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ANALYSIS OF GRADUAL EARTH-DAM FAILURE

By Vijay P. Singh,! Member, ASCE, and Panagiotis D. Scarlatos,?
Associate Member, ASCE

Aestract:  Analytical models are developed for the simulation of earth-
dam breach erosion. Using a reservoir water-mass depletion equation,
broad-crested weir hydraulics and a breach-erosion relation, solutions
are derived for rectangular, triangular, and trapezoidal-shaped breaches.
Breach erosion is assumed to be either a linear or quadratic function of
the outflow mean water velocity. Historical data are used to test the
models. A sensitivity analysis is performed to determine the importance
of the various parameters involved.

INTRODUCTION

Failure of a dam can result in a major disaster with devastating losses of
both human life and property. The phenomenon is time-dependent, multi-
phase (water-soil interaction), and nonhomogeneous (different materials,
various degrees of soil compaction, etc.). The processes involved during
an earthfill-dam failure are very dynamic and complicated. Despite the fact
that the main modes of failure have been identified as piping or overtop-
ping, little is understood about the location and size of the incipient breach.
Hydraulics, hydrodynamics, hydrology, sediment transport mechanics,
and geotechnical aspects are all involved in breach formation and eventual
dam failure. '

Prediction of the shape, magnitude, and timing of a flash flood resulting
from a dam failure is important for evacuation planning and safe manage-
ment of reservoir operations. Once an incipient breach has beeén initiated,
the discharging water erodes the breach until either the reservoir water is
depleted or the breach resists further erosion. This concept has been used
to develop a number of mathematical models in the last 20 years. A list of
these models along with their special features is given in Table 1 (Singh and
Scarlatos 1985a-b; Singh et al. 1986b). All of these models are numerical
and require iterative solutions. Considering critical flow conditions at the
breach, the outflow discharge is simulated either by the full hydrodynamic
equations (Lou 1981; Ponce and Tsivoglou 1981) or by their quasi-
steady-state equivalent (Brown and Rogers 1977; Cristofano 1965; Fread
1977, 1984; Harris and Wagner 1967; Singh and Scarlatos 1985b). The
sediment transport is estimated by means of empirical relations (Cristofano
1965; Lou 1981) or by well-established bedload formulas such as those of
Schoklitsch (Brown and Rogers 1977, 1981; Harris and Wagner 1967),
Meyer-Peter and Mueller (Fread 1984; Ponce and Tsivoglou 1981), Smart
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TABLE 1. Mathematical Models for Dam Breach Erosion (Modified from Singh et al.
1986b)

Model Sediment Solution Breach Other
and year | Hydrodynamics transport method morphology Parameters | features
(1) (2) (3) (4) (8) 6 . )

Cristofano Broad-crested |Empirical .|Manual itera- |Constant breach Angle of None
(1966) . weir flow formula tive width response,. |

others

Harris and Broad-crested |Schoklitsch Numerical so- |Parabolic breach Breach None

Wagner weir flow bed-load lution shape dimensions,
(1967); formula sediments
BRDAM

(Brown and
Rogers
1977)

DAMBRK Broad-crested |Linear Numerical iter- | Rectangular, trian- |Breach Tailwater
(Fread weir flow predeter- ative gular, trapezoidal| dimensions,| effect
1977) mined ero- others

sion

Lou (1981); Full hydrody- |Empirical, Priessmann's  |Regime type Critical shear | Tailwater
Ponce and namic sys- Meyer-Peter finite differ- relation stress, sed-| effect
Tsivoglou tem and Mueller ences iment
(1981)

BREACH Broad-crested |Meyer-Peter Numerical iter- | Rectangular, trian- {Critical shear, | Tailwater,
{Fread weir flow and Mueller ative gular, trapezoidal| sediment dry slope
1984, 1985) formula, stability

Smart
formula

BEED (Singh |Broad-crested |Einstein-Brown|Numerical iter- | Rect lar, trape- |Sedi s Tailwater,
and weir flow formula ative zoidal others saturated
Scarlatos slope
1985) - stability

