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Abstract: Using a new channel shape equation for straight channels and a more versatile channel shape or local flow depth equation fc
natural streams a method is developed for prediction of the longitudinal dispersion coefficient in single-channel natural streams, including
straight and meandering ones. The method involves derivation of a new triple integral expression for the longitudinal dispersion coeffi-
cient and development of an analytical method for prediction of this coefficient in natural streams. The proposed method is verified using
70 sets of field data collected from 30 streams in the United States ranging from straight manmade canals to sinuous natural rivers. Th
new method predicts the longitudinal dispersion coefficient, where more than 90% calculated values range from 0.5 to 2 times the
observed values. The advantage of the new method is that it is capable of accurately predicting the longitudinal dispersion coefficient ir
single-channel natural streams without using detailed dye concentration test data. A comparison between the new method and the existil
methods shows that the new method significantly improves the prediction of the longitudinal dispersion coefficient.
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Introduction objectives are therefore t¢1) establish a local flow depth equa-
tion describing the cross-sectional channel shape of natural
streams by incorporating the channel sinuosig);derive a new
triple integral expression defining the longitudinal dispersion co-
efficient; and(3) determine the parameters of the new method

intensity of the mixing of pollutants in natural streams and is, easilv and develop a simple and accurate solution for obtainin
therefore, of great interest to river managers, environmental engi- iy and deveiop Imp d accu utt ining
the longitudinal dispersion coefficient.

neers, institutional researchers, among others, who are involved in
river water pollution control.
More than 30 years ago Fisch@i967) developed a theory for  Previous Investigations
determination of the longitudinal dispersion coefficient from
cross-sectional data and the transverse mixing coefficient. How-Numerous investigators have contributed to the understanding of
ever, predicted longitudinal dispersion coefficients often deviate the mechanisms of longitudinal dispersion in rivers, beginning
from observed ones by orders of magnitude. The deviation is vv_|th the simplest dispersion of dlssolvgd contaminants in laminar
attributed mainly to the inability to account for meandering and Pipe flow (Taylor 1953 to turbulent pipe flow(Taylor 1954.
other nonuniform conditions of the river. Elder (1959 extended the dispersion in pipe to the mixing in an
The overall objective of this paper is to develop a simple yet infinitely wide channel of constant depth and proposed that the
reliable method of estimating the longitudinal dispersion coeffi- governing mechanism for dispersion in a wide channel is the
cient in single-channel natural streams, including straight and me-Vertical velocity gradient. Fisché€l967) attributed the lateral ve-
andering ones. The method employs bulk channel parameters!ocCity heterogeneity to the underlying mechanism of longitudinal

which are easily available without dye experiments. The specific dispersion. McCutcheoril989 summarized studies related to
longitudinal dispersion. Despite the pioneering work of Taylor

and the landmark contribution of Fischer, and seminal studies of

River pollution has received much attention in recent years. The
longitudinal dispersion coefficient is a fundamental parameter in
hydraulic modeling of river pollution, for it is a measure of the
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longitudinal dispersion coefficient of a corresponding straight spectively;u, v, andw=flow velocities along the three coordi-
channel. Fischef1969 explained the considerable discrepancies nate directions in LT!; c¢=constituent concentration in3L~3;

by considering the effect of variation of the cross-sectional geom- u, v, w, andc=instantaneous values; afig,= coefficient of mo-

etry on dispersion along the course of natural streams and pointedecular diffusion in [2T~*. Although the instantaneous velocities
out that stream meanders influence longitudinal dispersion in twoy, y, andw of river flow can be obtained by means of advanced
ways. First, the concentration of high velocities on the outside of flow measurement instruments, it is convenient to represent the

river bends results in increased dispersion. Second, river bendspstantaneous valuag v, andw in terms of the time-averaged
induce secondary currents and therefore increased transverse mi)ﬂ?alues(for a specified flow conditionu, v, andw and the tur-

ing, which means that the concentration of a pollutant tends to be jant fluctuating values’

more uniform in a cross section, and thus reduces the Iongitudinalu

dispersion. To obtain a mean dispersion coefficient of a meander-

ing stream, Fischef1969 suggested that individual dispersion

coefficients should be determined from some typical channel ge-

ometries and velocity distributions at various cross sections of a;z 5Gg) a(ve) a(wo) (azE 02c o%c
+ + =D,

, v, andw’ of turbulent flow, i.e.,
=u+u’, v=v+v’, w=w+w’', and c=c+c’. Substituting
these replacements af v, w, andc into Eg. (1) and integrating
the equation with respect to tinteone gets

stream, and an average longitudinal dispersion coefficient be de— +
termined. Although the discrepancies were not reduced signifi-
cantly, Fischer’s suggestions are instructive.

Along a meandering stream there are dead zones, where the
water is rather isolated from the running water in the main chan-
nel. The water exchange between the running water in the main )
channel and the more or less still water in these dead zones in-
fluences the mixing along the stream. There are multiparameterThe overbars indicate the time-averaged values of the quantities
models for computing this water exchange and the related longi- under the bar, and’, v’, w’, and c’=fluctuations about the
tudinal dispersior{Bencala and Walters 1983; Czernuszenko and mean values. By definition, the average of the fluctuating terms
Rowinski 1997, 1998; Lees et al. 2000; Wwan 2000; Fernald  must be zero. The last three terms on the right-hand side of Eq.
et al. 200). Seo and Cheon@001) solved a four-parameter dead  (2) represent the transport associated with the turbulent fluctua-
zone model by using the moment matching method and statedtions and are generally assumed to be proportional to the gradient

that the concentration curves calculated from the four parameter-of ¢ on the basis of experimental resulksolley 1969; McCutch-
model fit observed concentration curves better than the existingegn, 1989: Martin and McCutcheon 1999

methods. The majority of the dead-zone models seem capable of
providing good predictions of the dispersion process in natural - Jc Jc
rivers, if there is a large number of detailed dye test measure- —u'c'=Eso, —V'C’=Enﬁ,
ments for determining the parameters involved in the dead zone
equations. A high-resolution numerical method can satisfactorily and
predict the longitudinal and lateral dispersion in natural streams
with arbitrary geometry and bathymetry, provided the detailed — ac
field concentration measurements are made at strategically placed —we= EZE ©)
monitoring stationgPiasecki and Katopodes 1999

It follows from the above discussion that existing methods of in whichEs, E,, andE,=turbulent diffusion coefficients of flow
predicting the dispersion process in natural rivers require detailedalong the directiors, v, andz, respectively, due to the time aver-
dye test concentration data. Such a requirement limits the appli-aging of integration. Except at the interfaces where there are no
cation of advanced methods, because detailed concentration datturbulent eddies, the role of molecular diffusion is negligible as
are not readily available in most natural streams due to the highcompared to that of turbulent diffusion in constituent transport
cost associated with such measurements. Consequently, it is necitMcCutcheon 198 Substitution of Eq(3) into Eq. (2) yields
essary for effective river pollution control that an accurate ana-

as am 0z as®  am?  9z°

a(u’c’) a(v'c’) a(w'c’)
as am 0z

lytical method for predicting the longitudinal dispersion coeffi- 8_€+ a(uc) N a(ve) N a(wc)
cient in natural streams is developed, a method which does not ot 9s an

0z
require detailed dye test concentration data.
aD+EaC+(9 Dn+E oc
_g ( m s)g ﬁ ( m n)m

In order to clarify the concept of diffusion and dispersion and to J ac
: . : et ; +—| (Dmt+Eyp) — (4)
derive an analytical equation of the longitudinal dispersion coef- a9z 0z

ficient for natural streams including straight and meandering ones, ) o ]
it is necessary to consider the origin of diffusion and dispersion. If All the time-averaged quantities in E@) can be expressed in the

there are no sources/sinks, the three-dimensional constituenform of the depth-averaged quantities as long as the mixing pro-
transport equation in natural streams can be written in terms of cess over the full flow depth is accomplished, ilesd+u”, v
instantaneous variables @dartin and McCutcheon 1999 =v+v”, w=w+w’, and c=c¢+c’. 4, v, and W
ac  a(uc) a(vc) a(we) 92c 92 9% :dipth-ave_raggd yeIOC|ties, and, v" andw —dewauon; frgm
4 + + =Dpl =5+ >+ _2) (1) u, v, andw. Similarly, ¢=depth-averaged concentration; and
ot s m 9z 987 dm® 9z ¢"=deviation ofc from €. Inserting these depth-averaged quan-
wheret=time; s, m, andz=coordinates along longitudinal, lat- tities into Eq.(4) and integrating the equation over local flow
eral, and vertical directions in the natural coordinate system, re-depthh by using Leibnitz’s rule leads teAppendix )

