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Abstract

Asymptotic bias in large quantiles and moments for three parameler estima-
tion methods, including the maximum likelihood method (MLM), moments method
(MOM) and linear moments method (LMM), is derived when a probability distribu-
tion function (PDF) is falsely assumed. It is illustrated using an alternative set of
PDFs consisting of five two-parameter PDFs that are lower-bounded at zero, i.e.,
Log-Gumbel (LG), Log-logistic (LL), Log-normal (LN), Linear Diffusion (LD) and
Gamma (Ga) distribution functions. The stress is put on applicability of LG and LL
in the real conditions, where the hypothetical distribution (H) differs from the true
one (7). Therefore, the following cases are considered: HA=LG; T=LL, LN, LD and
Ga, and H=LL, LN, LD and Ga, T=LG. It is shown that for every pair (H; T) and
for every method, the relative bias (RB) of moments and quantiles corresponding to
the upper tail is an increasing function of the true value of the coefficient of varia-
tion (c,), except that RB of moments for MOM is zero. The value of RB is smallest
for MOM and the largest for MLM. The bias of LMM occupies an intermediate po-
sition. Since MLM used as the approximation method s irreversible, the asymptotic
bias of the MLM-estimate of any statistical characteristic is not asymmetric as is for
the MOM and LMM. MLM turns out to be the worst method if the assumed LG or
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LL distribution is not the true one. It produces a huge bias of upper quantiles, which
is at least one order higher than that of the other two methods. However, the reverse
case, i.e., acceptance of LN, LD or Ga as a hypothetical distribution while LG or LL
as the true one, gives the MLM-bias of reasonable magnitude in upper quantiles.
Therefore, one should be highly reluctant in choosing the LG and LL in flood fre-
quency analysis, especially if MLM is to be applied.

Key words: flood frequency analysis, Log-Gumbel, Log-logistic distribution, quan-
tiles, model error, asymptotic bias, method of moments, linear moments, maximum
likelihood.

1. INTRODUCTION

Flood frequency analysis (FFA) entails estimation of the upper tail of a probability
distribution function (PDF) of peak flows obtained from either the annual duration
series or partial duration series, although the upper part of the PDF may usually be out
of the range of observations. The usual empirical approach is to fit an a priori as-
sumed PDF to the peak flow data, where the fitting involves estimating the parameters
of the PDF, which, in turn, requires the knowledge of the PDF. Thus, one tries to find
and use the most robust method of parameter estimation for a given sample size. Un-
fortunately, the true PDF is not known and even if it were known it might, in all prob-
ability, contain too many parameters. These parameters cannot possibly be estimated
reliably and efficiently from a hydrological sample, which is of relatively small size,
meaning that strictly speaking such a PDF cannot be applied. Therefore, the task of
FFA reduces to (1) choosing the PDF which can be derived either by “at site” or “re-
gional” analysis; and (2) finding and using the most robust method of parameter esti-
mation which produces the smallest mean square error (MSE) and bias in moments as
well as in quantiles of interest for a given sample size and the chosen distribution.

The possibility of correct identification of PDF in case of normal hydrological
size of samples is small even in the ideal case when the set of alternative PDFs con-
tains the true (7) distribution function. Therefore, in reality, one deals with the hypo-
thetical PDF (H), called here the false distribution function (F), which differs more or
less from the true one. This will result in a model error in any statistical characteristic
of the distribution. Its magnitude for a given characteristic depends not only on how
closely is F to T but on the estimation method as well. This is the objective of the pre-
sent study. Although the ultimate interest of FFA is the estimation of upper tail quan-
tiles, the model error of the two first moments is analysed as well.

For choosing an estimation method, the approach used in FFA follows the find-
ings based on the case of a known distribution form, where the robustness of the
methods is considered, i.e., as soon as the model has been chosen it is considered as
the true (7) one. A robust method performs well over a range of situations and is able
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to withstand a certain amount of abuse without breaking down. It is not necessarily the
best estimation method for any one model, and is characterised in terms of stability
and consistency of parameter estimates. Stable estimates are characterised by small
estimator dispersion or variance, while consistency implies estimates converge in
probability to the “true” value of the parameters as the number of observation be-
comes large.

Several studies have compared methods of parameter estimation using the stan-
dard error of estimate as a criterion. There are numerous hydrologic studies dealing
with comparison of the accuracy of various methods of parameter estimation for vari-
ous distributions and Monte-Carlo simulated sample sizes.

A number of 2- and 3-parameter PDFs have been discussed in the literature for
hydrologic FFA (Hosking and Wallis, 1997; Singh, 1998; Rao and Hamed, 2000).
Likewise, several parameter estimation methods for these PDFs have been developed
(Singh, 1988; Rao and Hamed, 2000). Among others, the Log-Gumbel (LG) and the
Log-logistic (LL) distributions have been recently used in FFA (ref. Rowinski et al.,
2001). They were critically examined by Rowifiski et al. (2001) with respect to their
applicability to hydrological data and the drawbacks resulting from their mathematical
properties were pointed out, Both distributions are obtained by applying the logarith-
mic transformation to popular Fisher-Tippett type I (Gumbel) and logistic probability
density functions, respectively. Their most significant feature is the existence of the
statistical moments of LG and LL for a very limited range of parameters. For these
parameters, a very rapid increase of the skewness coefficient as a function of the coef-
ficient of variation is observed (especially for the Log-Gumbel distribution) which is
seldom observed in hydrologic sciences.

Since the statistics used in every estimation method differ from each other, a
method of fitting a theoretical distribution to an empirical one depends on the estima-
tion method itself and in case of MLE on the distribution function as well. The differ-
ences in fitting may become crucial if an assumed PDF differs from the true one while
for practical reasons the interest is in high accuracy of estimation in a certain range of
variability, i.e., in the upper tail of the distribution. The MLM is considered as the
most theoretically correct method in the sense that it produces the most efficient pa-
rameter estimates. The secret of the high efficiency of the maximum likelihood
method (MLM) lies in its ability to extract greater amount of information both from
the sample and from the assumed distribution function, which is required for the use
of MLM,

Because LG and LL differ considerably from other FF distributions, it seems rea-
sonable to take them as illustration of the model error problem and to examine the
problem of their parameter estimation from the point of view of real conditions where
the hypothetical PDF differs from the true one. This study is focused on the model
error of upper quantiles and moments. Applicability of the two PDFs is critically ex-
amined in the real condition of unknown true distribution and recommendations are
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given for the estimation method under the assumption that LG and LL are either F or
T. At the same time, the study is to supply the directions for using the various estima-
tion methods in real conditions faced in FFA.

To get rid of sample size, the asymptotic case is considered. It enables to employ
the analytical approach for asymptotic bias derivation (Strupczewski et al., 2002) and
extend it for the case of non-existing moments. The analytical approach has the advan-
tage over the simulation one as it produces the exact solution of the asymptotic bias
problem and the solution is expressed as a function of the 7-model’s parameters while
Monte-Carlo experiments provide approximate result for any given set of parameter
values separately. However, the algebraic difficulties to get analytical solution are
growing fast with the number of PDF parameters and then one must be satisfied with
an approximate result. In particular, this concerns the application of MLM as an ap-
proximation method.