(Fread 1985), or Einstein and Brown (Scarlatos and Singh 1986; Singh and
Scarlatos 1985b). The breach morphology is usually taken as rectangular,
triangular, or trapezoidal (Cristofano 1965; Fread 1977, 1984; Singh and
Scarlatos 1985b), but parabolic (Brown and Rogers 1977; Harris and
Wagner 1967) and regime-type (Lou 1981; Ponce and Tsivoglou 1981)
shapes have also been used. Other physical features such as tailwater
effects (Freed 1977, 1981; Lou 1981; Ponce and Tsivoglou 1981; Singh and
Scarlatos 1985b) and stability of breach side slopes under dry (Fread 1984,
1985) or saturated conditions (Singh and Scarlatos 1985a,b) have also been
incorporated. The successful application of most of the models requires
the specification of reservoir and dam geometries, as well as other physical
characteristics of the dam body, i.e., mean particle diameter, resistance to
erosion, angle of internal friction, and cohesion. One of the most difficult
aspects, however, is the definition of the size and shape of the incipient
breach. Regardless of the level of model sophistication, there is a degree of
uncertainty resulting from the wide range of values of the parameters
involved. Therefore, it is worthwhile to investigate the possibility of
reducing the mathematical complexity of the problem without sacrificing
the conceptual principles involved.

The objective of this paper is to develop analytical models for dam-
breach erosion, discuss their advantages and disadvantages, and evaluate
their applicability. The models are based on the principles of water-mass
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conservation, soil erosion and broad-crested weir hydraulics. The shape of
the breach is taken as rectangular, triangular, as well as trapezoidal. A
sensitivity analysis is made to determine the most important parameters,
and finally the model is verified using historical dam-failure data.

Data CoLLecTiON

In order to obtain an idea of breach characteristics, and magnitude and
duration of outflow discharge, data were collected for 52 historical
dam-failure cases. The data were mainly obtained from three sources
(MacDonald and Langridge-Monopolis 1984; Ponce 1982; Singh and Snor-
rason 1982) and are presented in Table 2. It was noticed that the breach
shape for all practical purposes can be approximated as trapezoidal. The
ratio B/b, where B = the breach width at the top and b is the bottom breach
width, ranges from 1.06-1.74 with mean value of 1.29 and standard
deviation of 0.180. The data for the ratio B/d, where d = the depth of the
breach, are more widely scattered. The ratio ranges from 0.84-10.93 with
mean value of 4.18 and standard deviation of 2.62. The frequency curve of
the ratio B/d is presented in Fig. 1. By plotting the ratio B/d versus the dam
height H, (Fig. 2), a qualitative conclusion can be drawn that B/d is
inversely proportional to Hj, . Another variable relevant to breach charac-
teristics is the angle between breach side slope and the vertical. A
histograph of various breach slopes is presented in Fig. 3.

The failure time recorded for 33 historical cases was between half an
hour and 12 hours. However, for most of the cases, the failure time was
less than or equal to three hours. Fig. 4 shows the probability of ‘‘being
less than”’ failure time. Thus, with a 50% probability, the failure time will
be less than 90 min.

These data indicate that, within certain degree of likelihood, the breach
will be trapezoidal with B/b=1.29, B/d =3, and tan 9 = 1, and that the
dam will fail in less than an hour and one-half. Based on these obser-
vations, it can be concluded that excluding extreme cases, the phenom-
enon of dam-breach erosion exhibits consistent physical behavior. Taking
advantage of this consistency, a simple lumped model can be developed,
including many of the relevant parameters and processes (Singh et al.
19864).

MaTtHEMATICAL MODELS

Conceptually, the dam-breach erosion can be considered as a two-
phase, water-sediment interaction process. The discharging water is the
driving force that erodes the breach. Enlargement of the breach affects the
rate of discharge, which subsequently controls the rate of erosion. The
phenomenon continues until either the reservoir water is depleted or until
the dam resists further erosion. The governing equations are mainly the
reservoir water-balance equation and a relation between rate of erosion
and flow characteristics.