Theoretical Formulation
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a€ 9(a€) a(vé)\ o ElS M,=Dn+E,+K,;, (8b)
E-f— s + P —g h(Dm+ES)£
M¢=D+Est+Ksg, (8c)
ac . . Lo
+a— h(D,+ E“)a_> For convenience of mathematical manipulation, the depth-
m M

averaged terms§ and ¢ can be represented by cross-sectionally

ah(W) ah(W) averaged termb) and C and deviationdJ’ andC’, i.e.,

as an ) a(s,m)=U+U’(s,m)=U+UF(s,m) (9a)
where it has been considered that the turbulent diffusion coeffi- €(s,m)=C(s)+C’(s,m)=C(s)+C(s)G(s,m) (9b)
cientsgg and E,, are constant at the boundaries. The molecular _ )
diffusion coefficientD,, related termgDdc/ds and D dc/dm) where F(s,m) and G(s,m) are subject to the following con-

are small at the water surface and the terms appearing accordingtraints:
to the Leibnitz rule when integrating the first two terms on the

B
right-hand side can be neglecté&ppendix ). In the same man- f Fhdn=0
ner as Eq(3), expressions for the cross products of the fluctuating 0 (10)
terms in Eq.(5) are developed using an analogy to molecular B
diffusion as f Ghdn=0

0

- a€
—uC" =Ko in which h=local flow depth, and= channel width.
(6) Substituting Eq(9) into Eq.(8a) and notingdC/dm =0 yields
- 9€ _
SV =K I[C(1+G)] I[C(L+G)(1+F)] I(1+G)v
gy m +U s +C o
whereK, andK, ,=dispersion coefficients in theandr direc- 19 aC(1+G)| C o 9G
tions due to the vertical gradients of velocity and concentration. = —(th—) +——|hM,— (11)
The last two terms of Eq5) denote the shear contribution to the hos 9s h am am
dispersion. In a coordinate system moving with the mean flow velodity
Although they are similar in form, Eq$6) and (3) are differ- along thes direction, x=s—Ut, y=m, Eq. (11) is

ent by natureKg, andK,, stem from the vertical velocity and
concentration gradients and thus from the deviation of the longi- d(1+G)C dC(1+G) oF I(1+G)v
tudinal and lateral velocities from their depth-averaged values, ot +UF IX +UC(1+G)§+CT
whereastg, E, , andE, originate from the turbulent eddies and
thus from the deviation of the longitudinal, lateral, and vertical _1la M GC(1+G)) N Si( M 96 (12)
instantaneous velocities from their time-averaged values. The h ax XX h oy Yoy

eddy turbulence at small scales is the predominant mechanism in . )

the turbulent diffusion process, and the velocity variation in the Where v=average lateral velocity of the secondary current or
cross section is the predominant mechanism in the longitudinal N€lix flow and thusy~0. The lateral deviation of the concentra-
dispersion process. Such an understanding of the dispersiorfion CGis much smaller than the mean concentratiin a cross
mechanism is essential for the determination of an accurate ex-S€Ction. The decay of concentratiaB/ot is assumed to be much

ression definina the dispersion coefficient. Substituting (Bl smal_ler than the longitudinal concentration _gradient term. Thus,
ﬁ]to Eq. (5) resulgt}s in P 9 (Ex the first and the last terms on the left hand side of &8) can be

neglected. Furthermore, on the right hand side the depth and con-
a€ 9(Gé) a(ve) E 96 centration gradients are much greater in the lateral than in the
it s T3 )Z _<h(Dm+ Es+Ksy) —) longitudinal direction(Fischer 196Y, and therefore the first term
mn Js Js S )
can be eliminated. All this leads to

acC
FE 4K )= aC aF C 9 aG
MOt E K“Z)‘“‘) UF&“’C&ZH@( Myay

Tom (139)

™ Fischer’'s approach does not contain the second term, which is
The different dispersion coefficient3,, for molecular diffu- attributed to the nonuniform velocity distribution of the flow in
sion, E for turbulent diffusion, and for advective dispersion, can meandering streams. E(L3a) can be also written in the form
be lumped together to form mixing coefficieMs being different
in s andn directions. Dividing both sides of E@7) by h gives

d(UFC) C o G
= R ag My 4
d€ a9(aé) aweé) 1 9 €\ 1 9 a€
3t s am =5 g( sos/ T h ﬁ(hM“ﬁ Eg. (13b) indicates that a scalar maintains a balance between the
(8a) longitudinal advective mass transport caused by the shear velocity
and the transverse mixing mass transport. Multiplying both sides
in which the transverse mixing coefficieht, and the longitudi- of Eq. (13a) with h and integrating along give an expression for
nal mixing coefficientM are hM,0G/ay. Dividing by hM, and integrating once more gives
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GV = oC (v 1 yhdd
(x) (Y)—U& Oh_MyO Fdydy

Uny ! jyhaFd dy+C(x)G(0
+ Oh—woa—xnyr(X)()

(14)

The rate of longitudinal mass transport, relative to the moving
coordinate axis, is given by

M ass

ot

B
= fo hu’(y)C’(x,y)dy

= th(UF)(ce)dy:uchhFG dy  (15)
0 0

where the integration is performed over the full width. It should
be noted that the integration over widBhmakes sense only when

the lateral mixing process of constituents has been completed

across the whole flow width.
Substituting Eq(14) into Eq.(15) and recalling the first equal-
ity of Eq. (10) result in

aMaSS—UZJBhF oc fy—l fthd d
at = Jo"lax Johmy J ey Y

+ny 1 fyhaFd q
ohMy Jo  ax yay

dy (16)

The rate of mass transport in the longitudinal direction can also be

defined in terms of a longitudinal mixing coefficient, with an
analogy to the molecular diffusion coefficieriFischer et al.
1979 as

aC
Xax

M ass
T —AK

17

where A=BH=cross-sectional area of the river chann#l;
=mean flow depth; an&,=Ilongitudinal dispersion coefficient

1.38

Uu\/lB &
3,520\ U* /|H (200)
where h=local flow depth;u* =local shear velocity; andJ*

=cross-sectional shear velocity. The local shear velocity and the
maximum shear velocity in a cross section are expressed as

u*=+vy.gSh

M, =0.145+

and

u;ax: 'Y vgshnax

where S= channel slopeg=acceleration due to gravity; ang
= correction factor to get a correct cross-sectional shear velocity.
Introducing the dimensionless deftl , it is seen that

u* = U/,

The mean shear velocity in a cross section is obtained by inte-
grating the local shear velocity over the width

J— 1 1
u*=vy \/gshnaxJ'O \/Edgzurnaxfo \/Edg

This mean value should correspond to the cross-sectional shear
velocity

(21)

(22)
(23)

U*=,gRS (24)
whereR is hydraulic radius. Comparing Eq&3) and (24) it is

seen that
R 1 -1
v= Vs | [/ Ree

max
The ratio between the cross-sectional shear velocity and the maxi-
mum shear velocity is obvious from E@®3) and is

Y j o

ly=—=
max 0

(25)

(26)

Also the cross-section average flow deptltan be related to the

related to the integration over the whole channel cross-section andnaximum depth and expressed in dimensionless fidym

is thus the most important mixing parameter. Equating Et@).
and(17) yields

u? (s y 1 (v
KX——T th J'Oh—Mnyhdedy

C y 1 yhaF
T aclax |, Jo M ax 4y dY|dy (18)

where the last term is attributed to the nonuniformity of flow.
Introducing dimensionless width coordinaie

y
£=5 (19%)
and dimensionless depth,
h(y) h(§)
= — =T 1%
hmax hmax ( )

whereh,,,=maximum flow depth in a cross section.
The transverse mixing coefficier, can be expressed as
(Deng et al. 2001

(208)

with the dimensionless transverse mixing coefficibht being

My=M, hu*

904 / JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 2002

Downloaded 08 Sep 2011 to 130.235.105.202. Redistribution subject to ASCE license or copyright. Visit

H,= (27)

H 1
=| h,d
hmax J'O * f,

Returning to the expression fot,, Eq.(20a), replacing the local
shear velocity with the maximum cross section shear velocity,
gives

M vy~ M * hmaﬂﬁwaxhilz (28)

Replacing variabley, h, andM, in Eq. (18) with their dimen-
sionless formg, h, , andM, by means of Eqs(19) and (298),
Uz B?

one obtains
K flh F Jg h’5’2f§h Fd& dg
= — z
CoupaMe H o U e St

C &h_s/z &h OF fedeld
aClax Jo * O*ng ¢

Expressinguy,., in terms ofl, andU, on the basis of Eq(26)
and inserting it into Eq(29) yields

L]

+

(29)

U*H = (30a)

with
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Fig. 1. Channel shape change withand

1 £ 1
|O:f h*FU h;5’2f h, Fd& dé
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c Jgh*th aFol d¢ |d 300
+ac/axo* O*a—xggg (300)

The & coordinate is shown in Fig. 1 reflecting the variation of the
dimensionless local flow depth, with the channel shape param-
eter B and skewness parameter and the locationé. Let |
=I,1o, then Eqg.(30a) can be rewritten as

U )2

“lia o

Eq. (30) is the basic equation of the longitudinal dispersion coef-
ficientK, . As compared to Fischer’s expression of the longitudi-
nal dispersion coefficient, EQ30) is characterized by two distinct
features:(1) The transverse mixing coefficient in E(B0) con-
tains both the lateral turbulent diffusion coefficient, included in
Fischer’s triple integration, and the lateral dispersion coefficient,

B
q

Kx

UrH (300)

produced by the depth integration and discarded in the analysis of

Fischer and TaylotFischer et al. 1979 (2) The second term in
Eq. (30b) reflects the characteristics of flow in meandering rivers.

