficient 

was nonsignificant, ps > .20.  In the second step of the model, however, substance abuse (β = 

-.71, p < .05) and the striatal dopamine X substance abuse interaction (β = .82, p < .05) 

emerged as significant predictors.  The omnibus test was nonsignificant, however, ΔR
2 

= .06, 

F(3,81) = 2.02, p = .12. 

Figure 5 shows simple regression lines for the effect of substance abuse scores on 

model-free choices at (a) the mean for striatal dopamine, (b) one standard deviation above 

the mean for striatal dopamine, and (c) one standard deviation below the mean for striatal 

dopamine. Striatal dopamine and substance abuse variables were centered prior to creating 

the centered interaction terms. The simple regression slope coefficients when centered at the 

mean (β = -.09, p = .48) and at one standard deviation below the mean (β = .36, p = .09) were 

not significant, but the simple regression slope coefficient centered at one standard deviation 

above the mean significantly predicted model-free behavior, β = -.53, p < .01. At high levels 

of striatal dopamine, individuals with higher substance abuse tendencies tended to rely less 

on model-free strategies during the reinforcement learning phase of the task. This result 

suggests that the effect of increasing levels of substance abuse on model-free strategies 

varied as a function of tonic dopamine levels such that individuals reporting high levels of 
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substance abuse with high striatal tonic dopamine showed the least reliance on strategies that 

depended on recent reward outcomes. 

 The reduced model with disinhibition, striatal dopamine, and the disinhibition X 

striatal dopamine interaction revealed no significant main effects, and the interaction was not 

significant, ps > .10.  

Regression Analysis for the Model-Based Index. The same full and reduced model 

analyses were conducted for the model-based index as the devaluation sensitivity and model-

free index.  All predictors in the first step of the model and the omnibus test were 

nonsignificant, p > .10.  Similarly, in the second step of the model, none of the other 

predictors or the omnibus test were significant, ps > .30.  Although reduced models were also 

performed, they did not reveal any significant effects in either the first or second step of the 

model, ps > .30.   

Discussion. The results of Study 2 demonstrate that substance abuse, independent of 

striatal dopamine, is negatively associated with devaluation sensitivity, or reward 

disengagement.  Furthermore, the effect of substance abuse on model-free reinforcement 

learning depends on striatal tonic dopamine.  Specifically, individuals with substance abuse 

problems and high levels of striatal tonic dopamine were less reliant on model-free strategies.  

This result is in line with the results of Study 1 that showed that at high levels of striatal 

dopamine, substance abuse is positively associated with reward learning on a task in which 

model-free strategies are counterproductive.  Thus, the consistency of these findings across 

different tasks in Study 1 and 2 suggests that high levels of striatal tonic dopamine may be a 

protective factor against reliance on automatic, reward-driven strategies in individuals with 

substance use problems.  
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Striatal dopamine therefore appears to influence reward salience during reinforcement 

learning in the contexts of extended learning. These data suggest that once reward-outcome 

associations are well learned, individuals with substance abuse problems—regardless of 

variation in striatal tonic dopamine levels—have difficulty disengaging from habitual 

responding.  While these results suggest that the effects of striatal tonic dopamine influence 

reward learning, striatal dopamine does not appear to moderate the effects of substance abuse 

on devaluation, or reward disengagement.   

Moreover, as predicted, trait disinhibition was not associated with reward learning 

strategies or devaluation sensitivity in either experiment.  These findings are in line with the 

results of Study 1 that showed that substance abuse and disinhibition exert distinct effects on 

reward processing depending on individual differences in striatal dopamine levels: Substance 

abuse is more strongly linked with reward learning, whereas disinhibition is associated more 

with reward wanting. 
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4. STUDY 3: EFFORT-BASED DECISION-MAKING (EFFORT VALUATION) 

 

Like Study 2, Study 3 was also intended to be a follow-up on the results of Study 1.  

Because low tonic dopamine levels are predicted to enhance reward wanting in individuals 

with more disinhibitory tendencies, striatal dopamine may also interact with disinhibition to 

influence physical and/or cognitive effort-based decision-making. To address this issue, 

Study 3 examines the interaction between externalizing proneness and striatal dopamine on 

both physical and cognitive effort expenditure for rewards. 

While physical effort expenditure in humans has been widely studied using the Effort 

Expenditure for Rewards Task (EEfRT), methods for assessing cognitive effort are more 

nuanced.  Current designs to test cognitive effort include choosing different levels of the N-

back working memory test for easy (i.e., 1-back) versus difficult (i.e., 3-back) selections 

(Culbreth, Westbrook, & Barch, 2016; Westbrook et al., 2013) and choosing easy versus 

difficult math problems (Vassena et al., 2014). However, these designs risk confounds with 

working memory capacity and math ability.  The present study was designed to address these 

confounds in two ways.  First, I included a measure of working memory capacity in order to 

account for individual differences in cognitive resources.  Secondly, the task utilized a novel 

category learning paradigm in which individuals chose to categorize a small number of 

stimuli (easy task) or a larger number of stimuli (difficult task) on each trial.  I hypothesized 

that good performance in this task would rely less heavily on working memory than current 

cognitive effort methods.  Including both physical and cognitive effort tasks allowed for 

determining the generalizability of effort effects across domains.  

Previous research suggests that reward wanting and willingness to exert effort in 

order to receive a reward is mediated by dopamine signaling in the ventral striatum (Berridge 
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& Robinson, 1998; Correa, Carlson, Wisniecki, & Salamone, 2002; Salamone, Correa, 

Farrar, & Mingote, 2007).  Despite reward wanting (reward valuation) and effort-based 

decision-making (effort valuation) defined as distinct constructs in the RDoC matrix, this 

finding in the animal literature suggests that effort-based decision-making may be closely 

related to reward wanting.  Animal research suggests that high D2 receptor signaling (high 

tonic dopamine) in the ventral striatum enhances willingness to exert effort for larger 

rewards, while low D2 receptor signaling (low tonic dopamine) enhances preferences for less 

effortful, small rewards (Trifilieff et al., 2013; Trifilieff & Martinez, 2014).  In humans d-

amphetamine, which increases both tonic and phasic dopamine (Daberkow et al., 2013), 

enhances willingness to exert effort for rewards (Wardle et al., 2011).   Furthermore, in a 

recent review, phasic striatal dopamine has been proposed to encode reward prediction errors 

of task costs and benefits, while tonic dopamine may influence working memory 

maintenance while engaging in the task (Westbrook & Braver, 2015).  However, it is unclear 

how dopamine interacts with disinhibition and whether phasic or tonic dopamine levels drive 

willingness to exert effort for rewards in humans.  Given these findings, it is possible that 

individuals with more disinhibitory tendencies and high tonic dopamine levels may exert 

more effort for larger rewards, while more impulsive individuals with low tonic dopamine 

may prefer less effortful, smaller rewards. While there has been exceptionally little work 

aimed at examining the effect of drug use and effort expenditure for rewards (Saunders, 

Richard, & Janak, 2015), some work suggests that effort-related processes are critical to drug 

reinforcement (Salamone, Correa, Farrar, & Mingote, 2007).  However, given that Study 1 

demonstrated that in substance users, low striatal tonic dopamine was associated with 

increased learning of options that maximized immediate rewards, it is possible that they may 
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also be more willing to exert effort to attain those immediate rewards.  As a result, I 

predicted that an interaction between substance abuse and striatal dopamine, such that 

individuals with low tonic dopamine and high substance abuse tendencies would exert more 

effort to attain rewards. 