The water-volume balance equation can be written as

dH
A —=1-Q,~Q ...... e e )
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where H = the water surface elevation from a reference datum; 7 = the
inflow discharge into the reservoir; Q, = the breach outflow discharge;
Q = the outflow discharge from crest overtopping, spillway, and power-
house; and A, (H) = the water surface area within the reservoir. Eq. 1 can
be substantially simplified by assuming that the difference between I and Q
is of a much less order of magnitude than Q, . This assumption implies that
depletion of the reservoir water has been initiated. This assumption is
analogous to a linear reservoir used frequently in rainfall-runoff modeling.
Furthermore, if A, is independent of H (i.e., prismatic reservoir) and the
breach outflow discharge is given by the continuity relation as

where u = the mean water velocity; and A, = the wet breach cross-
sectional area, then Eq. 1 can be reduced to

Experimental and field observations have indicated that flow over and
through the breach can be simulated by the hydraulics of broad-crested
weir flow (Chow 1959; Pugh and Gray 1984), i.e.,

U=a(H =2 o @)

where o; and B, = empirical coefficients; and Z = the breach bottom
elevation from reference datum. For critical flow conditions, these coef-
ficients are given as o, = [(2/3°¢]"? and B, = 1/2. By utilizing SI units, Eq.
4 can then be written as »

U=1LTH =22 0005 ..o e e (Sa)

or u=o(H—2Z)" inanyunit system ............c.ov..... (5b)

‘A combination of Eqs. 3 and Sa-b gives

4 dH

S dt
Eq. 6 is a first-order ordinary differential equation with two unknowns, H
and Z. An additional equation can be obtained by introducing the erosion
rate as a function of flow velocity, i.e.,

dz
— = P e )

dt

where o, and B; = empirical coefficients. Eq. 7 is simple and physically
justified because erosion is directly proportional to shear stress and
subsequently proportional to water velocity. According to Laursen (1936),
the rate of sediment transport is a power function of mean water velocity,
with an exponent equal to 4, 5, or 6, and so the coefficient 3, is expected
to have a similar value. However, as will be shown in the following
analysis, closed-form solutions are feasible only if 8, is an integer equal to

S H = 2)PAp oo (6)
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or less than two. Correction for this discrepancy in the value of exponent
B, can be incorporated during calibration of the coefficient o,, which
appears. in the same relation (Eq. 7). Eq. 7 is consistent with DuBoys’
bedload formula (Lou 1981). Of course, erosion rate depends also on other
factors than flow velocity, and can be formulated differently. For example,
it can be expressed using the unit stream-power approach pioneered by
Yang (1972). In that case, the erosion can be expressed as a linear power
of mean velocity, and thus the erosivity coefficient will be related to the
energy gradient. In any event, o, has to be estimated through calibration.

If the shape of breach cross section A, is known, then the system of Egs.
6 and 7 can be solved with respect to H and Z, provided that proper initial
conditions are given, i.e.,

H=Hy and Z=Zy at =1fg ... 8)

Breach cross section is considered to be either rectangular, triangular, or
trapezoidal. The rectangular breach has constant width 4 and enlarges only
in the vertical direction, i.e.,

A,=bH—Z); rectangularbreach ......................... C)]

The triangular breach has constant side slope s (1V:sH) and enlarges
similarly, i.e.,

Ap=s(H—Z)* triangularbreach ..................0...... (10)

Finally, the trapezoidal breach has constant bottom width & and constant
side slope s; thus

Ay=bH—27)+s(H~ Z)*; trapezoidalbreach ............... an
28

J. Hydraul. Eng., 1988, 114(1): 21-42



Downloaded from ascelibrary.org by Texas A& M University on 09/17/17. Copyright ASCE. For personal use only; all rights reserved.

o b b b

FIG. 5. Erosive Patterns of Various Breach Shapes: (a) Rectangle; (b) Triangle; (¢)
Trapezoidal

The erosive pattern for the three individual breach shapes is represented in
Fig. 5. These restrictions in the way that the breach erodes were necessary
for avoiding nonlinearity in the governing equations.

ANALYTICAL SOLUTIONS

Based on the preceding equations and assumptions, closed-form sol-
utions were developed for each breach cross section separately. Depend-
ing on the value of exponent B, in Eq. 7, two different cases were studied,
i.e., linear erosion (8, = 1) and nonlinear erosion (8, # 1).

