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LONGITUDINAL DISPERSION COEFFICIENT IN STRAIGHT RIVERS

By Zhi-Qiang Deng,1 Vijay P. Singh,2 Fellow, ASCE, and Lars Bengtsson3

ABSTRACT: An analytical method is developed to determine the longitudinal dispersion coefficient in Fischer’s
triple integral expression for natural rivers. The method is based on the hydraulic geometry relationship for
stable rivers and on the assumption that the uniform-flow formula is valid for local depth-averaged variables.
For straight alluvial rivers, a new transverse profile equation for channel shape and local flow depth is derived
and then the lateral distribution of the deviation of the local velocity from the cross-sectionally averaged value
is determined. The suggested expression for the transverse mixing coefficient equation and the direct integration
of Fischer’s triple integral are employed to determine a new theoretical equation for the longitudinal dispersion
coefficient. By comparing with 73 sets of field data and the equations proposed by other investigators, it is
shown that the derived equation containing the improved transverse mixing coefficient predicts the longitudinal
dispersion coefficient of natural rivers more accurately.
INTRODUCTION

The longitudinal dispersion of pollutants in rivers is impor-
tant to practicing hydraulic and environmental engineers for
designing outfalls or water intakes and for evaluating risks
from accidental releases of hazardous contaminants. The abil-
ity of rivers or other surface water bodies to disperse added
substances in longitudinal, lateral, and vertical directions (de-
noted, respectively, by x, y, and z) is measured by the disper-
sion coefficients kx, ky, and kz, respectively. The longitudinal
disperson coefficient was first introduced by Taylor (1953,
1954) as a measurement of the 1D dispersion process de-
scribed by the classical advection-dispersion equation (Fuku-
oka and Sayre 1973; McQuivey and Keefer 1976; Fischer et
al. 1979; Sukhodolov et al. 1997)

2C C  C
1 U = K (1)x 2t x x

in which C = cross-sectionally averaged concentration; U =
mean longitudinal velocity; t = time; and x = longitudinal co-
ordinate oriented in the direction of mean flow. Eq. (1) holds
only after the so-called initial period or after the Fickian period
is reached. It indicates that the transport process and hence the
fate of pollutants in surface water bodies depend to a large
extent on the longitudinal dispersion coefficient kx. For this
reason, the longitudinal dispersion coefficient has been inves-
tigated extensively since the original work of Taylor (1953,
1954), who showed that, at some distance downstream from
an injection in a pipe flow, a tracer reaches a balance between
advection and diffusion.

Elder (1959) extended Taylor’s result from pipes to open
channels and derived an equation to compute the longitudinal
dispersion coefficient based on the equilibrium between lon-
gitudinal velocity shear and vertical turbulent diffusion.
Fischer et al. (1979) found that the transverse profile of lon-
gitudinal velocity is 100 or more times as important in pro-
ducing longitudinal dispersion as the vertical profile in natural
rivers. Using an analysis similar to that of Taylor and Elder
and taking into account the balance between longitudinal ad-
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vective mass transport and transverse diffusive mass transport,
Fischer et al. (1979) developed an integral expression of the
following form for the longitudinal dispersion coefficient for
rivers:

B y y
1 1

K = 2 hu9 hu9 dy dy dy (2)x E E EA ε ht0 0 0

where A = cross-sectional area; y = coordinate in the lateral
direction; h = h(y) = local flow depth; u9 = deviation of local
depth mean velocity from the cross-sectional mean velocity;
B = channel width; and εt = εt(y) = local transverse mixing
coefficient. Eq. (2) has been employed as the basis of various
empirical methods determining the longitudinal dispersion co-
efficient. However, there is a misconception concerning pa-
rameter εt.

It is widely adopted that εt represents the transverse turbu-
lent diffusion coefficient (Koussis and Rodriguez-Mirasol
1998; Seo and Cheong 1998; Piasecki and Katopodes 1999)
for natural rivers. Fischer et al. (1979) took parameter εt =
0.15Hu* as the transverse turbulent diffusion coefficient only
for the idealized rivers with a uniform, straight, infinitely wide
channel of constant depth, as there is no transverse dispersion
for such a case (here H is the cross-sectionally averaged
depth). Noting that in natural rivers the effect of transverse
dispersion on the longitudinal dispersion coefficient Kx is
larger than that of transverse turbulent diffusion, Rutherford
(1994) took the parameter εt as the cross-sectional mean value
of the transverse dispersion coefficient instead of the trans-
verse turbulent diffusion coefficient. Actually, lateral mixing
in natural rivers is a complex process involving both shear
dispersion and turbulent diffusion. It is difficult, if not impos-
sible, to distinguish the effect of dispersion from that of tur-
bulent diffusion in reality. However, it is convenient to express
εt as a sum of the two different kinds of mixing process in
theory; i.e., εt = Ky 1 Ey, where Ky refers to the transverse
dispersion coefficient and Ey refers to the transverse turbulent
diffusion coefficient.