4.1 Participants 

One hundred and thirteen undergraduate participants (77 female, age range 18 – 24) 

completed the cognitive and physical effort tasks and received partial course credit for their 

introduction to psychology course. Due to experimenter error, three participants did not 

complete the physical effort task, two participants did not complete the cognitive effort task, 

and six participants did not complete the working memory measure (final N = 104). 

4.2 Materials and Design 

Externalizing Spectrum Inventory–Brief Form.  As with Studies 1 and 2, the ESI-BF 

was used to measure disinhibition and substance abuse.  

Spontaneous Eyeblink Rate (Tonic Dopamine Index). Spontaneous EBR was used as 

an index of striatal tonic dopamine. The same procedure that was described in Study 1 was 

followed for Study 3 to measure EBR. 

Physical Effort Expenditure for Rewards Task. In the physical effort expenditure for 

rewards task (EEfRT; Treadway et al., 2009), individuals chose between an easy (low effort) 

or difficult (high effort) task in order to try to receive a reward (Figure 6a). Thus, this task 

was designed to assess physical effort expenditure.  For each trial, participants were 

presented with the probability that they would receive the reward.  Probabilities of reward 

were either low (12%) medium (50%), or high (88%) on each trial. Then, they chose either 

the easy or difficult task.  The easy task always offered the chance to win $1.00.  The 
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difficult task offered a chance to win a value that varied between $1.25 and $4.25 on each 

trial.  For easy trials, participants needed to press the spacebar 30 times in seven seconds in 

order to successfully have a chance to win $1.00.  For difficult trials, participants needed to 

press the spacebar 100 times in 21 seconds to have a chance to win the reward offered for 

that trial.  Participants received feedback on whether or not they successfully completed the 

task, and then received additional feedback about whether they won the amount based on the 

probability shown at the beginning of the trial. At the end of the task, two of the win trials 

were randomly selected, and participants received the actual amount they won on those two 

trials. The dependent measure was the average proportion of difficult selections. 

Cognitive Effort Expenditure for Rewards Task.  In the cognitive effort task, 

participants completed a unidimensional rule-based category learning task.  Individuals 

needed to attend to a single stimulus dimension to learn the correct rule and use it to 

categorize each stimulus into one of two categories.  Stimuli were lines that varied in length 

and orientation. However, only of these dimensions was relevant to classify the stimuli. More 

specifically, only the length of the lines defined the category rule, so that short lines belonged 

in category 1 and long lines belonged in category 2.  Thus, participants needed to attend to 

length, but ignore orientation to correctly categorize the stimuli.  

Participants first completed a training phase comprised of 50 trials in which they 

learned the rule that differentiated each category.  During the training phase, participants 

viewed a stimulus, selected either category 1 (i.e., short lines) or 2 (i.e., long lines), and then 

received feedback on whether their categorization was correct or incorrect.  Next, a 50-trial 

test phase with the cognitive effort component was presented (Figure 6b).  The effort portion 

of the task was designed to closely mirror the physical effort task.  To manipulate cognitive 
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effort, participants were asked to choose between an easy (low effort) or difficult (high 

effort) task on each trial. Similar to the physical effort task, for each trial participants were 

presented with the probability that they would receive the reward.  Probabilities of reward 

were either low (12%) medium (50%), or high (88%) on each trial. The easy task always 

offered the chance to win $1.00.  On easy trials, participants were asked to categorize three 

stimuli in a row correctly within seven seconds in order to have an opportunity to earn the 

reward.  On difficult trials, participants were asked to categorize ten stimuli in a row 

correctly within 21 seconds in order to have a chance to earn a reward.  If individuals chose 

the easy task and successfully completed it, then they may receive $1, depending on the 

probability of reward.  If they successfully completed the difficult task, then they may 

receive an amount between $1.25 and $4.25.  Incorrect categorizations resulted in $0 earned.  

As with the physical EEfRT, at the end of the task, two of the win trials were randomly 

selected, and participants received the actual amount they won on those two trials. The 

dependent measure was the average proportion of difficult selections. 

Working Memory Capacity Assessment. To measure working memory capacity, the 

operation span (OSPAN) task was employed (Turner & Engle, 1989). Participants viewed a 

math problem (i.e., (2 * 5) + 4)) for two seconds, and then a new screen with a number (i.e., 

15) displayed.  Participants needed to respond whether the number on the screen correctly or 

incorrectly answered the math problem they previously viewed by responding “true” or 

“false”.  After making a response, participants received feedback and then a letter appeared.  

After 3 – 7 math problem and letter trials, participants were asked to recall the letters they 

viewed in order.  Participants were instructed to both maximize accuracy in letter recall 

performance and maintain a math accuracy score of at least 85%.  Thus, participants needed 
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to both correctly answer the math problems while also maintaining a string of letters in 

working memory.  The OSPAN contained 75 total trials.  Working memory capacity was 

computed as the sum of correctly recalled letter spans.    

4.3 Procedure 

 In this within-subjects design, participants began with a 6-min assessment of EBR.  

Next, they completed the physical and cognitive effort tasks in a counterbalanced order. The 

physical effort task entailed 50 effort trials, and the cognitive effort task included 50 training 

trials and 50 effort trials. Each task was designed to take 15 – 20 minutes so that they were 

approximately equivalent in terms of fatigue demands.  Upon completion of both effort tasks, 

participants completed the demographics questions, ESI-BF Disinhibition subscale, and 

Substance Abuse subscale, and then completed the OSPAN working memory assessment.  

This study was designed to take approximately 90 minutes total. Following completion of the 

study, participants received their monetary reward from both tasks and then were debriefed 

about the study. 

4.4 Data Analysis  

 As with Studies 1 and 2, correlations between the independent (EBR, substance 

abuse, disinhibition), and dependent measures (proportion of difficult selections for each 

task) were performed.  In this study, correlational analyses between the OSPAN working 

memory scores and the dependent measures were also conducted to determine if working 

memory should be included as a covariate in further analyses.  To test the hypothesis that 

striatal dopamine will interact with disinhibition to influence effort expenditure for rewards, 

separate regressions for each dependent measure were conducted with EBR, substance abuse, 

disinhibition and the EBR X substance abuse and EBR X disinhibition interactions as 
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predictors. Given the specific predictions for the EBR X disinhibition, a reduced model with 

just EBR, disinhibition, and EBR X disinhibition was also performed.  

4.5 Results and Discussion 

 Descriptive Statistics.  Individual EBRs ranged from 2.17 to 41.20 blinks/min (M = 

13.97, SD = 7.26). Scores on the ESI-BF Disinhibition subscale ranged from 0 to 39 (M = 

13.97, SD = 7.99) and the range of scores on the ESI-BF Substance Abuse subscale ranged 

from 0 to 45 (M = 15.95, SD = 12.97).  In the physical effort task, average proportions of 

difficult selections across the task ranged from 0.02 – 1.00 (M = .37, SD = .22).  In the 

cognitive effort task, average proportions of difficult selections ranged from 0.00 – 1.00 (M = 

.42, SD = .27).  Thus, overall rates of difficult selections between the physical and cognitive 

effort tasks were relatively comparable.  Although participants selected difficult task in the 

cognitive effort task numerically more than they did in the physical effort task, this 

difference was nonsignificant, t(107) = 1.63, p = .11. 