The contribution from this term becomes significant when sec-

Parameter Determination

Concentration Related Term C /(9 Cldx)

For a one-dimensional advection—diffusion equation, a simple
steady-state analytical solution can be obtaifiddrtin and Mc-
Cutcheon 199pas

Ux
C=Cy exr{ - —) (31a)
KxO
Eqg. (31a) leads to
C KxO
aClox U (31)

Eqg. (31b) indicates that the ratio of the concentratiGnand its
derivative with respect to the longitudinal distancis a constant
if K, andU are regarded as constant along the stregrin Eq.
(30) is different fromK,, in Eq. (31) which can be understood as
the longitudinal dispersion coefficient in the straight stream.

Velocity Deviation Parameter F

It is seen from Eq(9a) that the dimensionless paramekerep-
resents the deviation of the depth-averaged velagf;n) (the
double overbar is dropped hereaftdrom the cross-sectional
meanU. It is assumed that the local velocitys,m) can be cal-
culated from one of the uniform-flow formulas of Manning,
Chezy, Darcy-Weisbach, among othé&how 1959; Chang 1988
by the incorporation of a correction factdr . The local velocity
is then

u=d’'a\St (32)

wherea= Chezy coefficient andb=1/2 for the Chezy formula;
a=1/n (n=Manning roughness coefficierandb=2/3 for Man-
ning formula;a= (8g/f )%® (f =dimensionless friction factpand
b=1/2 for Darcy—Weisbach formulah’ is actually a factor lo-
calizing the cross-sectional formula

U=a\SR (33)

to individual verticals in the cross section. Then the velocity de-
viation parameteF can be expressed in terms of the local flow

depthh and the hydraulic radiuR or the cross-sectional averaged

depthH that is used more frequently thdhas

_u _¢’a\/§H°_ B ,(h>b_ B (h)b_
Feg-i= e ¥R —1melm) 1
h, b
:‘*’(E) !
b
b=d'| 5 (34)

It is apparent that the correction factéraccounts for the influ-
ences of the localization and the replacementRoby H. The

ondary currents are strong. The variation of the dimensionlessintroduction of ¢ is to assure that the integrated local velocity

velocity deviationoF/dx attains the maximum at river bends and

corresponds to the mean velocity. Therefabeis subject to the

becomes zero or negligible in straight reaches. The expression ofconstraint of Eq(10), i.e.,

I, reduces to Fischer’s triple integration for straight rivers without
secondary currents. In Eq30) the channel widthB, the mean
flow depthH, the mean velocity, and the shear velocity* are

b

—1lh, d&=0 (35)

Jel:

He

readily available bulk hydraulic variables for natural streams, but The value of$ can be determined by a trial and error method

the other dimensionless parameters need to be determined.
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and no longer changes markedly with a new valuebofThe
correction factord is absolutely necessary to obtain an accurate
and stable numerical value of. With & known, the dimension- 0 L

less parametdr the deviation of the dimensionless velocity from

the cross-sectional mean, can be determined from(&, and

thereby the triple integratioh can be evaluated from Eq&0b) [ Lm »
and(26) if the dimensionless flow depth, is known. Parameter X

F may also be determined if field measurements of the transverse

distribution ofu/U are availabléAppendix ). It appears that all

the unknowns in Eq(30) are related td, , therefore, a determi-

nation of the dimensionless flow detl is essential to the prac- Fig. 2. Natural coordinate system
tical application of Eq(30).

Local Flow Depth h =meander wavelengthx=distance measured along the meander
Based on the at-a-station hydraulic geometry relationship of path; anox=0 at.the.apex and=L at the entrance or exit of a
y 9 y b bend, as shown in Fig. 2. It should be pointed out that(Bdb)

stable alluvial rivers a local flow depth equation for straight . . ;
streams in a channel center symmetrical coordinate system wags an empirical result bf”‘s‘?d on the sme-ge_nerated channel curve
derived as followsDeng et al. 2001 (Chang 1988; Przedwojski et al. 19%nd fitting of Eq.(37a) to
some measured cross-sectional channel shapes of natural streams.
h,=1-&F, [B=In(B/H)] (36) Eq. (37a) reduces to Eq(36b) whena=0 (c=1 or x=L).
whereB = channel shape parameter, the dimensionless lateral co-P2rameterP can be determined by differentiating the channel
ordinate or distancé was measured from channel centeoor- shape equation with respect to lateral distaficEor the coordi-

dinate origin due to the symmetry of the cross-sectional shape nate system shown in Fig. 1, the coord?nate origin is located on
around the channel center for straight streams. It should be notedN® €onvex bank, antin,, should occur in the range of G-

that the absolute value gfshould be used fag<0. If the origin <1. Thus, Eq.(37a) is employed to determine the location of

of the coordinate system is set at one bank of the stream, admax- Let

shown in Fig. 1, then Eq.36a) assumes the following form: p=£4[1—(26—1)8] (38)
h,=1-([2¢-1])" (36D0) It is apparent thap=0 whené =1, andp reaches its maximuri

The cross-sectional channel shape of straight streams is symWhen 0.5<€=¢.<1 for a#0. & is the lateral coordinate of
Differentiating Eq.(38) with respect t&t and equating it to

metrical at least in theory or in a statistical sense, as shown in Fig.hmaX' -
8(b). However, meandering streams are characterized by theZ€ro Yields

asymmetrical cross-sectional channel shape with a series of riffle- a—a(2t—1)P—2BE(26—1)P"1=0 (39)
pool structures. The position of the maximum channel or flow o . .
depth at a cross section varies alternatively from one bank to For a specific cross section along the river chanaeindp are

another and reaches the channel center in straight reaches benOWN. €. can be solved from Eq39). Then, substituting into

tween the two consecutive pools along the stream. It means that:=d- (38) results in

(1) the local flow depth in meandering streams varies both later- P=£2[1—(2¢,—1)P] (40)
ally and longitudinally even for steady flow; arf@) Eq. (36b) ) ) ) )
should be a special case of the cross-sectional shape equation of AN @pproximate but simple method of determinid@ndg, is

meandering streams. To that end, a new channel shape equation i _take the maximum value oP corresponding taf=0.525,
assumed for meandering streams as follows: 0.555, 0.575..., and 1.¢.=0.5 for «=0 or straight river
reaches. The variation df, with a andp is plotted in Fig. 1,

g where the vertical coordinate actually denotes-(1, ). With h
o hL=2(1—1|2¢e—1]® <t< N ; ) iy
Nmax h P (1-]2&-1F) O<¢=<1 (373) defined, the dimensionless parametdts, |, , andl can be de-
termined as
(X
a=3 1—S|n(z) (c—1)® 8=05 1 1( (o5
H*:f h*d§=5[ € [1-(1-2¢)P]dg
for 0>2 and 8=1 for o<2 (3M) 0 0
where the denominatd? is introduced to ensure a unity for the b s 1\B
maximum dimensionless depth, and thusP is equal to the +fo.5§ [1=(26=1)F]dE (41)

maximum value of the numeratat.is a parameter used to reflect

the skewness of the cross-sectional channel shape and is deter- 1 1 05 — 5

mined based on the fact that the values of the dispersion coeffi- le= Jo vh, dg= \/_5[ jo VE[1—(1-2€)"]dE

cients obtained by Deng et 42001 correspond to those of the

streams with sinuosityg=1.6 andB =3 as alluvial streams tend 1

to form a stable channel pattern with~1.6 andg =3 in a sta- +f VE“[l—(Zi—l)B]dE] (42)
tistical sensgDeng and Singh 1999¢ is the channel sinuosity, 05

defined as the ratio of the valley slope to the channel slope, or theEgs. (41)—(42) can be solved by numerical integration. Depend-

ratio of the channel length to the valley lenghang 1988 i.e., ing on Egs.(34) and (58) of the velocity deviation parameté,
o=4L/L,,. L=one fourth of the arc length or the distance from parametet, can be determined from two approaches: In the first
apex to entrance or to exit along the meander pdth; approach, Eq(34) is employed to determinE anddF/dx
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Table 1. Simplified Expressions of Triple Integratidn

