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Abstract: Three Archimedean copulas were employed to model annual maximum flood peak data of different lengths. Estimation methods
based on ranks were employed for parameter estimation. Marginals were modeled with the generalized extreme value (GEV) distribution.
Then, uncertainty in modeling results was investigated with the change in data length. The joint and conditional return periods were also
analyzed with the selected copula model to see how it varied with data length. Results showed that the accuracy of modeling deteriorated
with the decrease in data length and that the best-fitting copula model depended on the data length. The uncertainty of modeling results
may be due to the uncertainty of the flow itself when the data length is shortened. The data length has a negative effect not only on copula
modeling but may also have an adverse effect on the marginal, which is an important factor when using a copula model to do bivariate
analysis. DOI: 10.1061/(ASCE)HE.1943-5584.0001039. © 2014 American Society of Civil Engineers.
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Introduction

In recent years, copulas have been used for multivariate hydrologic
modeling, such as frequency analysis of flood volume, duration, and
magnitude (Zhang and Singh 2006; Parent et al. 2014); drought
modeling (Song and Singh 2010; Kao and Govindaraju 2010; Ma
et al. 2013); modeling the dependence between storm or rainfall var-
iables (Zhang and Singh 2007; Vandenberghe et al. 2010); stream-
flow simulation (Lee and Salas 2011); and assessing the interaction
between chlorophyll a and environmental variables (Wang et al.
2012). The main advantage of the copula method is that it can cap-
ture the dependence of variables irrespective of their marginal dis-
tributions. Copulas have also been discussed relating to uncertainty
in many areas, including probabilistic uncertainty addressed by cop-
ulas (Kumar 2011), precipitation uncertainty modeling (Bárdossy

and Pegram 2009; AghaKouchak et al. 2010), and expression of
uncertainty measured with copulas (Possolo 2010; Serinaldi 2013).

Data of sufficient length are needed for dependence modeling in
hydrology, whether a copula or any other method is used. Long-term
data are essential for reliable modeling and accurate parameter esti-
mation. However, in developing countries, it is difficult to obtain data
of sufficient length. The question then arises: What is the influence of
data length on the modeling results? Therefore, it is important to an-
alyze the impact of data length on the uncertainty in the copula mod-
eling results. Xia et al. (2004) investigated the impact of data length
on the uncertainty of a land surface model—i.e., the chameleon sur-
face model—and found that different data lengths were required for
obtaining optimal parameters. Genest et al. (2009) investigated the
effect of sample size on the results of goodness of fit for various com-
binations of the degrees of dependence and families of copulas. Su
and Tung (2013) evaluated the uncertainty due to sampling errors in
flood-damage mitigation and showed that long data length improved
the reliability of estimators and reduced sampling error and uncer-
tainty. Hao and AghaKouchak (2014) used a nonparametric copula
as a replacement of the parametric copula (Hao and AghaKouchak
2013) to establish a multi-index drought monitoring model and found
that the model needed at least 30 years of data to avoid bias. How-
ever, it is not clear how the results of the Archimedean copula mod-
eling in hydrology are influenced by the data length. Although
uncertainty can be attributed to many factors, including physical
measurements, the uncertainty in this paper is considered from the
perspective of statistical inference. Therefore, the objective of this
paper is to determine how the hydrological data lengths impact
the bivariate Archimedean copula modeling results. The Archime-
dean copulas with two-parameter estimation methods will be used
to model the bivariate distributions, and the best-fitting copula model
will be selected to analyze the joint and conditional return periods of
the data in order to see how the data length would affect the results.

Methodology

Archimedean Copulas

A copula is a function linking a multivariate probability dis-
tribution to its marginal probability distributions (Nelsen 1999;
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Salvadori and De Michele 2013). For a bivariate case, let X and Y
be two random variables with cumulative distribution functions
(CDFs) FXðxÞ ¼ U and FYðyÞ ¼ V; here, U and V are uniformly
distributed random variables. Then, a two-dimensional (2D) copula
can be constructed as

FX;Yðx; yÞ ¼ Cθ½FXðxÞ;FYðyÞ� ¼ CθðU;VÞ ð1Þ
where FX;Yðx; yÞ = bivariate distribution of X and Y; and
Cθ = copula function with parameter θ.