 Order Effects. An independent samples t-test was conducted to determine whether 

order effects due to counterbalancing influenced physical or cognitive effort expenditure for 

rewards.  The t-test for physical effort showed a marginally significant effect of order.  

Individuals who completed the physical effort task first (M = .42, SD = .24) selected more 

difficult selections in the physical effort task than those that completed the cognitive effort 

task first (M = .33, SD = .42, SD = .20), t(108) = 2.01, p = .047.  In contrast, there was no 

significant order effects of the cognitive effort task, t(109) = -1.27, p =.21. Thus, order was 

included as a covariate in subsequent regression analyses. 

 Correlational Analyses. Correlations were computed between the independent 

measures (EBR index of striatal dopamine, ESI-BF Substance Abuse, and ESI-BF 
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Disinhibition) and the outcomes measures (average difficult selections in the physical and 

cognitive effort tasks). Correlations between all variables are shown in Table 3.  Similar to 

Studies 1 and 2, ESI-BF Disinhibition and Substance abuse subscales were positively 

correlated, r = .36, p < .01.  Correlational analyses were also performed to determine whether 

OSPAN working memory scores should be included as a covariate in subsequent regression 

analyses. OSPAN scores were positively related to the proportion of difficult selections in the 

cognitive effort task, r = .29, p < .01, but were not significantly correlated with difficult 

selections in the physical effort task, r = -.05, p = .64.  Moreover, the proportion of difficult 

task selections on the physical and cognitive effort tasks were not significantly correlated, r = 

.11, p = .26.  This result suggests that physical and cognitive effort expenditure measures are 

not synonymous, but are instead distinct constructs.  No other significant correlations were 

observed. 

 Regression Analysis for the Physical Effort Task. A hierarchical regression analysis 

was conducted to examine the effect of Substance Abuse, Disinhibition, and striatal 

dopamine (as indexed by EBR) on the average proportion of difficult selections in the 

physical effort task.  In the first step, the OSPAN and Order covariates were entered into the 

model.  The omnibus test was nonsignificant at this step, R
2 

= .04, F(2, 101) =  2.04, p = .14, 

and Order was marginally significantly associated with physical effort expenditure (β = -

0.19, p = .053), but the OSPAN working memory measure was a nonsignificant covariate, p 

= .63. In the second step, the first-order terms (substance abuse, disinhibition, and striatal 

dopamine) were entered in the model.  Omnibus prediction at this step of the model was 

nonsignificant, ∆R
2 

= .02, F(5, 98) =  1.22, p = .31, and none of the first-order predictors 

were significant, ps > .40.  In the third step of the model when the EBR X Substance Abuse 
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and EBR X Disinhibition interaction terms were added, the omnibus test remained 

nonsignificant, ∆R
2 

= .05, F(7, 96) =  1.66, p = .13.  However, the EBR X Disinhibition 

interaction was a significant predictor of physical effort expenditure for rewards, β = -0.25, p 

= .03.  None of the predictors were significant, ps > .10.   

Given the emerging effects from the EBR X Disinhibition interaction, a reduced 

model with disinhibition, striatal dopamine, and the disinhibition X striatal dopamine 

interaction was also conducted.   However, the results of this reduced model revealed no 

significant main effects, and the interaction was not significant, ps > .10.  

Figure 7 shows simple regression lines for the effect of disinhibition scores on the 

proportion of difficult selections in the physical effort task at (a) the mean for striatal 

dopamine, (b) one standard deviation above the mean for striatal dopamine, and (c) one 

standard deviation below the mean for striatal dopamine. Striatal dopamine and disinhibition 

variables were centered prior to creating the centered interaction terms. The simple 

regression slope coefficients when centered at the mean (β = -.12, p = .25) and at one 

standard deviation above the mean (β = .16, p = .33) were not significant, but the simple 

regression slope coefficient centered at one standard deviation below the mean significantly 

predicted the proportion of difficult task selections during the physical effort task, β = -.45, p 

= .02. At low levels of striatal dopamine, individuals with more disinhibitory tendencies 

tended to choose fewer difficult, physically effortful options. This finding indicates that the 

effect of diminished levels of disinhibition on physical effort expenditure for reward varied 

as a function of tonic dopamine levels.  Specifically, as predicted, individuals reporting high 

levels of disinhibitory behavior with low striatal tonic dopamine were significantly less 

willing to exert more physical effort for larger rewards.  
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Regression Analysis for the Cognitive Effort Task.  An additional regression analysis 

was performed to assess the interaction between externalizing proneness and striatal 

dopamine on cognitive effort expenditure for rewards. As with the physical effort task 

regression, in the first step of the model, the Order and OSPAN working memory measure 

was added as a covariate.  Omnibus prediction at this step of the model was significant, R
2 

= 

.09, F(2, 102) =  5.22, p < .01.  OSPAN working memory was a significant predictor of 

cognitive effort expenditure (β = .29, p < .01), but order effects were not significantly 

predictive of cognitive effort (β = .09, p = .36). In the second step of the model, the first-

order terms (substance abuse, disinhibition, and striatal dopamine) were entered.  The 

omnibus test was marginally significant at this step, ∆R
2 

= .001, F(5, 99) =  2.04, p = .08, but 

none of the first-order terms were significant predictors, ps > .80.  In the final step of the 

model, the EBR X Disinhibition and EBR X Substance Abuse interaction terms were entered 

into the model.  The omnibus prediction was significant at this step of the model, ∆R
2 

= .045, 

F(7, 97) =  2.12, p = .049.  The OSPAN covariate (β = .28, p < .01) and the EBR X 

Substance Abuse interaction term (β = 0.22, p = .046) emerged as significant predictors of 

cognitive effort expenditure for rewards. 

Figure 8 shows simple regression lines for the effect of substance abuse scores on the 

proportion of difficult selections in the cognitive effort task at (a) the mean for striatal 

dopamine, (b) one standard deviation above the mean for striatal dopamine, and (c) one 

standard deviation below the mean for striatal dopamine. Striatal dopamine and substance 

abuse variables were centered prior to creating the centered interaction terms. The simple 

regression slope coefficients when centered at the mean (β = .01, p = .93) and at one standard 

deviation above the mean (β = -.26, p = .10) were not significant, but the simple regression 
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slope coefficient centered at one standard deviation below the mean significantly predicted 

the proportion of difficult task selections during the cognitive effort task, β = .43, p = .01. At 

low levels of striatal dopamine, individuals with higher substance abuse tendencies tended to 

choose more difficult, cognitively effortful options. This result suggests that the effect of 

increasing levels of substance abuse on cognitive effort expenditure for reward varied as a 

function of tonic dopamine levels.  Individuals reporting high levels of substance abuse with 

low striatal tonic dopamine were willing to exert more cognitive effort in an attempt to attain 

larger rewards.  

Discussion.  The results of this study support my hypothesis that striatal dopamine 

would moderate the effects of trait disinhibition on effort expenditure for rewards.  In 

particular, at low levels of tonic dopamine, individuals with high disinhibitory tendencies 

were more inclined to choose smaller, less effortful reward options on the physical effort 

task.  This finding is also consistent with the results of Study 1 on reward wanting, as well as 

other previous research on D2 receptor availability and effort expenditure (Daberkow et al., 

2013; Trifilieff et al., 2013; Trifilieff & Martinez, 2014; Wardle et al., 2011).  Contrary to my 

prediction that more disinhibited individuals with high tonic dopamine levels would have a 

greater tendency to exert more effort for larger rewards, the simple slopes regression for one 

standard deviation above the mean of striatal dopamine was nonsignificant.  However, the 

direction of this relationship was positive, suggesting a potential weak relationship between 

high dopamine levels and high effort expenditure for rewards in individuals with high levels 

of disinhibitory tendencies.  Additionally, in comparison with Studies 1 and 2, disinhibition 

scores in this study had a smaller range that was more positively skewed.  It is therefore 
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possible that with a broader range of disinhibition scores, this relationship could become 

significant.   

