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ABSTRACT

Drought forecasting is important for drought risk management. Considering the El Niño–Southern Os-

cillation (ENSO) variability and persistence in drought characteristics, this study developed a wavelet and

fuzzy logic (WFL) combination model for long lead time drought forecasting. The idea of WFL is to separate

each predictor and predictand into their frequency bands and then reconstruct the predictand series by using

its predicted bands. The strongest-frequency bands of predictors and predictand were determined from the

average wavelet spectra. Applying this combination model to the state of Texas, it was found that WFL had

a significant improvement over the fuzzy logic model that did not use wavelet banding. Comparison with an

artificial neural network (ANN) model and a coupled wavelet and ANN (WANN) model showed that WFL

was more accurate for drought forecasting. Also, it should be noted that the ENSO variability is not a global

precursor of drought. For this reason, prior to an application of such a data-driven model in different regions,

significant work is required to identify appropriate independent predictors. Drought forecasting with longer

lead times and higher accuracy is of significant value in engineering applications.

1. Introduction

Drought forecasting is a critical element in drought risk

management. The importance of drought forecasting is

being heightened by the scarcity of water occurring too

frequently around the world in recent years (Mo et al.

2009). The success of drought preparedness and mitiga-

tion depends, to a large extent, upon timely information

on the drought onset and development in time and space.

This information may be obtained through continuous

drought monitoring, which is normally performed using

drought indices.

Many drought forecasting models have been developed

in recent years (Mishra and Singh 2010, 2011). Rao and

Padmanabhan (1984) investigated the stochastic nature of

yearly and monthly Palmer drought indexes (PDIs) and

characterized that using stochastic models to forecast and

simulate the PDI series. Lohani and Loganathan (1997)

used the Palmer drought severity index (PDSI) to char-

acterize the stochastic behavior of droughts. Cancelliere

et al. (2005) forecasted standard precipitation index (SPI)

values using an autocovariance matrix of the SPI time

series. Mishra and Desai (2005) developed autoregressive

integrated moving average (ARIMA) and multiplicative

seasonal ARIMA models to forecast droughts using an

SPI series. These models satisfactorily forecast droughts

up to 2 months of lead time.

Artificial neural network (ANN) models, which are

useful for modeling time series, have recently been used
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for drought forecasting. Morid et al. (2007) developed

an approach for drought forecasting using an ANN. The

indices used were the effective drought index (EDI) and

SPI. Forecasts were made using different combinations

of past rainfall, EDI, and SPI in the preceding months

and climate indices, such as the Southern Oscillation

index (SOI) and North Atlantic Oscillation (NAO) in-

dex. ANN models for both EDI and SPI had R2 values of

0.66–0.79 for a lead time of 6 months. Morid et al. (2007)

also showed that forecasts using EDI were superior to

those using SPI for all lead times and at all rainfall sta-

tions. The better performance using EDI was illustrated

by its more accurate prediction of the overall pattern of

‘‘dry’’ and ‘‘wet’’ conditions. Mishra and Desai (2006)

compared linear stochastic models with a recursive multi-

step neural network and a direct multistep neural net-

work for up to 6-month lead time and found that the

recursive multistep model was best suited for 1-month-

ahead prediction. When a longer lead time of 4 months

was considered, the direct multistep model outperformed

the recursive multistep and ARIMA models. Barros and

Bowden (2008) employed self-organizing maps (SOM)

and multivariate linear regression analysis to forecast

standard precipitation index within the Murray–Darling

basin (MDB) in Australia up to 12 months in advance.

Hybrid models are useful for drought forecasting with

long lead times. Mishra et al. (2007) developed a hybrid

model, combining an ARIMA model and a nonlinear ar-

tificial neural network (feed-forward recursive multistep)

for drought forecasting. The hybrid model combined

the advantages of both stochastic and ANN models. Us-

ing the SPI series, hybrid models as well as individual

stochastic and ANN models were applied to forecast

droughts in the Kansabati River basin in India, and their

performances were compared. The hybrid model was

found to forecast droughts with greater accuracy up to

a 6-month lead time.

Fuzzy logic is also preferred sometimes when linking

inputs to outputs in a nonlinear manner. Since its first

proposal by Zadeh (1965), it has been applied in a variety of

areas. Pesti et al. (1996) modeled the relationship between

drought characteristics and general circulation patterns

(CP) using fuzzy logic. Pongracz et al. (1999) applied

fuzzy rule–based modeling for the prediction of regional

droughts using two forcing inputs: ENSO (El Niño–

Southern Oscillation) and large-scale atmospheric CPs in a

typical Great Plains state—Nebraska. These fuzzy models

are applicable for only short-term drought forecasting.