The fundamental difficulty in determining Kx from (2) is the
lack of the knowledge of transverse profiles of both velocity
u(y) and depth h(y). Hence, numerous investigations into es-
timation of Kx have been empirical. By qualitative analysis and
simplification of (2) and use of εt = 0.6Hu*, Fischer et al.
(1979) obtained an approximate formula for Kx, expressed in
the form

2 2
U B

K = 0.011 Hu (3)x S D S D *u H*

The advantage of (3) is that the dimensionless dispersion co-
efficient Kx /(Hu*) can be estimated from readily available bulk
hydraulic variables, width-to-depth ratio B/H, and friction term
JOURNAL OF HYDRAULIC ENGINEERING / NOVEMBER 2001 / 919
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FIG. 1. Coordinate System and Generalized Channel Profile

U/u*. Such a feature is instructive indeed. Applying the one-
step Huber method, Seo and Cheong (1998) gave the follow-
ing regression equation and stated that the equation was su-
perior to existing evaluations for predicting the dispersion
coefficient of natural streams:

0.62 1.428
K B Ux = 5.915 (4)S D S DHu H u* *

The objective of this study is (1) to determine the lateral
distribution of river flow depth h(y), which is the key imped-
iment to a theoretical prediction of longitudinal dispersion co-
efficient Kx by means of Eq. (2); (2) to determine the trans-
verse mixing coefficient εt; and (3) to derive an equation,
based on Eq. (2), for predicting the longitudinal dispersion
coefficient, which is theoretically reasonable and is as accurate
as or more accurate than existing equations.

TRANSVERSE DISTRIBUTION OF LOCAL FLOW
DEPTH

The transverse distribution of local flow depth depends on
the channel shape for a natural river. Owing to its importance,
the cross-sectional shape of stable channels has long been the
subject of numerous investigations (ASCE 1998). The channel
shapes proposed by different investigators can be classified
into three types: cosine channel, exponential channel, and par-
abolic channel. However, these channel shapes are only ap-
plicable to canals or to the bank regions of straight rivers. To
predict the cross-sectional shape of natural alluvial rivers, the
channels are usually generalized with a flat-bed region and two
curving bank regions (Vigilar and Diplas 1997). The width of
the flat-bed region is determined numerically. It means that no
available channel shape equation can be directly used to sim-
ulate the cross-sectional channel shape of natural rivers. To
establish a simple equation describing the river channel shape,
it is assumed that the river channel is straight, its cross section
is symmetrical about its center and is constant along the river,
as shown in Fig. 1.

The cross-sectional channel shape of an alluvial river is gov-
erned by its hydraulic geometry, referring to the interrelation-
ship among water discharge, channel width, flow depth, ve-
locity, and so forth. The hydraulic geometry of rivers is
distinguished between at-a-station hydraulic geometry and
downstream hydraulic geometry. At a river cross section, the
water surface width B and mean flow depth H vary with dis-
charge. Formulas for these relationships were given as power
functions of the discharge by Chang (1988), Richards (1982),
and Chien et al. (1987), among others

dB = aQ (5)

uH = dQ (6)
920 / JOURNAL OF HYDRAULIC ENGINEERING / NOVEMBER 2001
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FIG. 2. Variation of Channel Shape with b

where a, d, d, and u = numerical constants. The average values
of the exponents d and u have been obtained by Chien et al.
(1987) for 374 river cross sections representing a large variety
of rivers from all over the world. These average values are d
= 0.14 and u = 0.43. The channel shape with d = 0.14 and u
= 0.43 corresponds to the rivers with the highest occurring
frequency in nature (Park 1977) and thus is the most stable
channel shape (Deng and Singh 1999). It is logical to define
a channel shape parameter, b = u/d. The value b ' 3.07 for
stable rivers in dynamic equilibrium. However, a majority of
natural rivers are not in the dynamic equilibrium state and
therefore their channel shape parameter b should be a variable
rather than a constant value. Eqs. (5) and (6) lead to the fol-
lowing at-a-station hydraulic relation between width and mean
depth with a constant e:

1/bB = eH (7)

The generalized parabolic curve is h = Hc 2 , which withqpy
y = 0 at the centerline and y = b at the shore means that Hc =
pbq. The mean depth in a cross section is then Hcq/(q 1 1) or
[pq/(q 1 1)]bq. To satisfy the relationship of (7), q must be
equal to b. With b as the only parameter, the dimensionless
depth variation in a cross section is

b

h(y) y
= 1 2 (8)S DH bc

When b = 2, (8) turns to the typical parabolic channel shape
equation of stable canals. In general, the value of parameter b
is >2 and should closely depend on the width-to-depth ratio
B/H for natural rivers. The value of b = 2 is justified by Cao
and Knight (1997) for threshold alluvial channels with B/H =
8 or ln(B/H ) ' 2.08. Moreover, using the model on plan ge-
ometry of meandering rivers proposed by Chang (1988), it is
found that B/H = 21 or ln(B/H) ' 3.04 for stable straight
rivers with an arc angle close to zero. As mentioned earlier,
the straight stable rivers have a channel shape parameter b =
u/d ' 3.07. It is interesting to find b = ln(B/H) when B/H =
8 or 21. On these grounds, it is then inferred that a functional
relationship exists between the channel shape parameter b and
the channel width-to-depth ratio B/H

B
b = ln (9)S DH

Eq. (8) in conjunction with (9) is a useful mathematical
means describing the cross-sectional channel shape of natural
rivers because of its adaptability to variable channel shapes.
For instance, (8) represents a triangular shape for b = 1, par-
abolic shape for b = 2, approximate natural channel shape with
a flat-bed region and two curving bank regions for b > 2 (say,
b = 5), and rectangular shape for b = `, as shown in Fig. 2,
where Hc = b = 1. Fig. 2 demonstrates that (8) is able to reflect
01, 127(11): 919-927 
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different cross-sectional shapes of channels with size ranging
from small canals to large rivers. The cross-sectional channel
shape is a significant factor in determining the actual magni-
tude of the longitudinal dispersion coefficient of streams
(Sooky 1969). Therefore, (8) in combination with (9) is es-
sential to the determination of the lateral velocity distribution
and thus of the longitudinal dispersion coefficient.