As predicted, a significant interaction between striatal dopamine and substance on 

cognitive effort expenditure was observed.  In particular, at low levels of tonic dopamine, 

substance abuse was associated with increased cognitive effort expenditure for larger 

rewards.  Moreover, a statistical trend was also observed at high levels of dopamine such that 

substance abuse was associated with reduced effort expenditure for larger rewards.  This 

result builds on the reward learning findings from Study 1.  Collectively, these results 

indicate that individuals with low tonic dopamine and higher substance abuse tendencies 

show poor learning of rewards that lead to long-term rewards and are willing to exert more 

effort for larger immediate rewards.  Thus, among individuals with substance abuse 

problems, low striatal tonic dopamine levels appears to be associated with both enhanced 

learning of choices that maximize immediate rewards, as opposed to long-term rewards, and 

increased effort expenditure to attain immediate rewards.   

Importantly, the relationship between striatal dopamine and disinhibition on effort 

expenditure for rewards was specific to physical effort and did not generalize to cognitive 

effort expenditure.  In direct contrast to this relationship, the interaction between striatal 

dopamine and substance abuse on effort expenditure was specific to the cognitive effort task 

and did not generalize to the physical effort task.  Furthermore, effort expenditure for 

physical and cognitive effort tasks was not significantly correlated.  Together, these results 

suggest that effort expenditure for rewards appears domain-specific.   

Previous neuroimaging work has demonstrated that motivation for large rewards and 

high effort expenditure on math problems show overlapping activation in the ventral striatum 
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and anterior cingulate cortex (Vassena et al., 2014).  Physical effort expenditure for rewards 

has been shown to rely on the anterior putamen area of the striatum (Kurniawan et al., 2010). 

Additionally, theoretical modeling work suggests that while context specific effects may 

govern willingness to expend effort for rewards, physical effort and cognitive effort entail 

similar neural circuitry. This model theorizes that deficits in physical and cognitive effort 

exertion should be correlated (Verguts, Vassena, & Silvetti, 2015). However, the 

experimental data presented in this study suggest otherwise; specifically, willingness to exert 

physical effort and cognitive effort are indeed not correlated. Thus, the results of this study 

challenge existing theoretical work on effort expenditure for rewards and highlight the need 

to compare the neural and behavioral correlates of each of these types of effort expenditure.  

For example, one possibility is that physical effort relies more on motor demands, while 

cognitive effort may instead depend more on cognitive stability, resistance to distraction, and 

cognitive resources.  These factors may be integral to reward motivation and may have 

different “costs” to some individuals compared to others.  Thus, physical and cognitive effort 

expenditure may be particularly sensitive to individual differences. 
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5. STUDY 4: COMPETITION BETWEEN INHIBITION AND REWARD 

The purpose of Study 4 was to capitalize on the externalizing proneness and reward 

processing findings in Studies 1 through 3 in order to try to determine how cognitive control 

is affected by reward motivation in individuals with externalizing tendencies.  Broadly, 

externalizing behaviors are characterized by dysregulation in the cognitive control and 

positive valence systems RDoC domains.  Like reward processing, cognitive control is 

critically dependent on striatal dopamine, particularly dopamine D2 receptor functioning 

(Colzato et al., 2010).  An abundance of research suggests that individuals with substance 

abuse problems tend to have deficits in response inhibition, as indicated by slower stop signal 

reaction times (SSRTs) on the stop signal task (Colzato et al., 2007; Ersche et al., 2011; 

Goudriaan et al., 2005; Li et al., 2006; Monterosso et al., 2005; Moreno et al., 2012; Rubio et 

al., 2008; Smith & Mattick, 2013).  However, while trait disinhibition and inhibitory motor 

control may intrinsically seem related, a meta-analysis on the association between trait 

impulsivity and SSRTs showed only a weak, nonsignificant relationship (Lijffijt, et al., 

2004).  Other work suggests the possibility that drug users may have had increased trait 

disinhibition before they start abusing drugs (Van der Plas et al., 2009; Vonmoos et al., 

2013).  Because impulsivity and substance use are highly correlated, it is possible that 

impairment in response inhibition is due to a pre-existing liability for impulse-control and 

substance use problems, rather a consequence of regular drug use.  

Given these previous findings on the associations between externalizing proneness 

and inhibitory control as well as the findings from the present investigation, the task in Study 

4 was designed to incorporate a reward motivation component into a classic inhibitory 

control task: the stop signal task.  This paradigm allows for testing individual differences in 



 
 

43 
 

the ability to voluntarily inhibit a prepotent or ongoing motor response (Logan & Cowan, 

1984).  Furthermore, the SSRT measure from this task provides an estimated duration of the 

time that it takes to inhibit this response, such that longer SSRTs are indicative of poorer 

inhibitory control.  

The findings presented in Studies 1 – 3 of this investigation collectively suggest that 

trait disinhibition is more strongly associated with reward wanting, while substance abuse is 

more closely related to reward learning, devaluation, and effort expenditure for rewards.  

Because both disinhibition and substance abuse are associated with reward motivation, 

despite different associations with different components of reward processing, it was 

predicted that:  

(1) Disinhibition and substance abuse would be associated with poorer response 

inhibition, as indicated by slower SSRTs and reduced Stop trial accuracy, in the 

standard stop signal task. 

(2) Individuals with high disinhibition and low tonic dopamine (enhanced reward 

wanting) would show improved inhibitory control (faster SSRTs and higher accuracy) 

when there was a reward offered for correct inhibition relative to when there was not 

a reward offered. This result is expected because increased reward wanting may 

enhance motivation for immediate rewards, which can only be obtained with accurate 

inhibitory control on the task in Study 4. Thus, desire for immediate rewards is 

expected to enhance inhibitory control in this group. 

(3) Individuals with high substance abuse and low tonic dopamine (poorer reward 

learning and increased effort expenditure for rewards) would show poorer inhibitory 

control (slower SSRTs) when there was a reward offered for correct inhibition 
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relative to when there was not a reward offered.  The results from Studies 1 – 3 

suggest that the high substance abuse, low dopamine group shows poorer reward 

learning and increased effort expenditure for large rewards.  These findings suggest 

that this group is motivated by immediate rewards, even when it leads to a greater 

effort cost or maladaptive long-term performance. Thus, in an effort to obtain 

immediate rewards, this group may also be more likely to risk an associated response 

time “cost,” as indicated by slower SSRTs, when rewards are provided for correct 

inhibition. 

5.1 Participants 

Ninety-five undergraduate students (62 females; age range 18 - 23) completed the 

study for partial course credit in their introduction to psychology course.  

5.2 Materials and Design 

Externalizing Spectrum Inventory–Brief Form.  In line with the previous studies in 

this investigation, the ESI-BF was used to measure trait disinhibition and substance abuse 

tendencies.  

Spontaneous Eyeblink Rate (Tonic Dopamine Index). Spontaneous EBR was used as 

an index of striatal tonic dopamine. The same procedure that was described in Study 1 was 

followed for Study 4 to measure EBR. 

