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Abstract

It is hypothesized that the impulse response of a linearized convective dif-
fusion wave (CD) model is a probability distribution suitable for flood frequency
analysis. This flood frequency model has two parameters, which are derived using
the methods of moments and maximum likelihood. Also derived are errors in quan-
tiles for these methods of parameter estimation. The distribution shows an equiva-
lency of the two esttmation methods with respect to the mean value — an important
property in the case of unknown true distribution function. As the coefficient of
variation tends to zero (with the mean fixed), the distribution tends to a normal one,
similar to the lognormal and gamma distributions.

Key words: flood frequency, probability distribution, convective diffusion model,
moments, quantiles, method of moments, maximum likelihood, standard error.
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1. INTRODUCTION

Mathematical models of flood frequency analysis (FFA) can be broadly classified
into: (1) empirical, (2) phenomenological, and (3) physically-based. An excellent dis-
cussion of empirical models is given, e.g., by Stedinger ef al. (1993), Rao and Hamed
(2000). Till today these models continue to be most popular for doing FFA all over the
world. Phenomenological models employ a set of probabilistic axioms, which lead to a
probabilistic model of one or more flood characteristics. Examples of this type of
models are those based on the use of random number of random variables (Todorovic,
1982), the entropy theory (Singh, 1998), and the like. These models received a good
deal of attention in the 1970s and the 1980s but did not become popular, partly be-
cause of their higher mathematical demands. Physically-based models employ dy-
namical principles of flood generation. Eagleson (1972) was probably one of the first
to employ such a model. Another example is the use of watershed models, as, e.g., the
stochastic flood model developed by Schaefer (1998).

Along the lines of physically based models and recognizing that channels are the
dominant conduits for transmission of flood waters, it is plausible to develop a model
that employs the physics of channel flow routing and in which no explicit considera-
tion is given to the hydrologic processes occurring on the land areas of the watershed.
It is well accepted that a good representation of the physics of channel flow is given
by the linearized convective diffusion wave approximation. It is then hypothesized
that impulse response function (IRF) of such a model can be considered as a probabil-
ity density function (PDF) for FFA. Although the impulse response of a hydrologic
system or the response of an initially relaxed linear deterministic system for the Dirac-
d impulse belongs to the class of purely deterministic functions, it is not difficult to
find a stochastic interpretation of the impulse response. If one imagines that the unit
volume of the Dirac-8 impulse consists of an infinite number of particles (or drops)

T
then the integral of the impulse response J.h(x,t) dr determines the probability that a
0

single particle passes the outlet at x during time (0, 7), where A(x ,t) is the impulse
response function at time ¢ and position x. Apart from its stochastic interpretation, it
should be noted that the impulse response function fulfills several requirements nor-
mally expected of the flood frequency models, namely, (1) semi-infinite lower
bounded range with a non-negative value of the bound; (2) positive skewness and the

unit integral over the whole range jh(x,t)dt ; and (3) uni-modality, which is the prop-
0

erty of all single component FF distributions. As an example, the gamma function is

used both as the impulse response of a cascade of equal linear reservoirs and the PDF

in FFA.
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Because of the practice of applying the existing probability distributions in FFA,
emphasis in statistical hydrology has been on assessing the accuracy of parameter
estimators using the Monte Carlo simulation techniques. As a result, not much atten-
tion has been paid to the development of physically based probability distributions
taking into account peculiarities of hydrologic phenomena and the attendant statistical
reasoning. To that end, this study espouses the use of IRFs as PDFs,

The objective of this two-part paper is to hypothesize the linear convective diffu-
sion wave (CD) model of flow routing as a probability distribution function for flood
frequency modeling and to assess its applicability for FFA. This part introduces the
CD model and describes the techniques of its use. The second part of the paper is
focused on discussion of the validity of this hypothesis on Polish rivers and on the
comparison of CD with its competitor — the lognormal distribution.