The Archimedean copulas have been widely used in hydrology,
for they can be easily constructed; there is a great variety of copulas
that belong to this family, and they possess several desirable proper-
ties (Nelsen 1999). Let a generating function φðtÞ be a continuous,
strictly decreasing function that satisfies φð1Þ ¼ 0 and φ−1ðtÞ ¼ 0
when φð0Þ ≤ t ≤ ∞, t ¼ u, v. Then, the Archimedean copula can
be expressed as

Cθðu; vÞ ¼ φ−1½φðuÞ þ φðvÞ�; 0 < u; v < 1 ð2Þ
Commonly used are three copulas, including the Gumbel-

Hougaard (G-H) copula, the Clayton copula, and the Frank copula,
which are from the Archimedean copula family (Genest and Favre
2007). These three copulas were applied in this study. The corre-
sponding Cθðu; vÞ for the three copulas can be expressed as

Clayton ½maxðu−θþv−θ−1,0Þ�−1=θ; θ∈ ½−1;∞Þ=f0g
G-H expð−½ð− lnuÞθþð− lnvÞθ�1=θÞ; θ∈ ½1;∞Þ
Frank −1=θ ln½1þðe−θu−1Þðe−θv−1Þ=ðe−θ−1Þ�; θ∈ ð−∞;þ∞Þ

ð3Þ

Parameter Estimation

The copula parameter estimation methods can be divided into three
types: fully parametric, semiparametric, and nonparametric. Fully
parametric estimation contains the classical maximum likelihood
estimator (MLE) and the inference function for marginal (IFM)
(Joe 1997) method, among others. These methods assume param-
etric copula distribution and its marginal distributions. Semipara-
metric estimation (SPE) is derived from parametric estimation,
which is expressed as

lðθÞ ¼
Xn
i¼1

log½cθðFXðxiÞ;FYðyiÞ� ð4Þ

where FðxiÞ and FYðyiÞ = empirical CDFs of random variables X
and Y. Because SPE substitutes the assumed marginal CDFs of the
random variables with their empirical CDFs, it can be regarded as a
special case of the IFM method. Kim et al. (2007) have shown that
SPE is superior to the IFM method in most situations when mar-
ginal distributions are unknown, which is the case in this study.
Nonparametric estimation methods include estimation from
Kendall’s tau (EKT). Relationships between Kendall’s tau and
parameter θ for the three copulas can be calculated as follows:

Clayton τ ¼ θ=ðθþ 2Þ
G-H τ ¼ 1 − 1=θ

Frank τ ¼ 1 − 4=θþD1ðθÞ=θ ð5Þ
where τ = Kendall’s tau; and D1ðÞ = first Debye function.

Another nonparametric estimation method is based on the
kernel estimator (Chen and Huang 2007).

For discussing the impact of hydrological data length on model
results, rank-based parameter estimation was used in this paper.

To that end, SPE and EKT were chosen because the bivariate dis-
tribution of two variables should not be affected by their marginal
distributions, and models based on ranks are more reasonable than
those inferred from some assumed distributions.

Goodness of Fit for Various Data Lengths

In order to evaluate how data length impacts the uncertainty of cop-
ula modeling, one must first determine the uncertainty of the time
series itself due to the change in data length. The uncertainty of a
system is related to the information it yields. Gaining information
means reducing freedom of choices—i.e., reducing uncertainty.
In another words, as information is added to a system, the uncer-
tainty of the system decreases. Therefore, it can be inferred that if
a system exhibits more uncertainty, more information should be
collected in order to better describe the system. Entropy represents
the uncertainty of a system before receiving any information. As a
measurement of uncertainty, entropy has been used in hydrology
(Wang et al. 2007, 2009; Wang 2010; Zeng et al. 2012; Singh
2013; Hao and Singh 2013). This study calculated marginal en-
tropy to see how the uncertainty of the two variables changes.
The entropy for a random variable X is expressed as

HðXÞ ¼ −XN
i¼1

pðxiÞ logpðxiÞ ð6Þ

where pðxiÞ = probability of X ¼ xi. Joint entropy is also imple-
mented to determine the variation of total uncertainty contained in
the combination of the two variables with the variation in data
length. The joint entropy of X and Y can be denoted as

HðX;YÞ ¼ −XN
i;j¼1

Pij logPij ð7Þ

where HðX;YÞ = joint entropy of X and Y; and Pij = joint prob-
ability of X ¼ xi, Y ¼ yi. If X and Y are independent, then the joint
entropy of the two variables would be

HðX;YÞ ¼ HðXÞ þHðYÞ ð8Þ
Because in many cases the two variables can be dependent to

some extent, here, the mutual information is discussed, which is
a measure of the dependence between the two variables shown
as follows:

TðX;YÞ ¼ HðXÞ þHðYÞ −HðX;YÞ ð9Þ
where TðX;YÞ = mutual information between X and Y.

