TsaLLis ENTROPY THEORY FOR DERIVATION
OF INFILTRATION EQUATIONS

V. P Singh

ABSTRACT. An entropy theory is formulated for deriving infiltra

tion equations for the potential rate (or capacity) of infiltration

in unsaturated soils. The theory is comprised of five parts: (1) Tsallis entropy, (2) principle of maximum entropy (POME),
(3) specification of information on the potential rate of infiltration in terms of constraints, (4) maximization of entropy in
accordance with POME, and (5) derivation of the probability distribution of infiltration and its maximum entropy. The theory
is illustrated with the derivation of six infiltration equations commonly used in hydrology, watershed management, and

agricultural irrigation,

including Horton, Kostiakov, Philip two-term, Green-Ampt, Overton,

and Holtan, and the

determination of the least biased probability distributions underlying these infiltration equations and the entropies thereof.
The theory leads to the expression of parameters of the derived infiltration equations in terms of three measurable quantities:
initial infiltration capacity (potential rate), steady infiltration rate, and soil moisture retention capacity. In this sense, these
derived equations are rendered nonparametric. With parameters thus obtained, infiltration capacity rates are computed using
these six infiltration equations and are compared with field experimental observations reported in the hydrologic literature
as well as the capacity rates computed using parameters of these equations obtained by calibration. It is found that infiltration
capacity rates computed using parameter values yielded by the entropy theory are in reasonable agreement with observed

as well as calibrated infiltration capacity rates.

Keywords. Entropy, Infiltration, Green-Ampt equation, Holtan equation, Horton equation, Kostiakov equation, Overton
equation, Philip equation, Principle of maximum entropy, Tsallis entropy.

nfiltration is fundamental to determining the runoff

hydrograph, soil moisture and groundwater recharge,

irrigation  efficiency, life span of pavements, and

leaching of nutrients. In hydrology, irrigation
engineering, and soil science, a number of infiltration
equations have been developed, some of which are now
commonly applied in hydrologic modeling and have been
included in popular watershed hydrology models (Singh,
1989, 1995; Singh and Frevert, 2002a, 2002b, 2006; Singh
and Woolhiser, 2002). Some of the commonly used equations
(Singh and Yu, 1990) are: Green and Ampt (1911), Kostiakov
(1932), Horton (1938), Philip two-term (Philip, 1957),
Holtan (1961), and Overton (1964). These equations
represent the potential or capacity rate of infiltration at a
point. In this study, infiltration rate will imply capacity or
potential rate, which is the maximum rate at which water
enter the soil under no restriction on the supply of water. It is
known that soil characteristics vary significantly from one
place to another, and antecedent soil moisture, which defines
the initial infiltration, also significantly varies spatially. The
infiltration parameters determined using point measurements
are point values, or at best reflect average values. Although
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large spatial variability in infiltration is recognized, little
effort has been made to account for its probabilistic
characteristics, except for a few watershed models, for
example, BASINS (formerly Stanford Watershed Model)
(Crawford and Linsley, 1966; Donigian and Imhoff, 2006).

In recent years, the entropy concept has been applied to a
range of problems in hydrology, hydraulics, environmental
engineering, ~ geomorphology, and water resources
engineering (see a review by Singh, 1997). Review of the
literature suggests that a majority of applications have
encompassed derivation of frequency distributions and
estimation of their parameters (Singh, 1998), evaluation and
design of monitoring networks (Harmancioglu et al., 1999),
and measuring uncertainty (Klir, 2006). These applications
are statistical in nature and do not invoke physical
conservation laws. Other applications, such as the
assessment of the reliability of water distribution systems
(Awumah et al., 1991), landscape evolution (Fiorentino et al.,
1993), and water resources assessment (Marayuma et al.,
2005) have also been primarily statistical. On the other hand,
Chiu (1987, 1988, 1989, 1991) and Barbé et al. (1991),
among others, combined entropy with the laws of mass,
momentum, and energy conservation and derived velocity
distributions in open channels and pipes as well as solute
transport models. They showed that entropy-based velocity
distributions were superior to the commonly used Prandtl-
von Karman and power law velocity distributions. However,
this line of investigation has not been extended to other areas
in hydrology and water engineering, and this essentially
motivated the present study on the application of entropy to
deriving infiltration equations.
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Furthermore, the majority of applications of entropy in
water engineering have employed the Shannon entropy.
Koutsoyiannis (2005a, 2005b) was probably the first to apply
the Tsallis entropy to investigate the stochastic behavior of
hydrological processes. The Tsallis entropy has not been
employed for describing infiltration or movement of
moisture thus far. It may be interesting to explore the use of
the Tsallis entropy for infiltration modeling, for it possesses
a number of interesting propertics and encompasses the
Shannon entropy as a special case. This study, therefore, is an
exploratory attempt to employ the Tsallis entropy to derive
six commonly used infiltration equations.

The objective of this study, therefore, is to develop an

entropy theory for deriving equations for infiltration into
unsaturated soils; illustrate the theory by derivation of the
well-known infiltration equations of Horton, Kostiakov,
Philip, Green-Ampt, Overton, and Holtan; derive probability
distributions of these equations; and test the derived forms of
these equations using experimental observations reported in
the literature. The theory leads to the expression of
infiltration equation parameters in terms of what is easily
measured or measurable and hence the physical basis of the
parameters. The theory also establishes a probabilistic basis
of infiltration equations and hence an estimate of uncertainty
associated with each equation. The objective here is not to
validate the equations nor show if one equation is better than
the others.

DEVELOPMENT OF ENTROPY THEORY

Let the infiltration capacity (or infiltrability), as a function
of time ¢, be defined as I(¢). It is assumed that the soil is dry,
and water is applied to the dry soil with no limitation to the
supply of water. At the beginning, infiltration will be high; as
time progresses, the infiltration capacity declines and may
reach a steady or constant rate or approach zero. The constant
rate is often called the drainage rate. This capacity of
infiltration is the potential rate and will be equatl to or greater
than the actual rate, depending on the supply of water.
Furthermore, the infiltration capacity may significantly vary
from one place to another. Crawford and Linsley (1966) were
probably the first to consider spatial variations in infiltration
capacity. From empirical data reported in the literature
(Burgy and Luthin, 1956), they found large variations in
infiltration capacity, even in relatively homogeneous soils
(uniform Yolo silt loam) and over small areas (12 m X 6 m;
40 ft 20 ft). Considering infiltration capacity as a random
variable, they expressed the cumulative probability
distribution of infiltration capacity as a function of area.
Motivated by this work, it was assumed in this study that the
spatially averaged infiltration capacity, I(f), is a random
variable and would therefore have a probability density
function. It is recognized that this assumption needs to be
verified or may even be tenuous, but even if it is weakly true
it would not greatly mar the usefulness of the entropy theory.

The objective is to formulate the entropy theory and derive
the capacity rate of infiltration as a function of time using this
theory.. The entropy theory for randomly varying infiltration
capacity rate / can be formulated as comprising five parts: (1)
Tsallis entropy, (2) principle of maximum entropy (POME),
(3) specification of information on infiltration rate in terms
of constraints, (4) maximization of entropy in accordance
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with POME, and (5) derivation of the probability distribution
of infiltration rate and its entropy. Each of these parts is
outlined in what follows.