Rectangular Breach

Linear Erosion
Combining Eqs. 3 and 9 and dividing by Eq. 7, one obtains

di _ b
dZ ~— a,A,

By defining the new variable # = H — Z, Eq. 12 can be written as

dh b
ﬁ—-EA—sh—l...v .................................... 13)

The solution of Eq. 13 according to the initial conditions in Eq. 8 and with
respect to the original variables, H and Z, is

H=2z+28 (fy - z,- 224 bz, 14
- b 0 0 b exXp OLZAs( 0= Z)| o (14)

Eq. 14 describes the water elevation, H, as a function of breach bottom
elevation, Z. In order to derive Z as a function of time, Egs. 5a-b, 7, and
14 are combined and yield, after some mathematical manipulations

dzZ

ZO -7 125 ooy dt e e e e s e et e e e s e e e (15)
Ayt Aexp | — Py
1

where A; and A, are given, respectively, as

29
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A
PR R R R

Since A; > 0, the solution of Eq. 15 is obtained (Gradshteyn and Ruzik
1983) as

A2=H0—ZO—'

o, A o, A,

ZO=Z, + n{ — =
b bH, — Zo) —a, A,

(IZA’ 1 az 3
(Ho—zo)”z+( 5 > +| (Hy—Z )"+ b
a, 4

1/2 172 1/2 .
e G (2T o 257

S
SN
<
=
[
o
>
o
r~—
|
N
)
nh NQ
<>
~~
R
L=y
.

-1+

(18)
Eq. 18 specifies the progression of breaching in time.
Nonlinear Erosion

By using the same approach as that discussed for the linear case, the
following equation is obtained:

%=A3(H—Z)A“.....................L .......... Ceee (19)
where

A; —a;s L (20)
and

A4—% B Ba) + e ettt V1))

Introducing a new variable
W= (H—Z) A (22)

Eq. 19 can be integrated as

aw
f o= AT ZHC 23)

where C = an integration constant. The left side of Eq. 23 is the Bakhme-
teff function. A closed-form solution of Eq. 23 is feasible only for certain
values of the exponent A, . The largest integer value that 3, can attain so
that A, obtains a proper value is B, = 2. Therefore, as mentioned pre-
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viously, analytical solutions for the nonlinear erosion case are possible
only if the rate of erosion is a quadratic function of the velocity. For
A, =12 (B, =2), Eq. 23 can be solved, and after substitution of the
original variables and coefficients, the following may be obtained:

b
o H ~ 2% = (Ho ~ 2]

- H-Z 1/2)
+1In [ %104, : !

-7, 172
A, (Hy — Zy) }
Eq. 24 describes breach erosion in terms of the hydraulic head, H-Z. In
order to obtain Z as an explicit function of time, Eq. 7 is subtracted from
Eq. 6 and, after some algebraic manipulations, one obtains

dWl 01.%0(2
W](l - Wl) - 2 dt ................................. '. . (25)
where
= b (H 7 12 (26)
A DY

Integration of Eq. 25, determination of the integration constant, and
substitution of the original variables provides

H-Z7
ay oA (Hy — Zo)"? 2

[o3745))

5 .. @D
{(Ho — Z)" — [b(Hy ~ Z)"* ~ a0 A ] exp (‘ - )}
Having the expression for the hydraulic head (Eq. 27), the breach bottom
elevation can be explicitly calculated from Eq. 24.
Triangular Breach

Linear Erosion
Combining Egs. 3 and 10 and dividing by Eq. 7 and simplifying, yields

dh dh

i+ = 22 (28)
1—(0‘2[& h 1+<@> h

where again h = H — Z. Integration of Eq. 28 and estimation of the
integration constant according to the initial conditions provide the hy-
draulic head as a function of breach bottom elevation, i.e.,

s 172
() u-a-
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s 1/2 s 1/2 s 1/2
o £ M o) M e M

s \12 s \12 s \12
{1-(2) -z o[ 1+ () oo (57 o 2]

29)
Combining Egs. 3, 4, and 7 and setting & = H — Z yields
dh
R = oo 7 (30)
2 _ 12
(i)

Integration of Eq. 30 and insertion of the initial conditions in Eq. 8 result
in

14
0‘2_As> ! —(H-2)?