In order to investigate the effect of data length on modeling re-
sults, data of different lengths from the original data were selected.
Then, using the aforementioned estimation methods, the simulation
for each bivariate data length was carried out as follows: (1) calcu-
late parameter θ of the three Archimedean copulas using the EKT
estimation method, (2) calculate parameter θ using the SPE method,
and (3) construct copula models with the calculated θ. Both Akaike
information criterion (AIC) and formal goodness-of-fit methods
were used.

The AIC was applied to determine the goodness of fit of copula
modeling (Zhang and Singh 2006). It can be expressed in two ways

AIC ¼ 2m − 2 logðLÞ ð10Þ

AIC ¼ n logðMSEÞ þ 2m ð11Þ
where L = maximum value of the likelihood of the model; n =
the length of data; m = number of parameters, which in this

© ASCE 05014019-2 J. Hydrol. Eng.
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paper equals 1; and MSE = mean square error, which can be
written as

MSE ¼ 1

n

Xn
i¼1

ðpei − piÞ2 ð12Þ

where pi = theoretical joint probability; and pei = empirical joint
probability (Gringorten 1963) given as

pei ¼ pðX ≤ xi;Y ≤ yiÞ

¼
P

n
j¼1 Number of ðxj ≤ xi; yj ≤ yiÞ − 0.44

nþ 0.12
ð13Þ

Following Zhang and Singh (2006), Eq. (11) was chosen to
evaluate the goodness of fit of the copula models. The modeling
result is most accurate when the corresponding AIC value reaches
the minimum.

In order to better justify how well the copula models perform,
formal goodness-of-fit tests were also employed. The Cramér-von
Mises functional Sn (Genest et al. 2009) was used for testing, and
the corresponding approximate P-value was deduced through the
Monte Carlo method (Genest et al. 2009). A small value of Sn rep-
resents good modeling performance. With the AIC value and Sn
value derived from different data lengths and estimators, the im-
pacts of data lengths on the Archimedean copula modeling results
were compared and analyzed.

Marginal Distribution

The generalized extreme value (GEV) distribution was used to
model the marginals. Its cumulative probability distribution and
density function can be expressed, respectively, as

Fðx;μ; σ; kÞ ¼ exp

�
−
�
1þ k

�
x − μ
σ

��−1=k�
ð14Þ

fðx;μ; σ; kÞ ¼ 1

σ

�
1þ k

�
x − μ
σ

��ð−1=kÞ−1

× exp

�
−
�
1þ k

�
x − μ
σ

��−1=k�
ð15Þ

where μ = location parameter; σ = scale parameter; and
k = shape parameter.

Joint Return Period and Conditional Return Period

The joint return periods of two data sets are of practical use in
hydrological bivariate modeling (Gräler et al. 2013; De Michele
et al. 2013; Volpi and Fiori 2014). When the change in data length
affects copula modeling, it consequently may have an impact on the
bivariate distribution of the two data sets. Further, because the joint
return periods are derived from the joint distribution, one would
wonder how the joint return periods of two data sets will change
when their bivariate distributions are affected by the change in data
length. In this paper, the marginal return periods are considered
to be TXðxÞ and TYðyÞ, respectively. Their joint return period
would be

TX;Yðx; yÞ ¼
1

FX;YðX > x ∪ Y > yÞ ¼
1

1 − FX;Yðx; yÞ

¼ 1

1 − Cθ

��
1 − 1

TXðxÞ
	
;
�
1 − 1

TY ðyÞ
	
 ð16Þ

where Cθðf1 − ½1=TXðxÞ�g; f1 − ½1=TYðyÞ�gÞ = cumulative distri-
bution of X and Y obtained from copula modeling.

The return period of variate X > x under the condition of
variate Y > y can be deduced by the conditional return period
expression as

TðX > x=Y > yÞ ¼ 1=FðX > x=Y > yÞ ¼ FYðY > yÞ
FðX > x;Y > yÞ

¼ 1 − FYðyÞ
1 − FXðxÞ − FYðyÞ þ Cθ½FXðxÞ;FYðyÞ�

ð17Þ

where Cθ½FXðxÞ;FYðyÞ� = cumulative probability of X and Y cal-
culated by the fitted copula model; and FXðxÞ and FYðyÞ =
cumulative probabilities of X and Y obtained from their marginal
distributions.

Application of Copula Models

Data Selection and Description

Annual maximum flood magnitude (AMFM) data from Cuntan
Station and Yichang Station were collected. Both stations are on
the Yangtze River, which is the largest river in China. The data sets
have a length of 109 years from 1893 to 2004 (1942 to 1944 not
included) and were plotted against years, as shown in Fig. 1. The
annual maximum floods at Yichang Station and Cuntan Station ex-
hibited similar changing variations throughout the 109-year record.