2, ASYMPTOTIC BIAS OF ESTIMATION METHODS CAUSED
BY THE ASSUMPTION OF FALSE PROBABILITY DISTRIBUTION

A study of asymptotic bias can serve as a basis to assess its magnitude and give an
idea about the bias for any sample size, and whether the difference in the bias due to
various parameter estimation methods can be counterbalanced by their efficiency of
estimation. It would also be useful to verify the correctness of Monte Carlo experi-
ments. The theoretical background for the asymptotic bias derivation for various esti-
mation methods when a PDF is falsely assumed is given by Strupczewski et al.
(2002). To present a unified treatment for various distributions, the original set of pa-
rameters of every distribution was expressed as functions of moments. The estimation
methods are used as methods of approximation of one distribution function by an-
other. The study has been illustrated using the lognormal and gamma distributions
forming an alternative set of PDFs (APDF), This time APDF consists of five PDFs,
giving a chance for some generalisation.

However, because for LG and LL the original parameters cannot be explicitly ex-
pressed by the first two moments, the original parameters are used in this study. Fur-
thermore, its scope is limited to the investigation of the three methods, i.e., the method
of moments (MOM), the linear moments method (LMM) and the maximum likelihood
method (MLM) while the least-squares methods (LSM) of approximation
(Strupczewski et al., 2002) are omitted.

MOM, used as an approximation method, reduces to the moment matching of F
to T distribution:

[¥ 7O (wg)de=[x D (mh)dn  r=12..R, O
0

Q
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where R is the number of parameters of False distribution, i.e., the dimension of the
g-vector.

Similarly, LMM as an approximation method, reduces to the L-moments or the
probability weighted moments matching:

1 |
[x(F)[FO] = [x(FO)FOT e r=l2.R, )
0 0
where F () is the cumulative probability distribution.
In order to apply MLM as an approximation method of one distribution (T) by

another (F), one has to consider the asymptotic sample of T-distribution. Then, the
ML-equations have the form

dlog L' (X;g
Jg

T 2dlog I (x; g
)] = l__.__—mag( )f(”(x;h)dx=0, (3)

lim E

N —yoo
where f(x;h) is the probability density function of the True distribution and h is the
vector of its parameters while g is the vector of parameters of the False distribution
FP(xg). Log L denotes the log-likelihood function for the False distribution.

The mean-square error (MSE) of any statistical characteristic, Z, can be expressed
as

MSE(Z)=var (Z)+[ Bias(Z)] , (4)

where var(Z) is the variance of Z and Bias(Z) is the bias of Z. For a given sample size,
the ratio of the two terms in relation (4) depends on both the PDF model and the pa-
rameter estimation method. An increase in the number of model parameters (degrees
of freedom) increases the first term and decreases the second one. For large samples,
the standard deviation of the Z estimate becomes small in comparison to the bias
caused by the wrong distribution choice (i.e., by the model error) and therefore MSE

approaches the square of the asymptotic bias B(Z)= lim Bias (Z).

In order to derive the asymptotic bias (B) of Z caused by the false (F) choice of
the distributional hypothesis (H), the knowledge of the true distribution (T) together
with the value of its parameters is necessary. Then, the problem is defined as an ap-
proximation of the T-function by the _function and it, therefore, remains no longer a
statistical estimation problem. Having approximated T by [, one can find for any
characteristic Z both the value of z of the approximated function, i.e., z(H=T), and the
corresponding value of z of the approximating function, i.e., z{H=F |T). Thus, the as-
ymptotic bias of any statistical characteristic Z, B(Z), is defined as

B(Z)=z(H = F|T)~z(H =T) (5)
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and the relative asymptotic bias, RB(Z), as

z(H="F|T)-z(H=T)
| z(H=T)

RB(Z)= , (6)

where H, F and T stand for hypothetical, false and true distributions, respectively.

MLM, used as an approximation method, is irreversible, i.e., assuming the same
dimension of vectors of parameters g and h, if (H=a)=>(g=b) then (g=b)=4 (H=a).
The asymptotic bias of the MLM-approximation of any statistical characteristic Z is
not asymmetric as is for the MOM and LMM, ie., B¥™(z(H=¢| T=f) = —B"#
(z(H=f l T=¢q)), where f and ¢ denote PDFs, Furthermore, to apply MLM as an ap-
proximation method, the approximate distribution (H) must have the same range as the
true distribution or its domain must cover that of the true distribution. For MOM and
LMM, there are no constraints with respect to the range of both distributions but the
overlapping range enables the fit of the first moment.

3. SET OF ALTERNATIVE PDFs

The set of alternative PDFs (APDF) taken for the study consists of the following two
-parameter distributions with zero lower bound: Log-Gumbel (LG), Log-logistic (LL),
Log-normal (LN), Linear Diffusion Analogy (LD) and Gamma (Ga). Although three-
parameter distributions are often recommended for flood frequency analysis, two-
parameter distributions were chosen in this study for two reasons. Fitst, the constraints
in respect to the number of parameters are very r1igid for normal hydrological sample
sizes. Second, the objective is to show the significance of bias using simpler models.
To extend the results to three-parameter lower bounded distributions, it would suffice
to start with the matching of the lower bounds.

Our presentation is focused on the LG investigation considering it both as a false
and true distribution. However, all our conclusions remain valid for the case when LI,
approximates other distributions or is approximated by them. Therefore, the two fol-
lowing cases were analysed in the paper;

(L (H=LG; T=LL, LN,LD, Ga),
@3] (H=LL,LN, LD, Ga; T =LG).

The density functions of these distributions are given below. The formulae for mo-
ments, L-moments and quantiles can be easily found in the statistical literature (see,
e.g., Hosking and Wallis, 1997: and Kaczmarek, 1977), while for LD are given by
Strupczewski et al. (2001).
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Log-Gumbel (LG) distribution

f (X;aLG’g) = Zx_g_..x—l/am-l exp (__g x-l!l¥.1.t; ), X, aLG’ g >0 . (7)

LG

Log-logistic (LL) distribution

1
(x/ oy, );
1\’

Kx(1+(x/ch)?)

f(x0y,,K) = 0, K530, (8)

In order to distinguish between the o parameters of LG and LL the subscripts
“LL” and “LG” are used.

Log-normal (LN) distribution

1 1 2
xU,0) = exp| ——(lnx- , xa>0. ()
o) = —p= p[ 2cr2( u)}

Linear diffusion analogy (LD) distribution

2
a —
Fa0,,Bp) = "g%"exPli"g—‘Lﬂ'x_ﬁ@}_)"} X,0p, By > 0. (10)
X
Gamma (Ga) distribution
al
FnQg,A) = ﬁ%x*" exp(~Cig,X),  X0g,A>0. (1

4. LOG-GUMBEL AS HYPOTHETICAL DISTRIBUTION
LL as true distribution

The LL distribution is the closest one to the LG distribution of all APDF in respect to
the relation of the coefficient of skewness (¢ ) to the coefficient of variation (¢, ).