Stop Signal Reward Task. In the first phase of the task (Figure 9a), participants 

performed a standard stop signal task in which a green left or right arrow was presented 

(Logan, Schachar, & Tannock, 1997; Moreno et al., 2012). In line with instructions given in 

previous research (Congdon et al., 2012), on Go trials, participants were instructed to 

respond as quickly as possible, while keeping in mind that a red arrow may appear 
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occasionally, by pressing the left arrow key when the arrow faced leftward and the right key 

when the arrow faced rightward (see Appendix C for exact instructions).  If the arrow turned 

red after the original arrow was presented, then participants were instructed to inhibit their 

response on that trial.  The red arrow cue was presented at 200ms, 300ms, or 400ms 

(randomly varied) after the original arrow was presented.  Participants had up to 2 seconds to 

respond on each trial.  After they made a response, the arrow would disappear and the screen 

would be black (for up to 1.9 seconds) until the next trial began.  A 1 second delay, indicated 

by a black screen, was shown before the ITI.  The inter-trial interval (ITI) varied between 

700ms, 1000ms, or 1300ms (randomly varied) after the end of the previous trial and appeared 

as a white fixation cross, which was shown for 1 second.   

In the second phase of the task (Figure 9b), participants received instructions that they 

would now have an opportunity to earn a monetary bonus of up to ten dollars based on their 

performance in the rest of the task.  They were told that the bonus was based on both how 

quickly and accurately they responded on go trials and how accurately they responded on 

stop trials. Instructions also indicated that if they responded too slowly or made too many 

mistakes on go trials, then they may not receive a bonus even if they correctly stopped their 

response on stop trials.  In reality, however, half of the Stop trials were accompanied by a 

reward of $0.50 for correct inhibition. The reward feedback was presented immediately 

before the ITI screen for 1 second.  The probability of each trial being a Go trial was 75%, 

and the probability of a Stop trial was 25%. For both the standard stop signal and reward 

phase, the range of Go trials across participants was 141 – 162 trials. Reaction time (RT) and 

accuracy for Go and Stop trials were measured for each phase separately. Additionally, a 
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difference measure between unrewarded phase and reward phase stop signal reaction times 

(SSRTs), Go trial RT, and Stop trial accuracy were computed. 

5.3 Procedure 

Participants began the session with a 6-min assessment of EBR. Participants then 

completed demographics questionnaires (gender, age, hours slept), the ESI-BF Disinhibition 

and Substance Abuse subscales, and then completed 12 (~75% Go trials, ~25% Stop trials) 

practice trials of the standard stop signal task.  Participants completed 200 trials (~75% Go 

trials and ~25% Stop trials) of the standard stop signal phase, and 200 trials of reward phase 

of the task (~75% Go trials and ~25% Stop trials).  Upon completion of the study, 

participants received their monetary bonus and were debriefed about the nature of the study.  

5.4 Data Analysis 

 

Correlations between independent variables (EBR, substance abuse, and 

disinhibition) and dependent measures (SSRT, Go trial RT, Stop trial accuracy, rewarded – 

unrewarded SSRT, rewarded – unrewarded Go trial RT, rewarded – unrewarded Stop trial 

accuracy) were performed.  To compute SSRT, the integration approach was employed 

(Verbruggen & Logan, 2009).  In this approach, the Go trial reaction times are rank ordered. 

Then, the average unsuccessful stop trials, or errors, are multiplied by the number of Go 

trials. The rank ordered Go trial RT that corresponds to that value is the RT value. For 

example, if a participant was unsuccessful on 36% of stop trials and completed 150 trials, the 

RT value would correspond to the RT for the 54
th

 percentile. The average stop signal delay 

(.27s - .34s) is then subtracted from the RT value.  Additionally, regression analyses with 

EBR, substance abuse, disinhibition, and their interaction terms will be performed separately 

for each of the dependent measures. A reduced model with EBR, disinhibition, and EBR X 
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disinhibition and a model with EBR, substance abuse, and EBR X substance abuse was also 

performed when one of interaction terms was significant or trended towards significance. 

5.5 Results and Discussion 

Descriptive Statistics. Individual EBRs ranged from 2.50 to 40.80 blinks/min (M = 

14.82, SD = 8.55). Scores on the ESI-BF Disinhibition subscale ranged from 0 to 33 (M = 

11.61, SD = 6.37) and the range of scores on the ESI-BF Substance Abuse subscale ranged 

from 0 to 51 (M = 15.71, SD = 13.31).  

In the standard stop signal phase of the task, Go trial accuracy rates ranged from .96 – 

1.0 (M = .99, SD = .01), and Stop trial accuracy rates ranged from 0.0 – 1.0 (M = .52, SD = 

.28).  Average Go RT ranged from 0.34s – 0.88s (M = .55, SD = .12), and average SSRT 

ranged from 0.6s - .53s (M = .21, SD = .07).  In the rewarded phase of the stop signal task, 

Go trial accuracy rates ranged from .81 = 1.0 (M = .99, SD = .02), and Stop trial accuracy 

ranged from 0 – 1 (M = .64, SD = .27).  Average Go RT in the reward phase ranged from 

.35s - .95s (M = .58, SD = .12), and average SSRT ranged from .12s - .49s (M = .20, SD = 

.06).  Paired samples t-tests between these dependent measures in the standard stop signal 

and reward phase were also computed.  No significant differences in Go trial accuracy (p = 

.40) or SSRT (p = .15) between tasks were observed.  However, participants were 

significantly more accurate in inhibiting their response on Stop trials in the reward phase than 

in the standard phase, t(94) = -6.10, p < .001.  Participants were also significantly slower in 

their Go trial response times in the reward phase and in the standard phase, t(94) = -2.78, p < 

.01.  One possible implication of these results is that providing a reward for correct inhibition 

successfully improved inhibitory control across all participants, but this came at a cost of 

approximately a 250ms delay in response for Go trials in the reward phase.  However, it is 
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important to note that the reward phase was performed after the standard phase, and thus this 

difference could also be due to an effect of practice, rather than an effect of providing a 

reward. 

 Correlational Analyses. Correlations were computed between the independent 

measures (EBR index of striatal dopamine, ESI-BF Substance Abuse, and ESI-BF 

Disinhibition) and the outcomes measures (Standard stop signal task Stop trial accuracy, Go 

trial RT, SSRT, and rewarded – unrewarded Stop trial accuracy, Go trial RT, and SSRT). 

Correlations between all variables are presented in Table 4.  ESI-BF Disinhibition and 

Substance abuse subscales were positively correlated, r = .37, p < .01.  Of the demographics 

variables, age was significantly correlated with SSRT (r = .26, p = .01), rewarded – 

unrewarded phase SSRT (r = .24, p = .04), and rewarded – unrewarded phase Stop trial 

accuracy (r = .27, p < .01).  However, no other factors showed significant correlations, ps > 

.10. 