2. THE LINEAR CONVECTIVE DIFFUSION WAVE MODEL
FOR DOWNSTREAM CHANNEL RESPONSE

In one-dimensional flood routing analysis, the prediction of flood characteristics at a
downstream section on the basis of the knowledge of flow characteristics at an up-
stream section is known as the downstream problem. Using the linearization of the
Saint-Venant equation, the solution of the upstream boundary problem was derived,
e.g., by Deymie (1939), Masse (1939), Dooge and Harley (1967), Dooge et al. (1987a,
b); a discussion of this problem is presented in Singh (1996). The solution is a linear,
physically based model with four parameters dependent on the hydraulic characteris-
tics of the channel reach at the reference level of linearization. However, the complete
linear solution is complex in form and is relatively difficult to compute (Singh, 1996).
Two simpler forms of the linear channel downstream response are recognized in the
hydrologic literature and are designated as linear convective diffusion (CD) model and
linear rapid flow (RF) model. These correspond to the limiting flow conditions of the
linear channel response, i.e., where the Froude number is equal to zero (Hayami, 1951;
Dooge, 1973) and where it is equal to one (Strupczewski and Napiérkowski, 1990).

The linear convective diffusion analogy (CD) model (or the linear convective dif-
fusion model) is based on the solution of the linearized Saint-Venant equation for a
semi-infinite, uniform channel with Froude number (Fp) equal to zero and conse-
quently used for small Froude numbers. Its impulse response is given by

(x-ur)z},

h(xt) =
(1) 4Dt

(D

x
————¢€Xp
NanDe?

where x is the length of the channel reach, ¢ is the time, u is the convective velocity
and D is the hydraulic diffusivity. Both u and D are the functions of channel and flow
characteristics at the reference steady state condition. To use CD model for other than



436 W. G. STRUPCZEWSK! et al.

Fo=0 reference flow conditions, a pure lag component has been added (Strupczewski
and Dooge, 1996).

The function given by (1) is known in statistics (e.g., Cox and Miller, 1965;
p- 221) as the probability density function of the first passage time 7 for a Wiener
process starting at O to reach absorbing barrier at the point x, where u is the positive
draft and D is the variance of the Wiener process. It was applied by Moore and Clarke
(1983) and Moore 1984) as the transfer function of the sediment routing model. The
function in (1) is considered as the flood frequency model in this study.

3. CD PROBABILITY DENSITY FUNCTION AND ITS PROPERTIES

Denoting x/~/4D =co and xu/4D = 3 and renaming ¢ as x, one gets a two-parameter
probability density function of the form:

2
3 a-Py
f(x;a,ﬁ)=‘/§exp— . o, B>0. @

One can extend (2) to the case of a three-parameter distribution with a lower
bound fixed at € :

f(x;a,ﬁ,e)z-—a—exp —L * , x>& «a,fB>0. (2a)

n(x-e) x—¢

For a length of channel reach approaching zero, the impulse response function of
(1) tends to the Dirac-delta function

lim h(x,t)=48(t). (3)

x—0

Hence, for the value of the o -parameter approaching zero, the PDF of (2) tends to the
Dirac-delta function, which is the limiting case of the normal distribution function:

lim h(xc, B)=3(x). @

Tweedie (1957) termed the density function of (2) as an inverse Gaussian PDF, Johns-
ton and Kotz (1970) summarized its properties, and Folks and Chhikara (1978) pro-
vided a review of its development.
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Cumulants

The cumulants of the two-parameter distribution of (2) are

o
k = A (5)
i o
k=5 {we)s) ...(2:-—3)}0{5] for r>1 (6)
and those for the three-parameter distribution are
k, = g—z— + €. (5a)
p

Moments

Using the relations between moments and cumulants (Kendall and Stuart, 1969; p. 70)
and (5) and (6) the expressions for the first four moments of (2) with € =0 are given
below:

, o
H = ? , (7)
1ot
U, = EF, (8)
U, = 29‘_6_ = 3& (9)
Poapg T
3ot
w, =k, +3k = 5 (2B+5) = 33 (5¢, +1). (10)
Dimensionless coefficients
The coefficient of variation is
c-_1_ (11)

QT

The distribution is positively skewed with the coefficient of skewness given by

c =15 = 3C (12)

.3
s_‘ugfg_\/'z—E v
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which for the lognormal (LN) distribution is C, =3C, +C’ and for the gamma (G)
distribution itis C, =2C, .