TsALLIS ENTROPY

Considering entropy as a measure of information and
hence of uncertainty, Tsallis (1988) formulated what is
referred to as the Tsallis entropy. The Tsallis entropy
qualitatively measures the uncertainty associated with a
random variable or its probability distribution in accord with
several consistency measures. Consider a discrete form of
infiltration capacity [ that occurs with probability p;, i =1, 2,
..., N, and N is the number of values that capacity can take on.
The Tsallis entropy, denoted H, can be written as:

1- Ep,

=——Zpl<1 pr=k—=— (1)

where k is a measure that keeps the units of H consistent and
is often taken as unity, and m is any real number. Exponent
m influences the variability of H with the probability. To
illustrate this, a plot of H/k versus p for m = -1, -0.5, 0, 0.5,
1, and 2 is given in figure 1. For m < 0, the Tsallis entropy is
concave, and for m > 0 it becomes convex. Form = 0, H =
k(N - 1) for all p; values. For m = 1, it converges to the
Shannon entropy. For all cases, it decreases as m increases.
If the infiltration capacity is defined as a continuous
random variable with a probability density function defined
as f{l), then the Tsallis entropy, H(J), can be expressed as:

H()= -J fva) ldl
1y
— frof-rar fa
I

Iy
=ﬁj{ 1- [ Lf[f(l)]"’}dl (1b)

where Iy and [} are, respectively, the upper and lower limits
of integration for I. H describes the expected value of
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Figure 1. Plot of H/k for N =2 for m = -1, -0.5, 0, 0.5, 1, and 2.
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1 - [AD)™1}. Considering {1 - [f7)]™!} as a measure of
uncertainty, equation 1b defines the average uncertainty
associated with f(I) and in turn with /. The more uncertain /
is, the more information will be needed to characterize it. In
other words, information reduces uncertainty. In this sense,
uncertainty and information are related to each other. Thus,
the key here is to derive the least biased fiJ).

The Tsallis entropy is a non-extensive entropy and reduces
to the Shannon entropy if exponent m in equation 1a is unity.
It can also be said that for m — 1, equation 1a reduces to the
Boltzmann-Gibbs statistics used in statistical mechanics. H
is maximum for all values of m in the case of equiprobability.
H is maximum if m > 0 and is minimum if m < 0. Like the
Shannon entropy, the Tsallis entropy satisfies the additivity
property for independent systems. Because of these and other
properties, the Tsallis entropy has received and continues to
receive a great deal of attention, especially in sciences.
Although most of these applications have primarily been in
physics, some of them relate to hydrological processes and
will therefore have relevance in hydrological analysis and
modeling. Koutsoyiannis (2005a, 2005b) was the first to
employ the Tsallis entropy to characterize stochastic
behavior of hydrological processes. Keylock (2005)
introduced the Tsallis entropy and m-exponential distribution
for deriving flood recurrence intervals. He reasoned that a
distribution derived from power law considerations would be
more appropriate than the power law itself. Hence, it can be
argued that the Tsallis entropy has potential for much broader
application in hydrology than is presented in this study.

PRINCIPLE OF MAXIMUM ENTROPY

The principle of maximum entropy (POME) formulated
by Jaynes (1957a, 1957b, 1958, 1982) says that the least
biased probability distribution of I, f(l), will be the one that
will maximize H(J) given by equation 1, subject to the given
information on  expressed as constraints. In other words, if
no information other than the given constraints is available,
then the probability distribution should be selected such that
it is least biased toward what is not known. Such a probability
distribution is yielded by the maximization of the Tsallis
entropy. Thus, one of the key points is to define constraints
on 1, for f(I) depends on these constraints.

CONSTRAINTS

Information on I(f) can be obtained using the knowledge
of soil physics and experimental observations. For a given
soil, one frequently measures infiltration and then
characterizes the soil infiltration and more particularly the
time capacity rate of infiltration or infiltration curve for the
soil under the condition that water supply is not a limiting
factor. If infiltration capacity rate observations are available,
then information on the infiltration capacity rate can be
expressed in terms of constraints, C, r = 0, 1,2, ..., n,as:

Iy

Co= [fydl =1 )
)

Iy
¢ = fgr(l)f(l)dlzgr(l)ﬂ r=12,.,n ©)
I
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where g(), r = 1, 2, ..., n, Tepresent some functions of I, n

denotes the number of constraints, and g, (/) is the expectation

of g/I). The constraints are analogous to moments. For
example, if = 1 and g,(I) =1, then equation 3 would correspond
to the mean infiltration capacity rate; likewise, for r = 2 and

g.(N=( —7)2 , equation 3 would denote the variance of /1.

For most infiltration equations used in hydrology, more than two
constraints are not needed. The role of constraints cannot be
overemphasized. The type of probability distribution that one
obtains by maximizing the entropy depends on the type of
constraints that one defines. Thus, there is a one-to-one
correspondence between the probability density function (PDF)
and its constraints. Following the procedure discussed by Singh
(1998), if a PDF is given, one can derive the corresponding
constraints. Similarly, if constraints are specified, then they will
lead to a unique PDF. In the case of deriving a specific
infiltration equation, the problem becomes trickier, since its
PDF is not known a priori. Hence, trial and error seems the only
option in the beginning,

MAXIMIZATION OF TSALLIS ENTROPY

In order to obtain the least biased f(), the entropy given
by equation 1b is maximized, subject to equations 2 and 3,
and one simple way to achieve maximization is the use of the
method of Lagrange multipliers. To that end, the Lagrangean
function L can be expressed as:

Iy
1 m—
125 ILff(I)ﬁ-[f(m o

Iy

+ho| [F(DdI-C
0 f!' 0

Iy

+21x, 1, (-, @)
r= I

where A,, r = 0, 1, 2, ..., n, are the Lagrange multipliers.
Recalling the Euler-Lagrange equation of the calculus of
variation, the least biased f{I) is obtained by maximizing L,
noting that £ is variable and [ is a parameter. Thus, differentiating
equation 4 and equating the derivative to zero, one gets:

oL _
of (1)

- 1 _ m-14 m-]
0= A-tror -

+x0+2"“x, g, (I)=0 (5)

r=1

DERIVATION OF PROBABILITY DISTRIBUTION
AND MAaxiMUM ENTROPY

Solution of equation 5 leads to the probability density
function of 7 in terms of the given constraints:

., 1/(m~1)
70 ={%+(Ln:1—) [ko +2Krgr(1)]} (6)
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The Lagrange multipliers (A, values) can be determined
with the use of equations 2 and 3. Equation 6 is the entropy-
based probability density function of power type. The
cumulative probability distribution function of 7, F(J), can be
written as:

F()=
) 1 m Ll/(m—l)
jIJ{Tn_JFT |}\o +ZM&(OL dr (7
L r=1

Substituting equation 6 in equation 1, one obtains the
maximum entropy of f(I) or I

H(I)= 1 Iu! o ) ) 11/(m—1)
m-—
m_l‘z{.l;-‘- f\o*’ r§:1argr(1)]

" |

1_[l+(’"—“9~ on+§"‘,x,g,<l>]} /)

| ™ m o

Equations 1b, 2, 3, 6, and 8 constitute the building blocks
of the entropy theory, which is now illustrated by deriving six
popular infiltration equations as examples.