B B/H Regression equation R?
23 10 I =0.00613—0.025%2+0.0422r —0.0224 0.9969
3.0 20 1 =0.007%3-0.0379r2+0.0686r — 0.0387 0.9983
4.0 54.6 | =0.0094r3—0.0502r%+ 0.0954r — 0.0553 0.9972
5.0 148.4 =0.010%3-0.0582+0.112r — 0.0651 0.9972
aF ¢ ohP L, o1 oF h, Y2 g9 1—(]1—2¢|)B]
ax ~HE ax x| e (43) - 2T P (In&)
It is seen from Eq(41) that the variability ofH, is significantly X
reduced due to the lateral integration as comparel tolt sig- —3(c—1)°— 50 cos( ZL)
nifies that the second term on the right hand side of (Bg) is
significantly smaller than the first term. The second term is as- 3 (0—1)°
sumed to be equal to the first term multiplied by a coefficignt =3 BH05 f cos( 2L> h”zln(g) (48)

Then,dF/ax can be simplified as

bhY ™t g1 (|1 2¢|)8
. £ (IP EI)J(M)

o4

The arc length & of meandering channels varies in a wide
range around 2B (Chang 1988; Przedwojski et al. 1995t is
thus assumed that=(1+y)wB/2. Then,

F_
§—¢(1+¢)

(44)

v
~3(0—1)"5¢

aF 3b -1)»°
N T

Substitution of Egs(31), (34), and(45) into Eq. (30b) leads to

TR oo A
*(UB)(BM))(" v’

X (€ s [Cbs
><cos<ﬁ) foh*s foh* Yn¢)deds

dé (46)

Substitution of Eqs(31), (58), and(48) into Eq.(30b) results in

1 h 1/2
e [ion )"
0
| L fond g™
9 (0—1)° X\ (£
o5 ool [

XJEfuhi/z(lng)dgdg)dg
0

1} h, d¢ d&

(49)

Eq. (49) is employed mainly to check the validity of the applica-
tion of uniform flow equations to local flow. The correction factor

0 in Eq. (49) has the same function ap, but 6 ranges from
around 0.48 to 0.60. From E7) |, can be calculated for each
cross section in a stream reach and then the results are compared
with that from Eq.(49) for sinuosityc>1.6. Egs.(47) and (49)
indicate that the triple integratioly varies with both the channel
sinuosity and the width—depth ratio.

Simplification of Triple Integration

where cos() should take its absolute value when it is less thanIn order to use Eq(30) easily in practice, a set of regression

zero. It is interesting to find thaK,,/UB can be taken as a
constant of 3, i.e.K,,~3UB, as listed in Table 2. Actually, the
accuracy oK,,~3UB is comparable with that of the most accu-
rate empirical formula without the consideration of the influence
of channel meandering. If the Manning formula of uniform flow
is used, then the exponent2/3, and Eq(46) can be recast into

o o

6 S("”‘)J'g —5/2]'g 5/3 }
—ni|(0—1)° — h h>>(In §)d¢ dé|d
(47)

In the secondChezy approach to determink,, Eq. (58) is
employed to determinE anddF/dx in the same way as the first
approach, then one gets

2/3
¢ _lé

+
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equations is provided in Table 1 for the most possible range of
channel shape parameter based on the results of the numerical
integration, conducted far=1, 1.1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4,
2.6, 2.8, and 3, respectively, as indicated in Figa—® and Fig.

4.

The numerical integration is conducted for=1-3 andp
=2.3-5 as the channel sinuosity of alluvial streams ranges from
1 to 3 in genera{Schumm 1968 Most meandering streams pos-
sess the width to depth ratio ranging from 10 to 150. Streams with
B/H>150 generally have a straight channel pattébeng and
Singh 1999. The width to depth ratio of some straight canals may
be less than 10. Therefore, a regression equatidriofiven for
straight streams as shown in Fig. 5, wherelthalues are plotted
against the channel width to depth ratio as in the case-ot the
expression (37a) of h, contains only one parametef
=In(B/H). Table 1 just lists four cases of the width to depth ratio.
For other cases thkevalue can be linearly interpolated from the
neighboring values computed from the corresponding regression
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ferent B values. Such a result is easily understood as natural
streams scarcely follow a straight alignment with=1.0. It
means that the uniform flow equation with the revisions made in
the paper is applicable to local flow. Consequently, all the regres-
sion equations employ thig values from Eq(47). It should be
pointed out that all thé values used in a regression analysis of
the equations in Table 1 are the average oflthvalues at cross
sectionsx=0 andL, i.e.,|=(ly_g+1,-)/1.57, where 1.57 in-
stead of 2 is used due to the sine-generated channel curve of
natural streams. The influence of channel meandering on the
value of the triple integration defined in EQO) is demonstrated

in Fig. 4, where the one-term curve represents| thalues calcu-
lated from the first term of Eq(30b) in combination with Eq.
(26), and the two-term curve refers to the result incorporating the
contributions of all the two terms in E¢30b). Except for the case

of o approaching unity that is the implicit assumption of most
existing empirical formulas of the longitudinal dispersion coeffi-
cient, the influence of the second term on thealue is signifi-
cant. In fact, Fig. 4 indicates that the second term—the change of
the nonuniformity of flow along the channel—plays a more im-
portant role than the first term in the longitudinal dispersion pro-
cess of the moderately meandering streams withl.25—1.85
that is the channel sinuosity range of most natural stre@maag

and Singh 199p It means that for the most frequently occurring
natural streams, the second term is the controlling mechanism
underlying the longitudinal dispersion. However, all the existing
empirical methods fail to comprise this term. As a result, the

equations. The results of numerical integration illustrate that both predicted longitudinal dispersion coefficients deviate from ob-

Egs.(47) (Manning approachand(49) (Chezy approadhead to
comparabld values forg>1.6, as Eq.(59a) is applicable to3

>1.6, due to the introduction of the velocity correction fadior
The results of Eq(49) with f, calculated from Eq(5%) ap-
proach that of Eq(47) corresponding tar=1.08—1.11 for dif-
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0.03 1

0.02

Triple integration |

Fig. 4. Influence of channel meandering on triple integration

\ « Two terms l
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T

Channel sinuosity o
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served ones by orders of magnitude. Owing to the incorporation
of the second term, Eq30) should significantly improve the
prediction of the longitudinal dispersion in natural streams in
principle. To that end, a vast number of field observations are
employed to test the performance of Eg0).

Verification of Proposed Method

70 sets of field data measured on 30 streams in the United States
were used to test the accuracy and feasibility of the method de-
veloped for prediction of the longitudinal dispersion coefficient in
natural streams, including straight and meandering ones. Among
the 70 data sets, 59 were collected from Seo and Ch&9g8),

and the remaining 11 from Godfrey and Freder{@d®70; Yot-
sukura et al(1970; and McQuivey and Keefe(1974), the data

of channel sinuosity were calculated from 1:25,000 scale topo-
graphic maps based on the specific stream reaches of dye tests
described by Nordin and Sabdll974 and in the above-
mentioned reports. In Table 2, the third column is the channel
width to depth ratio; the fourth column gives the ratio of flow
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Table 2. Comparison of Measured and Predicted Longitudinal Dispersion Coefficients
DISPERSION COEFFICIENK (m?/s)
Predicted by