One of the recently used approaches in statistical

forecasting is to decompose the predictor and predictand

time series into its major subseries and then build the

forecasting model (Rajagopalan et al. 1998; Kim and

Valdes 2003; Webster and Hoyos 2004; Kwon et al. 2007).

Wavelet transforms have been employed frequently as a

common tool for analyzing local variations in time series

(Kumar and Foufoula-Georgiou 1997; Torrence and

Compo 1998; Saco and Kumar 2000; Jevrejeva et al. 2003;

Gan et al. 2007; Kücxük et al. 2009). Zhang and Dong

(2001), Aussem and Murtagh (1997), Kim and Valdes

(2003), and Partal and Cigizoglu (2008, 2009) combined

wavelet transforms with neural networks, Zheng et al.

(2000) with Kalman filters, Zhou et al. (2008) with

ARIMA models, and Partal and Kisi (2007) with fuzzy

logic. Wavelet transforms have an ability to decompose

the original time series into various resolution levels that

capture valuable information. Generally, the perfor-

mance of a forecasting model improves when the infor-

mation at different temporal scales is used.

It is well known that there is a teleconnection between

hydrometeorological events in the continental United

States and ENSO indices, such as SOI and sea surface

temperatures (SSTs) (Kahya and Dracup 1993, 1994;

Cole et al. 2002; Barlow et al. 2001; Tadesse et al. 2005;

Tootle et al. 2005; Alfaro et al. 2006; Tootle and Piechota

2006; Busby et al. 2007; Feng et al. 2008; Coelho and

Goddard 2009). Texas is affected from oscillations oc-

curring in the tropical Pacific region (Özger et al. 2009).

ENSO affects Pacific moisture patterns and leads to

long-term (decadal) changes in precipitation in Texas.

It can induce periods of moderate to severe droughts.

Generally a weak oscillation causes below-average pre-

cipitation and some degree of drought. In contrast, Texas

usually experiences above-average precipitation when

a strong oscillation is recorded. Rajagopalan et al. (2000)

reported that during the first three decades of the twen-

tieth century, summer drought teleconnections in re-

sponse to SST patterns linked to ENSO were found to be

the strongest in the southern region of Texas.

The probabilistic quarterly seasonal forecasts of global

climate by the International Research Institute for Cli-

mate Prediction (IRI) (more information available online

at http://iri.columbia.edu/climate/forecast/net_asmt/)

began issuing useful information for many parts of the

world and these are quite useful for agriculture, energy,

and water resources sectors (Goddard et al. 2003). Most

models forecast droughts with high accuracy for short

lead times (less than 3 months), and those forecasting

droughts for 6–12 months do not yield satisfactory

forecasts. This study focuses on long-term drought fore-

casting. Extending the forecasting of monthly drought

indices up to 12-month lead time is the main objective of

this study. This is accomplished by employing a wavelet–

fuzzy logic combination model. Long-range seasonal

drought forecasting considers lagged values of drought

indices along with the Niño-3.4 (58N–58S, 1708–1208W)

index representing the SST anomalies.
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2. Data

The intensity and spatial extent of droughts are

generally quantified by drought indices. PDSI, as a

measure of meteorological drought, is one of the most

commonly used climatic drought indices in the United

States (Palmer 1965; Alley 1984). PDSI is based on the

principle of balance between moisture supply and de-

mand, when man-made changes are not considered.

This index takes into account the length and severity of

a wet or dry spell (Heddinghaus and Sabol 1991). The

greater the absolute value the more severe the dry or

the wet spell. PDSI was modified by the National

Weather Service Climate Analysis Center to obtain

another index—modified PDSI, or the Palmer modi-

fied drought index (PMDI). PMDI is the operational

version of PDSI that allows computation of PDSI

operationally by taking the sum of the wet and dry

terms after they have been weighted by their proba-

bilities (Heim 2002); the description is available in

Heddinghaus and Sabol (1991) and some of the stud-

ies based on PMDI include Rhee and Carbone (2007)

and Hiller and Powell (2009).

Long datasets and unimpaired series are preferred for

application of the wavelet fuzzy logic (WFL) model.

PMDI was used as a drought indicator in this study.

The PMDI time series used in this study are the av-

erage values across Texas. Statewide monthly mean

temperature and total precipitation for Texas are

used to calculate PMDI values. Monthly PMDI val-

ues, which are available from 1895 to 2007, were re-

trieved from the National Climatic Data Center of the

National Oceanic and Atmospheric Administration

(NOAA).