From (8), the cross-sectionally averaged flow depth is ob-
tained

1
bbH = H (1 2 j ) d = H (10)c j cE b 1 10

where a dimensionless lateral coordinate j = y/b is introduced.
The cross-sectionally averaged velocity is determined from the
Manning formula

SÏ 2/3U = R (11a)
n

where the hydraulic radius can be determined analytically if
the parameter b = 2. When a channel is very wide, the hy-
draulic radius approaches the mean depth in the cross section.
For b = 2, when B/H = 8, the hydraulic radius is 0.8 of the
mean depth and is close to unity when the ratio increases. This
means that, for not very narrow channels, the section-averaged
velocity can be expressed by (11b) with Uc as the mean ve-
locity at the centerline

2/3 2/3
S b bÏ 2/3U = H = U (11b)c cS D S Dn b 1 1 b 1 1

where S = channel slope; n = Manning roughness coefficient;
and Hc = flow depth at the channel center. With the channel
shape assumed in Fig. 1, the river is characterized by the uni-
formity of longitudinal slope S and surface roughness n across
the channel boundary. Moreover, careful experiments indicate
that the sides of a channel have practically no influence on the
velocity distribution in the central region when the width is
>10 times the depth of flow (Chow 1959). Most natural
straight rivers or river reaches approximately meet the above
conditions. It means that the uniform flow condition is roughly
valid for individual verticals in most parts of the cross section
of the straight natural streams and rivers with width-to-depth
ratio >10. Consequently, it is reasonable to assume that the
Manning equation still holds for the local depth-averaged ve-
locity for the straight channels with width-to-depth ratio >10;
i.e.,

SÏ 2/3u(y) = a h(y) (12)
n

in which a = revision coefficient accounting for the difference
between flow depth and hydraulic radius satisfying the follow-
ing constraint:

B

h 9 dy = 0 (13)uE
0

where the deviation of the velocity u(y) from the cross-sec-
tional mean u9 is expressed

SÏ 2/3u9 = u(y) 2 U = a h 2 U
n

or
2/3

h
u9 = a 2 1 U (14)F S D GH

Substituting (8) and (10) into (14) and using j = y/b, one
obtains
 J. Hydraul. Eng., 2001
FIG. 3. Relationship between Ey /u*B and B/H

2/3
b 1 1b 2/3u9 = a(1 2 j ) 2 1 U (15)F S D Gb

Eq. (15) describes the lateral distribution of the deviation of
the velocity u(y) from the cross-sectional mean.

DETERMINATION OF TRANSVERSE MIXING
COEFFICIENT

Eq. (2) contains three unknown variables, namely, local flow
depth h(y), velocity deviation u9, and lateral mixing coefficient
εt. The variables h and u9 can be determined from (8) and
(15), respectively. Up to now, a theoretical expression of εt is
not available. This expression should include Ky and Ey, which
should also be determined.

A large number of experiments have been conducted to de-
termine the transverse turbulent diffusion coefficient Ey. Webel
and Schatzmann (1984) carried out a systematic experimental
study and found that Ey /u*H has a constant value of 0.13,
which approaches Ey /u*H = 0.17, measured in a straight sec-
tion of the river Rhine near Karlsruhe. Based on the result of
a total of 75 separate experiments in straight channels, Fischer
et al. (1979) suggested that Ey = 0.15u*H. Rutherford (1994)
summarized 139 sets of experimental data and found that Ey /
u*H lies in the range of 0.10–0.26. The authors’ calculations
for the 139 sets of data showed that 138 sets of data resulted
in the values of Ey /u*H ranging from 0.10 to 0.26. One set of
data gave an extremely high value of Ey /u*H = 0.847; thus,
this data set was not used. Using 138 sets of experimental data
collected by Rutherford from different investigators, the au-
thors found a constant transverse turbulent diffusion coeffi-
cient

Ey = 0.145 (16)
Hu*

The result is consistent with Ey = 0.15u*H, suggested by
Fischer et al. (1979). The result can also be expressed in the
form

E 0.145y = (17)
Bu B/H*

The 138 sets of data give a regression equation with a cor-
relation coefficient of R2 = 0.9248, as shown in Fig. 3. The
difference between the dimensionless values predicted by the
regression equation and (17) is <0.0005 when B/H > 10. It is
therefore sufficiently accurate to use (16) or (17) because of
their simplicity, compared to the regression equation.

To obtain a laterally distributed turbulent diffusion coeffi-
cient, it is assumed that (16) is still valid for local flow depth
and u* denotes the cross-sectionally averaged shear velocity
JOURNAL OF HYDRAULIC ENGINEERING / NOVEMBER 2001 / 921
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E = 0.145u h(y) (18)y *

Several attempts have been made to establish a relationship
between transverse dispersion coefficient Ky and bulk river
channel parameters. To estimate the transverse dispersion co-
efficient Ky in natural meandering rivers, Fischer, Yotsukura,
and Sayre developed their equations (Rutherford 1994). These
equations lead to the result that there is no transverse disper-
sion in straight rivers. However, field measurements indicate
that transverse dispersion depends on secondary currents rather
than on turbulence generated by bed friction, whereas the sec-
ondary currents exist even in straight natural rivers (Nezu et
al. 1993). Therefore, transverse dispersion exists in all natural
rivers, including straight ones.