When selecting the data, the possibility that data from dif-
ferent parts of the original series will bias the modeling results
should be ruled out. For this purpose, 80-year-long, 60-year-long,
50-year-long, 40-year-long, and 30-year-long data were selected
from different parts of the original 109-year record from Yangtze
River. Then, the three Archimedean copulas were employed with
empirical-based and Kendall’s tau–based parameter estimators.
Table 1 gives the AIC values of the three copula models. The mini-
mum AIC values are marked in boldface. For both estimators, for
randomly extracted data lengths of 80, 60, and 50 years, the best-
fitting copula models almost remained the same. However, for data
lengths of 40 and 30 years, the best-fitting copula models varied
from the G-H copula to the Frank copula for the empirical-based
estimator and from the G-H copula to the Frank copula and the
Clayton copula for the Kendall’s tau–based estimator. However, the
best-fitting copula models remained the same for over 60% of all

Fig. 1. Plot of the AMFM data sets from the Yangtze River

© ASCE 05014019-3 J. Hydrol. Eng.
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the random samples. Even for the most unstable case—i.e., the data
length of 30 years—the differences in the AIC values between each
copula model were small. Thus, on the whole, it can be inferred that
the modeling results for a given data length do not depend on the
period that is selected from the original record.

The authors deducted 5 years each time from 109 to 20 years,
and 18 different lengths of data sets were obtained. Table 2 provides
the statistical characteristics, including mean, standard deviation,
coefficient of skewness, and lag-1 autocorrelation relating to differ-
ent selected lengths of data for both stations. The statistics of the
data sets varied when the data length was reduced. For each data

length, the extracted data had a small autocorrelation, which proved
that the data could be assumed as independent and could be mod-
eled using a copula model. Then, the correlation coefficients of the
two sets of data were also calculated for different lengths, as given
in Table 2. The AMFMs of the two stations always exhibited strong
positive correlations, but the correlation coefficient decreased as
the data length was reduced.

The marginal entropies of the AMFM data series of both
Yichang Station and Cuntan Station were plotted against data
lengths, as were the joint entropy and mutual information between
the two series, as shown in Fig. 2. For each data length, the entropy

Table 1. Akaike Information Criterion Values of Copula Models for Different Parts of Original Data Length of the Yangtze River

Data
length Period (years)

Empirical-based Kendall-based

Clayton Frank G-H Clayton Frank G-H

80 1893–1975 −555.82 −702.42 −643.44 −605.19 −697.24 −675.16
1895–1977 −548.88 −702.39 −635.99 −601.92 −696.03 −670.22
1899–1981 −526.35 −694.96 −702.26 −583.33 −691.03 −704.27
1902–1984 −509.02 −699.74 −692.95 −585.88 −695.17 −700.29
1904–1986 −497.85 −686.1 −694.49 −577.23 −682.32 −700.14
1907–1989 −497.09 −700.78 −651.6 −591.9 −698.23 −677.37
1910–1992 −489.92 −708.71 −639.22 −596.48 −705.79 −671.57
1912–1994 −517.86 −713.31 −656.55 −600.83 −710.79 −682.82
1917–1999 −519.73 −706.71 −640.59 −602.42 −707.45 −671.72
1922–2004 −516.06 −698.24 −630.14 −593.19 −697.24 −663.36

60 1893–1955 −421.66 −492.03 −469.18 −433.38 −487.99 −482.48
1897–1959 −416.91 −496.59 −477.58 −432.7 −493.05 −491.81
1902–1964 −406.71 −511.52 −503.7 −434.15 −507.5 −519.8
1904–1966 −401.75 −493.59 −506.44 −426.67 −490.72 −516.91
1909–1971 −388.35 −539.64 −465.18 −461.51 −534.09 −496.03
1915–1977 −369.72 −517.76 −442.36 −451.32 −510.83 −472.54
1923–1985 −381.59 −530.5 −483.74 −454.46 −524.16 −494.42
1931–1993 −387.11 −521.03 −460.54 −465.98 −515.86 −477.8
1936–1998 −393.61 −510.52 −458.39 −453.05 −506.24 −470.81
1945–2004 −403.53 −509.06 −446.81 −452.69 −504.33 −462.28

50 1893–1943 −352.95 −406.14 −403.26 −359.9 −403.55 −404.14
1902–1954 −335.67 −401.26 −397.85 −352.02 −398.18 −403.28
1907–1959 −333.58 −402 −387.16 −362.16 −414.47 −405.18
1912–1964 −342 −439.13 −382.53 −380.31 −432.09 −406.02
1915–1967 −333.55 −438.02 −378.95 −377.33 −429.74 −400.95
1927–1979 −313.3 −433.35 −366.89 −372.64 −422.16 −385.66
1930–1982 −326.82 −409.89 −372.85 −385.57 −405.52 −380.03
1937–1989 −326.82 −409.89 −372.86 −385.57 −405.52 −380.03
1945–1994 −366.14 −422.69 −374.63 −398.17 −417.04 −381.39
1955–2004 −314.09 −392.79 −371.05 −355.99 −395.88 −384.91