! s 2 tan~! (H— 2)?
n 174 —«lan 74
(9}2_&) +(H - Z)!2 (%)
s s
OLzA 1/4
ool sVt (_si> — (Hy— Zp)**

=-2 et +In 7a
Ay
As <a2_> + (Hy + Zo)"*

Eq. 31is a transcendental function that has to be solved by trial and error.
Combining Eqgs. 29 and 31, the rate of breach erosion and the rate of
reservoir water depletion can be determined.

Nonlinear Erosion :

Following the same analytical approach as shown for the case of
rectangular breach, the solution for the hydraulic head, 4, as a function of
Z is found to be

1+ AR + APh
(1 _A§/3h1/2)2

2413p12 4 1
-2 31/2 tan—l ___53_1/2_

In

1+ ARy + AP hq
(1 _ A;/3h(1)/2)2

=34%(Zy— Z) +In

' 2AV3H1% + 1
— 232 tan ! _5_332_ ............................... (32)

where iy = Hy — Z,, and
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Accordingly, the expression for the hydraulic head as a function of time is
given as

Hy - Z,)
S (Hy— Z¥ {1 — ——— (Hy — 2 lexp( — 2 aZeta i)
a0, A ¢ ? a0, 4, 0 0 2

(34

H-Z=

The rate of breach erosion and the reservoir water depletion can be
calculated from Eqs. 32 and 34.

Trapezoidal Breach

For the trapezoidal breach shape, analytical solution is feasible only for
linear erosion. Following the same solution procedure as shown for the
previous cases, the solution reads

25(H — Z) =

{(As—b)[As b4 25(Hy— Zo)] — (A + B) - [Ag — b—25(Ho — Z)] exp [M]}
(0.2 As) (3 5)

{A6+b+2s<H0—AD)+ [A,+b—25(Ho—Zo)]  exp [A—(—Z—"—Z—)}}
(0, A4)
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b A6 12
Py (5—7> oy [ 3H - Zo) |2

................... 36
Y B YO e
272 272
where i = \/? 1 and
A= (P +4aps A .. (3D

The rate of breach erosion and the reservoir water depletion can be
calculated from Eqgs. 35 and 36.

Depletion of Reservoir Water after Termination of Erosion
When the erosion process has been completed (Z=0), Eq. 6 can be
written as

dH
Ag—r= - abHY e (38)
The solution of Eq. 38 is
4
H= b . TR e PR 39)
MAT Y

where Hf) = the hydraulic head at the instant that erosion is terminated.

AppLicaTION AND RESULTS

The performance of the analytical solutions was evaluated using data
from historical dam-failure cases. The input data included the initial
water-surface elevation H, , the terminal breach width b, and the reservoir
storage volume V. In the solutions for rectangular breach, the constant
width was taken as a percentage (75%) of the terminal mean width b. The
reservoir surface area was estimated as A, = V/H,, , which corresponds to
an averaged rating curve. The coefficient ; was assumed as 1.5 m'?/s, in
order to take care of the flow convergence. The only quantity that had to
be estimated through calibration was the erosivity coefficient o, . The
calibration was based on the maximum outflow discharge Qy ..« and on the
failure time ¢,. In Table 3, the shape of the resulting outflow hydrograph
was not considered during the calibration. Thus, by trial and error, the
value of «, that represented both Q,,.« and ¢ as best as possible was
chosen. In Table 3, the erosivity coefficient of rectangular breach is given
for 16 historical cases. From this table it can be seen that the linear
erosivity coefficient is about one order of magnitude higher than the
nonlinear one. Also, the overall performance of the linear rate of erosion
is better than the nonlinear erosion rate.

From the five solutions, only the ones for rectangular and triangular
breach were tested. The trapezoidal breach case is interesting but has a
complex solution (Eq. 36), which can be used on a desk calculator or
microcomputer. The implicit form of linear triangular breach model (Egs.
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TABLE 3. Erosivity Coefficient for Rectangular Breach

Erosivity Coefficient, a, | OPSeved | gimulated Maximum Discharge
maximum

Case number Nonlinear | discharge Linear Nonlinear
from Table 2 | Linear (m/s)™? (m®/s) {m®/s) {m®%s) .