The monthly time series of the Niño-3.4 (1951–2007)

index were used in this study (NOAA 2008). The Niño-

3.4 index, which is the mean sea surface temperature

throughout the equatorial Pacific east of the date line

(58N–58S, 1708–1208W), was used to characterize the na-

ture of ENSO. In this study, the Niño-3.4 index and

persistence in PMDI were used as predictor variables.

Future PMDI values (predictand) were forecasted using

these variables.

3. WFL combination model

a. The continuous wavelet transform

The wavelet transform provides multiresolution of a

signal in time and frequency domains and has been

employed for studying nonstationary time series, where

it is difficult to detect the time of occurrence of a par-

ticular event if a Fourier transform (FT) is used. Gabor

(1946) introduced a local Fourier transform to analyze

a small section of a signal at a time with sliding windows,

which provide some information about the time and

frequency of the signal. However, this method assumes

that coherent time should be independent of the fre-

quency and only a limited precision can be determined

with respect to the size of window (Misiti et al. 2000).

Wavelet analysis has the capability to employ long time

intervals for low-frequency information and shorter

intervals for high-frequency information. Since the

ENSO indicators (Niño-3.4 index) and drought occur-

rence have long time intervals to develop, low-frequency

components gain importance in comparison with high

frequency.

For the wavelet transform, first a wavelet function c(t)

called mother wavelet is defined. The function is used for

both wavelet decomposition and composition transforms

(Torrence and Compo 1998). In this study, the Morlet

wavelet was used and the future information was padded

with zeros.

FIG. 1. (a) PMDI time series, (b) continuous wavelet transform of

PMDI, and (c) average wavelet spectra.
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High-frequency components of the Niño-3.4 index

and PMDI series are detected with lower scales that

refer to a compressed wavelet. Also, the behavior of the

low-frequency component of signals can be determined

by evaluating higher scales composed of the stretched

version of a wavelet.

b. Determination of significant bands from the
wavelet transform

A measured time series consists of several frequencies.

The prediction sometimes can be difficult if the whole

time series is taken into account without separation into

FIG. 2. Significant spectral bands of observed PMDI values and their prediction by WFL. These bands are (a) 7–16,

(b) 17–33, (c) 34–56, (d) 57–93, (e) 94–222, and (f) .223 months.
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frequency bands and elimination of noise. The approach

may be that one can use only significant frequencies in

the prediction scheme to obtain more accurate results.

Webster and Hoyos (2004) suggested the use of signifi-

cant variances in the wavelet spectra for the separation

of frequency bands. The PMDI time series (Fig. 1a),

which is considered as predictand, and its corresponding

continuous wavelet transform along with the wavelet

spectra are shown in Figs. 1b and 1c, respectively. It is

evident from the figure that there are six distinct fre-

quency bands, which are 7–16, 17–33, 34–56, 57–93, 94–

222, and .223 months. The time series of wavelet bands

are obtained by inverse wavelet filtering (Fig. 2). The

Morlet wavelet is employed for wavelet analysis. The

frequency bands obtained from the wavelet transform of

predictand are used for other predictors. There are six

bands that should be predicted from their corresponding

predictors. As a final step, these predicted bands are

reconstructed to establish the desired PMDI time series.

c. Fuzzy logic

The fuzzy logic (FL) theory has been applied in engi-

neering, economics, social, and medical sciences. In

contrast with the classical set theory where one element

either belongs to a set or not, in the fuzzy set theory one

element can be a member of one or more sets at the same

time with varying membership degrees. FL is capable of

linking multiple inputs to one output.

An FL model consists of fuzzy rules and fuzzy sets that

produce weightings for rules. Fuzzy rules appear in the

form of IF–THEN statements, where the parts before

and after THEN are called antecedent and consequent,

respectively. In this study the antecedent part consists of

ENSO indicators (e.g., Niño 3.4 or SOI) and previous

PMDI values and the future PMDI values are used in

the consequent part. For example, a simple fuzzy rule

can be shown as ‘‘IF Niño3.4(t) is high and PMDI(t) is

high THEN PMDI(t 1 n) is high.’’ Here, n denotes the

lead time in the resolution of months. There are mainly

two approaches in the implementation of FL—namely,

Mamdani and Takagi–Sugeno (TS) inference systems.

FIG. 3. Structure of ANFIS network.

TABLE 1. Skill scores of scenarios employed for FL and ANN models; CC 5 correlation coefficient.

Model No.