40 1893–1932 −276.02 −304.9 −318.76 −279.1 −304.49 −319.36
1897–1936 −273.53 −307.17 −323.72 −278.3 −307.02 −324.64
1904–1946 −259.42 −311.82 −322.5 −273.84 −309.69 −321.38
1911–1953 −257.46 −316.46 −302.76 −281.48 −314.26 −308.19
1918–1960 −270.44 −331.1 −290.22 −297.51 −326.24 −306.62
1927–1969 −281.46 −341.66 −298.25 −306.57 −332.8 −307.22
1937–1979 −259.34 −331.69 −286.11 −303.44 −323.18 −297.51
1953–1992 −251.15 −310.48 −278.97 −298.79 −312.44 −293.34
1960–1999 −237.35 −294.7 −285.81 −267.93 −299.88 −298.43
1965–2004 −227.95 −277.91 −281.49 −255.49 −284.13 −289.82

30 1893–1922 −193.79 −220.81 −238.94 −197.31 −220.23 −235.27
1897–1926 −192.49 −222.69 −246.54 −198.23 −222.47 −243.5
1902–1931 −192.42 −215.2 −233.09 −196.01 −215.15 −232.73
1911–1940 −201.99 −234.55 −224 −221.2 −237.4 −232.08
1919–1951 −197.2 −236.56 −219.96 −215.4 −234.02 −223.25
1926–1958 −201.2 −242.45 −211.26 −214.02 −234.81 −221.11
1935–1967 −208.59 −229.92 −225.44 −212.72 −225.17 −224.56
1945–1976 −231.64 −228.32 −205.89 −236.07 −223.24 −208.79
1953–1982 −198.59 −223.22 −209.99 −224.19 −223 −212.65
1960–1989 −169.78 −222.91 −211.13 −204.63 −226.89 −221.85

Note: Bold values indicate the minimum AIC values.

© ASCE 05014019-4 J. Hydrol. Eng.
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of Yichang Station was larger than that of Cuntan Station, which
means that the AMFM data series of Yichang Station contained
more uncertainty than did Cuntan Station. As the data length
became shorter, the marginal entropy decreased for both stations.
This means that the AMFM data series of Yichang and Cuntan
Stations become less uncertain and yielded less information as
the data length was shortened. It can be deduced from Fig. 2 that
the total uncertainty of the two stations, which is represented by the
joint entropy, decreased as the data length was reduced. As mutual
information decreased, the AMFMs of the two stations became less
dependent when the data length shortened.

Copula Modeling Results

Intuitively, longer data lead to better modeling results—i.e., smaller
AIC (Sn) values. However, it may be worth discussing how AIC
(Sn) values of different Archimedean copulas change with the
change in data length for different parameter estimators.

As given in Table 3, for the data of various lengths extracted
from the original record, the three Archimedean copulas performed

differently for the two estimation methods. The smallest values—
i.e., the best-fitting copulas and estimation methods—are shown in
boldface. The AIC value, in general, becomes larger as the data
length becomes shorter, which is expected. For each data length,
the best-fitting copula model and estimation method were not in-
variable. In general, SPE performed better than EKT, except for the
data length of 70, 55, 45, and 40 years. When using SPE, the best-
fitting copula model changed from the Frank copula to the G-H
copula, as the data set length reduced. In the case of EKT, the best-
fitting copula model exhibited the same variation, as did SPE. From
another perspective, when using the Clayton copula, EKT yielded
better results than SPE, whereas for the Frank copula, SPE per-
formed better than EKT. When using the G-H copula, EKT
performed better for a data length longer than 35 years, and SPE
performed better for a data length of less than 35 years. Therefore, it

Table 2. Statistics of the Data Sets from the Yangtze River

Data
length
(years)

Yichang Station Cuntan Station

Mean
(cm)

Standard
deviation

Coefficient
of skewness Autocorrelation

Mean
(cm)