The asymptotic relative bias (RB) of the mean (m), variance (var) and quantile
(x,) expressed in terms of parameters of both distributions is, respectively, as follows:

RB(m)= e _q = £ (1-0e)
m, 0, B(l+K,1-K)

-1, 04.k<l, (12)
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e | I (1-200,, Y- T (1-ct
RB(VaI‘) = Vari - 1:- 5 [ ( LG) ( < ):I ] _1, aLG’K <"];', (13)
vary, oy, | B(1+2K,1-2k) - B* (1+x,1-x)] 2
e
. (—éln(b—p))
RB(x,) = & -1 = L -1, (14)
‘xpl.[. [1 J
oy —~1
p

where I' ( ) and B ( ) are the Euler gamma and beta functions, respectively.

The form of the relationship of LG-parameters (£,r,;) with LL-parameters
(k,c,, ) depends on the approximation method.

MOM approximation. Matching the first moments about the origin and the second
central moments of both distributions, respectively, ie., EgX = B, X and vargX =
var, X, we get LG-parameters in terms of LL-parameters for the range of the first two
moments of the LL existence, i.e., for i < 0.5. Then, RB in eqs. (12) and (13) turns to
be zero. Hence, the equality of the coefficients of variation, ie,c,q =c,, . takes the

form

., _ B(1+2K,1-2k) I(1-20,,)
¢, - ] ~A s e 1, (15)
B (1+x,1-k) I (1-eay)

which (through given ¢,) relates the parameters x < 0.5 and &, < 0.5. The relevant

graph ‘MOM'’ is shown in Fig. 1. The MOM-relationship ¢ (k) is slightly nonlinear
for values of k corresponding to all ¢,~values.

Substituting into eq. (14) the MOM relation for the mean values, we get the as-
ymptotic relative bias of MOM (and MLM) estimate of quantile:

B(l+K,1-x)

RBYO (x i F=LG, T=LL) =

r?

- — 1 (16)

X 1 ) ’
I(t-a,)[-In(1-p)] (;4]
where kand &, are the functions of eq. (15) of the true coefficient of variation (coLr).

The function in eq. (16) is presented in Fig. 2 for some selected values of CyLL
Figure 2 shows a decreasing range of the RB(x,) variability with the true coefficient of
variation performed mainly through the decreasing lower-probability branch of x,.
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LL) is true. Additional axes for true coefficients of variations ¢, are given for compatrison pur-
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for T = LG.
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LMM approximation. Since the first L-moment is equivalent to the first moment
about the origin, the match of the first L-moments (A, =2, ) is equivalent to the
match of the first moments (m,; =m,, )of both distributions (cf., eqs. 12). Matching
of the second L-moments (A, ) gives

4 (1046 ) (2% ~1) =00, 6 T (1+6) T (1-K), 0,k <1, (17)

Hence, we get equality of the L-coefficients of variation as
K = 2% 1, (18)

where, because of eq. (17), &, azg < 1, which is twice the ranges permitted by MOM.
A graph of eq. (18) denoted ‘LMM’ is shown in Fig. 1. Therefore, the mean is unbi-
ased, while the variance and quantiles are biased, Using eq. (15) one can express x and
0t in terms of ¢,y and ¢, respectively. Substituting them into eq. (18) one gets the

LM-relationship of both coefficients of variation, ie., c,,; =¢"" (c,, ). Hence, the
asymptotic relative bias of the variance given by eq. (13) is as follows:

I'(1-20,)/ T (1-0,5)-1
1+2K,1-2k )/ B* (1+x,1- k) -1

2
RBtLM) (var; F=LG,T=LL) = [E&G_} -1 = B( -1, (19)

CoLL

(K, 0, < 0.5), which is displayed in Fig. 3 (the LMM curve) as the function of the
variation coefficient of the LL-distribution (¢, ).

Note from eq. (13) that for the LL-variance existence, k < 0.5, which corresponds
to 0 < Inl.5/In2 =~ 0.5850 in eq. (18), while to have both LL and LG variances finite,
both x and ¢ shall not exceed 0.5. This leads (through eq. 18) to a new limit to &
namely, K < 2%°~1 = 0.414, which corresponds to ¢, = 1.3349 in eq. (15). It is a
stronger constraint than for MOM-approximation, where k, 04 < 0.5 (and for LMM
estimation, where K, 0. < 1.0, is sufficient to get finite 7).

The bias of the MOM-estimated quantiles (see Fig. 4) is defined by eq. (16),
where o, is related to k by eq. (18) but not by eq. (13) and « is the function given by
eq. (14) of ¢,r.. The variability pattern of RB**(x,) with c,;;, shown also in Fig. 4,
differs from the pattern of RB™™(x,): unlike RB¥®(x), the range of RB“"(x )
increases with ¢,. This increase is moderate and the growing difference between
RBMM(xy and RBMO (x ) is mainly due to the behaviour of the MOM estimate.
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Fig. 4, Asymptotical bias of LG MOM and LG LMM-estimated quantile vs. probability of
exceedance for some selected values of the true coefficient of variation Cyy.
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MLM approximation. The MLM system of equations

w log L(r =LG) 5 aw)

f(T=LL) (x;aLL,K)dx =0, 20

G’—;

FO (w0, k) dx =0 21)

]3 dlog IV (€01, )
i aaLG

leads to the following equations relating to one another the parameters of the LL and
LG distributions:

\
R N I Y UL (22)
é (aLL) e Qe G
o K [k
—O 4y lb— | = | 1-— | = 0. (23)
K O L %
Solving eq. (23) for a;s/x we get that
Qg _ oy (24)
K

The relationship in eq. (24) is shown in Fig. 1 as the ‘MLM’ graph together with the
corresponding graphs for MOM and LMM. The MOM and LMM curves run relatively
close to each other, the MLM one is visibly separate.

The using of eq. (24) simplifies eq. (22) to
1 1 | 3 T
c=—e T = || 2| s ——. (25)
£ (o)™ (2) (2] 20, )™

Asymptotic relative bias of the mean. Substituting ¢, from eq. (25) into eq. (12),
after simple algebraic transformation, we finally get

=2y 1-—

where i is the function given by eq. (15) of the coefficient of variation (c,..).

