SUGGESTIONS for controlling Cotton Insects in the Texas Blacklands
Suggestions for Controlling Cotton Insects in the Texas Blacklands

Suggestions in this publication are based on results of continuing research conducted throughout the state by the Texas Agricultural Experiment Station and the Agricultural Research Service, U.S. Department of Agriculture. Research results for some of the minor cotton pests from other cotton producing states have been evaluated carefully and utilized in developing these suggestions. A committee of state and federal research personnel and specialists of the Texas Agricultural Extension Service meets annually to review research results and to develop suggestions for the safest, most profitable insect control practices for Texas producers.

At least 12 insect and mite species attacking Texas cotton show some resistance to once-effective chemicals. Evidence indicates that the more extensively a material is used, the more rapidly resistance develops. Therefore, use of insecticides should be restricted to actual need, based on field inspections.

Fruits, vegetables and animal feed can be contaminated by insecticidal drift. Continued excessive use of persistent insecticides results in soil residues which jeopardize the use of fields for growing certain forage, vegetable or root crops.

For information on identification of major cotton insects, their life history and the kind of damage they cause, see Cotton Insects (B-933, Texas Agricultural Extension Service).

INSECT CONTROL PROGRAM

In planning an insect control program, the cotton producer should consider effective use of both natural and cultural control. Major factors to be considered include insecticide resistance, the importance of protecting natural enemies of cotton insects, resurgence of primary pests and increased numbers of secondary pests following insecticide applications, environmental contamination with pesticides and increasing restrictions on pesticide use. Therefore, insecticides should be applied only when necessary, as determined by frequent field inspections, to prevent economic losses from damaging pests. This approach to cotton pest management is preferred over other alternatives available to cotton producers. (See table of suggestions for cotton insect control for further information.)

Early Season (Plant emergence to first ½-grown squares)

Thrips damage and population buildup vary from season to season and area to area. They normally cause heaviest damage from plant emergence until early squaring begins. Heavy infestations may reduce stands, stunt plants, reduce fruiting and delay maturity.

The *cotton fleahopper*, which damages small squares, commonly occupies a key position in a cotton insect management program. Base chemical applications not only on fleahopper numbers but also upon fruiting rate and excessive small square loss. In early season, cotton may sustain heavy square loss without reducing yields, but maturity may be delayed. Carefully evaluate the decision to apply the first application, because insecticide applications made after ½-grown squares are present may create conditions favorable for outbreaks of bollworm-tobacco budworm by destroying beneficial insects.
Systemic Insecticides for Early Season Pests

In certain areas where early season pests such as thrips, aphids, spider mites and leaf miners consistently damage young cotton each year, preventive systemic insecticide applications are sometimes used as early season control alternatives to the preferred pest management system discussed above. In choosing either approach to early season control, key factors to consider include acreage, yield potential, available equipment and labor, knowledge of cotton pests and beneficial species, difficulties in getting a stand, drought tendencies etc. Certain limitations and advantages of systemics used at planting time should be evaluated carefully before choosing their use over postemergence control based upon actual need.

Limitations of Systemics

- The decision to invest in systemics must be made before the severity of the early season pest problem can be known; therefore, the net economic return is always uncertain.
- If replanting is necessary, the initial systemic treatment is lost, and a new treatment at additional expense is required.
- Continued pest exposure to and population selection by certain systemics may result in accelerated development of resistance to these and related insecticides.
- Applications of systemics may result in increased numbers of damaging pests following their effective control period. This increase may be a result of reduced numbers of beneficial insects, stimulation of attractive plant growth or both.
- Under unfavorable conditions for plant emergence, such as poor seed quality, planting too deeply, seedling disease or cool, wet weather, systemics used at planting time may reduce stand.
- Special application equipment is required for granular systemics.

Advantages of Systemics

- For the producer who is unable to check his fields regularly for pest buildups during the early season and to make proper application of conventional sprays based upon actual need, systemics offer a degree of protection from damage during the first few weeks of growth.
- Systemics use frees labor and equipment and reduces decisionmaking on pest problems during the protected period.
- Under optimum conditions, systemics often stimulate rapid early growth, and sometimes increase yields which apparently cannot be attributed to early season insect control alone.
- Protection from early season insect damage may result in earlier maturity, which may be important during years of deficient moisture or insect buildups during late season.
- The activity of systemics within the plant is relatively unaffected by rain and weathering during their normal period of effectiveness.