Regression Analysis for Stop Accuracy in the Standard Stop Signal Phase.  A 

hierarchical regression analysis was performed to test the effect of Substance Abuse, 

Disinhibition, and striatal dopamine (as indexed by EBR) on Stop trial accuracy in the 

standard stop signal phase of the task.  In the first step, age was entered into the model as a 

covariate. However, the omnibus prediction at this step was nonsignificant, R
2 

= .01, F(1, 93) 

=  0.56, p = .46.  In the second step of the model, the first-order terms (substance abuse, 

disinhibition, and striatal dopamine) were added.  Omnibus prediction at this step remained 

nonsignificant, ∆R
2 

= .04, F(4, 90) =  1.20, p = .32.  Disinhibition was a marginally 

significant predictor (β = -0.20, p = .07), but none of the other factors significantly predicted 

Stop trial accuracy, ps > .30.  In the last step, the EBR X Substance Abuse and EBR X 
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Disinhibition interaction terms were entered into the model.  The omnibus test was 

nonsignificant ∆R
2 

= .003, F(6, 88) =  0.83, p = .55, and the none of the predictors were 

significantly associated with Stop trial accuracy, ps > .30. 

Regression Analysis for Go Trial Reaction Time in the Standard Stop Signal Phase.  

The same hierarchical regression analysis was conducted for Go trial RT as for Stop trial 

accuracy.  The omnibus test for the age covariate in the first step was nonsignificant, p = .88.  

In the second step of the model, all predictors and the omnibus test were nonsignificant, ps > 

.10.  Similarly, in the third step of the model, none of the interaction terms, first-order 

predictors, or the omnibus test was significant, ps > .20.  

Regression Analysis for SSRT in the Standard Stop Signal Phase.  A parallel 

regression analysis was performed for SSRT in the standard stop signal portion of the task. 

Age was entered as a covariate in the first step of the model, and the omnibus test was 

significant, R
2 

= .07, F(1, 93) =  6.69, p = .01. In the second step of the model, the first-order 

factors were entered.  None of the predictors nor the omnibus test was significant at this step, 

ps > .09.  Similar, when the interaction terms were added in the last step of the model, none 

of the predictors, interaction terms, or omnibus test was significant, ps > .20.  

Regression Analysis for the Stop Accuracy Difference Measure.  A hierarchical 

regression analysis was conducted for the difference in Stop trial accuracy between the 

rewarded and unrewarded task (rewarded Stop trial accuracy – unrewarded Stop trial 

accuracy). Age was entered into the model in the first step as a covariate, and the omnibus 

test was significant, R
2
 = .07, F(1, 93) = 7.36, p  < .01.  In the second step, the EBR proxy 

measure of striatal dopamine, Substance Abuse, and Disinhibition were added to the model.  

Omnibus prediction was marginally significant at this step, ∆ R
2
 = .014, F(4, 90) = 2.14, p  = 
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.08, but none of the first-order predictors were significant, ps > .20.  In the final step of the 

model, the interaction terms were entered into the model.  However, the interaction terms, 

first-order predictors, and omnibus prediction were nonsignificant, ps > .10.  

Regression Analysis for Go Trial Reaction Time Difference Measure.  The same 

hierarchical regression analysis was conducted for the Go trial RT difference measure 

(rewarded Go trial RT – unrewarded Go trial RT) as for Stop trial difference measure.  The 

omnibus test for the age covariate in the first step was nonsignificant, p = .11.  In the second 

step of the model, all predictors and the omnibus test were nonsignificant, ps > .10.  

Similarly, in the third step of the model, none of the interaction terms, first-order predictors, 

or the omnibus test was significant, ps > .10.  

Regression Analysis for SSRT Difference Measure.  A final hierarchical regression 

was performed for the SSRT difference measure (rewarded SSRT – unrewarded SSRT). In 

the first step of the model, Age was added as a covariate.  The omnibus test was significant at 

this step, R
2 

= .04, F(1, 93) = 4.15, p = .045.  In the second step, the first-order terms were 

entered (EBR, Substance Abuse, Disinhibition). However, neither the first-order predictors 

(ps > .60) nor the omnibus prediction was significant, ∆R
2 

= .01, F(4, 90) = 1.13, p = .35.  

Age remained a significant predictor (β = -.21, p = .048).  In the last step of the model, the 

EBR X Substance Abuse and EBR X Disinhibition interactions were added, ∆R
2 

= .05, F(6, 

88) = 1.51, p = .19.  At this step, the EBR X Substance Abuse interaction term (β = .48, p = 

.08) was a marginally significant predictor in the difference in SSRT from the standard stop 

signal task to the rewarded task. None of other predictors were significant in this step, ps > 

.10. 
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Given the statistical trend for the EBR X Substance Abuse interaction, a reduced 

model with Age, EBR, Substance Abuse, and the EBR X Substance Abuse interaction term 

was conducted.  As with the full model, Age was entered as a covariate in the first step of the 

model, and the omnibus prediction was significant, R
2 

= .04, F(1, 93) = 4.15, p = .045.  In the 

second step of the model, EBR and Substance Abuse were entered.  At this step, the omnibus 

test was nonsignificant, ∆R
2 

= .003, F(3, 91) = 1.46, p = .23, and neither predictor was 

significant, ps > 50.  The Age covariate was significant at this step, β = -.22, p = .04. In the 

final step, the EBR X Substance Abuse interaction term was entered.  Omnibus prediction 

was marginally significant, ∆R
2 

= .04, F(4, 90) = 2.22, p = .07.   However, the EBR X 

Substance Abuse interaction emerged as a significant predictor of SSRT at this step, β = .52, 

p = .04. 

Figure 10 shows simple regression lines for the effect of substance abuse scores on 

the SSRT difference measure at (a) the mean for striatal dopamine, (b) one standard 

deviation above the mean for striatal dopamine, and (c) one standard deviation below the 

mean for striatal dopamine. Striatal dopamine and substance abuse variables were centered 

prior to creating the centered interaction terms. The simple regression slope coefficients 

when centered at the mean (β = .06, p = .54) and at one standard deviation above the mean (β 

= -.17, p = .27) were not significant, but the simple regression slope coefficient centered at 

one standard deviation below the mean significantly predicted the difference in SSRT from 

the unrewarded to rewarded part of the stop signal task, β = .30, p = .058.  At low levels of 

striatal dopamine, individuals with higher substance abuse tendencies had slower SSRTs on 

the rewarded part of the task relative to the unrewarded phase.  This result suggests that 

striatal tonic dopamine moderates the effect of substance abuse on incentivized inhibitory 
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control.  Specifically, individuals reporting high levels of substance abuse with low striatal 

tonic dopamine were slower, indicative of poorer cognitive control, in inhibiting their 

responses on Stop trials in the rewarded phase of the task.  

Discussion.  The results of Study 4 support the hypothesis that dopamine would 

moderate the effect of substance abuse on inhibitory control.  In particular, individuals with 

high substance abuse and low striatal tonic dopamine showed deficits in inhibitory control in 

the rewarded phase of the task.  Despite the decrements in inhibitory reaction time, no 

performance deficits in stop signal accuracy were observed, suggesting that individuals with 

substance abuse problems and low tonic dopamine are still able to inhibit their responses, but 

that reward motivation significantly slows this ability.  Consequently, rather than reward 

improving cognitive control, motivation for immediate rewards slowed performance in this 

group, resulting in slower response inhibition.  Thus, reward motivation seems to essentially 