Number River reach B/H u/u* M, Measured value Deng Fischer 8B I ratio o

1 Antietam Creek, Md. 42.7 7.36 0.517 17.50 16.8 18.6 16.1 14.9 1.40
2 24.6 6.02 0.287 101.50 85.0 23.1 42.6 27.6 2.25

3 18.0 5.06 0.223 20.90 23.8 5.1 15.3 24.2 2.25

4 43.8 8.98 0.615 25.90 30.7 56.4 39.1 10.7 1.26

5 Monocacy River, Md. 88.5 5.00 0.836 37.80 31.0 61.7 38.0 17.3 1.28
6 130.9 3.48 0.970 41.40 35.4 74.5 44.6 21.7 1.28

7 78.8 14.09 1.803 29.60 87.5 387.7 95.2 16.0 1.28
8 84.8 5.51 0.864 119.80 132.3 160.7 93.6 28.8 161
9 98.9 5.75 1.070 66.50 39.9 58.3 28.0 312 161
10 Conococheague Creek, Md. 61.2 3.59 0.443 40.80 59.4 235 29.1 40.4 2.25
11 121.2 1.85 0.540 29.30 39.3 18.4 22.4 52.9 2.25
12 38.0 7.78 0.480 53.30 67.5 88.1 81.2 11.2 1.31
13 Chattahoochee River, Ga. 38.8 5.36 0.382 88.90 109.7 127.9 167.8 10.1 1.27
14 37.7 5.53 0.380 166.90 163.8 109.5 143.4 17.3 1.57
15 Salt Creek, Neb. 64.0 6.31 0.703 52.20 24.7 34.1 23.0 18.6 1.38
16 Difficult Run, Va. 46.7 4.03 0.376 1.90 21 7.5 10.9 35 1.09
17 Bear Creek, Colo. 16.1 2.33 0.176 2.90 3.0 7.3 53.1 1.6 1.08
18 Little Piney Creek, Mo. 72.0 7.35 0.910 7.10 7.5 36.0 18.5 7.2 1.13
19 Bayou Anacoco, La. 39.0 13.33 0.738 5.80 20.1 32.0 16.8 14.2 141
20 Comite River, La. 68.3 9.23 1.036 69.00 16.5 39.2 16.9 16.4 131
21 Bayou Bartholomew, La. 23.8 6.45 0.291 54.70 54.2 11.3 20.0 36.1 2.46
22 Amite River, La. 41.0 20.00 1.102 501.40 257.6 104.0 34.6 85.4 2.93
23 Tickfaw River, La. 25.3 3.38 0.228 10.30 10.3 3.8 121 16.4 1.75
24 Tangipahoa River, La. 38.8 6.67 0.440 45.10 60.6 42.8 45.2 19.1 1.46
25 74.7 17.00 2.002 44.00 41.8 141.8 30.5 22.8 1.46
26 Red River, La. 156.5 19.06 5.929 143.80 206.8 5077.5 464.1 17.9 1.20
27 40.8 4.83 0.374 130.50 133.9 101.6 140.5 15.4 1.44
28 41.6 7.89 0.530 227.60 230.7 248.0 205.7 155 1.44
29 89.2 13.05 1.967 177.70 172.6 933.6 218.7 15.0 1.24
30 Sabine River, La. 70.6 10.74 1.230 131.30 129.0 563.0 202.6 10.7 1.19
31 69.1 19.63 2.072 308.90 307.1 2535.7 509.8 9.4 117
32 Sabine River, Tex. 28.3 351 0.246 12.80 12.7 2.0 5.5 42.4 2.53
33 23.9 7.67 0.319 14.70 147 5.6 8.4 215 2.05
34 22.9 10.28 0.366 24.20 24.0 19.9 23.0 11.2 1.47
35 Mississippi River, La. 35.7 13.65 0.683 237.20 181.9 2134.2 1194.8 141 1.44
36 Mississippi River, Mo. 108.0 15.22 2.910 457.70 382.5 10123 1680.2 24.4 1.38
37 60.4 15.56 1.414 374.10 583.9 8389.7 2434.3 18.0 1.38
38 Wind/Bighorn River, Wyo. 32.3 6.97 0.384 184.60 151.6 108.3 131.3 155 1.56
39 35.8 11.37 0.596 464.60 609.1 666.1 445.5 16.3 1.56
40 Copper Creek, Va. 34.0 2.50 0.237 16.84 20.5 3.1 10.0 45.8 2.54
41 Clinch River, Va. 41.8 3.04 0.294 14.76 154 14.2 30.5 10.0 1.25
42 Copper Creek, Va. 48.1 1.29 0.222 20.71 13.2 1.9 8.2 51.8 2.54
43 Powell River, Tenn. 42.3 241 0.265 15.50 20.9 5.4 143 32.7 2.20
44 Clinch River, Va. 47.0 5.07 0.437 10.70 111 26.3 30.1 6.1 1.14
45 Copper River, Va. 23.3 4.85 0.252 20.82 13.3 12.0 28.8 7.2 1.26
46 Clinch River, Va. 23.6 7.21 0.306 40.49 41.3 81.4 130.3 4.0 1.14
47 22.1 6.17 0.270 36.93 29.8 52.7 105.4 3.9 1.14
48 Copper Creek, Va. 35.7 3.00 0.263 24.62 28.1 4.7 121 46.6 2.54
49 Missouri River, lowa 62.2 22.09 2.021 1486.4 1355.4 4852.0 962.9 20.1 1.44
50 Bayou Anacoco, La. 27.6 5.07 0.285 32.52 19.8 13.6 26.4 11.4 1.41
51 40.2 5.97 0.422 39.48 42.7 38.6 43.9 14.5 1.41
52 Nooksack River, Wash. 84.2 2.50 0.467 34.84 93.8 99.3 128.7 17.8 1.30
53 Wind/Bighorn River, Wyo. 54.0 7.39 0.662 41.81 88.4 229.9 156.9 8.8 1.18
54 31.8 9.22 0.455 162.58 161.8 3425 318.9 6.1 1.18
55 John Day River, Ore. 43.1 7.21 0.514 13.94 14.9 86.3 75.7 2.8 1.08
56 13.8 4.56 0.194 65.03 60.2 19.4 84.0 12.8 1.89
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Table 2. (Continued

DISPERSION COEFFICIENK (m?ls)
Predicted by

Number River reach B/H u/u* M, Measured value Deng Fischer BB | ratio o

1

57 Yadkin River, N.C. 29.8 4.26 0.276 111.48 147.8 42.1 90.4 27.1 2.17
58 18.7 5.94 0.241 260.13 257.2 66.3 163.3 221 2.17
59 Coachella Canal, Calif. 15.6 16.10 0.348 5.92 5.8 45.1 48.9 1 1.00
60 Nooksack, Wash. 29.4 2.26 0.213 153.0 118.0 75.4 309.6 9.3 1.30
61 Susquehanna, Pa. 150.4 6.00 1.867 92.9 97.5 785.7 237.5 11.5 1.13
62 Bayou Anacoco, La. 47.6 6.44 0.523 13.9 18.5 19.6 17.4 16.4 1.41
63 Missouri River, lowa 78.5 13.48 1.724 465.0 541.0 1897.5 488.6 19.4 1.35
64 56.5 15.24 1.277 837.0 889.3 2434.9 771.8 16.3 1.35
65 Missouri River, lowa 63.3 19.62 1.853 892.0 1057.2 4119.6 904.2 17.4 1.35
66 Chicago Ship Canal 6.0 14.14 0.193 3 4.0 12.4 39.5 1 1.00
67 Elkhorn River, Neb. 108.7 9.35 1.860 9.3 11.4 157.8 42.3 5.9 1.09
68 Elkhorn River, Neb. 121.2 9.91 2.258 20.9 19.3 311.5 70.7 6.4 1.09
69 Comite River, La. 48.1 7.01 0.562 7 10.3 14.4 11.6 13.3 1.31
70 Comite River, La. 38.5 6.60 0.434 13.9 14.0 16.3 17.5 11.4 1.31

velocity and shear velocity; the sixth column lists the values of of the predictions fall within the range of O&Kp/Ky<2. It

the observed longitudinal dispersion coefficient; and the fifth col- should be pointed out that E¢30) is still valid for the streams
umn is the dimensionless transverse mixing coefficnt cal- with B>200 m if the full mixing is completed across the channel.
culated from Eq(20b). As there are no field data &f, for the The discrepancy distribution of the predicted dispersion coeffi-
river reaches listed in Table 2, it is thus difficult to quantitatively cient from the measured one for all the investigated streams is
determine the accuracy of E(R0). However, a qualitative com-  plotted in Fig. 6, where the discrepancy ratio is defined as
parison may enhance the confidence in application of (EQ). log(Kp/Ky,). Predictions with a large deviation from observed
Lau and Krishnappaii1981) compiled 11 sets of field data for ones occur with quite a low frequency.

transverse dispersion coefficient. Except the highest value of The longitudinal dispersion coefficients of the streams in Table
M, =3.30 for the Missouri River, theM, values of all other 2 are also calculated from the widely used Fischer’s equation
rivers range from 0.22 to 1.0. Fischer et 81979 suggested (Fischer et al. 1979
M, =0.6250% for moderately meandering streams. It is seen

2 2
from Table 2 that the values of 0.48, <0.9 account for 70% K J( B)

U

X

of 70 data sets, althoug¥l, ranges from 0.18 to 2.91 except for HU* H
the extreme one of 5.93. Therefore, the calculated valudg of
are consistent at least qualitatively with the measured values.