(1) 2 (3) (4) (5) (6)
1 0.0020 0.00040 6.85 x 10°| 6.53 x 10° 6.90 x 10°
2 0.0070 0.00095 110 x 103 | 6.75 x 107 4.00 x 10*

4 0.0010 — 0.92 x 10 0.45 x 10 b

5 0.0085 — 1.42 x 103 1.10 x 10? —b
13 0.0014 0.00080 1.02 x 10° 1.05 x 10° 6.10 x 10%
14 0.0010 0.00080 7.90 x 10 9.20 x 10 1.40 x 10?
18 0.0013 0.00060 5.65 x 10*| 3.22 x 102 2.51 x 10*
20 0.0008 0.00025 2.10 x 10 2.20 x 10° 2.40 x 10?
21 0.0020 0.00065 3.40 x 10° 1.70 x 10° 1.50 x 103
25 0.0050 0.00080 6.80 x 102 5.40 x 10? 2.67 x 10?
29 0.0010 0.00050 2.90 x 10* 3.50 x 10? 5.80 x 10%
31 0.0090 0.00095 1.33 x 10° 1.50 x 103 1.20 x 103
34 0.0050 0.00085 2.52 x 10% 1.20 x 102 1.20 x 102
37 0.0003 0.00015 9.70 x 10° 3.10 x 10° 2.80 x 103
43 0.0020 0.00035 7.20 X 10° 7.30 x 103 6.10 x 10°
45 0.0080 0.00210 4.50 x 10° 4,40 x 10° 5.80 x 10%

2The model was able to simulate the maximum outflow discharge but in much less
failure time.

“The model was not able to simulate either the maximum outflow discharge or the
failure time.

29 and 31), requires a graphical type of solution as shown in Fig. 6. This
graphical solution can be computerized so that the solution maintains its
automatic mode. ,

A detailed testing of the various models was done for the failure of Teton
dam at the Teton River in Idaho. Information about the geometrical and
physical characteristics are given elsewhere (Ray and Kjelstrom 1978;
Singh and Scarlatos 19855). In Table 4, the input data for simulation of
Teton dam failure are provided. The reported terminal breach was 152 m,
so that a constant width of 100 m was utilized. The initial head was taken
as 1 m, and the surface water area as 2.7 X 10 m?, which is the average
slope of the reservoir capacity curve. The simulation results are represen-
ted in Fig. 7, from which it is evident that all of the analytical solutions
performed reasonably well. However, the nonlinear erosion models gave
better results for the rising limb of the hydrograph, while the linear models
simulated better the recession limb. Also, the rectangular models seemed
to be more accurate than the triangular ones.

To summarize, the model is valid only when the difference between
inflow I and outflow Q is small in comparison with the discharge through
the breach Q,, , and when the function A (H) does not vary substantially.
The main drawback of the model is the erosivity coefficient o, . More
research toward this aspect is needed, so that o, can be related to some
physicochemical soil characteristics. Unfortunately, few experimental
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TABLE 4. Input Data for Simulation of Teton Dam Failure

o aly Hy Zy b A
Case (m"%/s) — (s/m) (m) (m) (m) s (m?)
{1 2) {3) (4) (5) {6) (N (8)
LR 1.5 0.0040(—) 90 89 100 — 2.7x10°
NR- 1.5 —(0.00040) 90 89 100 —_ 2.7x10¢
LT 15 0.0017(—) 90 89 — 1.0 2.7x10°¢
NT 1.5 —(0.00030) 90 89 — 1.0 2.7%10°

Note: LR = Linear erosion, rectangular breach; NR = nonlinear erosion, rectangular
breach; LT = linear erosion, triangular breach; NT = nonlinear erosion, triangular
breach.

data are available under extreme dynamic conditions as encountered in
dam breaching. The sediment transport models developed in laboratory
and natural rivers are not valid, strictly speaking, for dam breaching. As a
result, there is some merit in keeping the analysis simple, incorporating the
most essential parameters. The models presented here are a step in this
direction.