Standard
deviation

Coefficient
of skewness Autocorrelation

Correlation
coefficient

109 50,228 8,613.6 0.041 0.147 50,385 11,440.1 0.587 0.163 0.717
100 50,203 8,742.6 0.043 0.136 50,799 11,610.0 0.553 0.136 0.720
95 50,515 8,691.2 0.060 0.121 51,199 11,633.8 0.548 0.121 0.707
90 50,512 8,736.2 0.052 0.151 51,386 11,688.5 0.547 0.151 0.700
85 50,172 8,654.0 0.040 0.123 51,002 11,417.2 0.436 0.123 0.688
80 50,429 8,748.2 −0.010 0.108 51,616 11,363.2 0.393 0.108 0.686
75 50,765 8,536.4 0.024 0.067 51,985 11,464.8 0.365 0.067 0.670
70 50,896 8,578.1 −0.002 0.103 52,360 11,303.7 0.418 0.103 0.648
65 50,955 8,826.3 −0.017 0.107 52,418 11,546.7 0.430 0.107 0.644
60 50,640 9,084.2 0.073 0.094 52,308 11,923.4 0.444 0.094 0.645
55 50,220 9,210.2 0.127 0.090 52,105 12,377.9 0.479 0.090 0.660
50 49,702 9,447.5 0.267 0.096 51,804 12,760.6 0.540 0.096 0.659
45 50,036 9,358.7 0.286 0.082 51,591 12,747.7 0.575 0.082 0.734
40 49,480 9,385.8 0.392 0.014 50,903 12,732.2 0.679 0.014 0.712
35 50,009 9,190.8 0.303 0.036 51,566 12,864.2 0.688 0.036 0.678
30 50,610 9,210.4 0.243 0.076 52,400 13,159.6 0.607 0.076 0.650
25 48,932 8,876.2 0.564 −0.140 50,408 12,666.4 0.890 −0.140 0.568
20 49,650 8,952.8 0.495 −0.200 51,415 12,845.7 0.869 −0.200 0.484
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Fig. 2. Marginal entropy, joint entropy, and mutual information for
various data lengths of data sets from the Yangtze River region

Table 3. Akaike Information Criterion Values of Copula Models for Data
Sets from the Yangtze River Based on SPE and EKT Estimators

Data
length
(years)

SPE EKT

Clayton Frank G-H Clayton Frank G-H

109 −739.96 −960.57 −925.9 −809.28 −957.75 −959.02
100 −691.15 −884.9 −849.73 −750.68 −881.63 −879.86
95 −634.93 −843.73 −795.50 −705.48 −839.01 −826.12
90 −610.94 −792.74 −763.17 −671.8 −788.29 −784.11
85 −573.37 −751.94 −691.56 −632.14 −745.5 −725.63
80 −555.82 −702.42 −643.44 −605.19 −697.24 −675.16
75 −519.99 −649.67 −611.83 −552.7 −644.41 −636.56
70 −499.22 −590.13 −572.76 −515.83 −586.62 −592.17
65 −455.67 −534.83 −514.19 −470.23 −531.02 −530.99
60 −421.66 −492.03 −469.18 −433.38 −487.99 −482.48
55 −382.28 −438.1 −442.12 −390.52 −436.21 −444.26
50 −352.95 −406.14 −403.26 −359.90 −403.55 −404.14
45 −314.18 −354.8 −363.04 −319.1 −354.27 −365.67
40 −276.02 −304.9 −318.76 −279.1 −304.49 −319.36
35 −229.12 −262.84 −281.43 −235.1 −262.13 −278.75
30 −193.79 −220.81 −238.94 −197.31 −220.23 −235.27
25 −165.92 −178.24 −188.65 −166.06 −177.8 −185.62
20 −128.56 −133.2 −141.15 −127.54 −133.06 −137.67
Note: Bold values indicate the smallest values—i.e., the best-fitting copulas
and estimation methods.
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can be concluded that the best-fitting copula model varies not only
with the change in data length but also as different estimators
are used.

The Sn values and the corresponding P-values in Table 4 exhibit
the same changing pattern as the AIC values. However, the Clayton
copula model was rejected for most of the data lengths, as shown
by the approximate P-value, which indicates that the Clayton
copula is not adequate for modeling the bivariate feature of the
AMFMs of the Yangtze River.

In order to further evaluate the effect on modeling, the AIC
values were plotted against data length for the three copulas and the
two estimation methods, as shown in Fig. 3. For all the copulas, the
AIC values increased with the decrease in data length, no matter
which estimator—SPE or EKT—was used. In other words, the
Clayton, Frank, and G-H copulas performed better for longer data
lengths. The Frank copula performed better than the other two
copulas for both SPE and EKT, followed by the G-H copula.
The Clayton copula was found to yield the worst results. In addi-
tion, as the data length became shorter, the differences between the
results of different copulas became blurred.