DERIVATION OF GENERAL

INFILTRATION EQUATION

Consider a dry soil element, as shown in figure 2, to which
water is supplied without any limitation. The water infiltrates
the soil element at a capacity rate of I(f) and exits at a capacity
rate of I.(f). The soil will have a maximum soil moisture
retention capacity denoted S. For a dry soil, S will be equal
to the soil porosity multiplied by the soil elemental volume
minus the volume of pore spaces occupied by roots,
earthworms, or other objects. The soil elemental volume is
computed by choosing an appropriate length of the element,
which depends on the soil type under consideration. In
general, it is taken as the crop root zone depth, which may be
about 100 cm or about three feet. In a dry soil with no
macropores, the maximum amount of water retained will be
the same as the cumulative infiltration J; thatis, 0 <J < S. If
W is the amount of pore space available for infiltration of
water at any time, then W +J = S.

The continuity equation for a soil element can be
expressed as (Singh and Yu, 1990):

ll(ﬂ

l]c(t)

Figure 2. Soil element with infiltration: I(¥) = rate of infiltration, I.() =
rate of infiltration exiting the element, and S = soil moisture retention
capacity.
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—=I@)-1.(t

" -1 €)
where J(f) defines the cumulative infiltration at time z. One
can also express the continuity equation as:

J () =f[1(t)~1c(f)]dt (10)
0

Strictly speaking, I, varies in time; however, for the
discussion in this article, it is assumed constant for two
reasons, i.e., I.(f) = I.. First, the infiltration equations
considered here assume a constant value of I.. Second,
measurements of I, varying in time are usually not available.

It is hypothesized that the cumulative probability
distribution of infiltration, F(), can be defined as the ratio of
soil moisture potential (W) to the maximum soil moisture
retention (S):

F({I) =% (11)

F(I) can also be defined as one minus the ratio of the
cumulative infiltration to the maximum potential cumulative
infiltration or maximum soil moisture retention, S:

1L
F(D)=1-3 (12)

The hypothesis expressed by equation 12 needs to be
validated using field data or experimental observations.
Differentiation of equation 12 yields:

dj 1d/
dF()dl =——; dF()= f)=———

@) g FD=fD)=-gr (13
where f(I) is the probability density function of /(¢), which is
determined using the entropy theory.

Substitution of equation 7 in equation 13 and then
integrating results in:

I . . " 1/(m-1)
J=Slf{;+’”" [L0+§1‘)\.,g,(1)]} dr (14)

m

Equation 14 expresses the relationship between
cumulative infiltration and infiltration capacity rate and can
be integrated. In a way, this equation describes what can be
considered the infiltration rating curve. The explicit form of
this relationship depends on the form of gr(l), r= 1,2, .., n.
Then, noting equation 6 and expressing I(¢) as dJ(¢)/dt, J(¢)
can be determined. Thereafter, differentiation of J(z) will lead
to an expression for I(f), which is what is desired. This
suggests that the key to deriving an infiltration equation is to
derive its associated probability density function, whose
derivation depends on the constraints specific to that
infiltration equation. Application of the theory is illustrated
by deriving six popular infiltration equations, including the
Horton, Kostiakov, Philip, Green-Ampt, Overton, and Holtan
equations. The Horton equation is derived in what follows,
and other infiltration equations are derived in Appendices A
through E.
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HORTON EQUATION

Let the initial infiltration capacity rate be defined as /o and
the steady or constant rate denoted as I.. Thus, I(f) will vary
from I, to I. The objective is to derive the rate of infiltration
as a function of time.

Specification of constraints: The simplest constraint that
f(D) must satisfy is:

I
ff(f)dl =1 13)
IC

Maximization of entropy: Applying POME and using the
method of Lagrange multipliers (Singh, 1998), one obtains
the Lagrangean function L as:

Bl m—
L=;nj{ icff(l)@—[f(f)] ‘)}dz

Iy

+ho | |f(Ddl -1 16)
'l

where Ag is the zeroth Lagrange multiplier. Recalling the
Euler-Lagrange equation of calculus of variation and
differentiating equation 16 with respect to f and keeping in
mind that ] is a parameter here, not a variable, and equating
the derivative to zero, one gets:

oL 1
_— ==

af m-1

1o
: s{ f (- —(m—l)[f(l)]’"‘fldl}
1,

Iy
+ho | [dI amn
/
Equation 17 yields:
m-1{ 1 m=
f(1)={7 [m—_lJfM]} (18)

Equation 18 is the Tsallis entropy-based probability density
function and contains one unknown parameter: the zeroth
Lagrange multiplier.

Determination of Lagrange multiplier: For simplicity, let:

)\-*z )\40 +

1
and A= [m—l)\*]m—l

m- m

Equation 18 can be expressed as:

1
f(1>={’"‘1[x*]}"“1 = A

m

(19)

Substituting equation 19 in equation 15, one obtains:

Vol. 53(2): 447-463

I, I .
Ndl =1= {dI =— 20
[raar=1= far=— (20)
I, I,
Equation 20 gives the Lagrange multiplier Ag as:
m-1
Ny = (1 1
m —1\10 -1, m—1
m—1
1 - m (1
Ae=hg+ =
" m-1 m—1[10—lc] @

Probability density function of infiltration: Substitution of
equation 21 in equation 19 yields:

1
10"10

fin= (22)

Equation 22 is the probability density function associated
with the Horton equation, which is uniform and depends only
on the initial and steady infiltration capacity rates. The
cumulative distribution function of I would be linear,
expressed as:

(23)

1 i
1 -1
F()= (f(dl = dl =——=¢
I.[ If Io—1, Iy—1,

Infiltration equation: Combining equations 22 and 13, one
obtains:

! dl = —ldl (24)
Iy—1, S
Integrating equation 24, one obtains:
=1 _ 1- I (25)
IO - IC S
Equation 25 can be recast as:
i J I,—-1
4= I __I , k = 0 [+
a k0T S (26)

Solution of equation 26 yields the cumulative infiltration as:
J=Uy—1)k—Ty—1 )exp(-t/k) 27

Differentiating equation 27 with respect to ¢ and recalling the
continuity equation 9, one obtains the infiltration rate as:

I(e)=1,+Ioy—I.)exp(~t/k) (28)
which is the Horton equation. Recall that:
_ S
(1 0~ 1 c) (29)

Equation 28 is the Horton equation derived using the
entropy theory. Derivation of equation 28 shows that the
Horton equation requires no constraint other than the total
probability theorem, which is not a constraint in a true sense,
for all probability distributions must satisfy it. Parameter k is
expressed as the ratio of the maximum soil moisture retention

451



and the initial infiltration capacity rate minus the steady-state
infiltration rate. It has the dimension of time and indicates the
time required for the infiltrated water to fill the maximum
moisture retention space, if the capacity rate of infiltration
were the initial infiltration rate (i.e., the maximum
infiltration rate) minus the steady rate, or the initial excess
infiltration capacity rate. Infiltration observations, under
conditions of no limit on water supply, provide initial and
steady infiltration capacity rates and for a given soil with
knowledge of its porosity and its column height, the value of
S (the maximum soil moisture retention) can be obtained.
Thus, parameter k can be computed using equation 29
without any calibration. This also provides a physical
interpretation of parameter .