Scenarios

FL ANN

Train Test Train Test

3-month lead time NSSS CC NSSS CC NSSS CC NSSS CC

1 Niño3.4(t), PMDI(t) 0.768 0.817 0.638 0.698 0.766 0.810 0.657 0.703

2 Niño3.4(t), PMDI(t), PMDI(t 2 1) 0.666 0.815 0.501 0.720 0.673 0.820 0.474 0.698

3 Niño3.4(t), PMDI(t), PMDI(t 2 1), PMDI(t 2 2) 0.679 0.823 0.460 0.687 0.667 0.816 0.494 0.712

4 PMDI(t), PMDI(t 2 1), PMDI(t 2 2) 0.667 0.816 0.491 0.705 0.673 0.820 0.411 0.662

5 Niño3.4(t), PMDI(t), PMDI(t 2 1), PMDI(t 2 2),

PMDI(t 2 3)

0.705 0.839 0.481 0.713 0.683 0.826 0.481 0.707

6-month lead time

6 Niño3.4(t), PMDI(t) 0.497 0.662 0.213 0.437 0.476 0.647 0.213 0.416

7 Niño3.4(t), PMDI(t), PMDI(t 2 1) 0.505 0.710 0.030 0.404 0.436 0.660 0.051 0.401

8 Niño3.4(t), PMDI(t), PMDI(t 2 1), PMDI(t 2 2) 0.434 0.658 0.106 0.422 0.476 0.689 0.097 0.422

9 PMDI(t), PMDI(t 2 1), PMDI(t 2 2) 0.482 0.694 0.040 0.334 0.419 0.647 20.042 0.258

10 Niño3.4(t), PMDI(t), PMDI(t 2 1), PMDI(t 2 2),

PMDI(t 2 1)

0.502 0.708 20.031 0.407 0.414 0.642 0.133 0.421

12-month lead time

11 Niño3.4(t), PMDI(t) 0.294 0.541 20.187 0.010 0.261 0.509 20.173 20.113

12 Niño3.4(t), PMDI(t), PMDI(t 2 1) 0.126 0.352 20.157 20.092 0.201 0.446 20.265 20.182

13 Niño3.4(t), PMDI(t), PMDI(t 2 1), PMDI(t 2 2) 0.370 0.607 20.209 20.054 0.183 0.425 20.104 20.097

14 PMDI(t), PMDI(t 2 1), PMDI(t 2 2) 0.198 0.443 20.189 20.087 0.272 0.520 20.286 20.050

15 Niño3.4(t), PMDI(t), PMDI(t 2 1), PMDI(t 2 2),

PMDI(t 2 3)

0.348 0.589 20.194 0.063 0.189 0.433 20.118 20.109
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While the Mamdani approach relies on expert knowledge,

numerical data is important for the TS approach. Since

data with long periods are available, here the TS system

was used for forecasting. The significant spectral bands of

ENSO indicators and previous drought index were used

as input variables and output was taken as future values of

the drought index, which is considered for forecasting. A

schematic of the forecasting method is shown in Fig. 3.

For application of the TS FL model, one can refer to

Takagi and Sugeno (1985) and Jang (1993). Assume that

two inputs, Niño3.4(t) and PMDI(t), and one output,

PMDI(t 1 n), form the following two rules for a first order

TS type:

1) IF Niño3.4(t) is A1 and PMDI(t) is B1 THEN

PMDI(t 1 n) 5 p11Ni~no3:4(t) 1 p12PMDI(t)

1 p10, and

2) IF Niño3.4(t) is A2 and PMDI(t) is B2 THEN

PMDI(t 1 n) 5 p21Ni~no3:4(t) 1 p22PMDI(t) 1 p20,

where A and B form linguistic labels, such as ‘‘low’’ or

‘‘high,’’ and pij variables are parameters. These fuzzy

rules can express the relationship between input and

output variables. The corresponding neuro-fuzzy net-

work is shown in Fig. 3. A description of the layers in the

network is as follows:

1) Each neuron in layer 1 is adaptive with a parametric

activation function. Its output is the membership de-

gree to which the given input satisfies the membership

function—that is, mA1
[Ni~no3:4(t)], mB1

[PMDI(t)], mA2

(Ni~no3:4), mB2
[PMDI(t)]. An example of a member-

ship function is the generalized bell function:

TABLE 2. Skill scores for the prediction of full PMDI by WFL and WANN models; CC 5 correlation coefficient.

Model No.