Proceeding in a similar way with eqs. (13) and (14), the asymptotic relative bias
of variance (Fig. 3) and of quantile (Fig. 5) has been derived:

C
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Fig. 5. Asymptotical bias of LG MOM, LG LMM and LG MLM-estimated quantile vs. prob-
ability of exceedance for some selected values of the true coefficient of variation ¢,

[r(1-20,)-T* (1-0y, ) ( “;E )2 )

, (27
B(1+2k,1-2K)- B* (1+K,1-K) @D

RBY™" (var; H=LG, T=LL) =

- [— In (1"‘ p)]_am -1, (28)

)

To get the bias of variance given by eqg. (27) finite, k must be less than 1/4, which
corresponds to eq. (15) with ¢y, < 0.5227, while for LMM we have K < 2991 =
0.414, which is equivalent to ¢, < 1.3349. These constraints are not reflected in
graphs in Fig. 5 as the relative bias of the MLM quantiles given by eq. (28) does not
impose any restrictions on parameters (beside K < 1/2 as required by eq. 15). T he as-
ymptotic relative bias of MLM quantile (Fig. 5) is at least by one order greater than

RB“0 (x : H=LG, T=LL)

P
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that for MOM and LMM and ranges for xq 14, from about 100% for ¢,;; = 0.2 to above
800% for ¢,y = 1.0, which is a rather discouraging feature of MLM. The poor fit of
the upper tail is compensated for in the lower branch (Fig. 6) where MLM-ap-
proximation is much better than either of the two other methods. It is the common
feature for all lower bounded PDFs, i.e., for the PDFs feasible for FF-modelling.
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Fig. 6. Asymptotical bias of LG MOM, LG LMM and LG MLM-estimated quantile vs. cumula-
tive probability for some selected values of the true coefficient of variation ¢,y

LN as true distribution

The asymptotic relative bias of the mean (m), variance (var) and quantile (x,) ex-
pressed in terms of parameters of both distributions is, respectively, as follows:

B(m) = e - gher(i-ay,)

<1, (29)
Nty exp(u+o"2/2) te
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RB(var) = Vao grna [F (1-20,5)-T" (1-0, )1 -1 o« <l ’ (30)
var,,, exp (2,u+c>'2 )l:exp (02 )_,1] 2
1 Gy
———ln(lnp))
RB(x,,)=-’i‘l—1=( : - 1. (31)

X exp(u+ot, )

The form of relationship of LG-parameters (§,04.6) with LN-parameters (u,0) depends
on the approximation method.

MOM approximation. The condition of the first moments equality takes the form

2
f”"“F(l—aw) =exp(,u +%—«], O <1, (32)
Matching the coefficients of variation, i.e., Cyrg = Cyrn > gives

2 o Fl-20,)

— -1 = 2)
= P ima) 1 exp(cr) 1, (33}

which (through given c,.y) relates the parameters 0<o<eand < opg< 0.5 The
relevant relation q(o) is plotted in Fig. 7 as the ‘MOM’ curve.
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Fig. 7. Relationship between parameters 0yg and o for MOM, LMM and MLM. Unlike the
first two methods, MLM produces two relationships depending on which of the distributions
(LG or LN) is true. Additional axes for true coefficients of variations ¢, are given for compari-
son purposes. Axis ¢,y is valid for MOM and T = LG while the ¢,y axis is vatid for all cases
except for T= LG,
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From eqs. (31) and (32) we have the relative bias of the x, quantile

exp (02/ 2-ot, )(*ln (1-p))™
r'i-co,,)

where parameters o, and o ate interrelated through eq. (33). Equation (34) is illus-
trated in Fig. 8. RB(MOM)(xp) remains within about a 30-50% variability range for all

cyy With RBYPM)(x, 14,) increasing with ¢,y up to ¢,y = 0.4 and then decreasing with
Cyiy- The minimum of RB(MOM)(xP) deepends and shifts towards low p.

RBWMOM) (x,,) - -1, (34)
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Fig. 8. Asymptotical bias of LG MOM-estimated quantile vs. probability of exceedance for
some selected values of the true coefficient of variation ¢,y

LMM approximation. The match of the L-coefficients of variation gives

2"”—1=l~2p(%), (35)
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where

oo 2
p(w)= Iﬁexp(—-%]dz : (36)

The range (0,1) for ogg corresponds to (0, +°<>) for o . The relationship of these two
parameters is displayed in Fig. 7 as the TTMM’ curve.

Using eq. (33) one can express o and Oug by cun and cug, respectively.
Substituting them into eq. (35) one gets the LM-relationship of both coefficients of

variation, i.e., ¢, =@ (c,,). Hence, the asymptotic relative bias of the variance
LG (p vLN y p
given by eq. (30) is

2
RB(LMM)(Var;F=LG‘ T=LN) = (Eﬁ) -1. (37)
Coun

The bias is displayed in Fig. 9 as a function of the true variation coefficient of LN-
distribution, c,.y. Because oxg < 0.5 (see eq. 30), from eq. (35) we have that
c<\/§tl 5+ Where 2, is the p—-N(0,1) quantile, which gives an upper limit to ¢,y of

0.9007. The LMM bias of variance quickly increases with ¢,y and exceeds 100% at
CvLN = 015.
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Fig. 9. Asymptotical bias of LG MLM-estimated mean (left, ¢,y = 1.3108), and LG MLM and
LG LMM-estimated variance (right) versus true coefficient of variation ¢,y (cyy = 05329,
ey = 0.9007).

The relative bias of the quantile x, for LMM can be expressed with eq. (34)
where ¢ and o are related through eq. (35). The results are shown in Fig. 10. The
difference between the RB“M(x) and RBM*(x,), small for small c,.x, (less then
15% for ¢,y = 0.2) increases with ¢,, reaching more than 100% for xg,1% and ¢,y = 1.0.
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Fig. 10. Asymptotical bias of LG MOM and LG LMM-estimated quantile vs. probability of
exceedance for some selected values of the true coefficient of variation c,y.

- MLM approximation. Application of the MLM method results in the following
equalities:

2
(i =1, (38)
aLG

£ =exp(-1/2+ulc). (39)

The graph of o,5(0) from eq. (38) is presented in Fig. 7 as the ‘MLM’ curve.
The bias of mean and variance is

ra-
RBYU) () = U=2g) 0 o, (40)
exployg 12+ 0,5 12)
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RBM™M) (yar) =

r(1-2a,)-*(1-2)

-1,

exp(afa +045) (6Xp(OCZG )— 1)

1
O <—. 41
16575 (41)

The conditions for g in egs. (40) and (41) combined with eq. (38) give 0 < 1 and
o < 0.5, respectively, which gives the corresponding upper limit valués of ¢, for the
relative bias of the mean and variance: v = 1.3108 and 0.5329 (Fig. 9). The MLM
relative bias of the variance starting point at ¢,.v = 0 is not zero as for LMM: the limit
of RBMM(yar) given by eq. (41) (cug— 0) is Y1)~ 1 =7°/6 - 1 = 0.64493 = 64.5%,
where the ¥ is the trigamma function. Then the bias quickly tends to infinity.

The MLM relative bias of the quantile can be calculated using egs. (38) and (39)
combined with eq. (31):

RBWHM) (xl, ) = exp[—(O.S +1, )am ][— In(1- p)]"am -1.
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Fig. 11. Asymptotical bias of LG MOM, LG LMM and LG MLM-estimated quantile vs. prob-
ability of exceedance for some selected values of the true coefficient of variation c,py.
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The MLM LG-approximation of LN is similar to MLM LG-approximation of LL pre-
sented in Fig. 5 although the MLM values in Fig. 11 are greater.

LD as true distribution

In fact, LN is closer to LG in terms of the relation of the skewness coefficient to the
coefficient of variation than the recently introduced LD distribution, as ¢, =3¢, +¢]
for LN, while ¢, =3¢, for LD (Strupczewski et al., 2001). The reason to include it is

its attractive property when it serves as the hypothetical distribution and the MLM for
parameter estimation is applied. The L-moments have not been derived for LD.