To illustrate the appropriateness of various copulas, the authors
selected 109-year and 40-year data lengths from the original data
and compared the joint cumulative probabilities of the empirical
copula and the three copulas, as shown in Fig. 4. The figure
demonstrates the inadequacy of the Clayton copula and the good
performance of the Frank and G-H copulas.

109 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20
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Fig. 3. Akaike information criterion values of copula models for data
sets from the Yangtze River based on SPE and EKT

(a)

(b)

Fig. 4. Joint cumulative probability obtained from different copula
models of the: (a) 109-year; (b) 40-year data sets from the Yangtze
River region

Table 4. Cramér-von Mises Statistic Sn and the Corresponding P-Value (α ¼ 5%) for Data Sets from the Yangtze River Based on SPE and EKT

Data length
(years)

SPE EKT

Clayton copula Frank copula G-H copula Clayton copula Frank copula G-H copula

109 0.1345 (0.0005) 0.0180 (0.4940) 0.0258 (0.1683) 0.0677 (0.0015) 0.0191 (0.4191) 0.0181 (0.4161)
100 0.1133 (0.0005) 0.0175 (0.5559) 0.0245 (0.1683) 0.0601 (0.0005) 0.0187 (0.4371) 0.0173 (0.4900)
95 0.1341 (0.0005) 0.0161 (0.6908) 0.0257 (0.1713) 0.0619 (0.0005) 0.0176 (0.5440) 0.0177 (0.5110)
90 0.1165 (0.0005) 0.0165 (0.6788) 0.0218 (0.3442) 0.0575 (0.0015) 0.0181 (0.5519) 0.0165 (0.6249)
85 0.1144 (0.0005) 0.015 (0.8197) 0.0289 (0.1054) 0.0558 (0.0025) 0.0171 (0.6469) 0.0181 (0.5360)
80 0.0910 (0.0035) 0.0158 (0.7917) 0.0311 (0.1114) 0.0473 (0.0065) 0.0177 (0.6229) 0.0197 (0.4261)
75 0.0860 (0.0045) 0.0169 (0.7368) 0.0266 (0.1563) 0.0534 (0.0025) 0.0189 (0.5569) 0.0181 (0.5819)
70 0.0670 (0.0095) 0.0197 (0.5350) 0.0255 (0.2433) 0.0504 (0.0025) 0.0217 (0.4271) 0.0186 (0.6119)
65 0.0698 (0.0085) 0.0212 (0.4950) 0.0301 (0.1294) 0.0531 (0.0065) 0.0236 (0.3501) 0.0220 (0.3771)
60 0.0627 (0.0175) 0.0196 (0.6399) 0.0294 (0.1653) 0.0493 (0.0065) 0.0226 (0.4491) 0.0226 (0.4031)
55 0.0629 (0.0215) 0.0223 (0.5190) 0.0223 (0.4331) 0.0512 (0.0075) 0.0251 (0.3771) 0.0212 (0.5360)
50 0.0532 (0.0465) 0.0184 (0.8097) 0.0205 (0.6059) 0.0443 (0.0245) 0.022 (0.6119) 0.0203 (0.6918)
45 0.0516 (0.0604) 0.0214 (0.6838) 0.019 (0.7168) 0.0439 (0.0135) 0.0231 (0.5390) 0.0176 (0.8826)
40 0.0505 (0.0594) 0.0247 (0.5549) 0.0196 (0.7328) 0.0443 (0.0205) 0.0264 (0.4141) 0.0195 (0.8506)
35 0.065 (0.0385) 0.0263 (0.5519) 0.0169 (0.9476) 0.0514 (0.0195) 0.0282 (0.4281) 0.0198 (0.9236)
30 0.0626 (0.0584) 0.0301 (0.4431) 0.0188 (0.9406) 0.0533 (0.0245) 0.032 (0.3861) 0.0232 (0.8706)
25 0.0438 (0.2522) 0.0321 (0.5699) 0.0233 (0.8337) 0.0448 (0.1484) 0.0346 (0.4830) 0.0290 (0.7687)
20 0.0474 (0.2443) — — 0.0530 (0.1523) 0.0465 (0.2802) 0.0414 (0.4231)

Note: The P-value is given in parentheses. Bold values indicate the smallest Sn values.
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Uncertainty Analysis and Return Periods

The uncertainty of the copula models may be due to the uncertainty
of the data series itself. Fig. 2 shows that the marginal entropy
decreases as data length shortens, as does the dependence. This
suggests that longer data length contains more uncertainty and, as a
result, is more reliable and can exhibit more natural flow character-
istics. Because the three copula models represent the joint behavior
of two random variables (i.e., AMFMs of Yichang and Cuntan
Stations), when the total uncertainty of the two variables changes,
it surely has some effect on the modeling results. As the data length
is reduced, the total uncertainty—i.e., the joint entropy—of the
AMFM series obviously decreases for the case of the Yangtze
River. The effect on the modeling results can be seen from the

variation in the choice of the best-fitting copula model and param-
eter estimator in the case of the Yangtze River.