(50)

and from the empirical formula proposed by Seo and Cheong

Using Eq.(30c) and the regression equations in Table 1 in com- (1999
bination with the interpolating method, the predicted dispersion Ky B\ 062  \1428
coefficients were obtained and listed in the seventh column of au* =5-915(q) U_*) (51)

Table 2. The results illustrate that the predicted dispersion coeffi-
cients by the new method are reasonably accurate as compared t&q. (51) was regarded to be superior in explaining dispersion
the measured ones f&<200 m. Among the 70 sets of predicted characteristics of natural streams to existing equati@eo and
and measured dispersion coefficients, 60 or 85.7% predictions fallCheong 1998 The calculated results from E¢O) are listed in
within the range of 0.5Kp(predicted)Ky (measuredx2. A the eighth column of Table 2. The dispersion coefficients pre-
step by step procedure for using the numerical integration and thedicted by the procedure presented in this paper and the ones com-
regression equations to calculate the longitudinal dispersion coef-puted from Eqgs(50) and (51) are compared with the measured
ficients is discussed in Appendix IlI. ones in Fig. 7. The new method significantly improves the pre-
It is found that the method overestimatks systematically diction of the longitudinal dispersion coefficient. It should be
whenB>200 m. The predicted dispersion coefficients of data set noted that all the curves in Figs. 1-8 should be smooth and con-
No. 26 (Red Rivey, No. 35—37(Mississippi Rivey are 305.98, tinuous lines in theory.
1475.49, 1930.25, and 2982.8%/s) respectively. The greater the The integration term in Eq30) contains the contribution from
channel widthB, the higher the predicteld, is than observations.  the lateral velocity deviation from the mean flow as well as the
Such an overestimation is attributed to the inconsistency of the contribution from longitudinal gradients of the flow depth. By
mixing conditions required by the equation derived in this paper comparing the full integration with the integration of only the first
with the real dye test conditions. In theory, this method is appli- term, the effect of the channel sinuosity is found. The ratio be-
cable to the fully mixing stream reaches in the whole flow width. tweenl ;candering@Nd! syraightiS Shown in the tenth column of Table
However, some dye tests were conducted on the partly mixing 2 for all the investigated streams. The ratio ranges from 1 to 85.4.
river reaches(McQuivey and Keefer 1976 It means that the It is clear that neglect of the effect of channel meandering causes
actual mixing width is less than the channel width listed in Table large discrepancies between the predicted and observed disper-
2, causing the overestimation. If an effective mixing width of 200 sion coefficients. It is, therefore, essential to incorporate the effect
m is taken for the Red River and Mississippi River, 64 or 91.4% of channel sinuosity in the theoretical equations to obtain a rea-
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Occurring Frequency (%)
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Fig. 6. Occurring frequency of discrepancy ratios predicted to measized

sonable prediction of longitudinal dispersion coefficient. This is effect of stream bends or the variation of local flow depth and

the distinct feature of the new method. hence the local velocity along the course of natural streams, a
In principle, the proposed method is limited to the steady flow new triple integral expression of the longitudinal dispersion coef-
with constant cross-sectional averaged velotlfyflow depthH, ficient is derived. Then, an analytical method is developed for

and channel widtlB along a channel. Such conditions may rarely prediction of the longitudinal dispersion coefficient in natural
be satisfied strictly in natural streams but they may be met within streams by an approximation of the complex triple numerical in-
certain length and time scales depending on the variability of a tegration with a set of regression equations for different width to
natural stream in terms of the accuracy of the proposed methoddepth ratios and sinuosity. The proposed procedure is verified by
and the observed data. Fig. 6 indicates that the discrepanciessing 70 sets of field data collected from 30 streams from straight
log(Kp/Ky,) of this method mainly concentrate in the range of manmade canals to sinuous natural rivers in the United States.
—0.15-0.15 or 0.708 Kp/Ky<1.412, corresponding to 0.84 The new method predicts the longitudinal dispersion coefficient
<B/H<1.19 or 0.84U/U*<1.19 or 0.8&4BU/(HU*)<1.19 with an accuracy in which 91.4% of the calculated values range
in Eq. (30c). It means that 20% change iB(H) X (U/U*) is from 0.5 to 2 times the observed values. A comparison between
within the accuracy of the proposed method and the observed datahe new method and other methods shows that the new method
and the length of a stream reach should be limited according tosignificantly improves the prediction of the longitudinal disper-
the 20% allowance in order to maintain a constégt If a river sion coefficient. The analytical method developed here can be
reach is very long and it causes a greater change than the 20%pplied with confidence to natural single-channel streams with the
allowance, then the river reach should be divided into several channel width of less than 200 m. The new analytical method is
subreaches to meet the requirement of the proposed method. characterized by its capability of providing the most accurate pre

Conclusions 2

Using the cross-sectional shape equation of straight channels, a
more versatile channel shape or local flow depth equation is pro-
posed for natural single channel streams by introducing the chan-
nel sinuosity, the dominating factor causing the significant varia-
tion in the longitudinal dispersion coefficient. Incorporating the

Velocity profile factor fu .

r f (8a) apex
16000 i 0 - . - -
x x X 4 0.2 04 0.6 0.8 1
- M < s X Dimensionless lateral distance
= °
5 1000 - N
.
% ° o X o‘é k4 oi;’ g
- x
g 100 . ¥ ox.x 2 ::x . &
15} x % o
o XX, opatn™ =
a s 1% g
2 M — Perfect a.
g 10 4 ° X 3 3 ’°° * =2 *
5 *ox o * Deng 5 . (8b) straight reach
=1 X
o , X ox * Seo % 0.3 4
~ x
) x_ Fischer >
1 T 0 . - -
1 10 100 1000 10000 0 0.2 0.4 0.6 0.8 1
Measured Dispersion Coefficient Dimensionless lateral distance
Fig. 7. Comparison between measured and predigted Fig. 8. Variation of velocity profile factor withg

JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 2002 / 911

Downloaded 08 Sep 2011 to 130.235.105.202. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



diction of the longitudinal dispersion coefficient in single channel natural streams without detailed dye test concentration data as compare
to existing other methods.

Appendix I. Integration over Flow Depth

As all the terms in Eq(4) are continuous in the flow field the equation is thus integral over both the flow depth and the channel width and
the order of differentiation and integration is interchangeable in terms of the Leibnitz rule. Inaetidgr u”, v=v+v", W=Ww+w",
andc=C-+c" into Eq. (4) and integrating the equation vertically from+=0 (channel bottorto z=h (water surfacg by means of
Leibnitz’s rule for differentiation of integrals yields

a(hé) _oh a(ha€) __ oh a(hve)

ot Yot T as WY T Ty

)
= (76) 3+ (WE),

_ ) h d€ d€\ oh 9 h d€ d€\ adh
“as| NPt B 55) 7| Pt EI 5] G5 g | MOm+ BN G = (Pm¥ BT 5
a " e d e ah a n e d neAn ah Uy
178 fo(u ¢")dz| = (WGt 7 oy fo(v ¢")dz| = (v g~ (W'C) (52)

in which subscriph refers to the value at the water surface. After a(hé) a(hac) a(hvé) _(oh _oh _oh _
the integration the last term of E(f) disappears because there is T s T Clog TUZs TV Wn
M s dnm
no mass flux to the atmosphere or through the bottom. The depth
averagedc and uc are constant vertically and thus they occur 9 FTo 9 o€
without the subscriph after the integration. The termsi'lc"),, = 55| NOmtEg) 7|+ E(h(Der E,) o
(v"c")y, and W"c"), are assumed to be much smaller thsm
v€, andw¢€, respectively. ah(u’c’)  ah(v'c”)
Expressing the vertical integrations ofc” andv”c” in the T s P (54)
following form: n
h _
J (u”c”)ydz=h(u"c") The fourth term on the left hand side of E&4) is zero as
0
and ah+=ah+=ah _dh _ 0 -
E UE VE—Wh—a—Wh— ( )

h [
f (v'c")dz=h(v"c") (53)
0

As the turbulent intensity is usually regarded as zero at the waterIn the case of the steady flow the vertical veloaity at the water
surface and the molecular diffusion coefficidht, related terms surface should be zero and thug=dh/dt=0. The first three

are small at the water surface, E§2) can be then recast as terms on the left hand side of E(p4) can be simplified as
|

d(hé) a(ha€) a(hvé) _haé _oh ha(ﬁé) __oh ha(ﬁé) __oh h a€ a(ac) a(ve) e oh _oh _oh

ot + 9s + an = E 8—t+ s +(UC)£+ am +(VC)%— E+ 9s + o C E"‘UE"‘VE

— —_— + R
at ' as am

a€ a(dc) 8(175))4_:@_ (65 a(uc) 6(176)) (56)

=hl=+ +
“at Mat T Tas T Tam

Substitution of Eq(56) into Eq. (54) leads to Eq(5) in the main text.