For large rivers, the following transverse dispersion equa-
tion has been proposed (Smeithlov 1990):

1.38
K 1 U By = (19)S D S D S DHu 3,520 u H* *

Eq. (19) was established based on data measured on 11 rivers
in the United States. The rivers have different characteristics.
Some of the rivers are shallow and wide, and some are deep
and narrow. Eq. (19) is also assumed to be valid for local flow
depth. That is, the cross-sectionally averaged flow depth H can
be replaced by the variable local flow depth h(y) when (19)
is applied to (2)

1.38
K 1 U By = (20)S D S D S Dhu 3,520 u H* *

Eqs. (18) and (20) lead to the transverse mixing coefficient

1.38
1 U B

ε = 0.145 1 u h (21)t F S D S D S D G *3,520 u H*

Let
1.38

1 U B
ε = 0.145 1 (22)t 0 S D S D S D3,520 u H*

Then

ε = ε u h (23)t t 0 *

DERIVATION OF LONGITUDINAL DISPERSION
COEFFICIENT

Using (8), (15), and (23), it is plausible to predict the lon-
gitudinal dispersion coefficient Kx theoretically by a direct in-
tegration of (2). Substituting (8), (15), and (23) into (2) and
accounting for the symmetry of the generalized river channel
shown in Fig. 1, (2) can be written

2b y y
1 1

K = 2 hu9 hu9 dy dy dyx E E EA ε ht1b b b

0 j j32 b
= 2 hu9 hu9 d d dj j jE E E2BH ε u ht01 1 1*

3 0 2/3
2 B b 1 1b b 2/3= 2 (1 2 j )H a(1 2 j ) 2 1cS D E F S D GBH 2 b1

j j

1 b?U ? (1 2 j )HcE Eb 2 2j u (1 2 j ) Ht0 c1 1*
2/3 2b 1 1 2 Bb 2/3? a(1 2 j ) 2 1 Ud d d = 2j j jF S D G S Db 8ε Ht0
922 / JOURNAL OF HYDRAULIC ENGINEERING / NOVEMBER 2001
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0 2/32U b 1 1b b 2/3? (1 2 j ) a(1 2 j ) 2 1S D E F S D Gu b1*
j j

1 b b 2/3? (1 2 j ) ? a(1 2 j )E E Fb 2(1 2 j )1 1

2/3
b 1 1

? 2 1 d d dj j jS D Gb

Let
21 2/3 j

b 1 1 1b b 2/3I = (1 2 j ) a(1 2 j ) 2 1E F S D G E b 2b (1 2 j )11 1

j 2/3
b 1 1b 2/3b? (1 2 j ) a(1 2 j ) 2 1 d d dj j jE F S D Gb1 (24)

Then, the dimensionless longitudinal dispersion coefficient can
be expressed

2
K 1 B Ux = 2 I(b) (25)S D S DB 8ε H uu t0* *

As mentioned earlier, both the local flow depth h(y) and the
deviation u9(y) of the local velocity from the cross-sectional
mean velocity are defined based on the straight symmetrical
channel and the uniform flow. However, natural rivers involve
many kinds of nonuniformities, such as dead zones, bends, and
islands (Sooky 1969; Rutherford 1994). There even exists sec-
ondary flow in straight natural rivers (Nezu et al. 1993). These
nonuniformities of channel geometry and flow affect the the-
oretical definitions of h(y) and u9(y) and thus the dispersion
coefficient Kx. It is therefore necessary to introduce a revision
parameter in (25) to account for the various nonuniformities
involved in both flow and geometrical characteristics of nat-
ural rivers. Some experimental results provide quantitative in-
formation about the influence of nonuniformities.

Fischer (1967) conducted a series of dispersion experiments
in laboratory channels with smooth and rough banks. The two
sets of experiments were purposefully made under conditions
as nearly identical as possible, except for the bank roughness.
The experimental results show that the longitudinal dispersion
coefficient in the channel with rock sides was about 15 (14.7)
times that in the smooth channel. It is apparent that the chan-
nel, assumed for the derivation of (25) and shown in Fig. 1,
corresponds to the smooth one; whereas most real channels
possess rough sides due to the bank vegetation, groins, irreg-
ular bank alignment formed by natural erosion of flow, and
other nonuniformities mentioned earlier. To make (25) appli-
cable to natural rivers and streams, it is amended by multiply-
ing the right-hand side by a comprehensive revision constant
c, leading to the following equation:

2
K c B Ux = 2 I(b) (26a)S D S DBu 8ε H ut0* *

or
2 2

K c B Ux = 2 I(b) (26b)S D S DHu 8ε H ut0* *

where the comprehensive revision constant c can be taken as
a constant of 15 based on Fischer’s experimental result. The
value c = 15 can be confirmed by using field data.

The value of I(b) is the dimensionless triple integral, which
quantifies the velocity variation over the channel cross section
and is defined in (24). The value of I(b) is only dependent on
the channel shape parameter b or width-to-depth ratio B/H.
For a given river, I(b) can be solved by numerical integration
01, 127(11): 919-927 
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TABLE 1. Numerical Integration Results for Different Channel
Width-to-Depth Ratios

B/H b a I

10 2.3026 0.9058 20.004786
20 2.9957 0.9230 20.003601
50 3.9120 0.9380 20.002623

100 4.6052 0.9460 20.002126
150 5.0106 0.9500 20.001851
200 5.2983 0.9525 20.001775

of (24). To avoid the complicated triple integration, I(b) is
computed for different channel width-to-depth ratios B/H and
the calculated results are given in Table 1. The six sets of data
listed in Table 1 produce a correlation curve between the chan-
nel width-to-depth ratio B/H and the triple integration value
I(b), as shown in Fig. 4. The curve can be described simply
and accurately by the following regression equation:

0.01
I = 2 (27)1/3(B/H )

Substitution of (27) into (25) and (26) yields the dimensionless
longitudinal dispersion coefficient equations, respectively