MOM approximation. The equality of first two moments of LD and LG gives the
following equations:

o
= SR -ay), Oy <1, (43)
ﬁLD
Ui 2 2 1
2 = B [[(1-20,5) - T (1-05) ], oy <= (44)
Bib 2
The coefficients of variations are equal:
o LG T=L0, F=LG
0.80 t
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Fig. 12. Relationship between parameters o¢ and yp for MOM and MLM, Unlike MOM,
MLM produces two relationships depending on which of the distributions (LG or LD) is true.
Additional axes for true coefficients of variations ¢, are given for comparison purposes, Axis
g is valid for MOM and T'= LG while the ¢,;p axis is valid for all cases except for T= LG.
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oL r(1-20.,)
’ zau)ﬁu) r h (l_aLG)

Equation (45) relates the product (¢p Bip), called hereinafter 1o :

i
-1, o, <—. 45
LG 2 ( )

Vo= Pib, (46)
and o6 (graph MOM in Fig. 12). Using eq. (43) we get the bias of the MOM quantile
£L 2
RBMOM) () = l: r (Yoo ):I _1 a@n

Yin T (1 =g )[_ In(1- p)]am

(see Fig. 13). The MOM LG-approximation of LD follows the pattern of the MOM
LG-approximation of LN (Fig. 8) with a slightly greater amplitude.
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Fig. 13. Asymptotical bias of LG MOM-estimated quantile vs. probability of exceedance for
some selected values of the true coefficient of variation ¢y.p.
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MLM approximation. MLM for LD produces finally the following system of equa-
tions from which ML-estimates of LG-parameters can be obtained:

4

1 o ’ G2
i Aﬁfé “ Guz-maw ’ et AGuz ~ e 0, (48)

¢ 11241 ety

where A, G, and G in eq. (48) are functions of y;p and are defined as follows:

2
Alyyp) = ’-’—'%‘f—l (49)
T -z~ —u—a2 -
G,(a) = f u exp( - ]du =24a7K,(2q) , (50)
0
o 2
¢@=229 __ [In@u) exp(—u -4 )du (51)
0z 2 u

Ky(x) in eq. (50) is the MacDonald function (Andrews, 1992). The second equation in

(48) is an implicit function ¢y of yp that enables o ML to be calculated for a given
Yep. This function is shown in Fig. 12.

The relative bias of the mean and variance is as follows (see also Fig. 14):

RBY) iy = Mic _ o l-o) | 5
m AG K
b Y ( 1r241/ay )
var, I'it-2a, )~-T*(1-q
var d
Lo Y/ (AGwzn/am )
RB (“1 EX RB LX) varX
100 FRlD,Es0E ™y 4500 eIl R
0 L[ 7] 4000 -
80 l
3500 ’
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40 / 2000
7
a0 // 1500 7
20 LA 1000 1
10 g 500 e

0
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CvLO CvlO

Fig. 14. Asymptotical bias of LG MOM-estimated mean (left) and LG MLM-estimated vari-
ance (right) vs. true coefficient of variation c,p.
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The relative bias RB(MLM)(x,,) of quantile resulting from adopting Log-Gumbel and
using MLM is

2
RBY(x ) = Yoo (tpLD(YLu)) ~-1. (54)

KoL (Yw)z (AG1/2+II(1LG )au; ('1“(1_ P))am
The respective graphs are presented in Fig. 15. The MLM LG-approximation of LD

lies in between the MLM LG-approximation of LL presented in Fig. 5 and the MLM
LG-approximation of LN in Fig. 11.
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Fig, 15. Asymptotical bias of LG MOM and LG MLM-estimated quantile vs. probability of
exceedance for some selected values of the true coefficient of variation ¢y.p.

Gamma as true distribution

The asymptotic relative bias of the mean (m), variance (var) and quantile (x,) ex-
pressed in terms of parameters of both distributions is, respectively, as follows:
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g g (e,

RB -1 O <1, 35
(m) Mg, Aloyg, e &)
204, 2

var, £ I:F(l"mm)"r (1“0%6)] 1
= Yo _ . -1, —, (56
RB(var) — s U < (56)

. [-%m(h p)) '

RB(x,)= 2% - 1= - 1. (57)

X oGa LoGa (A)/ &g,

The form of relationship of LG-parameters (&,0,;) with Ga-parameters (A, 0, )
depends on the approximation method.

MOM approximation, Employing MOM gives the following system of equations:

m =éj“"°'l“(l-aw)=i, a,<1, (58)
aGu

I'(l-

e E02g) L, L (59)
r'*(1-o,;) A 2

Equation (59) relates o, to A as is shown in Fig, 16.
Using egs. (37) and (58), we get the MOM relative bias of quantile
A(=In(1-p)y™
R B#0M) (xp) _ ( ll( p)) _ (60)

T T(-0) 1 (A)

presented in Fig., 17. The variability pattern of RB(MOM)(x,,) is similar to that for LN
RB™OM(5 ),

LMM approximation. Matching of the first two linear moments secures equality of
the L-coefficients of variation of the both distributions, i.e.,

4is _12M (61)

Jar(A+1)

The range (0, 1) for agg corresponds to (0, +e0) for A. The relationship of these two

parameters is displayed in Fig. 16. Using eq. (61) one can express in eq. (56) ¢ and

A by the coefficient of variation of LG and Ga, respectively, hence the relative bias of
the variance is
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Fig. 17. Asymptotical bias of LG MOM and LG LMM-estimated quantile vs. probability of
exceedance for some selected values of the true coefficient of variation ¢yga
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r(1-20,,)] 1
(MM = [: ek G ~. 62
RB™™ (var) 2{ (e, 1} Lo e <y (62)

The graph of eq. (62) is shown in Fig. 18. The relative bias RB(LMM)(x,,) of quantile
resulting from adopting Log-Gumbel and using LMM is

o) AL 0]

T TU-ate (M)

Both MOM and LMM biases, shown in Fig. 17, are significantly higher than for other
true distributions.

RB [41 EX RB L[] varX
1800 SRR 4000 e P
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1200 2500 i
1000 2000 ' ' '
Zgg : 1500 f ] Fig. 18. Asymptotical bias of LG
| MLM-estimated mean (left), and
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o UD'D"'; P PR e mated variance (right) vs. true
0 02 04 0.6 08 1, .0 0.2 0.4 0.6 08 1, . A
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MLM approximation. The Log-Gumbel MLM applied to Ga gives the following sys-
tem of equations:

O — WA+ wd-la,)=0, (64)
w _ | T T
e = [F(/l-l/cxw):| ' ©3)

Equation (64) defines an implicit MLM relationship between oz and A shown in
Fig. 16 together with similar relationships for MOM and LMM.