Systemics can be applied as seed treatments or as granules in the seed furrow. Disulfoton (Di-Syston®) and phorate (Thimet®) seed treatments, at the rate of 0.5 lb. active ingredient per 100 lb. of seed, will effectively control thrips, aphids, spider mites and leaf miners for 2 to 3 weeks following planting. Disulfoton, phorate and aldicarb (Temik®) granules applied in the seed furrow at 0.5 to 1.0 lb. active ingredient per acre will control these same pests for 4 to 8 weeks following planting.
Aldicarb applied at the 1.0 lb. a.i. rate will also control fleahoppers for up to 8 weeks after planting; however, under certain conditions such as late planting or plantings on sandy soils, this rate sometimes results in greater numbers of bollworms and tobacco budworms. Overwintered boll weevils moving into fields treated with 1.0 lb. a.i. of aldicarb within 4 to 5 weeks after planting will be killed, but significant control may not occur because many overwintered weevils do not enter fields until later in the season.

Midseason and Late Season

Midseason is the 6-week fruiting period following the appearance of first ½-grown squares. The major concern during this period is insuring adequate fruit set. Proper crop management and frequent field inspection often can prevent premature insecticide applications during this period.

Late season is the remainder of the production season when the major concern is boll protection. In fields where insecticide applications were initiated during the midseason or late-season periods, boll protection should be a primary concern as long as immature bolls are present which can be expected to mature before the average frost date for the area or before crop termination through the use of desiccants or defoliants.

Since cotton grown under irrigation or on high-yielding land is subject to insect damage later in the season than cotton on dryland acreage, any production practices which prolong plant growth (particularly late irrigations and excessive nitrogen use) should be avoided during the late season.

Bollworms, tobacco budworms, pink bollworms and boll weevils are the principal insects involved in the late season control program. Apply insecticides when infestation counts and crop damage indicate the need. Insecticides may be required at application intervals of not more than 5 days for effective control of the boll weevil, bollworm, tobacco budworm and pink bollworm.

Once insecticidal applications begin, inspect fields frequently and repeat applications until the pest population has been reduced below economic levels. Control of late-season insects is designed to insure continued fruiting and protect fruit previously set.

For additional information on the pink bollworm, see Ways to Fight the Pink Bollworm in Texas (L-219, Texas Agricultural Extension Service).

EARLY STALK DESTRUCTION AND FARM CLEANUP

Early harvest, stalk destruction and plowing under debris immediately after harvest reduce boll weevil, pink bollworm, bollworm and tobacco budworm populations. Pay particular attention to the destruction of green or cracked bolls and other plant debris left at the ends of rows following stripper harvest. Do not allow stubble regrowth or development of volunteer seedlings.

These practices force the boll weevil into starvation before time to enter winter quarters, prevent late-season buildup of weevils, pink bollworms, bollworms and tobacco budworms and reduce the number surviving the winter. The addition of 0.5 lb. methyl parathion or 0.25 lb. azinphosmethyl (Guthion) to arsenic acid or phosphate-type defoliants has proved effective in reducing potential overwintering boll weevil populations. Do not add methyl parathion or azinphosmethyl to chlorate-type defoliants. See Cotton Defoliation Guide for Texas (L-145, Texas Agricultural Extension Service) for a list of chlorate-type defoliants. Growers and applicators are cautioned to use combinations
of phosphate-type defoliants (Folex and Def) and phosphate insecticides with extreme care. These combinations may pose a much greater toxicity hazard than either of the compounds used alone.

BENEFICIAL INSECTS

Natural populations of beneficial insects can often effectively control cotton pests such as the bollworm, tobacco budworm, cotton aphid and spider mite. However, practical methods of releasing beneficial insects in cotton fields have not been devised. Because most insecticides are highly injurious to the populations of beneficial insects, applications should be avoided unless frequent field inspections reveal economically damaging levels of injurious insects.

GENERAL INSTRUCTIONS

In the late-season program dusts and sprays are equally effective when applied properly. Where chemicals are applied, thorough plant coverage is required to achieve control. If showers occur within 24 hours following an application, fields should be checked to determine possible need for repeating the applications. When infestations are heavy, increase dosages to the maximum recommended.

For detailed information on using sprays and spray machinery, see *Insecticidal Spraying of Field Crops With Ground Machinery* (L-486, Texas Agricultural Extension Service), and *Pesticide Application Ground Equipment Calibration Guide* (L-764, Texas Agricultural Extension Service).

Dusts should be applied when the air is calm, but the presence of dew is not necessary. Place dust nozzles on ground machines 4 to 6 in. above plants. Dusts and wettable powders are washed off by light showers more easily than sprays.

Ground machines and airplanes are equally effective for insecticide application. For best results with airplanes, flag swaths so that they overlap.