Scenarios

WFL WANN

Train Test Train Test

3-month lead time NSSS CC NSSS CC NSSS CC NSSS CC

1 Niño3.4(t), PMDI(t) 0.613 0.794 0.555 0.761 0.764 0.874 0.555 0.758

2 Niño3.4(t), PMDI(t),

PMDI(t 2 1)

0.919 0.959 0.911 0.955 0.921 0.960 0.867 0.934

3 Niño3.4(t), PMDI(t),

PMDI(t 2 1), PMDI(t 2 2)

0.920 0.959 0.906 0.952 0.920 0.961 0.818 0.908

4 PMDI(t), PMDI(t 2 1),

PMDI(t 2 2)

0.919 0.959 0.906 0.952 0.920 0.961 0.885 0.942

5 Niño3.4(t), PMDI(t),

PMDI(t 2 1), PMDI(t 2 2),

PMDI(t 2 3)

0.845 0.921 0.814 0.905 0.840 0.919 0.785 0.888

6-month lead time

6 Niño3.4(t), PMDI(t) 0.609 0.773 0.426 0.613 0.683 0.814 0.445 0.614

7 Niño3.4(t), PMDI(t),

PMDI(t 2 1)

0.910 0.954 0.873 0.936 0.908 0.953 0.786 0.888

8 Niño3.4(t), PMDI(t),

PMDI(t 2 1), PMDI(t 2 2)

0.929 0.964 0.896 0.947 0.928 0.964 0.871 0.933

9 PMDI(t), PMDI(t 2 1),

PMDI(t 2 2)

0.928 0.963 0.903 0.951 0.936 0.968 0.773 0.883

10 Niño3.4(t), PMDI(t),

PMDI(t 2 1), PMDI(t 2 2),

PMDI(t 2 1)

0.851 0.924 0.793 0.893 0.852 0.924 0.757 0.874

12-month lead time

11 Niño3.4(t), PMDI(t) 0.610 0.783 0.399 0.649 0.487 0.697 0.364 0.603

12 Niño3.4(t), PMDI(t),

PMDI(t 2 1)

0.843 0.920 0.778 0.884 0.858 0.927 0.695 0.862

13 Niño3.4(t), PMDI(t),

PMDI(t 2 1), PMDI(t 2 2)

0.854 0.924 0.727 0.852 0.865 0.931 0.727 0.852

14 PMDI(t), PMDI(t 2 1),

PMDI(t 2 2)

0.844 0.919 0.756 0.870 0.853 0.923 0.700 0.851

15 Niño3.4(t), PMDI(t),

PMDI(t 2 1), PMDI(t 2 2),

PMDI(t 2 3)

0.856 0.925 0.734 0.862 0.855 0.924 0.764 0.876
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m(x) 5
1

1 1

�
�
�
�

x 2 c

a

�
�
�
�

2b
, (1)

where a, b, and c are parameters. The shape of the

bell function changes with parameters, which are

called premise part parameters.

2) Layer 2 consists of fixed nodes. It produces outputs

by multiplying all incoming signals. Firing strength ai

of the ith rule is held in each node.

3) Every node in layer 3 is fixed and calculates the ratio

of the ith rule’s firing strength relative to the sum of

all rules’ firing strengths:

ai 5
ai

a1 1 a2

i 5 1, 2. (2)

4) Layer 4 consists of adaptive nodes. The node output

for this layer can be calculated as

ai PMDI(t 1 n)i

5 ai[pi1Ni~no3:4(t) 1 pi2PMDI(t) 1 pi0] i 5 1, 2,

(3)

where a
i
is the normalized firing strength from layer 3

and pi1, pi2, and pi0 are the parameter sets of this

node, which are also called consequent part param-

eters.

5) The resultant single node in layer 5 is a fixed node

that calculates the weighted average of all incoming

signals as

PMDI(t 1 n) 5

�
n

i5n
aiPMDI(t 1 n)iai

�
n

i5n
ai

. (4)

A hybrid algorithm, called the adaptive neural fuzzy in-

ference system (ANFIS), tunes the consequent parame-

ters (pij) in a forward propagation mode and premise

parameters in a backward propagation mode (Jang 1993).

In the forward propagation the network inputs are

transmitted until layer 4. The consequent parameters

are determined by the least squares method. In the

backward propagation, the error signals spread back-

ward and a gradient descent method is employed to

renew the premise parameters. Once the premise pa-

rameters are fixed, the overall output is a linear com-

bination of the consequent parameters and input

variables. The Matlab fuzzy logic toolbox is used for

the fuzzy logic implementation.

d. Wavelet and fuzzy logic combination

The aim of the WFL combination model is to forecast

t months ahead PMDI from the Niño-3.4 index and

persistence in PMDI. The continuous wavelet transform

(CWT) is used to decompose the original series into

their characteristic bands. The separation into signifi-

cant spectral bands is conducted by considering the av-

erage wavelet spectra as mentioned above.