The coefficient of kurtosis (C . ) is

C,=Lr =3 Z41|=2(5c2+1). (13)
M, 2
The modal value is given by
3o 4 Y
mod_m (gﬁ] +1 _1 (14)
and in the dimensionless form
3 |4
xma,d = ""+CU4 _ CVZ (15)
Uy 21 V9
flx)
x = 50
0.0020_ .........................................................................................................................................................
(5 JE8]ND = R teteCE NS SSSSSSSRSORISE TSPV SSSSUOIIRRSOS: SOVSROONUNIITS VIR SO
0.0016— .................................................................
D.DDI‘}— .............................................................................
D-DUIQ— ...........................................
D-DDID_ ......................................... e .::"4... ..l;"'.
G.0008
0.0006—...---.n.--------"-.-
0.0004
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0.0000 f ; : ; t ; i
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Fig. 1. Typical CD PDFs for a = const. The values ot = 50 and 8= 1.2 to 3.6 were chosen as
covering the range of f found experimentally.
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For C, — 0 the distribution tends to be symmetric like the two-parameter lognormal
(LN2) and the gamma distributions.

Typical graphs of the distribution for some selected values of ¢ and B are pre-
sented in Figs. 1 and 2. The values were selected so as to approximately cover the
range of & and B obtained in the method of moments (MOM) and maximum likeli-
hood method (MLM) estimation carried out for application of the CD model part of
the paper. Although the intensity of changes is greater in Fig. 2, both figures seem to
exhibit the same pattern, i.e., for increasing modal value x,,,s the maximum of f(x) is
seen to be decreasing. It should be noted, however, that & is more connected with the
absolute scale of x, as the dimension of of is the same as the dimension of x while S,
being dimensionless, is responsible for the relative scale of x; see relation (11)-(13).

£{x>

D-DDSD JUUUE 1 VSRRSO i arasesessaetasseniretestEtslonitrasantitnetaNI nsonuLEnturnraRariennnd TSR e
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8-0040 P e r e e L T R e L L S L AL LA A AL AL AL A hih i vemtcmaerrmrndnsbsiatBERn.
D-DDBS I PR SUUUUS AU SOOI SSTOROETSISP T PRIPRIS PRI PRSP PPV ET TR EERTES: SRR RS RS bt etk
D-DDBD P B T T S R AR LE LR e e e sameaestessmre-eiiiimEstsiSsssiessEisisameimeanEasRTEEEES-aracansetstdatasaatmat iR Rlatuanee
D'DDZE . s T T L T T R e R e A A R A - bbb bbb bbb bbb
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Fig. 2. Typical CD PDFs for 8 = const. The values 8 = 2 and ¢ = 20...100 were chosen as
covering the range of & found experimentally.

The asymmetry of all graphs in Fig. 2 is the same and all of them are identical if re-
scaled to a nondimensional coordinate system, e.g., fix) = fOf (Xmod)s X = X/Xmoa.
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4. PROBABILITY OF EXCEEDANCE

A quantile x, corresponding to the probability of exceedance p is obtained by integrat-
ing (2)

o 2
xp_(tﬁDA(ﬁ)] ’ (16)

(B) is the upper limit of the integral:

2 1, B 2
p=—\/—;'([exp[—(z—?] }dz. 17

For computational purposes, the integral in (17) can be simplified as follows. The
probability of exceedance for the distribution in (2) can be recast as

LDA

where t ’

o 2
o a B
= exp| = — - S x dx. (18)
T {% 2]
Substituting
1= (19)
X
into (18), one obtains
alJx 2
p=— | eXp[—[z-ﬁ) }dz, (20)
T Y z

which is the same as (17). Therefore, (16) holds.