Eliminating & in eq. (55) by eq. (65) we get the relative bias of mean as

(MLM) —- F(l—aLG) F()“) - -
RB (m) = n F(A‘_an) 1. (66)

This equation holds for A > 1/ > 1. As both parameters are interrelated through
eq. (64), we have 1/0y6> 1 and A > 2, which gives the upper limit to the coefficient of
variation: ¢, <1/ VA =0.707 (see Fig. 18).
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The relative bias of the variance is

20

F(I—Zam)—f'l(l—(xw)( F(’l)
A | T (A-lay,)

RBMM) (var) = -1, (67)
where A>1/0,, >2 from which we get the limiting values for aig and A: qg< 0.5
and A > 5.56153, and the upper limit to the coefficient of variation (c,g,) 1 0.42404.

The pattern followed in Fig. 18 is very similar quantitatively to that for T=LN (Fig. 9)
with vertical asymptotes shifted to lower ¢, values.

The relative bias RB™)(x,) of quantile is
~In(l-1 ~00.G 17
[-Ind-p)] r'() L )
tGa (A) rA-1/e,g)

The MLM bias in Fig. 19 is huge and for higher values of coefficient of variation is by
several orders higher than MLM biases estimated before.
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Fig. 19, Asymptotical bias of LG MOM, LG LMM and LG MLM-estimated quantile vs. prob-
ability of exceedance for some selected values of the true coefficient of variation ¢,ge.
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5. LOG-GUMBEL AS THE TRUE DISTRIBUTION

MOM and LMM as approximation methods are reversible, i.e., for any statistical
characteristic z the relative asymptotic bias holds the asymmetric property

B(z; H=A; T=B) = ~ B(z; H=B;T=A). (69)

Therefore, for the relative asymptotic bias we have

RB(z; H=B; T=A)=[RB(z H=A; T=B)+1] -1 (70)

and all algebra presented in Section 4 for MOM- and LMM-matching and (H=LG;
T=A) applies to the opposite case, i.e., to (H=A; T=LG). Thus, proceeding in a similar
way to that presented in Section 4, one can derive the asymptotic relative bias if Log
-Gumbel is assumed to be the true distribution and the numerical results are obtained
here by the transformation of eq. (69) of the results got in Section 4. Hence, the prob-
lem of this section is the MLM-approximation of the LG distribution by other lower
bounded PDFs which are used in FFA. One should remember looking at all figures
that RB is always referred to the true value of the coefficient of variation.

LL as hypothetical distribution

MLM approximation
r Xl )™ )L
1+(X /o, )" ] 2
(71)
I\
k+ Eln(X fo, )~ 2k| EL0w) X T0) )_o
- 1+(X /o, )"
An application of Log-Gumbel gives the details as
EinX =a,, (C+In&) (72)
(X /o, W* T (x/o ) - -
E LI, LL oG -1 _ oty
(1+(X/ocu I £1+( oy &0 exp(~a™" )ax
=abj17+z exp(~bz™* )dz =abC,(a,b), (73)
0

where a = K0y and b=& /()™ . Similarly

E( (X /oy, )" In(X Jay,) }=Tln(xlocu)(x/ozu)”" &

~loyg=~1 ~Hog
- x exp(—Sx dx
1+(X/CZLL)“K 5 1+(x/aLL)|/h aLG p( g )
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Inz 27 -
exn| —=bz™ |dz =abk D,(a,b). 74
e p[~bz™ |de (a,b) (74)

= ablc]:
0

Substituting eqs. (72), (73) and (74) into eq. (71) we get after some manipulations the
system of equation:

1
abC,(a,b) — = =0
2 (75)

1+ < + M — 2abD/(a,b) = 0.
a a

Numerical solution of the system gives (o, bo) = (0.69565, 0.63032), which is equiva-
lent to the equalities '

K g, =069565 , (76)

aLG

E&—%’_ = b, =0.63032 . (77)
LL 2

The line x/oyg = 0.69565 is presented in Fig. 1. The graph lies between LMM and
MLM graphs for (T = LL, F = LG).

Equations (76) and (77) combined with formulas for the asymptotic relative bias
of mean, variance and quantile (cf.,, egs. 12-14) allows to compare the respective
MLM biases with those of MOM and LMM (see Figs. 20 and Fig. 21). The MLM
relative bias of mean (Fig. 20) is small and does not exceed 8% for ¢,.¢ < 1. The same
figure shows that the LMM and MLM biases of variance are by one order greater than
RB™OM(m). The relative biases of quantiles shown in Fig. 21 differ essentially from
all previous respective figures (cf., Figs, 5, 11, 15 and 19) in that the MLM-estimated
quantiles are not so dramatically greater than the MOM and LMM-estimated ones.
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Fig. 20, Asymptotical bias of LL MIM-estimated mean (left), and LL LMM- and LL MLM
-estimated variance (right) vs. true coefficient of variation cyrc.
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Fig. 21, Asymptotical bias of LL MOM, LL LMM and LL MLM-estimated quantile vs. prob-
ability of exceedance for some selected values of the true coefficient of variation ¢,r¢g.

LN as hypothetical distribution

MLM approximation. The ML estimates of the Log-normal distribution parameters are

LG=F.

H=0,,(C+Ingy,

o=l w'Q).

Note in Fig. 7 that the relation given by eq. (79) is closer to the MOM and LMM rela-
tions than the relation in eq. (37) derived for the opposite case, i.e.,, when LN = T and

The relative bias of the mean

RB™™0 (m) =

exp(c?/12~Coyy)

Ir(l-a)

where g < 1, and from eq. (79) we get that

-1,

(78)

(79)

(80)
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o < Jur'(l) = 1.2825. (81)
The relative bias of the variance is
exp(o” +2C0t,;)| exp(a?) -1]

RBM (var) = -1, (82)
r(1-20,)-T'*(1-a,)

(see Fig. 22), where a6 < 0.5, and from eq. (79) we get that o'is
< "‘”2(1) = 0.64127.

The relative bias of quantile is given by

(83)

RB(MLM)(xP)=fJ_,£__~__1= exP(H+O'F,,) 1= eXP(OGLGC'i'O'tI,)_l (84)

*oLG (_-5]; n (1 p )]’“{.a (—.]n (]_ -p ))"am

and is presented in Fig. 23 where it is compared with MOM and LMM approxima-
tions.

LD as hypothetical distribution
- MLM approximation. MLM gives the following system of equations:

1 _ 1
20,80 2Y

= (1= )T (14 ay,) - 1, (85)

B, = OpS
= Ty

= ) (86)
r'(l-o,.)

The y.p(0t¢) relationship is shown in Fig. 12. The y.p(;g) function is similar to the
0.6(yip) functions for the (T' = LD, F = LG) case while its graph lies closest the yip
axis. Equation (86) is identical with eq.(43), which points out that the MLM estimate
of the mean remains unbiased if LD serves as the assumed distribution. Note that for

(T =LD; F = LD) RB of the mean is an increasing function of ¢,;p (Fig. 14) reaching
96% for Curp= 1.

~ The relative bias of the variance

1 1 |
RBMM (yvar) = -1 (87)

is displayed in Fig. 24,
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The relative bias of quantile resulting from adopting LD and MLLM is

RBMH0 (x ) = Tod (2 Brp) T (1-t5) [;ln(l‘l’)]am -1 (88)
oL [t oo (Yo ):]
is displayed in Fig. 25 together with one of the MOMs, Comparing Figs. 25 and 15,

one can see that the ML-bias is much smaller for (T = LG; F = LD) than in the oppo-
site case, i.e. (T= LD, F = LG).