2/3 2
K 0.01 B Ux = (28a)S D S DBu 8ε H ut0* *

or
5/3 2

K 0.01 B Ux = (28b)S D S DHu 8ε H ut0* *
2/3 2

K 0.01c B Ux = (29a)S D S DBu 8ε H ut0* *

or
5/3 2

K 0.01c B Ux = (29b)S D S DHu 8ε H ut0* *

The process of numerical integration of (24) is demonstrated
in the Appendix for B/H = 20 and b = ln(B/H) ' 3. The
symbols I1 and I2 in the Appendix are defined respectively as
follows:

j 2/3
b 1 1b b 2.3I = (1 2 j ) a(1 2 j ) 2 1 d1 jE F S D Gb1

j j 2/3
1 b 1 1b b 2/3I = (1 2 j ) a(1 2 j ) 2 1 d d2 j jE E F S D Gb 2(1 2 j ) b1 1

To avoid an irrational prediction of flow depth, the dimen-
sionless transverse distance j should be taken as positive (i.e.,
j = uju if j < 0), as shown in column 2 in the Appendix. The
numerical computation uses 20 subareas, as listed in Table 4.
In column 5, I1 represents the cumulative dimensionless dis-
charge from one bank of the channel to the other. Each value
in column 6 is obtained by taking the value at the end of the
previous subarea and adding the mean of the cumulative di-
mensionless discharge multiplied by the width (Dj = 0.1) of
the subarea and divided by the value of (1 2 Each valueb 2j̄ ) .
in column 7 is obtained by taking the value at the end of
the previous subarea and adding the mean of column 6 in the
subarea multiplied by the dimensionless discharge in the
subarea and by its width (Dj = 0.1). The last figure in column
7 is the value of the triple integral in (24). Following the same
procedure, the integral value of (24) can be calculated for any
given b. Owing to the symmetry of the generalized channel
shape, the figures in column 6 also show the symmetry when
j varies from 0.1 to 1.0 and from 20.1 to 21.0. Such a sym-
 J. Hydraul. Eng., 20
FIG. 4. Variation of Triple Integration I(b) with Channel Width-to-
Depth Ratio B/H

metry makes the last figure 20.0017986 in the line j = 0.0
equal half of the last figure 20.0036013 in the last line j =
21.0. Consequently, the numerical integration is conducted
only for j = 0.0 to 1.0 for other width-to-depth ratios.

VERIFICATION OF NEW LONGITUDINAL DISPERSION
COEFFICIENT EQUATION

The accuracy of the newly established equation for the lon-
gitudinal dispersion coefficient and the suitability of the revi-
sion constant c = 15 were evaluated using 73 sets of data
measured on 29 rivers in the United States (Table 2). The
following two criteria were taken into consideration in the data
selection process: (1) the data measured on the U.S. rivers
should be preferable because the transverse dispersion coeffi-
cient [(19)] was established based on the data from the rivers
in the United States rather than from canals—thus, the se-
lected data did not include the data from canals; (2) to facil-
itate a comparison with other equations, the same data adopted
for comparable equations should be used. According to these
criteria, among the 59 sets of data employed by Seo and
Cheong (1998), 58 data sets (1–58 in Table 2) were adopted.
Furthermore, 15 sets of data on rivers from the United States
collected by Rutherford (1994) were also selected (59–73).

A comparison between the measured and computed values
of the dispersion coefficient further demonstrates that it is rea-
sonable to define the revision constant c = 15. Substituting c
= 15 into (29) yields a new equation for the longitudinal dis-
persion coefficient for natural rivers

5/3 2
K 0.15 B Ux = (30)S D S DHu 8ε H ut0* *

where εt0 can be computed from (22). Eq. (30) stems from the
direct integration of (2) and is thus theoretically based. More-
over, (30) not only includes the conventional parameters, chan-
nel width-to-depth ratio B/H, and friction term U/u* but also
involves the effect of transverse mixing εt0. This distinguishing
feature of (30) is that it clarifies its dispersion mechanism. In
addition, (30) is conducive to further improvement if a more
accurate transverse dispersion equation is found.

As mentioned earlier, (4) is regarded as being superior to
existing equations (Seo and Cheong 1998) in explaining dis-
persion characteristics of natural streams. To compare with
other equations, (4) is therefore employed to do the same cal-
culation of the longitudinal dispersion coefficient. The com-
puted results are listed in the last two columns of Table 2.
These results indicate that the new (30) provides predictions
closer to the measured values of the longitudinal dispersion
coefficient than does (4). Among 58 data sets collected by Seo
and Cheong (1998), 32 predictions by (30) and 30 by (4) fall
within the range of 0.5 < Dprediction/Dmeasurement < 2; 34 data sets
JOURNAL OF HYDRAULIC ENGINEERING / NOVEMBER 2001 / 923
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TABLE 2. Comparison of Measured and Predicted Longitudinal Dispersion Coefficients

Number River
Width B

(m)
Depth H

(m)
Velocity U

(m/s)

Shear
velocity u*

(m/s)

Dispersion Coefficient Kx (m2/s)

Measured
value

Predicted
by Eq. (30)

Predicted
by Eq. (4)

1 Antietam Creek, Md. 12.80 0.30 0.42 0.057 17.50 17.55 17.96
2 24.08 0.98 0.59 0.098 101.50 47.25 53.68
3 11.89 0.66 0.43 0.085 20.90 14.97 20.17
4 21.03 0.48 0.62 0.069 25.90 44.37 46.93
5
6
7
8
9