In order to transform (17) to a more convenient computational form, the integral
to be considered is

C(r,,8)=j‘exp{—(z—ﬁ—) }dz, 2D
z

0

where
o
1=t =—— (22)
P
o
is positive.
Substituting
y=z-2 (23)
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into (21) and solving (23) with respect to z we get

- >(y+ 7 +4B) 24)

while

dr=t1a—2 gy, (25)
2 v +4p

Therefore,

VY +4p

—0

=B \ 1 y
Ca.f) = [ exp(-y") | 1+ —==—dy

t—-f1t t—Bir

2 | 2 y
= — —yH)dy + = (~y?)——=d
ziexm y*)dy 2£exp ¥¥) oy y
= 0.5[C, ¢, B) + G, B)]. (26)

Then, substituting y = u/~J2 into the first term of (26), we get the value of the first
integral C,(z, B)

-Bit 2(i-pin)
c(,B) = j exp(—y?)dy = J‘ j exp(——u ydu = \/—cp[\/—(t—ﬁ/z):l, Q7
where @(-) is the cumulative probability of the normal distribution N(O, 1).

The function £f) under the second integral Cy(t, B)

-8/t
C.(t.B) = | exp(-y")—=2=—dy (28)

ol v +4p

is asymmetric in respect to zero. Hence, for c <0
[ rondy=-[romey (29)
and forc¢ >0
[ fody==[Fmdy+[ rmdy. (30)
—o 0 0

Therefore, it is enough to compute the integral

1=/t

i)
Cie.B)= [ exp(-y?)—=2me=dy 31)
0 y +4ﬁ
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along the positive values.
Making substitution into (31)

x= y2 +48 (32)
we get
de =—uX dy (33)
VY +4p
and

1—-f11 t+8171

dy = j exp(-x> +48) dx

8
G, B)= exp(—y )———
’ ‘(I)‘ VY +4p8 Jip

(34)
xp(4) V2(1+ 1) ,
=& lz/zﬁ ng.—ﬁ exp(—x /2)dx=\/Eexp(4,8){(1)[\/5(t+ﬁ/t)jl—cb(\/SB )}

Using (34) and taking into account the asymmetry of the function f{r) in (32), it is
easy to show that for both negative and positive values of (t - B/ t) the second integral

is expressed by the same equation:

=11

Cep= | exp(—yz).__z_y—ﬁdyz— nexp(4ﬁ)[1—@(ﬁ(t+ﬁ/r))] (35)

L y +4

Finally, we get

= ool -2 o Flaseran o o]

= | Ve[ V2w V- ) |-V ewpap {1-0[ V2 (o + V) ]

=@[\E(a/\/;—ﬁ\/;ﬂ—exp(4ﬁ){1—@[\/§(a/\/;+,8\/;)]} (36)

or introducing (22),

Aef(-4]k
=0 V2(1,-B11,) |-expaBrf1-@[ V2 (1, + B11,) |} (37)

To prove the correctness of derivation one can calculate —dp/dz, getting (2), where
&() is the cumulative probability of the normal distribution N(O, 1). Some values of 1
for given B and p are listed in Table 1.
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Table 1

CD quantile £,(f8) for given values of § and probability of exceedance p

B
pl%]| 05 1 1.5 2 | 25 3 3.5 4 | 45 5

50 | 0.8601 | 1.1149 | 1.3209 | 1.4987 | 1.6572 | 1.8020 | 1.9359 | 2.0610 | 2.1791 | 2.2908
40 | 0.7678 | 1.0245 | 1.2313 | 1.4092 | 1.5681 | 1.7129 ! 1.8468 | 1.9721 | 2.0900 | 2.2019
30 | 0.6787 [ 0.9355 | 1.1418 | 1.3194 | 1.4779 | 1.6225 | 1.7562 | 1.8811 | 1.9990 | 2.1108
20 |0.5876 { 0.8414 | 1.0457 | 1.2219 | 1.3793 | 1.5229 | 1.6559 | 1.7804 | 1.8977 | 2.0089
10 | 0.4830 1 0.7281 | 0.9273 | 1.0999 | 1.2546 | 1.3961 | 1.5273 | 1.6503 | 1.7663 | 1.8765
5 0.4136 | 0.6486 | 0.8416 | 1.0100 | 1.1617 | 1.3007 | 1.4300 | 1.5512 | 1.6660 | 1.7749
2 0.3510 | 0.5723 | 0.7571 { 0.9198 | 1.0673 | 1.2029 | 1.3293 | 1.4483 | 1.5611 | 1.6683
0.3167 | 0.5284 | 0.7073 | 0.8658 | 1.0098 | 1.1430 | 1.2673 | 1.3846 | 1.4958 | 1.6017
0.5 ]0.2898 | 0.4926 | 0.6658 | 0.8201 | 0.9610 |1.091*7| 1.2141 | 1.3295 | 1.4392 | 1.5439
0.2 10.2618 | 0.4539 | 0.6200 | 0.7693 | 0.9065 | 1.0339 | 1.1535 | 1.2666 | 1.3743 | 1.4773
0.1 [ 0.2446 | 0.4296 | 0.5908 | 0.7365 | 0.8706 { 0.9957 | 1.1134 | 1.2250 | 1.3312 | 1.4331