Entropy of Horton equation: The entropy of the probability
distribution underlying the Horton equation or the infiltration
rate can be expressed as:

1o
H(O)=—— [{-1r@r Ja
IC

1 om ’
=——ty-1)-U,-1)"™]  (30a)
m-—1
For m = 2, equation 30a becomes:
1
HID=(lo~1) - (300)

(IO—IC)

Equation 30a states that the uncertainty of f{I), or for that
matter I, depends on the initial value of I, Iy, and steady rate
I... This equation consists of two parts: (Ip - I.) and (I -1.)1""™.
An important implication is that, for a given soil, the
uncertainty of the Horton equation m > 1 is maximum when
it is dry because that is when the initial infiltration will be
maximum. As a result, the first part will be much greater than
the second part, and hence the difference between these two
parts will be greater, translating into greater entropy. This
difference and hence entropy reduces as soil becomes wetter.
This means that when sampling infiltration, greater care
should be exercised in the beginning of infiltration and less
toward the tail. This also means that infiltration observations
should be more closely spaced temporally in the beginning,
but the time interval between observations can be increased
with the progress of infiltration.

OTHER INFILTRATION EQUATIONS
Kostiakov equation: The Kostiakov equation is derived in
Appendix A and can be expressed as:

1(t)=0.5at™> (31)

where a is parameter. From the entropy theory, one obtains
a =21, twice the product of steady infiltration rate (/) and
maximum soil moisture retention (§), both of which can be
determined for a given soil. This means that parameter a can
be obtained from observations and does not need to be
calibrated.

Philip two-term equation: The Philip two-term equation is
derived in Appendix B and can be expressed as:
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1(t)=a+0.5(2a8)*°t "% = a+ bt ™7

b=0.5(2a$)>* (32)
where a and b are parameters. Parameter a is analogous to
steady infiltration rate (or saturated hydraulic conductivity or
a fraction thereof) and can be obtained without having any
calibration. In general, a is between 0.5 to 0.7 of I.. Parameter
b can be expressed in terms of ¢ and maximum soil moisture
retention S, which also can be obtained from observations, as
shown by equation 32. Thus, parameters a and b have
physical meaning and need no calibration.

Green-Ampt (G-A) equation: The G-A equation is derived
in Appendix C and can be expressed as:

UL PN P
[ 1. all,

In equation 33, parameter I, is the steady-state rate of
infiltration and can be interpreted as almost equal to the
saturated hydraulic conductivity. Parameter S is the maximum
soil moisture retention, and S = a/l.. Since I, and S can be
obtained from observations, a = SI;. can also be obtained from
observations. In the hydrologic literature, S is interpreted as
equal to the product of the capillary suction at the wetting front
and the initial moisture deficit (Singh, 1989). The entropy
theory provides another interpretation of parameter S, and hence
the G-A parameters can be estimated without calibration.

(33)

Overton equation: The Overton equation is derived in
Appendix D and can be written as:

1) =1, se[fal, 2, - 1)]

where ¢ is the time to steady-state infiltration rate I; this
time may be much smaller than the duration of the infiltration
experiment or observations and can be obtained from
observations. Parameter a is expressed as (Ig - I.) = aS?,
where I is the initial infiltration capacity. Thus, parameters
of the Overton equation can be obtained from observations,
and calibration of these parameters may not be needed.

(34)

Holtan equation: The Holtan equation is derived in
Appendix E and can be expressed as:

I=1,+a[s"™" - (-nyat]1=n (35)
where a is a parameter expressed as:
I,—-1
a= ( OS,, c) (36)
and
n Lin
I-1.=B——(I,- n
=B o 1o 37
1
B=—r———
n(]_[c)l/n (38)

Parameters a and » can be obtained from observations, as
equations 36 and 37 show, and calibration may therefore not
be needed.
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ADVANTAGES OF ENTROPY THEORY

The derivations in the preceding section show that the
entropy theory has several advantages: (1) The theory leads
to a probabilistic characterization associated with each of the
derived infiltration equations. It explicitly yields probability
density functions and cumulative probability distributions.
(2) It explicitly yields an expression of uncertainty associated
with each probability density function and in turn each
infiltration equation. (3) The uncertainty estimate can be
gainfully employed for infiltration sampling. 4) The
derivations of infiltration equations show that for the most
part parameters of these equations can be expressed in terms
of physically measurable quantities: initial infiltration,
steady infiltration, and soil moisture retention capacity.
Thus, this can be useful in hydrologic simulation and can
make the simulation model more parsimonious. The fourth
advantage is a remarkable finding.

VALIDATION OF ENTROPY THEORY
INFILTRATION DATA

Data on infiltration in field soils have been reported by
Rawls et al. (1976) in a report published by the USDA
Agriculture Research Service. Four data sets (labeled 1, II,
IIL, and IV) on infiltration in Robertsdale loamy sand, Stilson
loamy sand, and Troupe sand in the Georgia Coastal Plain
were obtained and used in this study. Characteristics of
infiltration observations are given in table 1. In the table, D
is the duration of the experiment; f. is the time to the
approximately constant rate of infiltration, which may be less
than the duration of the experiment Dj; I is the constant
(steady) rate of infiltration at the end of the infiltration
experiment or the duration D applied to all the equations
except for the Overton equation; /" is the constant rate of
infiltration at time ¢ = t, (which occurs before the end of the
experiment) and is applied to the Overton equation; o is the
initial infiltration capacity rate given a few minutes later than
the start of infiltration (¢ = 0) applied to all the six equations;
S1 is the maximum soil moisture retention for the Green-
Ampt equation and is determined by subtracting the initial
soil moisture content from the final soil moisture content; S2
is the cumulative infiltration until time D applied to the
Kostiakov and Philip equations; and $3 is the cumulative
infiltration until time . applied to the Overton equation. §” is
defined throughout the equation asS” =52 - I XD and applied
to the Horton and Holtan equations. It may be noted that the
value of S differs from one infiltration equation to another
because these equations are based on different assumptions
and hypotheses. For illustrative purposes, data set IV for
Troupe sand was selected.

For data set IV, the infiltration rate reached a lower value
at ¢ = 110 min and thereafter fluctuated round 4.37 cm h!
(1.72 in. h'1), corresponding to the cumulative infiltration of

11.21 cm (4.41 in.). Thus, in this case £ = 110 min and I =
4.37 cm h'! (1.72 in. h'1). The initial infiltration capacity rate
at £ = 4 min was 11.60 cm h™! (4.57 in. h'1). The actual initial
infiltration capacity rate (at ¢ = 0) should be larger than
11.60 cm h'l, which is the value at ¢+ = 4 min. For
computation, the value of Iy used was the value observed at
¢ = 4 min. It is recognized that this is not the correct value, but
no observations at ¢ = 0 were available. It was assumed that
the infiltration capacity rate at the end of the experiment
reached the constant infiltration rate, and therefore the
constant infiltration rate I, was 4.37 cm h! (1.72 in. h'l),
which is the value of the infiltration rate at the end of the
experiment. Since the connotation of parameter S may differ
from one infiltration equation to another, it may have
different values for different equations. Therefore, S1 was
used to denote parameter S for the Green-Ampt equation as
the maximum soil moisture retention determined by
subtracting the intial soil moisture from the final soil
moisture, while S2 was used to denote the cumulative
infiltration until time D and applied to the Kostiakov and
Philip equations. Likewise, S3 for the Overton equation was
used to denote parameter S equal to the accumulated
infiltration until 7.. §’ was used to denote parameter S for the
Horton equation, which was determined as S§"=82-1. xD.
These parameter values were obtained from observations and
are given in table 1. In a similar manner, values of I, I'; , Iy,
I'o, S1, 82, 83, and ¢, were obtained for data sets I, II, and 111
and are shown in table 1. It is recognized that there is an
element of subjectivity in the estimation of S for different
equations, but experimental observations are a clear
limitation in the reported data.