Conversion Table—Pounds of actual insecticide in different quantities of spray concentrate*

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Gal.</th>
<th>2 Qt.</th>
<th>1 Qt.</th>
<th>1 Pt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azinphosmethyl (Guthion)</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Carbothionothion (Trithion)</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Chlordimeform (Galleon or Fundal)</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Demeton</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Dicrotophos (Bidrin)</td>
<td>8.0</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Dimetheate (Cygon or De-Fend)</td>
<td>2.67</td>
<td>1.33</td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>Ethion</td>
<td>4.6</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Monocrotophos (Azodrin)</td>
<td>5.0</td>
<td>2.5</td>
<td>1.25</td>
<td>0.625</td>
</tr>
<tr>
<td>Parathion</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>6.0</td>
<td>3.0</td>
<td>1.5</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Pounds actual carbaryl (Sevin) or trichlorfon (Dylox) per acre

- 3.0
- 2.0
- 1.0
- 0.5
- 0.25

Pounds of carbaryl (Sevin) or trichlorfon (Dylox) required:

- 80% wettable or soluble powder:
 - 3.75
 - 2.5
 - 1.25
 - 0.625
 - 0.312

- 50% wettable or soluble powder:
 - 6.0
 - 4.0
 - 2.0
 - 1.0
 - 0.5

*Certain formulations may differ in the amount of actual insecticide per gallon. Refer to the manufacturer’s labels for specific concentrations, and adjust spray mixtures accordingly.
PRECAUTIONS

All insecticides are poisonous. Follow carefully all precautions on the label. Take special precautions when handling azinphosmethyl (Guthion), monocrotophos (Azodrin), dicrotophos (Bidrin), demeton, disulfoton (Di-Syston), methyl parathion and phorate (Thimet). Avoid skin contact. Do not breathe vapors or drift from sprays or dusts.

Do not enter fields for 48 hours following application of methyl parathion at rates used for bollworm and tobacco budworm control.

Do not graze livestock in cotton fields or feed gin trash treated with insecticides, except those with no label restrictions.

Prevent drift from contaminating neighboring crops.

Follow recommended procedures in disposing of "empty" pesticide containers and discarding unneeded pesticides. See Disposal—Pesticides and Pesticide Containers (L-1008, Texas Agricultural Extension Service) for recommended procedures.

Most insecticides are destructive to honeybees. Since bees help pollinate many agricultural crops, make every effort to prevent their destruction.

For additional information, contact your county Extension agent or write the Extension entomologists, Entomology Department, Texas A&M University, College Station, Texas 77843 (713/845-1661).

POLICY FOR MAKING INSECT CONTROL SUGGESTIONS

Suggestions on use of pesticides made by the Texas Agricultural Extension Service and the Texas Agricultural Experiment Station are based upon:

- Effectiveness under Texas conditions
- Avoidance of residues in excess of allowable tolerances
- Avoidance of toxicity to humans, animals and desirable vegetation
- Avoidance of adverse side effects upon beneficial predators, parasites, honeybees, fish and other wildlife, plants, animals and humans

Suggested pesticides must be registered and labeled for use by the U.S. Environmental Protection Agency and the Texas Department of Agriculture. The status of pesticide label clearances is subject to change, and may have changed since this publication was printed. County Extension agents and appropriate specialists are advised of changes as they occur.

The USER always is responsible for the effects of pesticide residues on his livestock and crops, as well as problems that could arise from drift or movement of the pesticide from his property to that of others. Always read and follow carefully the instructions on the container label.

For further information, contact your county Extension agent or:

Project Leader in Pesticide Chemicals, Texas A&M University (713/845-1353)

Educational programs conducted by the Texas Agricultural Extension Service serve people of all ages regardless of socioeconomic levels, race, color, sex, religion or national origin.

1.2M—5-74, Reprint

ENT, AGR 2-5
COTTON INSECT CONTROL SUGGESTIONS

SELECTED INSECTICIDE USE RESTRICTIONS

1. **The injector insecticide application.** Use only when resistance levels are high enough to warrant treatment. The injector application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

2. **The leaf punch insecticide application.** Use only when resistance levels are high enough to warrant treatment. The leaf punch application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

3. **The bark application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The bark application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

4. **The soil application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The soil application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

5. **The foliage application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The foliage application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

6. **The aerial application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The aerial application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

7. **The root application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The root application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

8. **The seed application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The seed application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

9. **The rootzone application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The rootzone application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

10. **The root system application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The root system application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.

11. **The foliar application insecticide application.** Use only when resistance levels are high enough to warrant treatment. The foliar application is generally used when there is a high degree of resistance to standard insecticides and when the target pest is not easily accessible to other treatments.