5. ESTIMATION OF PARAMETERS
BY MAXIMUM LIKELIHOOD METHOD

Parameters « and [ of the PDF given by (2) can be estimated using the maximum
likelihood method (MLM). To that end, the log-likelihood function is

2

N 33 N "
InL=Nhc«a —?lnn ~—2—21nx1.—2 , (38)
i=l

i=1 X;
where N is the sample size and X; is the i -th sample value.

For equivalency of the MLM and MOM estimators of parameters, the log-
likelihood function must be a linear function of the moments (Kendall and Stuart,
1973, p. 12, 26, 67). The term In L in (38) is a linear function of the first moment only,
which is sufficient for the equivalency of the estimators of the mean value. From (38),
the maximum likelihood (ML) equations are found to be:

31 L _ (a—ﬁxi][Hﬂzxi)
1 —22 = ¢ -y, (39)

o X

i
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dlnL Y B
— = -7 -yl =0. 40
55 2(1 azx,) 0 (40)

The solution of (39) and (40) yields equations for ¢ and 3 :

a” = (41)

B = = ) (42)

The principle of maximum entropy was also applied to derive parameters & and
B (Singh, 1998). It turned out, the estimation equations were equivalent to (41) and
(42). Comparing (42) with (7), it is seen that the maximum likelihood (ML)-estimate
of the mean is the same as the one of MOM., This favors the contiguity of the values of
MOM’s and MLM’s estimates of the parameters and quantiles of the distribution,
which is an important feature for the use of MLM under false distributional assump-
tion (Strupczewski et al., 2002). However, since the statistical characteristics of a
sample used in the ML method are E(X) and E(X ™), the parameter estimates are not
highly sensitive to high values of x in a sample and as such they are robust to outliers.
MLM when applied to the CD obtains a good fit of the left part of the CD function to
the data. It should be considered, as the true PDF is not known in reality. Hence, to get
a good fit of the upper tail to the sample data, MOM is preferred. For comparison, the
ML-equations of LN2 contain the two terms related to X, i.e., E(InX) and E(In X)?

which are more sensitive to the extreme values of X than E(X ™).

Accuracy of estimated parameters

Solving (41) and (42) in respect of the mean and the mean of the reciprocals of the
variate, one gets

E(X) = 43)

o
5
E(X") = al—z—(-;-w) (44)

Taking the second-order derivatives of function In L eq. (38), one obtains
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o’InL N AN | B &
AR AN v 45
el k) Yl e I (45)
9% logL 2 &
- 2% 46
Y o Zx (36)
0% logL B & '
=4 - 47
dadf o 2% “7

Substituting equations (43) and (44) into (45)~(47), one gets an asymptotic estimate of
the second-order derivatives in terms of & and B :

2—N(1+4ﬁ) _4N
_E Il | o (48)
dadp )| | 4y 2y |
a B
2
Det=4N

2

. (49
ap
Therefore, the variance-covariance matrix has the form:

2

@ B
M (@ B) = [n, D@ DB =20 o Y| (50)
22 _E (1+4p)
N 2N
In particular, the coefficient of correlation of ML estimators of ¢ and S is
2 1
S T =, (51)
\/E +4 J1+O.5 c,

where r is the coefficient of correlation and c, is the coefficient of variation. A high
value of ¢, leads to a small value of r between crand .