Monocacy River, Md. 48.70
92.96
51.21
97.54
40.54

0.55
0.71
0.65
1.15
0.41

0.26
0.16
0.62
0.32
0.23

0.052
0.046
0.044
0.058
0.040

37.80
41.40
29.60

119.80
66.50

28.21
25.79
85.52
72.18
20.08

27.14
23.53

110.87
70.94
20.35

10
11
12

Conococheague Creek, Md. 42.21
49.68
42.98

0.69
0.41
1.13

0.23
0.15
0.63

0.064
0.081
0.081

40.80
29.30
53.30

22.92
11.74
93.05

20.80
9.27

96.69
13
14

Chattahoochee River, Ga. 75.59
91.90

1.95
2.44

0.74
0.52

0.138
0.094

88.90
166.90

168.61
146.56

169.12
148.04

15 Salt Creek, Nebr. 32.00 0.50 0.24 0.038 52.20 20.71 20.58
16 Difficult Run, Va. 14.48 0.31 0.25 0.062 1.90 9.45 9.02
17 Bear Creek, Colo. 13.72 0.85 1.29 0.553 2.90 28.13 52.28
18 Little Pincy Creek, Md. 15.85 0.22 0.39 0.053 7.10 16.22 16.91
19 Bayou Anacoco, La. 17.53 0.45 0.32 0.024 5.80 21.82 25.00
20 Comite River, La. 15.70 0.23 0.36 0.039 69.00 15.77 17.39
21 Bayou Bartholomew, La. 33.38 1.40 0.20 0.031 54.70 23.00 26.28
22 Amite River, La. 21.34 0.52 0.54 0.027 501.40 46.68 59.89
23 Tickfau River, La. 14.94 0.59 0.27 0.080 10.30 9.66 11.76
24 Tangipahoa River, La. 31.39 0.81 0.48 0.072 45.10 49.06 50.01
25 29.87 0.40 0.34 0.020 44.00 28.67 39.22
26 Red River, La. 253.59 1.62 0.61 0.032 143.80 270.87 473.56
27 161.54 3.96 0.29 0.060 130.50 134.42 132.88
28 152.40 3.66 0.45 0.057 227.60 230.01 238.12
29 155.14 1.74 0.47 0.036 177.70 181.13 235.11
30 Sabine River, La. 116.43 1.65 0.58 0.054 131.30 188.76 218.91
31 160.32 2.32 1.06 0.054 308.90 508.34 718.79
32 Sabine River, Tex. 14.17 0.50 0.13 0.037 12.80 4.59 5.23
33 12.19 0.51 0.23 0.030 14.70 10.49 11.87
34 21.34 0.93 0.36 0.035 24.20 32.73 37.46
35 Mississippi River, La. 711.20 19.94 0.56 0.041 237.20 1,617.50 1,854.49
36 Mississippi River, Mo. 533.40 4.94 1.05 0.069 457.70 1,244.96 1,792.98
37 537.38 8.90 1.51 0.097 374.10 2,578.86 3,271.43
38 Wind/Bighorn River, Wyo. 44.20 1.37 0.99 0.142 184.60 150.87 158.73
39 85.34 2.38 1.74 0.153 464.60 577.23 638.00
40 Copper Creep, Va. 16.66 0.49 0.20 0.080 16.84 6.91 7.64
41 Clinch River, Va. 48.46 1.16 0.21 0.069 14.76 23.77 23.47
42 Copper Creek, Va. 18.29 0.38 0.15 0.116 20.71 3.96 4.16
43 Powell River, Tenn. 36.78 0.87 0.13 0.054 15.50 9.89 9.93
44 Clinch River, Va. 28.65 0.61 0.35 0.069 10.70 28.39 27.52
45 Copper River, Va. 19.61 0.84 0.49 0.101 20.82 28.39 33.75
46 Clinch River, Va. 57.91 2.45 0.75 0.104 40.49 158.03 179.90
47 53.24 2.41 0.66 0.107 36.93 118.28 139.68
48 Copper Creek, Va. 16.76 0.47 0.24 0.080 24.62 9.31 9.79
49 Missouri River, Iowa 180.59 3.28 1.62 0.078 1,486.45 1,008.41 1,382.00
50 Bayou Anacoco, La. 25.91 0.94 0.34 0.067 32.52 26.82 29.61
51 36.58 0.91 0.40 0.067 39.48 45.49 45.69
52 Nooksack River, Wash. 64.01 0.76 0.67 0.268 34.84 82.63 69.65
53 Wind/Bighorn River, Wyo. 59.44 1.10 0.88 0.119 41.81 156.59 159.96
54 68.58 2.16 1.55 0.168 162.58 405.53 437.37
55 John Day River, Oreg. 24.99 0.58 1.01 0.140 13.94 81.63 83.23
56 34.14 2.47 0.82 0.180 65.03 71.16 116.81
57 Yadkin River, N.C. 70.10 2.35 0.43 0.101 111.48 83.82 91.21
58 71.63 3.84 0.76 0.128 260.13 177.13 277.02
59 Minnesota River 80.00 2.74 0.034 0.0024 22.3 12.05 13.88
60 80.00 2.74 0.14 0.0097 34.9 49.85 57.62
61 Amite River 37.00 0.81 0.29 0.070 23.2 28.42 27.29
62 42.00 0.80 0.42 0.069 30.2 50.96 50.18
63 White River 67.00 0.55 0.35 0.044 30.2 46.40 54.32
64 Nooksack River 86.00 2.93 1.20 0.53 153.0 195.54 239.79
65 Susquehanna River 203.00 1.35 0.39 0.065 92.9 134.88 150.05
66 Bayou Anacoco 20.00 0.42 0.29 0.045 13.9 17.59 17.54
67 Muddy River 13.00 0.81 0.37 0.081 13.9 12.80 18.98
68 Muddy River 20.00 1.20 0.45 0.099 32.5 24.10 34.94
69 Comite River 13.00 0.26 0.31 0.044 7.0 12.30 12.43
70 16.00 0.43 0.37 0.056 13.9 19.41 19.88
71 Missouri river 183.00 2.33 0.89 0.066 465.0 437.93 558.77
72 201.00 3.56 1.28 0.084 837.0 847.27 1,054.37
73 Missouri River 197.00 3.11 1.53 0.078 892.0 950.80 1,317.33
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favor (30) over (4), which was derived from the data sets,
whereas 24 sets of the data favor (4). Among the total of 73
sets of data listed in Table 2, 44 measured dispersion coeffi-
cients are closer to those predicted by (30) than to those pre-
dicted by (4). In other words, the new (30) gives closer pre-
dictions in 60.3% of cases, as opposed to 39.7% by the
empirical formula of Seo and Cheong. In the extreme case,
the predicted dispersion coefficient of (30) deviates from the
measured value by a factor of 10 (No. 17 and No. 22) and (4)
overestimates the dispersion coefficient by a maximum
factor of 18 (No. 17). It follows from the above comparison
that the proposed equation is capable of providing a superior
prediction of the longitudinal dispersion coefficient for natural
rivers.