After decomposing the time series into several bands,

each band of predictand is estimated from its corre-

sponding predictor bands (Fig. 2). We employed the

fuzzy logic model to relate the predictand and the pre-

dictors. Since the aim of this study is to make predictions

FIG. 4. Membership functions of Niño3.4(t) and PMDI(t)

57–93-month spectral bands.

TABLE 3. Fuzzy rule base for the 29–31-month spectral band of model 1. The predictors are the 29–31-month spectral band of Niño3.4(t)

and PMDI(t) and the predictand is the 29–31-month spectral band of PMDI(t 1 3).

Niño3.4(t) (values of

29–31-month spectral band)

PMDI(t) (values of 29–31-month spectral band)

Low Medium High

Low y1 5 1.368 3 Niño3.4(t) 1 0.509

3 PMDI(t) 1 20.881

y2 5 0.298 3 Niño3.4(t) 1 0.657

3 PMDI(t) 1 20.149

y3 5 0.356 3 Niño3.4(t) 1 0.73

3 PMDI(t) 1 0.210

Medium y4 5 2.196 3 Niño3.4(t) 1 0.481

3 PMDI(t) 1 20.918

y5 5 0.429 3 Niño 3.4(t) 10.630

3 PMDI(t) 1 20.158

y6 5 0.510 3 Niño3.4(t) 1 0.727

3 PMDI(t) 1 0.205

High y7 5 0.225 3 Niño3.4(t) 1 0.513

3 PMDI(t) 1 20.855

y8 5 1.339 3 Niño3.4(t) 1 0.485

3 PMDI(t) 1 20.336

y9 5 0.111 3 Niño3.4(t) 1 0.499

3 PMDI(t) 1 0.390
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for future time, past data are used in the forecasts. As a

final step, spectral bands of predictand are reconstructed

to produce the single time series of PMDI.

If one desires to make a forecast starting at t 5 t1 for a

future time t 5 t2, only data measured prior to t 5 t1
should be used. Therefore, each future value can be

forecasted by the fuzzy logic model independently. For

instance, PMDI data are available from 1951 to current

date on a monthly basis. A 3-month-ahead forecast of

PMDI from October 2009 should use data from January

1951 until October 2009.

Application of the WFL model consists of three steps:

1) decomposition of ENSO indicators and PMDI into

their spectral bands by using average wavelet spectra, 2)

using the fuzzy logic approach to achieve the forecasting

of PMDI spectral bands from the spectral bands of ENSO

indicators and previous PMDI, and 3) reconstructing the

predicted spectral bands of predictand to obtain forecasts.

4. Results and discussion

a. FL model

In this study, 3-, 6-, and 12-month lead times were

considered for drought forecasting. For each of the three

lead times, the TS FL model was used with and without

considering wavelet spectral bands. First, the original

time series was used for forecasting. For this purpose, data

(1951–2006) were split into two parts—namely, training

(calibration) and testing. The last 20 yr of the entire

dataset (56 yr, 672 months) was employed for testing and

the remaining part was used for training. Trial and error

was used to select the predictors used in each model.

Since it is known from the literature that persistence plays

an important role in forecasting droughts, the previous

drought measurements were used as predictand. The ef-

fect of ENSO indices on the forecasting performance was

also explored. Using ENSO indices alone without con-

sidering persistence produced poor results. Different

scenarios were tried, as shown in Tables 1 and 2.

The number of current and previous input variables

that corresponded to the number of lagged observations

of Niño-3.4 and PMDI were used to determine the un-

derlying pattern in a time series and forecast future

values. Using input information, the TS FL model had an

ability to detect the feature, capture the pattern in the

data, and perform nonlinear mapping between input and

output variables. For 3-month-ahead forecasting, the

model with input variables Niño3.4(t) and PMDI(t)

yielded the best training and testing results (Table 1).