“backfire” in this group:  when there is a competition between reward and inhibitory control, 

dopamine involved in reward processing overrides inhibitory control mechanisms.  As a 

result, individuals with substance abuse problems and low tonic dopamine may be less 

successful in attaining the rewards that motivate them and have greater difficulty in 

inhibiting their responses.  One potential mechanism for this result is that at low tonic 

dopamine levels, phasic bursts release more striatal dopamine than individuals with high 

tonic dopamine (Grace, 1995; 2000).  Thus, in this low tonic dopamine group, phasic bursts 

may release an excess of dopamine that impairs inhibitory control mechanisms, but heightens 

motivation for immediate rewards.  Future work is needed to test this possibility 

conclusively, however.   
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In contrast to the hypothesis that externalizing proneness would be associated with 

poorer SSRTs and accuracy in the standard stop signal phase of the task, no significant 

correlations or main effects of substance abuse or disinhibition on these factors was 

observed.  This result, though unexpected, may indicate that heavier or longer duration of 

drug use may drive previously observed deficits in inhibitory control.  Additionally, the 

hypothesis that striatal dopamine and disinhibition would interact to improve response 

inhibition was not observed in this study.  An important consideration in this sample, 

however, is that disinhibition scores represented a smaller range and lower mean that those 

reported in Studies 1 – 3.  Consequently, the high disinhibition group in this sample may be 

more similar to the moderate or average disinhibition group in the studies reported 

previously. A restriction of range for disinhibition therefore tempers the conclusions that can 

be drawn from this study about disinhibition and the competition between reward and 

inhibitory control processes, and future work is needed to determine how higher levels of 

disinhibition influence the interaction between these cognitive processes.  
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6. SUMMARY AND CONCLUSIONS 

 The goal of the present investigation was to characterize the effects of externalizing 

proneness on distinct aspects of reward processing and determine the role of striatal 

dopamine in moderating these relationships. Previous work broadly suggests that 

externalizing behavior may be associated with dysregulation in reward sensitivity and 

inhibitory control (e.g., Bechara & Damasio, 2002; Krueger et al., 2007; Patrick et al., 2013).   

However, the RDoC matrix portrays a complex picture of the distinct behavioral and neural 

correlates that underlie different aspects of reward processing.  Despite the moderate 

prevalence of externalizing behaviors, prior to this investigation, there had not been any 

studies that systematically examined which aspects of reward processing were altered in 

individuals with externalizing tendencies.  The findings of this investigation demonstrate that 

phenotypically unique manifestations of externalizing behaviors, namely disinhibition and 

substance abuse, exert differential effects on reward processing.  In particular, disinhibition 

was associated with reward wanting and physical effort expenditure for rewards.  In contrast, 

substance abuse was more strongly linked to reward learning, reward devaluation sensitivity, 

cognitive effort expenditure for rewards, and reward-incentivized inhibitory control. 

Although previous research has shown that a common heritable vulnerability, including 

variation in striatal dopaminergic genes, contributes to externalizing behaviors (Krueger, 

1999; Krueger & Markon, 2006; Krueger, McGue, Iacono, 2001; Krueger et al., 2002), 

results from the current study demonstrate that the specific manifestation of the behavior can 

differentially impact unique behavioral aspects of reward processing.   

 In addition to examining specific behavioral correlates of reward processing, this 

investigation also incorporated a measure of striatal tonic dopamine.  This assessment was 
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included to assess how differences in individuals’ underlying neurobiology influence the 

relationship between externalizing behaviors and reward processing. The results demonstrate 

that the effects of externalizing proneness on reward processing are critically dependent on 

striatal dopamine.  Specifically, the effect of disinhibition on reward wanting and physical 

effort expenditure for rewards were exclusive to individuals with low striatal tonic dopamine 

levels.  Additionally, the effects of substance abuse on reward learning, cognitive effort 

expenditure for rewards, and reward-incentivized cognitive control vary depending on 

individual differences in tonic dopamine levels.  Thus, these results uniquely demonstrate 

that substance abuse and disinhibition not only affect distinct reward processes, but that these 

effects depend on variation in striatal dopamine levels.   

In line with my predictions, among individuals with high disinhibitory tendencies, 

only those with low tonic dopamine showed increased reward wanting and chose smaller, 

less physically effortful reward options. This finding suggests that phasic dopamine (low 

tonic dopamine) increases immediate desire for rewards, or wanting, and enhances 

preferences for less effortful, small rewards in individuals with higher disinhibitory traits.  

This result is also consistent with previous research showing that disinhibition is associated 

with increased preference for immediate rewards (de Wit et al., 2007) as well as work on 

dopamine and effort expenditure for rewards (Trifilieff et al., 2013; Trifilieff & Martinez, 

2014).  A potential implication of this result is that high-disinhibited individuals with low 

striatal tonic dopamine may comprise a maximum-liability group.  Specifically, it appears 

that in high-disinhibited individuals, low tonic dopamine increases preference for immediate, 

less effortful rewards at the expense of more effortful, goal-directed options that could 
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increase long-term rewards. This group therefore seems to be driven by easy, immediately 

rewarding choices without considering or seeking options that offer larger long-term benefits.  

The effects of substance abuse on reward processing were also dependent on 

individual variation in striatal tonic dopamine levels. Individuals with more substance abuse 

problems and high tonic dopamine showed enhanced long-term reward learning. As such, 

these findings also support previous work showing that substance abuse is associated with 

enhanced associative learning of rewards (Hogarth et al., 2013). The implication of this result 

could be that higher levels of tonic dopamine might facilitate improved reward learning in 

individuals with high levels of substance use.  Alternatively, alcohol or drug users with high 

tonic dopamine levels may be strategically reward-oriented rather than impulsively driven by 

immediate desires.   

In contrast, individuals with more substance abuse problems and low tonic dopamine 

showed comparatively poorer long-term reward learning, indicating that this group tended to 

learn action-reward contingencies that maximized immediate reward as opposed to long-term 

rewards.  These results suggest that learning of long-term action-reward contingencies 

depends on tonic dopamine levels in individuals with substance abuse problems. 

Furthermore, individuals with substance abuse problems and low tonic dopamine were 

willing to exert more cognitive effort in an attempt to attain larger immediate rewards.  They 

also showed inhibitory control deficits on the reward incentivized portion of the stop signal 

task relative to the unrewarded phase.  Thus, individuals with high substance abuse problems 

and low tonic dopamine show better learning reward-action contingencies that maximize 

immediate reward, as opposed to long-term rewards, and are willing to exert greater 

cognitive effort to attain such rewards.  In a drug context, one possible extension of these 
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findings is that these individuals may be more willing to exert greater effort to obtain and use 

drugs to attain the immediately rewarding feeling that drugs elicit. Furthermore, in contexts 

when there is a competition between reward motivation, such as the positive feelings drug 

use elicit, and inhibitory control, such as trying not to use drugs, these individuals may have 

greater difficulty in inhibiting the urge or desire to use. Outside of reward contexts, substance 

users may not show substantial deficits in inhibitory control.  However, in contexts where 

rewards (like drugs) are at stake, individuals with low tonic dopamine may be more 

motivated to attain the reward at the expense of inhibitory control processes. Collectively, 

these findings suggest that substance users with low tonic dopamine may be at higher risk for 

transitioning from recreational substance use to addiction, while high striatal tonic dopamine 

may be a protective factor in risk for addiction and maladaptive reward processing.  

However, Study 2 demonstrated that substance abuse, independent of striatal 

dopamine, was associated with reduced reward devaluation sensitivity.  Once reward-

outcome associations are well learned, individuals with substance abuse problems—

regardless of variation in striatal tonic dopamine levels—have difficulty disengaging from 

habitual responding.  Thus, while striatal dopamine influences reward learning, habit 

formation, effort expenditure, and inhibitory control, it does not appear to moderate the 

effects of substance abuse on reward disengagement, or “habit breaking,” in individuals with 

substance abuse problems. Striatal dopamine therefore appears to influence reward salience 

during contexts of extended learning, but not disengagement from those reward-outcome 

associations.   