Proceeding in the same manner with the mean (m) and variance (v) as parame-
ters, we get the variance-covariance matrix in the form

Vv
MILM W N
M )(m’v)z[rmyv D(m) D(V)}= y 2v2[m9v (52)
+1)
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and hence the correlation coefficient of ML estimators of # and V is

(MLM) _ 3c, (53)

r =

™ \9¢,? +2 '

Asymptotic standard error of quantiles

To derive the asymptotic error of quantiles, the logarithmic transformation of (16) is
obtained as

v, =lnx, =2[lna-Inz, (B)]. (54)

Therefore,

D*(y,)=D’ (a)(%]z +D? (ﬁ)[gy—é’T + 2ra’ﬁD(a)D(ﬁ)(%][%%’), (55)

where D(ar) and D(f8) are defined in the matrix equation (50) while from (54)

dy, 2
o o oY
3y, =_2am5(ﬁ)=_A (57)
B 9p ’
where
2 9, (B)
i (B) (58)
,(B) op

The partial derivative 0z, (f8)/df8 needs numerical evaluation. A handy formula for

its computation is developed as follows. To calculate dt,/98, eq. (37) is rewritten as

FIp.t,(B).01 = @[V2(1, - B11,) | -exp@B){1-0[ V2 (t, + B/2,) }-p.  (59)

Then, the formula for d4,/08 can be expressed as the derivative of the implicit func-
tion F

Jt,(B) _  oF/op
B OFfor,

From (59) we have that the numerator is

(60)
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oF acp(u')( tl }—4exp(4ﬁ)[l—¢(uz)]+exp(4ﬁ)acg(uz)(-tl—l

B Ay u,
=—dexpdB)[1-@®w,)], (61)
where
u, :\E(t”—tﬁ] and u, =\/5{tp +tﬁ} (62)
and the following equality holds:
ou, ou,

The denominator can be also easily calculated:

oF a@(u )\/—[1-%—-] + exp(4f) Ll O )\/_( J
at du, 2 du, 2

= %exp{—[tp —g} } 64)

Substituting (64) and (61) into (60) we finally get

o1,
65
aﬁ = 2Jmexp(0.5u2) @ (~u, ), (65)
where u, is given in (62). Thus,
ot 1 ’ 1
—”=2\/Eexp{r +—] cp[—\/i(t +--ﬂ. (66)
ap "o, "o,

This relationship is illustrated in Fig. 3.
Substitution of the terms of matrix (50) and egs. (56)—(57) into eq. (55) yields

D’ (y,,)=%é"”‘“ (B.p), (67)

where
(B, p) = 2B7A% + 'BTAZ - 4BA + 2. (68)

Then,

x, = exp[yp +D(yp )] and x; =exp[yp —-D(yp )] . (69)
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dtp(p) dp

0.46

0.44

0.30 {p=45.0
p=40.0%

0.28 1p=95:0%
p=30.04
0.2¢ p=26.07%

p=20.0%
p=15.0%

0.24 Tpz{6.07

p=

5.0

0.22 p=

[V s

1.0

1.5

Fig. 3. Graphs of d1,(8)/df as a function of 3 for 10 chosen values of probability of exceedance
p (p increases upwards).
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Fig. 4. Graphs of the MLM-estimated quantile relative error (cf., eq. 66) as a function of p for

some values of .
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Table 2

MOM and MLM estimated quantile relative error \/]_V D(x,)/ x, for selected values of