VALIDATION OF INFILTRATION HYPOTHESIS

Equation 12 is a hypothesis fundamental to deriving the
aforementioned infiltration equations and may be even for
other equations. This hypothesis was tested for the above four
data sets; it is shown in figure 3 for data set IV. The field data
plotted approximately as a straight line, and it may be argued
that the hypothesis is approximately valid but needs to be
tested much more extensively. It may, however, be
emphasized that the less than perfect validity of this
hypothesis does not diminish the usefulness of the entropy
theory.

HORTON EQUATION

The Horton equation has three parameters, I, Ig, and k, as
shown in equation 28. In the usual hydrologic practice, these
parameters are obtained by calibration or fitting the Horton
equation to infiltration observations. In the case of the
entropy theory, parameters I, and Iy were obtained from
observations. The value of S was also obtained from
observations, where it was the difference between the
maximum soil moisture and the initial soil moisture. Using

Table 1. Parameters from observations after Rawls (1976).

Duration of

Iy I I’ S1 S2 S3 s t Observations,
Soil Type Code D (embl) (emhl) (emhl) (cm) (em)  (em) (cm)  (min) D (min)
Robertsdale loamy sand I 09091D 12.21 2.42 3.10 4.17 7.61 428 2.77 50 120
Robertsdale loamy sand 11 09091W 8.24 2.25 193 0.76 4.90 2.40 0.40 50 120
Stilson loamy sand I 10101W 12.81 2.97 2.96 1.68 7.04 4.99 2.54 50 91
Troupe sand v 12112W 11.60 4.40 4.37 2.59 1214 1121 3.12 110 123
453
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Figure 3. Relationship between cumulative probability distribution of
infiltration rate and cumulative infiltration.

these observed values of I, Iy, and S, parameter k was
computed using equation 29, as shown in table 2. Thus, no
calibration or fitting was done to obtain parameters I, Iy, and
k. It may be noted that any error in data would directly
translate into errors in the computed infiltration capacity
rates. On the other hand, the three parameters were also

obtained by calibration using the least square method in -

which the sum of squares of deviations between observed and
computed infiltration rates was minimized. The Horton
parameters obtained by calibration are shown in table 2. This
was done for purposes of comparing the entropy theory-based
infiltration capacity rates with the infiltration capacity rates
obtained using calibrated parameter values.

With parameter values obtained from observations using
the entropy theory and from calibration, the Horton equation
was applied to all four data sets. For the sample data set (data
set IV), the infiltration rates computed in the above two ways
and observed capacity rates are shown in figure 4. The
infiltration capacity rates computed using the entropy theory
and calibration were in reasonable agreement with observed
infiltration capacity rates. Clearly, the infiltration capacity
rates obtained using the calibrated parameter values were in
closer agreement with observed values. The average relative
error (defined as the absolute difference between observed
and computed capacity rates divided by the observed
capacity rate) was under 13% for the entropy theory and

12 T v T v T T

*  Observed
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O Calibrated

Infiltration rate (cm/h)
©

|
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Time {min})

Figure 4. Comparison of infiltration rates computed using the Horton
equation with parameters determined using entropy theory and by
calibration with observed infiltration rates for date set IV.

under 8% for calibration. As expected, computed capacity
rates improved as time progressed. For data sets I, I, and III,
the absolute average relative error was, respectively, 12.6%,
10%, and 9.8% for the entropy theory and under 11.4%,
6.9%, and 2.6% for calibration. On average, the entropy
theory performed remarkably well for all data sets, especially
when there was no adjustment of parameters. It was observed
that for data sets I and III, the maximum relative error (at a
certain point in time) was significantly higher for the entropy
theory than for calibration. However, two points need to be
noted. First, for the most part, the relative error for the
entropy theory was significantly lower, and thus the error was
not as high as the maximum value of the error would lead one
to infer. Second, a closer examination of data set I revealed
that the infiltration rate started to fluctuate at f = 50 min all
the way up to the end of the experiment, D = 120 min. This
was also the case for data set III, where the infiltration rate
started to fluctuate at £ = 110 min. It was not clear what the
reason for fluctuating infiltration rates was. It might have
been small macropores or experimental errors.

Also computed was error equal to the square root of the
mean of square of differences between computed and

Table 2. Equation parameters estimated by entropy theory and calibration.

Horton Equation Parameters

Philip Two-Term Equation

Entropy Calibration Kostiakov Equation Parameters Parameters
k I L & I L Entropy Calibration Entropy Calibration
Data Set (h) (cmbl) (ecmhl) () (cmhl) (cmhl) a b a b a b a b
ID =09091D 0.28 12.21 242 0.13  16.21 3.02 6.07 -05 3.03 -0.46 121 214 053 255
ID = 09091W  0.07 8.24 225 0.03 5290 2.19 470 -0.5 203 -042 1.13  1.66 071 141
ID =10101W  0.26  12.81 2.97 0.13  30.82 3.06 6.46 -0.5 279  -0.74 148 229 -1.85 4.83
ID=12112W 043  11.60 4.40 038 1244 452 1034  -05 531  -031 220 3.65 253 272
Holtan Equation Parameters
Green-Ampt Equation Parameters Overton Equation Parameters Entropy Calibration
Entropy Calibration Entropy Calibration (n=15) (n=1.5)
I IpxS I IoxS I I I I
Data Set (cmbly (cm?hl) (cm by (cm?h?1) (ecmhl) ¢ (emhl) 4 (ecmhl) 4 (emhl) g
ID = 09091D 2.42 10.08 1.49 7.72 3.10 0.50 2.83 0.63 242 2.13 2.93 6.36
ID = 09091W 2.25 171 1.07 2.90 1.93 1.10 1.33 1.56 225 2357 216  50.79
ID = 10101W 2.97 4.97 -1.15 23.16 2.96 0.40 2.80 0.86 297 243 2.84 4.78
ID = 12112W 4.40 11.40 4.10 4.10 4.38 0.06 4.34 0.06 4.40 1.30 4.26 1.21
454 TRANSACTIONS OF THE ASABE
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Figure 5. Sensitivity analysis of parameter for 0.8 S for data set IV.

observed infiltration rates. Using the entropy-based
parameters, this error was 0.80, 0.83, 1.22, and 0.37 cm hl,
respectively, for data sets I, II, III, and IV. For the calibrated
parameters, the error was 0.57, 0.19, 0.16, and 0.35 cm hl.
As expected, calibration produced infiltration rates closer to
observed rates. Nevertheless, the entropy theory performed
reasonably well. From now onwards, this error will be
referred to as mean error.

Furthermore, the available value of parameter S may not
be accurate, and hence a little bit of adjustment of the § value
might lead to improved infiltration rates for the entropy
theory. It was found that the value of S computed from the
final and initial moisture content values did not match the
accumulated infiltration. Hence, the S value used was not
accurate. Parameter S was changed by plus or minus 10% to
40% with an increment of 10% in order to evaluate the
sensitivity of infiltration rates to parameter S. Figure 5 shows
infiltration rates for data set IV when S was reduced by 20%
or.S = 0.850 (SO was the value from observations). The values
computed by the entropy theory improved, indicating that
more accurate observations would lead to improved
infiltration rate estimates by the entropy theory.