Gamma as hypothetical distribution

MLM gives the following system of equations:

A £ T (10,5 ), (89)

C‘Cr'u

InA-w(A) = InI'(1-0,5) - 2,,C. (90)

Equation (89) is identical with eq. (58), reminding that tt  MLM estimate of the mean

is unbiased if Gamma serves as the hypothetical distribu 1on. The (o) relationship
resulting from eq. (90) is shown in Fig. 16.

The relative bias of variance

1
A[r(1—2am)/1ﬂ(1-—am)—1]
is displayed in Fig. 26 together with one of LMMs. Both of them are about two orders
lower than those of the opposite case (Fig. 18), i.e., when Ga = T and LG = F.

The relative bias of quantiles resulting from adopting the Gamma distribution
and MLM to LG

RBMHO (var) =

-1 °1)

F%lilaj 974 . varX

LY true} Ba flalxe

1]

N
~10 <
-20

P,

N

’///
Z4
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- MLM -esti i ‘
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Fig. 27. Asymptotical bias of Ga MOM, Ga LMM and Ga MLM-estimated quantile vs. prob-
ability of exceedance for some selected values of the true coefficient of variation ¢,.6.

tha (A') F(l —(i:,G ) =1 (92)
ﬂ.[—ln(l— p)|
is shown in Fig. 27. Comparing Fig. 27 and Fig. 19, one can see that the MLM-bias is

much smaller when Gamma is taken as hypothetical distribution than in the opposite
case.

RBY™(x) =

6. DISCUSSION OF RESULTS

Tables 1, 2 and 3 illustrate in a concise form the results obtained for two cases: when
LG is the true distribution and other PDFs are false and when the LG PDF is used for
approximation of other PDFs. They refer always to the true value of the coefficient of
variation.
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Table 1
Asymptotic relative bias (%) of mean by the MM approximation
Probability Distribution Function (PDF)
True ¢, Log-logistic Log-normal Linear diffusion Gamma

True False True False True False True False
02 52 -1.7 3.2 0.1 3.1 0 4.3 0
0.4 16.6 -3.5 11.3 0.7 10.6 0 235 0
0.6 35.6 -5.1 28.5 ~1.5 24,7 0 152.1 0
0.8 62.6 6.6 64.2 -2.5 49.3 0 NE 0
1.0 97.8 -7.8 150.9 ~3.4 96.4 0 NE 0

NE = not existing
Table 2
Asymptotic relative bias (%) of variance by the MLM approximation
Probability Distribution Function (PDF)
True ¢, Log-logistic Log-normal Linear diffusion Gamma

True False True False True False True False
0.2 231 -24.4 156 —21.0 153 -20.3 215 -16.7
0.4 863 ~40.2 .577 -38.9 517 ~36.8 3794 -33.8
0.6 NE | -526 | NE | 534 | NE | -s0.1 | NE | -486
0.8 NE -62.3 NE -64.5 NE -60.7 NE -60.3
1.0 NE -69.8 NE -72.6 NE —-68.8 NE -69.0

NE = not existing

It can be seen from Table 1 that all LG MLM-approximations of the used PDFs pro-
duce much greater relative asymptotic bias than in the reverse case when approxi-
mated by other PDFs. The use of LG as an approximation of another PDF results even
in infinite or indefinite bias of the mean as is for the Ga PDF. In both cases, the bias is
growing with the value of the variation coefficient. The situation is even more dra-
matic for the MLM relative bias of the variance presented in Table 2, from which it

follows that the use of LG as an approximation gives very high bias for ¢,, rising fast
to infinity in between ¢, = 0.4 and 0.6.
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Table 3
Asymptotic relative bias (%) of variance by the MLM approximation
Probability Distribution Function (PDF)
True c, Log-logistic Log-normal Linear diffusion Gamma

True False True False True False True False
0.2 175 | -14.1 26,6 | -19.7 NA NA 289 | -20.6
04 343 ~22.9 59.3 -31.3 NA NA 73.6 | -34.2
0.6 59.2 -31.1 138.3 -42.5 NA NA 2179 | -46.8
0.8 103.1 -38.8 541.0 -52.5 NA NA NE ~57.5
1.0 201.3 —-46.1 NE -61.0 NA NA NE -66.0

NE = not existing, NA = not available

Compared to MLM, LMM (Table 3) extends the range of ¢, for which asymptotic
relative bias of variance exists and lowers the difference between the relative biases of
variance for (T = LG, H = non—-LG) and (T = non—LG, H = LG) cases. As expected,
absolute values of bias are lower than corresponding values of MLM bias in Table 2.

The very first glimpse at Tables 4a, b, ¢ confirms our previous findings in respect
to magnitude of bias of various estimation methods (Strupczewski et al., 2001). The
value of RB of the upper quantiles is smallest for MOM and largest for MLM. The
bias of LMM occupies an intermediate position. Furthermore, the relative asymptotic
bias (RB) of quantiles corresponding to the upper tail is an increasing function of the
true value of the coefficient of variation (c,).

The asymptotic relative bias of the MOM and LMM quantiles for p = 10% seems
to not essentially discern the (T = LG, H = non—-LG) case from (T = non-LG, H =
LG) for low ¢, values because Table 4a shows almost the same values in columns True
and False. For higher ¢,, the LL column still exhibits the pattern for low ¢y, while the
differences in the bias in True and False columns for other PDFs increase, especially
for LMM. As a rule, the MLM bias for (T = non-LG, H = LG) is much greater than in
the opposite case, i.e. (T = LG, H = non-LG).

From among the PDFs used, LL seems to be the best approximation for LG as the
absolute values of LL MOM and LMM bias are the lowest. Using MLM destroys the
symmetry exhibited by MOM and LMM: the absolute MLM values for the (T =
non-LG, H = LG) case are about one order or more greater than those for the (T = LG,
H = non-LG) case. The bias of the Ga approximation by LG exhibits the greatest dif-
ferences growing fast with true ¢, and reaching ca. 550% for ¢, = 1, compared to 6%
for (T = Ga, H = LG).
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Table 4a

Asymptotic relative bias (%) of quantile with probability of exceedance p (%) obtained
by the various approximation methods (p = 10%)

Probability Distribution Function

True c, | Method | Log-logistic Log-normal Linear diffusion Gamma

True False True False True False True False

MOM | -0.4 0.4 -2.0 2.1 -4.1 4.3 -2.0 2.0
0.2 LMM 1.0 -1.3 0.0 -0.2 NA NA 0.2 -0.3
MLM | 163 -3.5 97 -0.4 12 1.5 13.0 0.1

MOM | -238 2.9 ~7.0 7.5 7.4 8.0 -7.8 8.4
04 LMM 0.1 -1.8 -2.5 1.5 NA NA -2.6 1.2
MLM | 327 —-0.0 19.8 -0.7 17.7 0.5 38.1 1.3

MOM | 5.1 54 | -123 140 | -13.5 15.6 | -15.1 17.8
0.6 LMM | -14 -2.9 -0.5 3.7 NA NA -8.2 3.6
MLM | 472 -~7.8 297 -0.9 23.3 1.8 91.0 2.9

MOM | -6.6 1.1 | -16.7 200 | -189 234 | =223 28.7
0.8 ILMM [ =29 | -34 | -10.8 5.8 NA NA | -15.7 6.0
MLM | 59.0 -9.0 39.1 -1.1 25.9 3.3 | 2164 4.6

MOM | -7.6 82 | -19.9 249 | 232 30.2 | -285 39.9
1.0 IMM | 4.1 ~4.3 | -14.9 7.5 NA NA | -24.2 8.2
MLM | 68.1 -9.8 477 -1.2 259 47 | 548.2 6.1

The remarks concerning Table 4a refer essentially to the results presented in
Table 4b and 4c. The differences lie generally in greater absolute values of the corre-
sponding biases, faster increase of bias with the true coefficient of variation, ¢, , and
clearly higher LMM biases compared with MOM.