SeEnSITIVITY ANALYSIS

Since the models require a number of data as input, a sensitivity analysis
was conducted in order to quantify the importance of the various quantities
involved. As a basis for comparison, the values of Table 4 were utilized.
The parameters that were' varied were the discharge coefficient o, , the
erosivity coefficient o, , the initial hydraulic head H, — Z,, the breach
width b, the breach side slope s, and the water reservoir surface area A, .
The models were compared in terms of maximum outflow discharge Q...
and the time of its occurrence ¢y, . The results of the sensitivity analysis
are given in Table 5. As can be seen, reduction of the discharge coefficient
o, causes a decrease in Q,,,, and delay of its occurrence time. The same is
true for the erosivity coefficient o, , the breach width b, the breach side
slope s and the surface area A,. On the other hand, an increase of any of
the quantities o, , b, s, and A, produces a higher value of maximum outflow
discharge Q... - The models seem to be quite insensitive to the value of
initial hydraulic head, while they are very strongly affected by the erosivity
coefficient o, . Underestimation of the breach width or the side slope can
also lead to unsatisfactory results.

Since the model performance depends strongly on the erosivity coef-
ficient, special attention should be given to the value that is assigned to this
coefficient. In general, for predictive purposes various values for o, should
be tested so that a spectrum of possible failure modes is evaluated, and not
just a single event.

SumMmARY AND CONCLUSIONS

Five analytical models have been developed for the simulation of
earthfill-dam processes. Conceptually, the models are based on a mass

37

J. Hydraul. Eng., 1988, 114(1): 21-42



079‘% J0T X 1T°8 0l X $°¢ - 001 68 06 0¥000°0 - (9!
09¢'y 0l X §°¢ 01 X 0T - 001 68 06 0¥000°0 - [
00Ty YOI X 6°L 01 X LT - (19} 68 06 00070 e [
008y 0l X 6% o0 X LT - 0$ 68 06 0¥000°0 —_ [
08Z°C JOT X T°L 901 X LT — 001 8 06 0¥000°0 — [
081°¢ 1 X €6 o0l X LT - 001 68 06 09000°0 — S
079°L J0L X 8¢ 01 X LT — 001 68 06 02000°0 - 1 UOISOId IgauTjuou
078°S 0l X §°¢ 01 X LT - 001 68 06 0¥000°0 - £l it goraiq
005y JOT X T°L o0l X LT - 001 68 06 0¥000°0 - [ Te[ngduelosy
08L°¢ HOT X 6°L 90T X $°¢ — 001 68 06 — 0¥00°0 [
006°¢ 0l X 6°C 0T X 0°C - 001 68 06 - 0¥00°0 [
096°¢ »O0I X.T°8 01 X LT - oSt 68 06 - 0¥00°0 <
099°¢ 01 X S% 01 X LT —_ 0S 68 06 - 0¥00°0 [
ovz'e HOI X T°L 01 X LT - 001 +8 06 — 0¥00°0 (9!
08T »O0I X ¥°8 o0 X LT — 001 68 06 - 09000 [
001°8 0L X €% 90T X LT - 001 68 06 - 07000 S UoIsOIo Ieaul]
030‘% 0T X 19 01 X LT — 001 68 06 — 070070 €1 s gyoeaiq
ov8‘e O X I°L 01 X LT - 001 68 06 — 0¥00°0 (1 JemSueooy
(L) (o) {6) (8) () (9) () ) () (@ (1)

(s) Aw\mrcv ANEV s AEV AEV (w) (wys) Jeaul Am\N\wEv ase)
xewg xeuiy v q oz oy JeauljuoN o

<o

sisAjeuy AuAisuss ‘s 31avL

‘panesal sybu (e ‘Ajuo asn feuosied 104 3OSV WBLAdOD 2 T/.T/60 U AisBAIUN NV Sexa ] Aq Bio:Aseiqipase wol) papeojumoq

38

J. Hydraul. Eng., 1988, 114(1): 21-42



“BIEp ISY10 ST} YNM uosedwiod ON “TfewS AIOA ST UOISOIO JO 9JBI o],

0879 H01 X 8'8 o0 X '€ I — 68 06 0£00°0 ST
08L°S SO X 8L S01 X 0T 1 — 68 06 0£000°0 ST
0T¥'9 SO X T°S §01 X LT 8570 — 68 06 0£000°0 ST
0069 ST X $°21 01 X LT €LY - 68 06 0£000°0 ST
080°¥ +0T X 9°6 o0l X LT I —_ 8 06 0£000°0 ST
006°¢ HOI X 1°6 o0 X LT 1 — 68 06 05000°0 Sl