Increasing the number of lags did not improve the model

performance any more.

b. WFL model

Prior to discussing the results, a sample explanation of

the TS fuzzy inference system along with a numerical

application is given in what follows. Each of the predictor

and predictand time series was decomposed into six sig-

nificant spectral bands as described in section 3b. For

prediction, it was required to establish six fuzzy models

and reconstruct the final prediction by using each pre-

dicted spectral band. Here, the sample fuzzy inference

was given only for one specific spectral band (57–93

months) of the model 1. In this model, Niño3.4(t) and

PMDI(t) were the predictors and PMDI(t 1 3) was the

predictand. The ANFIS training algorithm was employed

to refine the parameters of input membership functions

and linear functions in the consequent part of the fuzzy

rule. Membership functions obtained after running the

ANFIS algorithm are shown in Fig. 4. Since both pre-

dictors had three membership functions, there were

3 3 3 5 9 rules in the fuzzy rule base. The consequent

part parameters of these rules were determined by

ANFIS. Table 3 includes a description of the fuzzy rule

base for the model under consideration.

A sample inference procedure is given in Fig. 5. The

given Niño3.4 5 0.0729 is a value in the 29–31-month

band of Niño3.4, and PMDI(t) 5 0.2109 is a value in the

29–31-month band of PMDI; fuzzy subsets medium and

high for Niño3.4(t) and medium and high for PMDI(t)

were triggered. The membership degrees yielded by in-

puts can be seen in the antecedent part of Fig. 5. The

consequent value (yi) for each rule that was a linear

combination of inputs was calculated using functions given

in Table 3. Weights (ri) for each rule were determined

using fuzzy prod operator because the antecedent part

consisted of more than one input. Results of the prod

operator are shown in the last column of Fig. 5. In the last

step, the weighted average of each rule was computed as

FIG. 5. A sample TS fuzzy inference system for the 57–93-month

spectral band of the model 1.
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PMDI(t 1 3) 5
(0:017 3 0:006) 1 (0:026 3 0:396) 1 (0:272 3 20:136) 1 (0:429 3 0:504)

0:017 1 0:026 1 0:272 1 0:429
5 0:255.

To evaluate the model accuracy, the Nash–Sutcliffe

sufficiency score (NSSS) and correlation coefficient

were used. NSSS is defined as one minus the ratio

of mean-square error and observation variance, and

takes on values between 2‘ and 1, where 1 shows the

perfect model. In the present study, input variables for

the FL model corresponded to the subseries of Niño3.4

and the previous observations of PMDI. Up to four

previous values that were tested for all PMDI series lay

within this range. It was seen that the forecast accuracy

decreased beyond the three previous values. To im-

prove model results, the wavelet bands of input and

output variables were taken into account. The im-

provement was clearly seen when results were com-

pared with the case where wavelet bands were not used

(Tables 1 and 2).

The forecast performance of the WFL model for each

scenario is presented in Table 2. The forecast validation

was done on raw (unfiltered) data. From the results it

was observed that the WFL model provided an im-

provement for long lead drought forecasting over the FL

model. As seen from the table, model 2 had the highest

NSSS value among the WFL models for 3-month lead

time when the testing period was considered. The NSSS

FIG. 6. For 3-month lead time forecasting, model 2 is selected for comparison. (a) Time series comparison of observed

series with FL and WFL; scatter of observed and predicted points for testing period around perfect model line for (b) WFL

and (c) FL models.
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value of 0.501 obtained by the FL model was increased

to 0.911 with the aid of the wavelet transform. The

increment of the model results can be explained with

the elimination of some noisy data. Since the ENSO-

related drought occurrences developed in low fre-

quencies, the removal of noisy and high-frequency data

captured the characteristics of PMDI variable more

consistently.

Among several scenarios, it is also worth noting that

persistence provided a valuable tool for PMDI fore-

casting. For 3-month lead time forecasting, observed and

forecasted time series of PMDI are shown in Fig. 6a.

Forecasted values with the FL model exhibited more

scatter around the exact model line as compared to the

WFL model (Figs. 6b and 6c). For a longer lead time,

deterioration in the model performance is expected.

For 6-month lead time forecasting, models 8 and 9

gave better results than others for the testing period.

Compared to the FL model, which yielded 0.106 and

0.040 as NSSS scores for models 8 and 9, respectively,

WFL models increased the accuracy to around 0.90. This

is also evident from Fig. 7.

Most of the time, various models for 12-month lead

time forecasting have difficulties reaching the desired

accuracy. However, this problem was addressed in

this study by employing the WFL model. The NSSS

values with negative numbers produced by FL were

improved up to 0.78 by WFL for test results. This

remarkable improvement can have a significant im-

pact on long-range forecasting. Model 12 gave higher

NSSS values for testing result. Niño 3.4 along with the

two past values of PMDI yielded better results com-

pared to others. Related results can be seen from Fig. 8.