and probability of exceedance p

p B
[%] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
50 | MOM | 1.1271 | 0.7147 | 0.5692 | 0.4897 | 0.4373 | 0.3994 | 0.3701 | 0.3466 | 0.3272 | 0.3107
MLM | 0.8170 | 0.6326 | 0.5346 | 0.4714 | 0.4264 | 0.3922 | 0.3652 | 0.3430 | 0.3244 | 0.3086
40 | MOM | 1.0037 | 0.6769 | 0.5548 | 0.4841 | 0.4359 | 0.4001 | 0.3720 | 0.3491 | 0.3301 | 0.3139
MLM | 0.8375 | 0.6461 | 0.5450 | 0.4802 | 0.4341 | 0.3992 | 0.3715 ; 0.3489 | 0.3300 | 0.3138
30 | MOM | 0.9434 | 0.6873 | 0.5758 | 0.5067 | 0.4580 | 0.4211 | 0.3919 | 0.3680 | 0.3480 | 0.3310
MLM | 0.8944 | 0.68348 | 0.5758 | 0.5065 | 0.4574 1 0.4203 | 0.3910 { 0.3671 | 0.3470 | 0.3300
20 | MOM | 1.0013 | 0.7644 | 0.6432 | 0.5654 | 0.5101 | 0.4682 | 0.4351 | 0.4079 | 0.3853 | 0.3661
MLM | 1.0013 | 0.7566 | 0.6333 | 0.5557 | 0.5012 | 0.4601 | 0.4278 | 0.4014 | 0.3794 | 0.3607
10 | MOM | 1.2634 109470 | 0.7851 | 0.6837 | 0.6128 | 0.5598 | 0.5183 | 0.4847 | 0.4568 | 0.4332
MLM | 1.1935 | 0.8862 | 0.7377 | 0.6458 | 0.5818 | 0.5337 | 0.4960 | 0.4653 | 0.4397 | 0.4180
5 MOM | 1.5450 | 1.1238 | 0.9206 | 0.7963 | 0.7106 | 0.6472 [ 0.5979 | 0.5583 | 0.5253 | 0.4976
MLM | 1.3631 | 1.0032 { 0.8337 | 0.7297 | 0.6574 | 0.6033 | 0.5607 | 0.5263 | 0.4974 | 0.4730
2 MOM | 1.8572 | 1.3224 | 1.0748 1 0.9260 | 0.8242 | 0.7495 | 0.6917 | 0.6451 | 0.6067 | 0.5744
MLM | 1.5425 | 1.1325 | 0.9425 | 0.8263 | 0.7453 | 0.6849 | 0.6374 { 0.5986 | 0.5663 | 0.5388
1 MOM {2.0468 | 1.4464 | 1.1731 | 1.0099 | 0.8989 | 0.8172 | 0.7540 | 0.7032 | 0.6614 | 0.6262
MLM | 1.6500| 1.2131 | 1.0119 | 0.8889 | 0.8034 | 0.7391 | 0.6885 | 0.6472 | 0.6127 | 0.5833
0.5 [ MOM [ 22019 | 1.5518 [ 1.2585 | 1.0839 | 0.9650 | 0.8776 | 0.8099 | 0.7557 | 0.7109 | 0.6731
MLM | 1.73751 1.2817 | 1.0724 | 0.9444 | 0.8549 | 0.7876 | 0.7344 | 0.6912 | 0.6549 | 0.6238
0.2 | MOM | 2.3677 | 1.6684 | 1.3552 | 1.1685 | 1.0413 | 0.9479 | 0.8757 | 0.8177 | 0.7697 | 0.7291
MLM ! 1.83101.3577 | 1.1410 | 1.0078 | 0.9145 | 0.8443 1 0.7887 | 0.7433 | 0.7050 | 0.6723
0.1 | MOM | 24703 [ 1.7424 | 1.4178 | 1.2242 | 1.0925 | 0.9954 | 0.9202 | 0.8597 | 0.8097 ;| 0.7674
MLM | 1.8888 | 1.4060 | 1.1855 | 1.0498 | 0.9546 | 0.8826 | 0.8255 | 0.7787 [ 0.7393 | 0.7054
From (54) and (67) we have that the quantile relative error, D(x,)/ x,, is
PUy) _ L [ g 5y
. IN g (B.p). (70)

p

The \[é(MLM) ( B, p) function versus p is presented in Fig. 4 for selected values of S.
The values of this function can also be found in Table 2.
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6. PARAMETER ESTIMATION BY THE METHOD OF MOMENTS

Solving egs. (7) and (8) for parameters & and f3, one gets

n3 7
2u, ¢, V2
1
2¢°

14

B=

(72)

Equations (71) and (72) are used in MOM to estimate parameters & and B from sam-
ple moments.