KosT1aAKOV EQUATION

This equation has only one parameter (a), which was
obtained by calibration as well as directly from observations
using equation A.13 due to the entropy theory, as shown in table
2. Figure 6 compares observed infiltration rates and the rates
computed using the entropy theory and calibration for data set
IV. The computed rates in both cases were higher than the
observed rates for time equal to about 62 min. The absolute
average relative error was, respectively, 12.23%, 35%, 14.4%,
and 13% for data sets I, II, ITI, and IV for the entropy theory and
10%, 24.23%, 18.23%, and 3% for calibration. It may be noted
that the value of parameter a as estimated for the entropy theory
may be less than accurate, for the value of S as given in the data
does not match the accumulated infiltration, i.e., the value of S
is significantly less than the accumulated infiltration at the time
when the rate of infiltration became almost constant. Perhaps
this occurred either due to experimental errors or sudden
appearance of macropores. A more accurate value of S would
lead to a more accurate value of parameter a and hence to
improved infiltration rates by the entropy theory.
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Figure 6. Comparison of infiltration rates computed using the Kostiakov
with parameters determined using entropy theory and by calibration with
observed infiltration rates for date set IV.

PHiLIP TWO-TERM EQUATION

The Philip equation has two parameters (a and 1), as shown
in equation B.10. These parameters were estimated by
calibration and from observations using equation B.10 for the
entropy theory, as shown in table 2. Figure 7 compares observed
infiltration capacity rates and the capacity rates computed using
the entropy theory and calibration for data set IV. The figure
shows that the entropy theory overestimated infiltration for the
entire duration of the experiment, and the calibration method
underestimated up to about 62 min and overestimated for the
remainder of the experiment. The absolute average relative
error was 9.6%, 35%, 4.7%, and 13%, respectively, for data sets
I, II, III, and IV for the entropy theory and 8.5%, 21.33%,
20.6%, and 3.73% for calibration. Considering that there was no
calibration for the entropy theory, it compared reasonably well
with calibration. A more accurate value of S and/or a would lead
to improved infiltration rate estimates.

GREEN-AMPT (G-A) EQUATION
The G-A equation has two parameters (a and ), as shown
in equation C.12. These parameters were estimated by

16 T T T T T T
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Figure 7. Comparison of infiltration rates computed using the Philip two-

term equation with parameters determined using entropy theory and by
calibration with observed infiltration rates for date set IV.
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Figure 8. Comparison of infiltration rates computed using the Green-
Ampt equation with parameters determined using entropy theory and by
calibration with observed infiltration rates for date set IV.

calibration and from observations using equation C.13 for the
entropy theory, as shown in table 2. Figure 8 compares
observed infiltration capacity rates and the capacity rates
computed using the entropy theory and calibration for data
set IV. The figure shows that the entropy theory consistently
overestimated and the calibration method underestimated
infiltration up to about 62 min, and then it overestimated. The
absolute average relative error for data sets 1, II, III, and IV
was 28.6%, 29.1%, 25.4%, and 10.9%, respectively, for the
entropy theory and 6.6%, 22.1%, 17.6%, and 8% for
calibration. In this case, the entropy theory did not perform
as well as it did for other equations. However, considering
that there was no calibration of parameters, the performance
was within error bounds that can be reduced. It was noticed
that reducing the value of a through S and I. would lead to
improved infiltration estimates.

OVERTON EQUATION

The Overton equation has actually three parameters (a, I,
and #.), as shown in equation D.14. These parameters were
estimated by calibration and from observations using
equation D.13 for the entropy theory, as shown in table 2.
Figure 9 compares observed infiltration rates and the rates
computed using the entropy theory and calibration for data
set IV. The figure shows that the entropy theory consistently
overestimated infiltration capacity rate, and the calibration
method underestimated between ¢ = 20 min and ¢ = 62 min
and then overestimated. The absolute average error for data
sets I, I, III, and IV was 6.5%, 36.2%, 20.5%, and 4.64%,
respectively, for the entropy theory and below 11.2%, 21.8%,
5.2%, and 4.35% for calibration. Considering that there was
no calibration for the entropy theory, it compared reasonably
well with calibration. Reducing the value of a through S and
I. would lead to improved infiltration estimates.

HoLTAN EQUATION

The Holtan equation has three parameters (a, I, and n), as
shown in equation E.12. These parameters were estimated by
calibration and from observations using equation E.12 for the
entropy theory, as shown in table 2. Their values were: I, =
2.42 cm hl, @ = 0.93, and » = 1.5, by entropy; and I, =
2.82cm h'l, a = 3.14, and n = 1.5 by calibration, where n =
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Figure 9. Comparison of infiltration rates computed using Overton
equation with parameters determined using entropy theory and by
calibration with observed infiltration rates for date set IV,

1.5 is fixed for both the methods. Figure 10 compares
observed infiltration capacity rates and the capacity rates
computed using the entropy theory and calibration for data
set IV. The figure shows that both the entropy theory and the
calibration method are comparable up to ¢ = 62 min, first
underestimating and then overestimating infiltration a little
bit. The absolute relative error for data sets I, I, III, and IV
was 8.3%, 10.9%, 13.2%, and 7.5%, respectively, for the
entropy theory and 8.8%, 6.3%, 5.2%, and 3.9% for
calibration. In this case, the entropy theory yielded not as
good estimates as did calibration. However, considering that
there was no calibration of parameters, the theory performed
remarkably well. Reducing the value of a through S and I,
would lead to improved infiltration estimates.

PROBABILITY DISTRIBUTIONS AND ENTROPY
OF INFILTRATION EQUATIONS

For all six infiltration equations, CDFs and PDFs were
determined both empirically and from the entropy theory
(i.e., theoretically). The probability density function
associated with the Horton equation is a uniform distribution
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Figure 10. Comparison of infiltration rates computed using the Holtan

equation with parameters determined using the entropy theory with n =
1.5 and by calibration with observed infiltration rates for date set IV.
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Figure 11. Cumulative probability distributions of infiltration equations.

over the length (Iy - I.), and hence the entropy of the Horton
equation will be maximum over this length. This means that
the larger the difference between initial infiltration capacity
and the steady infiltration rate, the larger will be the entropy.
In other words, there will be more uncertainty in the

infiltration estimates. The implication is that more
observations will be needed to better characterize
infiltration. The probability density function of the

Kostiakov equation is given by equation A.14, and its entropy
is given by equation A.15. This shows that the uncertainty
increases with increasing steady infiltration rate, and hence
more observations will be needed to characterize infiltration.
The probability density function of the Philip equation has
the same shape as the Kostiakov equation, as seen in
figure 11. The probability density function of the G-A
equation is given by equation C.7, and its entropy is given by
equation C.14. The probability density function of the
Overton equation is given by equation D.8, and its entropy is
given by equation D.15. The probability density function of
the Holtan equation is given by equation E.4, and its entropy
is given by equation E.14. Entropy values for the six
infiltration equations were computed for all four data sets, as

0.6
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Equation
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=
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Figure 12. Probability density functions of infiltration equations.
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Figure 13. Comparison of different infiltration equations for data set IV.

show in table 3. It is seen that the Horton equation has the
highest Tsallis entropy for m = 2 and hence more uncertainty.
This may be explained by noting that the Horton equation has
three parameters, and more observations will be needed to
accurately determine these parameters. The Holtan equation
has the second highest uncertainty, followed by the Overton
equation. The remaining three equations (Kostiakov, Philip
two-term, and Green-Ampt) have more or less the same
entropy. It may also be noted that the entropy value changes
from one data set to another, as it should.