It is also worth mentioning that lagged values of PMDI

along with Niño 3.4 contributed to most of the model

capability.

FIG. 7. Same as Fig. 6 but for 6-month lead time forecasting, with model 9 selected for comparison.
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c. Comparison with ANN and wavelet
ANN models

The proposed combination model was compared with

the results obtained from ANN and wavelet ANN

(WANN) models. The same input configurations were

used for comparison. The best ANN models, for all

configurations, have a relatively simple architecture.

Three layer networks and a maximum of five neurons

for a hidden layer are sufficient to produce results for all

lead times. It is particularly important to ensure that

accurate long-term forecasts with lead times of 3–12

months are obtained for drought preparedness. The

ANN models developed in this paper resulted in the

NSSS values for 6-month lead time ranging from 0.414

to 0.478 for training data and 20.042 to 0.213 for testing

data, indicating poor forecasting accuracy.

The coupled ANN and wavelet model was used to

forecast PMDI values. An experimental selection of the

neural network architecture was based on the error score.

Nearly the same simple architectures were obtained with

ANN. The use of WANN allowed for generating fore-

casts of PMDI. For a 6-month lead time, the WANN

model NSSS scores ranged from 0.682 to 0.936 for train-

ing data and 0.445 to 0.870 for testing data, which in-

dicates a reasonable improvement over the ANN results.

The overall results for all approaches used in this

study are presented in Tables 1 and 2. The ANN model

results are close to the FL model. The FL model

slightly outperformed ANN in most of the cases. Also,

the advantage of wavelet decomposition is seen even

when the ANN and WANN results are compared with

each other. For instance, for a 6-month lead time

forecast by model 8, ANN and WANN yielded the

FIG. 8. Same as Fig. 6 but for 12-month lead time forecasting, with model 12 selected for comparison.
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NSSS values of 0.097 and 0.871 for testing data, re-

spectively.

Although the WANN produces results that are close to

the WFL model, there is a remarkable difference that can

be seen when testing data scores are considered. The dif-

ference between them is apparent when more lead time

was taken into account.

There are often high nonlinear interacting mecha-

nisms in the climate system that need to be taken into

consideration. Since the ENSO variability is not a global

precursor of drought, it is highly unlikely that a data-

driven model as proposed here will be directly applicable

elsewhere without significant work to identify appropri-

ate independent predictors.

5. Conclusions

The wavelet fuzzy logic model was developed and ap-

plied for long lead time drought forecasting. While PMDI

was chosen as a predictand, the ENSO indicator, Niño3.4,

and previous PMDI values were used as predictors. The

wavelet transform was used to analyze the variation of

spectral power. Here the continuous wavelet transform

was employed to obtain the average wavelet spectra. The

significant spectral bands were detected from the av-

erage wavelet spectra for predictors and predictand.

Six bands that contain significant power were deter-

mined. The Takagi–Sugeno fuzzy inference system was

employed to relate predictor bands to predictand bands.

Six different scenarios were taken into consideration. For

each scenario a specific fuzzy model was constructed to

obtain results.

WFL provided a remarkable improvement in the model

accuracy over FL. Comparison between WFL and FL

model results for three different lead times (3, 6, 12

months) showed the superiority of WFL. It is possible to

make more accurate forecasts for a 12-month lead time in

the level of NSSS 5 0.778 with WFL. Application of the

wavelet fuzzy model showed that the lagged values of

PMDI are important predictors for drought forecasting.

The 12-month-ahead forecasting with acceptable ac-

curacy can be used as a tool for drought management.

It is clear that the WFL model is in good agreement

with observed data. Also, the proposed model results

were compared with ANN and WANN. It is seen that

WFL forecasts are superior to the ones yielded by FL

and ANN models.
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APPENDIX

Acronyms

ANN Artificial neural network

ANFIS Adaptive neural fuzzy inference system

ARIMA Autoregressive integrated moving average

CP Circulation patterns

CWT Continuous wavelet transform

DMSNN Direct multistep neural network

EDI Effective drought index

ENSO El Niño–Southern Oscillation

FL Fuzzy logic

FT Fourier transform

NAO North Atlantic Oscillation

Niño 3.4 Mean sea surface temperature at 58N–58S and

1708–1208W

NOAA National Oceanic and Atmospheric Admini-

stration

PDI Palmer drought index

PDSI Palmer drought severity index

PMDI Modified PDSI

RMSNN Recursive multistep neural network

SOI Southern Oscillation index

SPI Standard precipitation index

SST Sea surface temperature

WFL Wavelet fuzzy logic
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