Error in quantiles with the mean (m) and variance (v) as parameters

For the asymptotic distribution of moments, the components of the variance
-covariance matrix are (e.g., Kaczmarek, 1977, p.168-169):

D*(m) =21, 73
(m) =~ (73)
2
2 M, — U,
D ==, 74
() == (74)
r,D(m)D(v) = &5 (75)
' N
Substitution of (9)—(10) into (74) and (75) gives the variance-covariance matrix
vy
M(MOM) (m,v) = l:rm , D(m) D(V)jl = N Nm ) (76)
' WV 3
2 1502 42)
Nm N
Hence,
(MOM ) — 3cv (77)

The MOM-counterpart of (50) is
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a2

(3+28) ——(3+28)
MU (q, 8)= [, ,D(ex) D(B)] = | *PV 2N )

a B
ﬁ(3+2ﬁ) Eﬁ(7+4'8)

2
réﬂ;OM) _ 6+4‘B - 602 +2 . (79)
’ 7+4p Te:+2

Comparing (53) and (77), one can see that the coefficient of correlation between » and
v is greater for MLM than it is for MOM and it equals zero for ¢, = 0, while for ¢, =1
it amounts to 0.90 and 0.73 for MLM and MOM, respectively.

A similar analysis with respect to the coefficient of correlation between the esti-

(MLM) < Ty ﬂ(MOM) and they

Hence,

mators o and B given by (78) and (51) shows that Top

equal one for ¢, = 0, while for ¢, = 1 they amount to 0.82 and 0.94 for MLLM and
MOM, respectively.

Asymptotic standard error of quantiles

Substituting (71) into (54), one gets

y, =Inx, =3Inm-Inv-In2-2Ins, (B), (80)
where from (72)
2
m
_m 81
B 5 (81)

The derivatives of y, in respect to the mean and variance are

d
_yi=i_ %:3_14&, (82)
om m om m 1%

a 2

ov 1% v v 2v?

where A is given by (58).
The variance of quantile y, is

D*(y,) = D? (m)[&)z +D? (v)( JL]Z w2 D)D) 22D g
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Substituting (82) and (83) into (84) and the respective terms of matrix equation (76),
one gets

, _ é(MOM)(ﬁ,p)
D y,) = ——F—" (85)
where
(MoM) _ 1 3 2
MM (B, p) = E[Mﬁ +ABA(TA-8) - 4[3(3A—1)+6]. (86)

The asymptotic standard error of x, , i.e., D(x,), is obtained by substituting (85)
into (69). The asymptotic relative standard error, D(x,)/x,, can be expressed by (70),

where EM™(B, p) is replaced with E¥O*(B, p). The JEM (B, p) function versus p

is presented in Fig. 5 for selected values of . Also, the values of this function are

(MOM)

presented in Table 2. The relative efficiency of %, in relation to the estimate

o (MLM)
Xp

is displayed in Fig. 6. For upper quantiles, the efficiency of MOM-estimate

decreases with decreasing p and B . For example, if =1 (cv = 0.71) and p = 0.1%,
to achieve from MOM the accuracy of MLM, 54% larger sample would be necessary.

/(JE(MOM)(ﬂ: p), % oM

1807

Bi,l:B‘/
160 =
//
140 // I ey
/
120 ///”/1/594”””
100 //// //’2'3’/(
/ -
g0 pave ?;’f S
A -
60 \w//?/”/;:;%
‘s_—-"'/
::g%
40 —
20 50 20 10 5 2 1 0.5 0.2 0.1
p, E£EX]

Fig. 5. Graphs of the MOM-estimated quantile relative error (cf., eq. 85) as a function of p for
some values of f.
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RE
1 .55 B TR LLE IS T T IPIeT

1.507
1,45 i
1,40 4o
1,30 e
1,254~
1.20+

1.054

1.00

p, [%1

Fig. 6. Relative efficiency (RE) of MOM quantiles, RE = &*) (B.p) /’g’(MLM "(B.p), vs. prob-

ability of exceedance p.

7. CONCLUSIONS

The impulse response of the linearized diffusion wave model is a promising model for
flood frequency analysis, being easy from computational point of view and especially
attractive if one recognizes that the true distribution function is unknown. Estimates
of CD-parameters from the moments and the maximum likelihood method are ob-
tained analytically from simple algebraic equations. The method of the principle of
maximum entropy is here equivalent to the maximum likelihood method. The linear
moments have not been derived for the CD-distribution yet. The model can be easily
extended to the three-parameter form by putting the lower bound as the third parame-
ter.
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