Limitations. One limitation to these tasks is that they are designed to assess learning 

from rewards only.  In particular, elevated tonic dopamine levels have been shown to support 
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reward learning, whereas diminished tonic dopamine levels reinforce avoidance, or 

punishment, learning (Frank, Seeberger, & O’Reilly, 2004).  The distinction between reward 

and punishment learning is important for understanding the mechanistic effect of tonic 

dopamine on disinhibition and substance abuse.  However, the question of how disinhibition 

and substance abuse relate to punishment learning, such as learning from monetary losses, 

lies outside the scope of this investigation. In addition, further work is needed to determine 

whether the effect of tonic dopamine on reward wanting and learning extends to contexts 

involving both gains and losses.  

In considering the generalizability of the current results, it should be noted that the 

goal of this study was primarily to examine individual differences in externalizing tendencies 

in the general population, and not to characterize individuals with severe clinical-level 

impulse control or substance use disorders.  It is certainly conceivable that severe problems 

of these types may be associated with different reward processing patterns than those 

observed in our college student sample.  Furthermore, spontaneous eyeblink rate is an 

indirect marker of striatal tonic dopamine levels and thus inferences should be made with 

caution.  Additional techniques, such as PET imaging, are needed to directly establish 

relationships between externalizing problems and altered striatal dopamine activity in reward 

processing contexts.  Finally, while current results provide evidence for associations between 

externalizing problems and aberrant reward processing, I do not purport that striatal tonic 

dopamine levels causally affect reward processing.   

Conclusions. This investigation is the first to demonstrate that disinhibition and 

substance abuse exert different effects on reward processing, depending on variations in 

striatal tonic dopamine levels. Externalizing problems may reflect either an enhanced desire 
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for rewards, or augmented associative linking of reward stimuli to their outcomes and 

willingness to exert cognitive effort to attain them.  Moreover, problems with substance 

abuse extend beyond reward learning, effort expenditure, and habit formation.  Substance 

abuse, independent of dopaminergic variation, is also associated with increased difficulty in 

disengaging from, or “breaking,” learned habits.  The results of these studies not only reveal 

the exact nature of the dissociable role of trait disinhibition and substance abuse on specific 

aspects of reward processing, but also provide a neural mechanism to account for these 

relationships. Moreover, these results demonstrate that low striatal tonic dopamine in 

individuals with externalizing proneness may represent a risk factor for addiction or 

additional externalizing problems. These findings underscore the importance of considering 

individual differences in dopaminergic functioning to determine cognitive correlates of 

externalizing proneness and risk for addiction.   
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APPENDIX A 

FIGURES 

Figure 1. Reward structure (left) and sample screen shot (right) of the reward learning task in 

Study 1. 
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Figure 2. Simple regression slopes for the effect of disinhibition on reward wanting and 

substance abuse on reward learning in Study 1. 
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Figure 3. Overview of the two-stage reinforcement learning task in Study 2. 
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Figure 4.  Scatterplot of the relationship between substance abuse and devaluation sensitivity 

(valued – devalued trials) in Study 2. 
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Figure 5.  Simple regression slopes for the effect of substance abuse on the model-free 

index in Study 2.  
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Figure 6.  Sample trial of the physical effort task (top) and cognitive effort task (bottom) in 

Study 3.   
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 Figure 7. Simple regression slopes for the effect of disinhibition on physical effort 

expenditure for rewards in Study 3. 
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Figure 8. Simple regression slopes for the effect of substance abuse on cognitive effort 

expenditure for rewards in Study 3.   
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Figure 9. Sample of a stop trial in the standard stop signal phase of the task and a stop trial 

of the stop signal reward phase of the task in Study 4.   
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Figure 10. Simple regression slopes for the effect of substance abuse on the difference in 

SSRT (rewarded phase SSRT – unrewarded phase SSRT) in Study 4.  
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APPENDIX B 

TABLES 

Table 1 

Correlational Analyses for Study 1 

Substance Abuse Disinhibition  EBR Delay Discounting 

Substance Abuse 

Disinhibition    0.46
**

 

EBR -0.16 -0.05 

Delay Discounting  -0.10 -0.11 0.05 

Reward Learning Task 0.11 0.18 -0.02 -0.18 

Note. Lower delay discounting scores indicate more discounting. 

**indicates significance at the p<.01 level. 
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Table 2 

Correlational Analyses for Study 2 

Substance Abuse Disinhibition EBR Devaluation  MF Index 

Disinhibition 0.49** 

EBR 0.11 0.03 

Devaluation -0.24* 0.04 -0.21* 

MF Index -0.03 0.15 0.01 0.02 

MB Index -0.10 0.07 -0.03 0.07 0.11 

**indicates significance at the p < .01 level. 

*indicates significance at the p < .05 level.
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Table 3 

Correlational Analyses for Study 3 
Substance Abuse Disinhibition EBR Physical Effort Cognitive Effort 

Substance Abuse 

Disinhibition .36** 

EBR 0.08 0.01 

Physical Effort  -0.12 -0.11 -0.06 

Cognitive Effort 0.02 0.01 -0.05 0.11 

OSPAN  0.18 0.08 -0.18 -0.05 .29** 

Note. Physical effort indicates the average proportion of difficult selections in the physical 

task. Cognitive effort reflects the average proportion of difficult selections in the cognitive 

task.  OSPAN indicates the OSPAN working memory assessment measure. 

**indicates significance at the p < .01 level. 
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Table 4 

Correlational Analyses for Study 4 

Substance Abuse Disinhibition EBR 

Substance Abuse 

Disinhibition .37** 

EBR 0.05 0.03 

SST Stop Accuracy -0.01 -0.17 -0.11 

SST Go RT -0.02 -0.17 -0.13 

SST SSRT 0.04 -0.13 -0.03 

Stop Accuracy Diff. 0.03 -0.12 0.04 

Go RT Diff. -0.05 -0.07 0.06 

SSRT Diff. 0.02 0.07 -0.01 

Note. Rewarded – unrewarded dependent measures are indicated by “Diff.” 

SST refers to the standard stop signal task phase. 

**indicates significance at the p < .01 level. 
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APPENDIX C 

In this task, you will see green arrows that point either left or right.  As soon as you 

see the arrow, you should respond as QUICKLY AND ACCURATELY as possible by 

pressing the LEFT arrow key if the arrow points LEFT or the RIGHT arrow key if the arrow 

points RIGHT.  On some trials, the green arrows may turn red.  If the arrow turns RED, you 

should STOP your response immediately and NOT RESPOND to that particular arrow. Still 

respond to the other green arrows after it, unless the arrow turns red. Both going and stopping 

are equally important. Your performance on this task will be measured equally by both how 

fast and accurately you respond. 

 This task is designed to be difficult and for people to make mistakes because we are 

interested in looking at those mistakes. So, don’t get frustrated if it’s difficult. Just make sure 

not to slow down your responses to wait for the red arrow so that you are no longer going 

when you are supposed to, because then you are no longer doing the task. 

 You won’t always be able to stop when you see a red arrow, so just try your best. As  

long as you respond quickly all of the time without pushing the wrong button for arrow 

direction and can stop some of the time, you’re doing the task correctly. 

 It’s also important to concentrate while you’re doing the task. 

 If you have any questions, please ask the experimenter now. 