DISCUSSION OF ANALYSIS

Sensitivity Analysis

A sensitivity and error analysis of the new longitudinal dis-
persion coefficient equation is conducted for mean values of
input and output variables in (30) and on the assumption that
the errors in each input variable are independent. The 73 sets
of data in Table 2 give the average values of the channel width,
flow depth, velocity, shear velocity, and dispersion coefficient
as B = 83.46 m, H = 1.72 m, U = 0.556 m/s, u* = 0.087 m/
s, and Kx = 132.00 m2/s, respectively.

If the error DK in output longitudinal dispersion coefficient
Kx is defined as the difference between values of Kx predicted
for inputs X 1 DX and X, then the error can be estimated
using a truncated Taylor series or the absolute sensitivity As =
K /X (ASCE 1996); i.e., DK = K(X 1 DX) 2 K(X ) ' (K/
X)?DX, where DX is the error in model input X denoting the
variables B, H, U, or u*. The error could also be expressed in
a relative form: DK/K. The error DK of the above equation is
essentially the deviation sensitivity with DX being the error.
The relative sensitivity Rs can be expressed as Rs = (K/X )?
(X/K) (ASCE 1996). Assuming that each predictor variable is
incremented by a constant percentage of 10%, then the errors
DK in dispersion coefficients are computed, as shown in Table
3. Table 3 indicates that the velocity U is the most sensitive
variable among the four input variables; thus, the same change
of 10% in U causes the greatest variation in the dispersion
coefficient Kx. The channel width B is next in importance,
followed by depth H and shear velocity u*. The relative sen-
sitivity of U is about twice that of B, which is roughly
twice that of H as well. Therefore, the prediction accuracy of
(30) depends heavily on the value of velocity U and its dis-
tribution. This means that accurate measurements of flow ve-
locity U and channel width B can significantly improve pre-
dictions by (30).

Influence of Flow and Channel Geometry Change on
Dispersion Coefficient

Table 2 illustrates the variability of the dispersion coefficient
in different streams. Actually, Kx changes even in the
same stream with flow and hence water level. Eq. (30) can be
recast by using the Manning formula and shear velocity ex-
pression

0.15 1 S 5/3 1/6K = B H (31a)x S Î D28ε nt0 g

1.381/61 H B
ε = 0.145 1 (31b)t0 S D S D3,520 Hn gÏ
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TABLE 3. Sensitivity and Error Analysis of New Dispersion
Coefficient Eq. (30)

X As Rs DX DK
Relative

error

B 1.110 0.702 8.346 m 9.268 0.070
H 27.306 0.356 0.172 m 4.697 0.036
U 319.672 1.347 0.056 m/s 17.774 0.135
u* 2439.036 20.289 0.009 m/s 3.820 0.029

Eq. (31) indicates that the longitudinal dispersion coefficient
Kx increases with flow depth H provided that the water level
is maintained in the main channel or the flow discharge is less
than the bank-full one. Otherwise, Manning’s roughness co-
efficient n may increase significantly once the discharge ex-
ceeds the bank-full one, causing the decrease of Kx. Such a
behavior of Kx with flow is consistent with experimental re-
sults (Guymer 1998). The experimental results of both Guymer
(1998) and Fischer (1967) have illustrated that compound or
more natural cross-sectional geometry channel increases
greatly the value of the longitudinal dispersion coefficient.
Further investigation is needed to quantify the effects of chan-
nel and flow nonuniformities on the longitudinal dispersion
coefficient Kx.