The 0.1% quantile bias for MOM and LMM does not exceed ca. 60% (in abso-
lute values) while the difference between the MLM bias for (T = LG, H = non—-LG)

and (T = non—LG, H = LG) cases rapidly increases, reaching ca. 8x10°% for (T = Ga,
H=LG).
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Table 4b

Asymptotic relative bias (%). of quantile with probability of exceedance p (%) obtained
by the various approximation methods (p = 1.0%)

Probability Distribution Function

True ¢, | Method | Log-logistic ‘Log-normal Linear diffusion Gamma

True False True False True False True False

MOM 6.3 —6.0 10.1 -9.2 7.9 ~7.3 123 | -11.0
0.2 LMM 104 —9.2 163 | -13.0 NA NA 192 | -14.6
MLM | 490 | -122 42.1 | ~133 388 | -11.7 546 | -13.9
MOM 5.2 —4.9 9.2 —-8.4 0.8 -8.9 152 | -13.2

0.4 LMM 151 | =137 26.0 | -19.0 NA NA 36.5 | -23.3
MLM | 1112 | —20.2 98.0 | -22.0 937 | -21.3 | 1935 | -23.2

MOM 1.7 —-1.7 2.2 -2.1 28 | .27 10.2 -6.2
0.6 .MM 162 | —164 29.2 | -21.6 NA NA 484 | 282
MLM | 1781 | —254 | 1674 | -27.7 150 ~26.0 | 6585 | -29.0

MOM | -1.5 1.5 —6.7 7.1 -6.8 7.3 0.9 -0.9
0.8 LMM 157 | —18.2 279 | 225 NA NA | 529 | -30.8
MLM | 2409 | —288 | 2482 | -31.3 | 2015 | -28.5 |2935 -32.5

MOM | -39 4.1 | -15.0 17.7 | —-16.4 19.6 ~9.5 10.5
1.0 LMM 148 | —19.5 239 | 22.6 NA NA 499 | -32.3
MLM | 2949 | —31.1 | 337.8 | -33.7 |242.6 | -300 20287 | -34.7

7. CONCLUDING REMARKS

An analytical method for evaluation of the resistance of the estimates of moments and
quantiles obtained by various estimation methods with respect to the distribution
choice has been presented and illustrated using five two-parameter distribution func-
tions. It is shown that the bias caused by the wrong distribution choice cannot be dis-
regarded in evaluation of the efficiency of estimation methods in FFA. The relative
asymptotic bias of the MIL.M-estimate of moments can be .considerable and grows
rapidly with increasing value of the coefficient of variation, while the MOM estimates
of the two first moments are asymptotically bias-free. Similarly, the MOM estimate of
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Table 4c

Asymptotic relative bias (%) of quantile with probability of exceedance p (%) obtained
by the various approximation methods (p = 0.1%)

Probability Distribution Function

True ¢, | Method | Log-logistic Log-normal Linear diffusion Gamma

True | False | True | False | True | False True False
MOM | 139 [ -122 30.0 | -23.1 279 | -21.8 356 | ~263
02 | LMM | 209 |-16.7 421 | -27.5 NA NA 49.3 | =302
MLM | 909 | -20.2 929 | -278 88.7 | —26.6 122.0 | -294
MOM | 146 | -127 415 | -29.3 45.5 | -31.2 60.1 | —37.5
04 | LMM | 33.1 | -247 793 | ~404 NA NA 112.2 | —46.6
MLM | 2363 | -32.5 | 2589 | 433 | 2544 | -434 586.9 | —46.5
MOM | 10.2 -93 372 | 272 45.6 | -31.4 68.0 | —40.5
06 | LMM | 382 |-289 | 1052 | -4638 NA NA 1804 | —55.5
MLM | 4254 | -400 | 5292 | -522 | 498.5 | -52.1 | 3366 | —56.2
MOM 5.4 -5.1 255 | =203 36.8 | -26.9 62.6 | —38.5
0.8 LMM | 395 | -314 | 1188 | -500 NA NA 241.8 | —60.6
MIM | 631.1 | —44.7 | 9308 | -57.4 | 808.9 | -s7.0 | 34714 | —618

MOM 1.5 —-1.4 120 | ~10.7 242 | -194 502 | -33.4
1.0 LMM | 392 | -330 | 1228 | -51.8 NA NA 2853 | —63.6
MLM | 3279 | -47.7 | 1482 -60.8 | 1151 -60.0 | 792883 | —65.2

the quantiles of upper tails is more resistant to distribution choice than is the MLM
estimate. The bias of LMM estimates lies between these two. Since the MLM used as
the approximation method is irreversible, the asymptotic bias of the MLM-estimate of
any statistical characteristic is not asymmetric as is for the MOM and LMM.

It is shown numerically that employing the Log-Gumbel distribution to some se-
lected non-Log-Gumbel true distributions results in an asymptotical bias of quantiles
and, depending on the estimation method used, in asymptotical bias of mean and vari-
ance. While asymptotical biases of MOM and LMM-estimated quantiles lie relatively
close to each other, the MLM-estimated bias of quantiles is in most cases by at least
one order higher, reaching as high a value as ca. 800,000% for X019 for (T = Ga,
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H = LG). These findings, illustrated with values in Tables 4a, b, and c, essentially
diminish the practical usefulness of MLM for the Log-Gumbel as the hypothetical
distribution because its efficiency does not compensate for the (frequent) huge bias
produced by the assumption of a false PDF in the region of small exceedance
probability quantiles the user is often interested in. The bias produced by the other
methods (MOM and LMM) is limited to several tens per cent.

Comparing the results of Sections 4 and 5 allows to answer the question of how
to choose a PDF when each of LG (or LL) and LN, LD and Ga PDFs with MLM esti-
mation is taken into consideration. If we accept LN, LD, or Ga as a hypothetical distri-
bution, we get the MLM bias of reasonable magnitude in upper quantiles of more than
one order less than the bias obtained in the case of LG or LL as a hypothetical distribu-
tion. It is hoped that this study provides sufficient rationale for rather careful applica-
tion of LG and LL in hydrology, especially in FFA.
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