For the sample data set (data set IV), these CDFs and PDFs
are shown in figures 11 and 12. The theoretical CDFs and
PDFs did not match the empirical CDFs and CDFs. All that
the theory does is uncover the probability distributions
underlying these equations. Another reason may be that
infiltration observations are not entirely independently
random. Furthermore, PDFs and CDFs of different equations
are quite different from each other, reflecting the differences
in the assumptions and hypotheses of these equations. The
lack of agreement is not the weakness of the theory but is
rather the weakness of the equations themselves. This can be
explained as follows. The infiltration equations are only for
flow in soil matrix and do not account for macropores or other
structural features. In addition, the soil is uniform and
homogeneous. Furthermore, it is implicit in these equations
that the exit of air as the soil starts to become saturated does
not exercise any influence on the rate of water entry. Thus,
these equations only approximately yield infiltration
capacity rates.

COMPARISON OF INFILTRATION EQUATIONS

The infiltration equations with parameters estimated
using the entropy theory were compared for all four data sets.
For data set IV, a comparison of these equations along with
observations is shown in figure 13. The Green-Ampt
equation deviated more from observations than did the other
equations. Because of the differences in the integration limits
(or domains of solution), it is difficult to employ the entropy
values for selecting the best equation for given sets of data.
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Table 3. Entropy values associated with infiltration equations for different data sets.

Entropy of Infiltration Equations

Data Set Horton Kostiakov Philip Green-Ampt Overton Holtan
I 9.69 0.86 0.86 0.86 0.96 1.20
I 5.82 0.85 0.85 0.85 0.97 1.33
1 9.74 0.89 0.89 0.89 097 1.20
v 7.06 0.92 0.92 0.92 0.88 1.28
CONCLUSIONS Chiu, C. L. 1991. Application of entropy concept in open channel

The following conclusions are drawn from this study:

o Derivation of the infiltration equations of Horton,
Kostiakov, Philip, Green and Ampt, Overton, and
Holtan using the entropy theory leads to three
fundamental parameters, including initial infiltration
rate (Ip), steady-state or constant infiltration rate (),
and the maximum soil moisture retention (S).
Parameters arising in these equations can be expressed
in terms of these fundamental quantities, which all can
be obtained from observations. In this manner, the
entropy theory renders these infiltration equations non-
parametric or parameter-free.

o In the case of the Overton equation, there is a time
parameter that indicates the time at which the
infiltration rate becomes constant. This parameter must
be obtained from either observations or by calibration,
and the Tsallis entropy theory provides no formulation
for this time parameter.

o The infiltration rates computed by the six equations
using the Tsallis entropy theory based parameters
compare reasonably well with those computed using
parameters obtained by calibration. In the case of the
entropy theory, parameters are obtained from
observations and no calibration is needed.

e The entropy theory provides a physical interpretation
of infiltration equation parameters. Parameters of each
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APPENDICES
APPENDIX A: KOSTIAKOV EQUATION

Specification of constraints: Let the constraints be defined
as equation 2 and:

ﬁ—z(m—l)f(l)dl — E[I—Z(m—l)] — I—Z(m—l) (Al)
IC

where I, is some small value equal to steady infiltration but
tending to O.

Maximization of entropy: Using POME and the method of
Lagrange multipliers, the Lagrange function L becomes:

IS S VO
p==to Iff(l){l T

+ho| [fDdr -1
0 _ch

el

+h ﬁ 2D £(nydl — 172" (A2)

I

c

Differentiating equation A.2 with respect to f and equating
the derivative to 0, one obtains:

L _ o1

af m-1

{ f p-trar —[f(I)]’""J} dI
1

tho | fdl [+0 | (172Nl (A.3)
i
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Probability density function: Solution of equation A3
yields f{I) as:

1
fh= [l m=1o, +x1r2<'"‘1>)]'"'1 (A4)

+
m m

Let o =hg+——, a=""1
m-—1

A., and B=""1,.
m m

Introducing these quantities in equation A.4, one obtains:

1
fF)=a+Br*m (A5)

If it is assumed that A = 0 and m = 2, then:

fiH= ;Bg (A.6)

Equation A.4 will satisfy the total probability given by
equation 2 if B = I.. This means that Ay = ml/(m - 1). Ifm=
2, then A1 = 2.

Kostiakov infiltration equation: Combining equation A.6
with equation 13, the result with limits on / from I to and
onJ from J to 0 is:

1.8
T/ (A7)
Recalling that I = dJ/dt, equation A.7 can be expressed as:
aJ IcS 05,05
= = =218t
P (21.9) (A.8)

Integration of equation A.6 yields:
J=(21,.8)"%" (A.9)

Differentiating equation A.9, one obtains the rate of
infiltration:

1= %(21;)“%—0-5

(A.10)
Equation A.9 can be recast as:
| J=al®? (A11)
and equation A.12 as:
1(t)=0.5ar™7 (A12)

which is the Kostiakov equation with a as parameter
expressed as:

a=2I.8 (A.13)

Thus, parameter a has physical meaning.

The probability density function of the Kostiakov equation
can be expressed as:

f)=5

- (A.14)

Entropy of Kostiakov equation: Substituting equation A.14
in equation 1b and with m = 2, the entropy of the Kostiakov
equation can be written as:

459



1 aS
H=1-— —=J
3l (A.15) ; B.7)

Recalling that i = dJ/dt, equation B.5 can be expressed as:
APPENDIX B: PHILIP TWO-TERM EQUATION

d] _aS
Specification of constraints: Let the infiltration rate be defined Y8 =285 (B.8)
as i =1 - a, where a is some constant value. Let the constraints a J
be defined by equation 2 with limits as a to o, and: Differentiating equation B.8, one obtains the rate of
® [ ] - infiltration:
--2(m=1) ooy ge _ p[i=20m-1] _ ~2(m-1)
i fQ)di=El =i B.1 1 _
{ B.1) L sy 59

Maximization of entropy: Using POME and the method of  Equation B.9 can be written in original terms as:
Lagrange multipliers, the Lagrangean function L is:
1) =a+0.52a8)* 1% =g+ bt™?

1 -
L=— frofeiron 1 ai b =0.5(2aS)"* (B.10)

which is the Philip two-term equation.

+ho | [FO)di-1 Entropy of Philip equation: Using equation B.6 in
equation 1b one obtains the entropy of the Philip equation:
* H=1- L
+h, [f ~2mD) £ () di— i 2(m-1):l B2) 3a (B.11)
a

APPENDIX C: GREEN-AMPT EQUATION
Differentiating equation B.2 with respect to f and equating

L - Specification of constraints: Let the constraints be defined
the derivative to O, one gets:

by equation 2 with limits as b to ¢ where b would tend to ,
aL 1 and c to I, and:

— 7 Yy 2m-D — (7 _ T \-2Am=1)
! f[l [FOI" = m-DIf O™ 111 Cf(f Iy =" fdl = - 1) (€.1)

Maximization of entropy: Using POME and the method of
® * Lagrange multipliers, the Lagrangean function L is:
+g [ fdi]+k1 [ ﬁ'“"“”di} (B.3) s P grane

a

____l__m _ m—1
o froe-vorta

Probability density function: Solution of equation B.3
yields f{i) as:

1_ o
f)y=lk+di " P]m1 (B.4) +hg [ff(])dl—l}

-1 -1
where ¢= A+, d ="My, and . =—1—+7»0.
m m m-1

+A [ f(l — 1) X" f(hyal - (I - zc)-2<'"-1>] (C2)