Limitations of Analysis

The basic assumptions of this analysis limit the application
of the new longitudinal dispersion coefficient equation to
straight uniform rivers in theory. The differences between ob-
served and predicted dispersion coefficients are mainly attrib-
uted to the effects of dead zones, bends, secondary currents,
and other irregular features that are not explicitly involved in
(30). The introduction of the comprehensive revision constant
c reflects the effects of these irregularities in real rivers to
some extent. Note that c = 15 is defined for natural rivers with
moderate irregularity. The value of c should be equal to unity
in theory and be slightly greater than unity in practice for
smooth channels such as canals with lined banks [for instance,
the predicted longitudinal dispersion coefficient kx = 6.2 m2/s
by (28) and the measured one kx = 9.6 m2/s for the Coachella
Canal with B = 24.40 m, H = 1.56 m, U = 0.71 m/s, and u*
= 0.044 m/s (Fischer 1968)]. The values of the predicted and
measured dispersion coefficients result in c = 1.5 close to the
theoretic value of c = 1. It means that the predicted dispersion
coefficient by (28) is reasonable at least for the assumed chan-
nel in Fig. 1. Moreover, the majority of streams are uniform
enough for an approximate analysis (Fischer et al. 1979).
Therefore, the new equation can be used practically for natural
rivers that approximately satisfy 1D flow conditions with rel-
ative high accuracy, as demonstrated in Table 2. Furthermore,
Fischer’s triple integral expression [(2)] of the longitudinal dis-
persion coefficient, on which (30) is based, is valid only after
the initial convective-dominated period or after a distance L
downstream from the source where the balance between ad-
vection and diffusion is reached. The distance L satisfies the
condition L > 0.4UB2/εt according to Fischer et al. (1979).
Finally, (2) was derived for river channels with large
width-to-depth ratios >6 (Fischer 1967) and the Manning
equation can be employed to individual verticals in the river
channels with B/H > 8 to 10. Therefore, the use of (30) is
suggested for natural rivers and streams having width-to-depth
ratio >10.

CONCLUSIONS

Using the hydraulic geometry relationship of stable rivers,
a channel shape equation or a transverse profile equation of
JOURNAL OF HYDRAULIC ENGINEERING / NOVEMBER 2001 / 925

, 127(11): 919-927 



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 o

n 
09

/1
7/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
local flow depth is derived; thereby, the lateral distribution of
the deviation of local depth mean velocity from the cross-
sectional average value is determined for straight alluvial riv-
ers. Using the suggested equation for the transverse mixing
coefficient and the direct integration of Fischer’s triple inte-
gral, a new equation for the longitudinal dispersion coefficient
for natural rivers is derived by taking into account the irreg-
ularity of natural rivers. By comparing with 73 sets of field
data and the equations proposed by other investigators, it is
found that the new (30) has the least error in predicting the
longitudinal dispersion coefficients for natural rivers. More
than 64% of the predictions by the new equation fall within
the range of 0.5 < Kprediction/Kmeasurement < 2. Moreover, as com-
pared with existing equations, the new equation is theoretically
based, more accurate, and clarifies its dispersion mechanism.
The distinct feature of the suggested equation lies in its in-
corporation of the transverse mixing coefficient. The new
equation can be further improved if a more accurate transverse
dispersion equation is found. The future investigation into lon-
gitudinal dispersion should highlight the determination of an
accurate transverse dispersion coefficient equation and the in-
fluence of channel irregularity.

APPENDIX

TABLE 4. Numerical Integration of Eq. (24) for b = 3

j
(1)

ofj̄
subarea

(2)

Width
Dj
(3)

b¯1 2 j
(4)

I1

(5)
I2

(6)
I(b)
(7)

1.0
0.9
0.8
0.7
0.6

—
0.95
0.85
0.75
0.65

—
0.1
0.1
0.1
0.1

—
0.1426
0.3859
0.5781
0.7254

0
20.00991
20.02563
20.03858
20.04564

0
20.02436
20.03629
20.04590
20.05390

0
0.000121
0.000597
0.001130
0.001482

0.5
0.4
0.3
0.2
0.1

0.55
0.45
0.35
0.25
0.15

0.1
0.1
0.1
0.1
0.1

0.8336
0.9089
0.9571
0.9844
0.9966

20.04644
20.04197
20.03375
20.02327
20.01175

20.06053
20.06588
20.07001
20.07295
20.07471

0.001528
0.001245
0.000687

20.000062
20.000913

0.0 0.05 0.1 0.9999 0.00006 20.07530 20.001799
20.1 0.15 0.1 0.9966 0.01181 20.07471 20.002684
20.2 0.25 0.1 0.9844 0.02333 20.07294 20.003535
20.3 0.35 0.1 0.9571 0.03381 20.06999 20.004284
20.4 0.45 0.1 0.9089 0.04204 20.06585 20.004842
20.5 0.55 0.1 0.8336 0.04651 20.06049 20.005124
20.6 0.65 0.1 0.7254 0.04570 20.05386 20.005079
20.7 0.75 0.1 0.5781 0.03865 20.04584 20.004727
20.8 0.85 0.1 0.3859 0.02569 20.03622 20.004195
20.9 0.95 0.1 0.1426 0.00997 20.02424 20.003720
21.0 — — — 0.00007 0.00027 20.003601
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NOTATION

The following symbols are used in this paper:

A = cross-sectional area of river channel (m2);
As = absolute sensitivity;
a = numerical constant;
B = surface width of river channel (m);
b = B/2 (m);
C = cross-sectional average concentration (mg/L);
d = numerical constant;
E = turbulent diffusion coefficient (m2/s);
H = cross-sectional average flow depth (m);

Hc = flow depth at channel center (m);
h = local flow depth (m);
I = value of dimensionless integral;

K = dispersion coefficient (m2/s);
n = Manning roughness coefficient;
p = numerical constant;
q = numerical constant;

Rs = relative sensitivity;
S = channel slope;
t = time;

U = cross-sectional average velocity (m/s);
u = longitudinal velocity (m/s);

u9 = deviation of local depth mean velocity from cross-sec-
tional mean (m/s);

u* = shear velocity (m/s);
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X = variable;
x = longitudinal coordinate;
y = lateral coordinate;
z = vertical coordinate;
a = revision coefficient;
b = channel shape parameter;

DK = error in dispersion coefficient;
 J. Hydraul. Eng., 200
DX = error in variable;
d = numerical constant;
εt = transverse mixing coefficient (m2/s);
u = numerical constant;
j = dimensionless transverse distance y/b;
s = numerical constant; and
c = revision constant.
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