. v 801 X'L°T 1 — 68 06 07000°0 b | UOTSOId TEQUIUOU -
088°8 O X 0°L o0 X LT I - 68 06 0£000°0 €71 s goealq
ops9 WO X §°8 O X LT I - 68 06 0£000°0 ST Iensuelry,
079°L SO X 0°6 o0l X +°€ 1 — 638 06 L100°0 [
008°L AL X 19 0f X 0T 1 - 63 - 06 L100°0 ST
095°L LI X ¥°9 o0l X LT 850 - 68 06 L100°0 [l
OvLL SOI X €8 o01 X LT €L1 — 68 06 L100°0 Sl -
029°L WOI X 9°L o0T X LT 1 — ¥8 06 L100°0 ST
080°% »0I X T°0T $01 X LT T - 68 06 0£00°0 ST
00L°1L LOT X €0 o0 X LT I — 68 06 1000°0 $1 UOISOIo Teau]
0088 LI X 9°9 o0 X L'T I — 68 06 L100°0 €1 M goealq
0T9°L WO X L'L 01 X LT I —_ 63 06 L100°0 ST Ten3ueLL],
(Lp) (o1) (6) (8) V] (9 (9) ) (€) @ (N

(s) (s/gw) (gw) 5 {w) {w) (w) (wys) Teaun (S/z, ) oseD
xewdy xeulgy % q oz orr JeauljuoN 10

2o

penujuol "G 37dv.L

‘pansesal siybul e ‘Ajuo asn feuossad 104 3OSV YBUADOD "2 T/2T/60 U0 AiseAlun NV sexa ) Aq Bio Areiqipose woly papeojumoq

39

J. Hydraul. Eng., 1988, 114(1): 21-42



Downloaded from ascelibrary.org by Texas A&M University on 09/17/17. Copyright ASCE. For personal use only; all rights reserved.

" balance equation applied to the depleting reservoir storage water, broad-

crested weir hydraulics for flow through the dam breach, and a simple
relation for breach erosion given as a linear or quadratic function of the
mean velocity, Practically, the models are limited to rectangular and
triangular breach cross sections, but results are given for trapezoidal
breach under linear erosion.

The following conclusions are drawn from this study:

1. All of the models satisfactorily simulated the outflow discharge
produced during the failure of Teton dam at Teton River in Idaho.

2. The rectangular breach models seem to be more accurate than the
triangular breach models. However, this observation is probably limited to
the specific case of the Teton dam.

3. The linear erosion models better represent the recession hydrograph
limb, while the nonlinear erosion models better approximate the rising
limb.

4. Increased values of the quantities o, o, , b, s, and A, produce an
increased outflow maximum discharge, while decrease of the same quan-
tities results in reduction of the maximum discharge.

S. The results are almost insensitive to the initial hydraulic head.

6. The results depend strongly on the value of the erosivity coefficient
Qs .
7. The coefficient a, varies within certain limits. For linear erosion, o,
was found to be between 0.0008 and 0.0090, while for nonlinear erosion, a,
ranged between 0.00015 and 0.00210. Thus, the value of a, for linear
erosion is about one order higher than the one for nonlinear erosion.
Laboratory experiments with various types of soils may provide an
estimate of the variability of a, .

8. The linear erosion models performed, in general, better than the
nonlinear erosion models.

9. If models are used for prediction purposes, various values of the
erosivity coefficient should be tried so that a spectrum of possible events
is evaluated, and not just a single event.
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ApprenDIX II. NoTaTIONS

The following symbols are used in this paper:

A, = breach wet cross section;
A; = numerical coefficients i=1, ..., 6);
A, = surface area of storage water;

b = Dbottom width of breach;
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top width of breach;

integration constant;

depth of breach;

acceleration of gravity;

hydraulic head;

water elevation from reference datum;

initial water elevation;

water depth at instant of termination of erosion;
outflow discharge from spillway and pOWerhouse
outflow discharge;

breach side slope;

outflow velocity;

time;

breach bottom elevation from reference datum;
initial breach bottom elevation;

discharge coefficient;

erosivity coefficient;

discharge exponent;

erosivity exponent; and

angle between breach side and vertical.
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