If ¢ is assumed zero, and m = 2, then:

fi)=di? (B.5) Differentiating equation C.2 with respect to f and equating
- . . . the derivative to 0, one gets:
Substituting equation B.3 in equation 2, one gets:
oL 1

» L=

fatdi=1=d =a; 1y =2a (B.6) o m-l

“ J |

m-1 ; -1

Equation B.4 is the probability density function of the Philip ' f [-Lr@ = - ar
equation. (e J

Philip infiltration equation: Combining equation B.5 with o ®
equation 13, and integrating with limits on i from i to % and +Ag f dl |+, f(I ~1,)"HmDar (C3)
onJ from J to 0, the result is: ’ !
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Probability density function: Equation C.3 yields f{/) as:

1
-1 oty It
fi)= [’"T(x*m(l-lc) x ”] N (eP)
Let a=m_17»*, b=m_17»1, and M. =L+Xo.
m m m-1

Equation C.4 becomes:

1
fy=le+o( 1) V]t (C5)
Taking a = 0 and m = 2, equation C.6 reduces to:
b
f(I) - (I _IC)Z (C6)

In order for f{I) to satisfy equation 2, b = I, or A; = ml/
m-1).Ilf m = 2, then:

IC
fi)= T-1)7 (C.7)

Equation C.7 is the probability density function of the
Green-Ampt equation. It should, however, be noted that this
density function is valid only for 2J. <I < o, not for the
entire first quadrant.

G-A infiltration equation: Combining equation C.7 with
equation 13, the result is:

I.dI 1dJ
== (C.8)

(I-1) Sd
Integrating with limits for / from I to o and for J from J to
0 yields:

1 J

-1) s (€9)

Recalling that I = dJ/dt, equation C.9 can be expressed as:

w Sl
a J
Solution of equation C.10, with the condition that 1 = 0,J =

(C.10)

0, is:
1 J
t=— |/ -Slog 1+—
Lp-sefieg) em
Equation C.11 can be expressed as:
1 a J
t=— |/ ——log 1+
1, [ I, g[ all, ]jl (C.12)
where
a=SI, (C.13)

Equation C.12 is the Green-Ampt equation in which
parameter I, can be interpreted as equal to saturated
hydraulic conductivity and parameter S equal to the product
of the capillary suction at the wetting front and the initial
moisture deficit.
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Entropy of G-A equation: Entropy of the Green-Ampt
equation can be written by substituting equation C.7 in
equation 1b as:

H :1_i

7 (C.14)

APPENDIX D: OVERTON EQUATION

Specification of constraints: Let the constraints be defined
by equation 2 and:

iy “205(m-1)
fi-o.S(m-n fli)di= E[l--o.:s(m—ﬂ] — ;~05(m-1) (D.1)
0

Maximization of entropy: Using POME and the method of
Lagrange multipliers, the Lagrangean function L is:

r=-t :ff(i){l-[f(i)]’""}di

I

+hg ff(i)di—l
0

)
0

(D.2)

Differentiating equation D.2 with respect to f and equating
the derivative to 0, one gets:

AL o=_L_

{ f [-1r 1 -(m—l)[f(i)]’”‘ﬂ} di
0

(D.3)

iy o
+Xo fdi +h, { fi’o‘s('"_l)di}
0

c

Probability density function: Solution of equation D.3
yields f(i) as:

1
fi)= [’”7‘1 G+ xli-°~5<m-1>)] !

(D.4)
Let )\* =)\.0 +L, A= m_l}\.*, and B= m_l)\1.
m-1 m
Equation D.4 becomes:
1
fh=la+ B ma (D.5)
Assuming A = 0 and m = 2, equation D.5 becomes:
fy=Bi"
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1

I-1)%dl=1=B=—+——— (D6
Joe=to 2-1e Y
Inserting equation D.6 in equation D.4 yields:
;705
fh)=—3 (D.7)
21,
Equation D.7 can be cast as:
(I _ Ic)—0,5
I)=————"—= D.8
0 2017 ®

Equation D.8 is the probability density function of the
Overton model.

Overton infiltration equation: Substituting equation D.8 in
equation 12, one obtains:

_ 7305
1, _051-1)

- dl D.J9
N (IO - IC)O‘S ( )
Integration of equation D.9 yields:
I,—1
1=(O—C—)J2+IC (D.10)

SZ

Recalling equation 9, equation D.10 with limits on ¢ from ¢
to f. and onJ from J to J. (constant) gives:

J=J -8 Ic tan[vlc(lo_lc)

VG- TS

. —t)} (D.11)

Differentiating equation D.11 leads to:

1(t) =1, sec? [-————~——“IC(I;_IC)(tC - t):l (D.12)

Let (Iy1.)=aS? (D.13)
Equation D.12 becomes:

1) =1 sec[Jal (&, - )] (D.14)

Equation D.14 is the Overton model.

Entropy of Overton equation: Using equation D.8 in
equation 1b, one obtains the entropy of the Overton equation:

O S (Y
BT (D.15)

APPENDIX E: HOLTAN EQUATION
Analogous to the Horton equation, let i define the excess
infiltration rate (I - I;) varying from 0 to iyp where ip = Iy - I..

Specification of constraints: Then, the constraints can be
defined by equation 2 and equation D.1 (with proper
infiltration rate in mind).
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Probability density function: Using POME and the method
of Lagrange multipliers, f{(i) is obtained as equation D.4 and
eventually equation D.7:

1

e
f)=|A+Bi\ " (E.1)
where
A= = =L, @2
m m m-1
Let m = 2. Equation E.1 becomes:
%)
f=|A+Bi\ " (E.3)
If A = 0, then equation E.3 can be recast as:
1-n
f@=Bi " (E4)
Substituting equation E.4 in equation 2 yields:
1
B=—
o) )

Equation E.4, in concert with equation E.5, is the probability
density function of the Holtan equation.

Holtan infiltration equation: Substituting equation E.1 in
equation 13, one obtains:

1-n

dJ =-Sbi " di (E.6)
Integration of equation E.6 yields:

1
S—J =Sbni" (E.7)

Equation E.7 can be expressed as:

(mbS)' (S-I)"d] =dt (E.8)
Integrating equation E.8, one obtains:
L
J=5- [sl'" —(—11?1:] o (E.9)
(Sbn)"

Differentiation of equation E.9 with respect to ¢ and
simplification yield:

i= a[S‘l_" —a(l—n)l]ﬁ

(E.10)
where
Iy
a= ra (E.11)
Equation E.10 can be written in original terms as:
TRANSACTIONS OF THE ASABE



TOREpp—

=1, +a[S"™" —a(l—n)yi-n, a= (o—1,)

Equation E.12 is the Holtan equation with parameter a given

by equation E.11.

Entropy of Holtan equation: Substituting equation E.4 in

Sﬂ

(E.12)

equation 1b yields the entropy of the Holtan equation:
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H=1+

1

2-mlo~1.)

(E.13)

The Holtan equation has two parameters: a and n.
Parameter a is expressed in terms of physically measurable
quantities. Parameter m needs to be determined now, which
can be done as follows.

Substitution of equation E.1 in equation 3 yields:

1+n

_ n =
(I_IC)_BE(IO -1.) (E.14)

Thus, n can also be expressed in terms of physically
measurable quantities. In the simulation, parameter n was
found to be 1.5.
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