Appendix Il. Second Approach for F

u/U can be easily expressed in terms of the dimensionless depth and friction term based on the uniform-flow formulas mentioned before
For meandering rivers)/U is often expressed in terms of the dimensionless depth and the dimensionless radius of curvature of the
meandering channéChang 1988 In most of the dimensionless expressionaif, the dimensionless deptiiH is raised to a power

of 0.5. Thereforep/U is assumed to have the following general expression:

h 1/2 h* )1/2

=f, H, (57)

912 / JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 2002

Downloaded 08 Sep 2011 to 130.235.105.202. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



€16 /200Z 4390L00 / ONIF3IANIONT DINMNVEAAH 40 T¥YNANOr

Table 3. Numerical Integration of E¢(30)

A B c b £ E G H | J K L M N o] P Q R S T u \Y%
1 3 E Ag h, h,Ag H, (hy IH,)%7 Eq. (35) First triple int First triple int I, Computation of the second triple integration in E47) Eq. (300
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 187.70
3 0.025 0.0125 0.025 0.0005 1.16585 1.165E-05 0.00931 —1.2E-05 —1.16E-05 —30.8351 —30.835 0.0002 0.00018 0.0005 0.0005-3.07E-7 —3.07E-7 —0.818 -0.818 4.7E-6 4.73036E-6 3.0175
4 0.050 0.0375 0.025 0.0055 0.000137 0.000149 0.04831 —0.0001 —0.00014 —0.86285 —31.698 0.0041 0.00432 0.0018 0.0024—1.41E-5 1.44E-5 —0.817 —0.900 0.0001 0.00011845 1.710
5 0.075 0.0625 0.025 0.0166  0.000416 0.000566 0.10099 —0.0004 —0.00053  —0.23424 —31.932 0.0122 0.01648  0.0032 0.0056-7.52E-5 —8.97E-5 —0.036 —0.936 0.0004  0.00046953 0.077
6 0.100 0.0875 0.025 0.0336  0.000839 0.001405 0.16118 —0.0007 —0.00126  —0.10795 —32.040 0.0234 0.03984  0.0046 0.0102 —0.0002 —0.0003 —-0.024 -0.960 0.0007  0.00116202 62.204
7 0.125 0.1125 0.025 0.0555  0.001389 0.002794 0.22549 —0.0011 —0.00239  —0.06274 —32.103 0.0364 0.07630  0.0059 0.0161 —0.0004 —0.0007 —0.018 -0.978 0.0011  0.00226342 22.092
8 0.150 0.1375 0.025 0.0817  0.002043 0.004837 0.29172 —-0.0016 —0.00396  —0.04156 —32.144  0.0502 0.12652  0.0071  0.0232 —0.0008 —0.0015 —0.015 -0.993 0.0015  0.00380413 2.021
9 0.175 0.1625 0.025 0.1113 0.002782 0.007619 0.35837 —0.0020 —0.00594 —0.02993 —32.174 0.0637 0.19018 0.0083 0.0316 —0.0012 —0.0027 —0.013 —1.005 0.0020 0.00578193 0.234
22 0.500 0.4875 0.025 0.5911  0.014777 0.125463 1.09093 —0.0018 —0.04283  —0.00390 —32.303 0.0581 1.38036  0.0192 0.2233 —0.0075 —0.0649 —0.006 —1.107 0.0020  0.04492052
23 0.525 0.5125 0.025 0.6314  0.015786 0.141249 1.14001 —0.0013 —0.04413  -0.00343 —32.307 0.0420 1.42231  0.0199 0.2432 —0.0078 —0.0727 —-0.005 —1.112 0.0014  0.04636163
34 0.800 0.7875 0.025 1.0000 0.025000 0.378304 1.54891 0.00617-0.01103 —0.00035 —32.323 -—0.199 0.35246 0.0250 0.4980 —0.0060 —0.1580 —0.004 -1.159 -0.007 0.00837538
35 0.825 0.8125 0.025 0.9936 0.024840 0.403144 1.54230 0.00606-0.00503 —00020 —32.323 -0.194 0.15849 0.0249 0.5229 -0.0051 —0.1632 —-0.004 -1.163 -0.007 0.00140617
36 0.850 0.8375 0.025 0.9693  0.024233 0.427377 1.51706 0.00536 0.000336.35E-05 —32.323 —0.173 —0.0148 0.0246 0.5475 —0.0042 —-0.1674 —0.004 —1.168 —0.006 —0.0048437
37 0.875 0.8625 0.025 0.9227  0.023067 0.450444 1.46801 0.00419 0.00452  —DH3E —32.323 —0.136 —0.1504 0.0240 0.5715 —0.0032 —0.1706 —0.005 —1.173 —0.005 —0.0097515
38 0.900 0.8875 0.025 0.8486  0.021216 0.471660 1.38837 0.00250 0.00702 0.0002182.323 —0.081 —0.2310 0.0230 0.5946 —0.0023 -0.1729 -0.006 —1.179 —0.003 —0.0126880
39 0.925 0.9125 0.025 0.7413  0.018532 0.490192 1.26869 0.00040 0.00742 0.0003832.323 —0.013 —0.2438 0.0215 0.6161 —0.0014 —0.1743  -0.009 -1.189 —0.000 —0.0131560
40 0.950 0.9375 0.025 0.5941 0.014852 0.505044 1.09458 —0.0018 0.00565 0.000601 —32.322 0.0570 —0.1868 0.0193 0.6353 —0.0007 —0.1750 —0.016 —1.205 0.0021 —0.0110439 —0.000303
41 0.975 0.9625 0.025 0.3994  0.009986 0.515030 0.84008 —0.0032 0.00242 0.001001 —32.321 0.1045 -0.0823 0.0158 0.6511 —0.0002 —0.1752  —0.043 —1.248 0.0040 —0.0070794 —0.006686
42 1.000 0.9875 0.025 0.1490  0.003725 0.518755 0.43535 —0.0024  1.500E 16 0.003529 —32.318 0.0782 —0.00410 0.0097 0.6608 —1.32E-5  —0.1752 —0.511 —1.759 0.0036 —0.0034412 1459.3
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where a velocity distribution factof, is introduced. Then, the
dimensionless velocity deviatidh can be determined as follows:

u (h*)llz
F=——1=f | -1
U ul H,

Actually, Eq. (58) can be obtained from Ed34) by taking the

(58)

P in Eq. (37a), and 4) setting D3
=((B3)"(1.32))* (1-(1-2*(B3))"(4.1304))/0.655346349 and
applying the formula to cells D3-D22 and D23

=((B23)7(1.32))* (1-(2* (B23)-1)"(4.1304))/0.655346349 and
applying it to the remaining cells in the column, where the num-
ber 1.32 comes from=3X (1-0)x(1.44-1)} and 4.1304 stems

Chezy exponent. Based on the data measured on the bends of thigom B =In(B/H)=In(187.7/3.0175+4.1304 in Eq.(37).

Yangtze River, the largest river in China and collected by Zhang

and Xie (1993, two regression equations of the velocity distribu-
tion factor f,(§) are obtained for the entrance and apex of the
river bends

f,(§)=—6.556%3+7.077%2—0.157% + 0.4704,
for apex R2=0.7253 (59)
fu(§)=—2.468Z%2+2.468Z +0.5658,
for entrance or exitR?=0.5483 (59)

Column E: Numbers in this column are obtained by
settingE3=(C3)*(D3) and applying it to the whole column.

Column F: Numbers in this column are obtained by setting
F3=F2+E3 and applying it to the whole column. The last fig-
ure 0.518755213K42) in this column is the dimensionless mean
depthH, , i.e.,H, =0.518755213.

Column G: This column is to calculate the terim, (/H, )% in
the triple integration. Numbers in this column are obtained by
setting G3=(D3/0.518755213)(2/3) and applying it to the
whole column.

Columns H and I: These two columns are used to find the

Eq. (5%), based on 96 sets of data, attains a maximum value correction factorp satisfying Eq.(35) by adjusting the trial value

fuma—=1.58 at £=0.708, f,(0)=0.47 at £&=0, and f (1)
=0.837 att=1, as shown in Fig. &. Eq. (5%), based on 72
sets of data, reaches a maximum valyg,,,=1.18 at£=0.5,
f,(0)=0.5658 att=0, andf,(1)=0.5658 att=1, as shown in
Fig. 8b).

Appendix Ill. Engineering Application of Proposed
Method

of ¢ until the last figurgerron in cell 142 is less than 10'° or so.
The accuracy depends d&. The smaller the incremenité, the
smaller the error.y =0.805023170076455 causes an error of
1.50<107%® in Eq. (35. Numbers in column H are
finally obtained by setting H3
=(C3)*(D3)*(0.80502317007643%G3)-1) and applying it
to the whole column, and numbers in column | are obtained by
settingl 3=12+H3 and applying it to the whole column.

Column J: Numbers in this column are obtained by setting
J3=((C3)*0.5°(12+13))/((D3)"(5/2)) and applying it to the

To demonstrate computation procedures of the numerical integra-whole column. Here, the value 0.5 is to take on the average of 12
tion and interpolation, the geometrical and hydraulic properties of gnd 13.

the Missouri River between the Sioux City, lowa, and the

Column K: Numbers in this column are obtained by setting

Plattsmouth, Nebraska, are utilized. According to the dye test K3=K2+J3 and applying it to the whole column.

measurements in 196%otsukura et al. 1970 the best estimate
of the longitudinal dispersion coefficient for the study reach from
Blair Bridge to Plattsmouth Bridge isK,=16,000 ft/s
=1486.4 m/s, the average channel widB= 187.70 m, the av-
erage flow depthH=3.02m, the mean flow velocityU
=1.73 m/s, and the mean shear velodity =0.0774 m/s. These

Column L: Numbers in this column are obtained by settirf®)
=((C3)*0.5°(K3+K2))*(D3)*(0.80502317007643%G3)-1)
and applying it to the whole column.

Column M: Numbers in this column are obtained by setting
M3=M2+L3 and applying it to the whole column. The last
value —0.00409809 1 42) in this column is the value of the first

average hydraulic data come from Table 2 in the document by triple integration in Eq(47).

Yotsukura et al(1970. Based on these mean values, the dimen-
sionless transverse mixing coefficivit, is calculated from Eq.
(20b) as 2.02. The measured channel sinuosity1.44 for the
river reach from Blair to Plattsmouth. With these parameters
known, the remaining unknown in E¢30a) is | =1,X1, to pre-
dictK,. 15 andl, can be computed in Microsolixcelfollowing
the procedures in Table 3 using E¢47) and (42).

Column A: Dimensionless transverse coordingte0.0—1.0
with increment of 0.025.

Column B: The averagé of two consecutive values is ob-
tained by setting33=(A3+ A2)/2 (It means that one writes the
formula “=(A3+A2)/2" in the cell B3) and applying the for-
mula to the whole column.

Column C: IncrementA¢ of & is calculated by writing
“=A3-A2"in the cell C3 or C3=A3-A2 and then applying the
formula to the whole column.

Column D: Dimensionless flow depth, is calculated using
its definition in Eq.(37) and the observed data i) settingx
=0, (2) settingD3=((B3)"(1.32))* (1-(1-2*(B3))"(4.1304))
and applying the formula to the cells D3-
D22 and D23=((B23)"(1.32)) (1-(2*(B23)-1)"(4.1304))
and applying it to the remaining cells in the colun®), taking the
maximum value 0.655346349 oh, in the column as
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Columns N and O: These two columns are used to calculate
the parametel, . Numbers in column N are finally obtained by
settingN3=(C3)* ((D3)"0.5) and applying it to the whole col-
umn. Numbers in column O are obtained by settib§=02
+N3 and applying it to the whole column. The last figure
0.660799 042) in this column is the value df, in Eq.(30), i.e.,

I, =0.660799.

Column P: Numbers in this column are obtained by setting
P3=(C3)*(LN(B3))*((D3)"(5/3)) and applying it to the
whole column.

Column Q: Numbers in this column are obtained by setting
Q3=Q2+P3 and applying it to the whole column.

Column R: Numbers in this column are obtained by setting
R3=((C3)*0.5"(Q2+Q3))/((D3)"(5/2)) and applying it to
the whole column.

Column S: Numbers in this column are obtained by setting
S3=S2+R3 and applying it to the whole column.

Column T: Numbers in this column are obtained by setting
T3=((C3)*0.5°(S2+ S3))*(D3)*(0.805023170076435G3)-1)
and applying it to the whole column.

Column U: Numbers in this column are obtained by setting
U3=U2+T3 and applying it to the whole column. The last
value —0.003441201 ¢42) in this column is the value of the

http://www.ascelibrary.org



second triple integration without the coefficient in E47).

Column V: The last column is to calculate the longitudinal
dispersion coefficientK, using the available hydraulic data,
where cellV2 is B, V3 is H, V4 is U, and V5 is U*, V6
=V2N3, V7=V4N5, V8=0.145+((V6)"1.38)(V7)/3520,
V9=(V3)*(V5). V40 is calculated by settingV40=
—0.0013/(6)70.3523), that gives thd value atx=L or
for o=1. Actually, in the case ox=L or o=1 thel value can
be calculated following the same procedure as mentioned
above for the case ok=0. Cell V41 gives the average
value of a river reach including at least one bend and one
straight transition portion by setting V41
= ((6*(0.4471)* (0.805023170076435U42) / ((F42)7(2/3)))
+M42)* (042)+V40)/1.57. This formula can be interpreted as
the averagé=(l,_o+1,-,)/1.57, wherd =14l . The number in
the cell V42 is obtained from Eq.(30c) by setting V42=
—(V41)* ((V6)T(2))* ((V7)"2)* (V9)/(V8). It finally gives the
predicted longitudinal dispersion coefficient of the Missouri River
between the Blair Bridge to the Plattsmouth Bridge, il€,,
=1459.3 n4/s, close to the observed value of 1486.4sn

The value ofl can also be calculated using the regression
equations in Table 1 and interpolation method. For the investi-
gated reach of the Missouri Riversd3 =4.1304<5. Substitution
of 0=1.44 into the last two equations in Table 1 yieldg
=4)=0.00605 andl(B=5)=0.00726. Linear interpolation of
the two | values gives 1(B=4.1304)=0.1304
X (0.00726—-0.00605) 0.00605=0.00621, leading to K,
=1355.4 n/s. It is apparent that the methods proposed in this
paper are capable of predicting the longitudinal dispersion coef-
ficient of natural streams with high accuracy as long as the ob-
served hydraulic and geometrical data are accurate. Table 1 in
conjunction with the interpolating method is suggested for engi-
neers to calculatevalues and theK, as it can give a simple yet
reasonably accurate prediction I§f,.

Notation

The following symbols are used in this paper:

A = cross-sectional area of river chanfief);
= generalized friction factor;
surface width of river channém);
exponent of flow depth in generalized local
velocity equation;
= cross-sectional average concentration;
deviation of local depth mean concentration
from cross-sectional mean;
cross-sectional average concentrationx at
= O,
instantaneous concentration;
time-averaged concentration;
turbulent fluctuating concentration;
depth-averaged concentration;
deviation ofc from ¢;
molecular diffusion coefficientm?s);
turbulent diffusion coefficientm?®s);
deviation of dimensionless local depth mean
velocity from cross-sectional mean;
velocity distribution factor;
sectional average flow deptim);
sectional averaged dimensionless flow
depth;
local flow depth(m);

oo
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Il
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= maximum flow depti(m);

dimensionless flow depth;

revised triple integration by, ;

triple integration;

correction factor of shear velocity for re-
placement of hydraulic radius by local flow
depth;

measured longitudinal dispersion coefficient
(ms);

predicted longitudinal dispersion coefficient
(m?s);

dispersion coefficient iis direction due to
vertical gradients ofi and¢;

longitudinal dispersion coefficierim?s);
longitudinal dispersion coefficient in straight
stream(m?/s);

dispersion coefficient im direction due to
vertical gradients of andc;

distance from bend apex to exit measured
along meander patfm);

meander wave lengtfm);

transverse mixing coefficieftn?/s);
dimensionless transverse mixing coefficient;
Manning roughness coefficient;

maximum value ofp;

dimensionless local flow depth;

hydraulic radiugm);

channel slope;

longitudinal coordinate;

time;

cross-sectional averaged longitudinal veloc-
ity (m/s);

deviation of local depth mean velocity from
cross-sectional meam/s);

cross-sectional shear velocity/s);

local shear velocityfm/s);

maximum shear velocitym/s);
instantaneous velocities & v, andz direc-
tions (M/9);

time-averaged velocities ig v, andz direc-
tions (M/9);

depth-averaged velocities 8y v, andz di-
rections(m/s);

turbulent fluctuating velocities ig, , andz
directions(m/s);

deviations ofu, v, w from a4, v, W, respec-
tively (m/s);

longitudinal coordinate along meander path;
lateral coordinate;

vertical coordinate;

skewness parameter of channel cross sec-
tion;

channel shape parameter;

correction factor;

numerical constant;

lateral coordinate;

correction factor;

dimensionless transverse distaned;
3.1419 .. ..

channel sinuosity;

correction factor; and

correction factor.
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