As the joint behavior is affected by data length, it can also be of
interest to see how the joint and conditional return periods change
with data length. According to the previous discussion, the Frank
copula and SPE were chosen for modeling the data sets from the
Yangtze River. The marginals were modeled using GEV distribu-
tions. The bivariate distributions were calculated for various data
lengths.

Table 5 provides the parameters of the marginals for each data
length. The table shows that under a 95% confidence level, the
GEV distributions can be accepted for each data length. The loca-
tion parameter μ became smaller as the data length was shortened.
This trend can also be detected in the mean value of the data sets

Table 5. Parameters of GEV Distribution of the Data Sets from the Yangtze River

Data length
(years)

Yichang Station Cuntan Station

k σ μ P-value k σ μ P-value

109 −0.280 8,521.680 47,171.042 0.525 −0.097 9,933.661 45,483.641 0.838
100 −0.281 8,649.342 47,105.307 0.509 −0.110 10,195.858 45,880.218 0.765
95 −0.278 8,562.299 47,421.843 0.706 −0.105 10,169.224 46,242.223 0.814
90 −0.280 8,623.798 47,410.238 0.869 −0.108 10,247.990 46,424.105 0.782
85 −0.283 8,553.879 47,111.207 0.524 −0.137 10,243.575 46,266.476 0.821
80 −0.301 8,740.865 47,407.615 0.908 −0.158 10,375.144 46,999.392 0.908
75 −0.288 8,465.885 47,766.557 0.778 −0.169 10,554.174 47,377.993 0.962
70 −0.296 8,557.001 47,912.861 0.772 −0.157 10,308.627 47,772.983 0.697
65 −0.309 8,844.068 47,941.456 0.719 −0.150 10,455.568 47,702.946 0.843
60 −0.288 8,942.983 47,450.117 0.533 −0.138 10,662.493 47,371.915 0.833
55 −0.265 8,921.665 46,888.927 0.664 −0.109 10,796.197 46,832.029 0.644
50 −0.186 8,669.886 45,949.891 0.682 −0.070 10,779.344 46,176.390 0.909
45 −0.170 8,497.109 46,253.144 0.662 −0.069 10,754.114 45,976.764 0.992
40 −0.104 8,149.282 45,427.966 0.447 −0.042 10,488.131 45,196.361 0.921
35 −0.173 8,395.651 46,310.340 0.497 −0.034 10,514.661 45,762.540 0.970
30 −0.213 8,665.602 47,069.602 0.921 −0.074 11,141.561 46,645.421 0.973
25 −0.097 7,684.769 45,119.350 0.919 −0.017 10,137.530 44,689.351 0.897
20 −0.145 8,091.505 45,982.356 0.965 −0.056 10,658.171 45,804.794 0.827

Note: Denoted P-value is calculated from the Kolmogorov-Smirnov test under a 95% confidence level.

Table 6. Joint Return Period of the Data Sets from the Yangtze River

Marginal return period (years)

Data
length
(years)

10 100 1,000

Joint return
period
(years)

Flood peak
of Yichang
Station (cm)

Flood peak
of Cuntan
Station (cm)

Joint return
period
(years)

Flood peak
of Yichang
Station (cm)

Flood peak
of Cuntan
Station (cm)

Joint return
period
(years)

Flood peak
of Yichang
Station (cm)

Flood peak
of Cuntan
Station (cm)

109 6.39 61,397 82,373 51.81 65,574 73,199 501.87 69,207 95,541
100 6.44 61,530 82,719 51.89 66,214 73,463 501.96 69,433 95,273
95 6.40 61,747 83,360 51.82 66,629 73,713 501.89 69,652 96,229
90 6.39 61,814 83,553 51.80 66,891 73,786 501.86 69,733 96,265
85 6.39 61,345 81,217 51.80 66,102 73,041 501.86 69,105 92,000
80 6.40 61,692 80,945 51.82 66,655 72,798 501.89 69,164 90,663
75 6.37 61,780 81,158 51.77 67,144 73,113 501.83 69,329 90,449
70 6.32 61,971 81,570 51.69 67,324 73,081 501.74 69,415 91,281
65 6.33 62,281 82,423 51.71 67,665 73,163 501.76 69,646 92,632
60 6.31 62,264 83,716 51.67 68,008 74,267 501.72 70,255 94,910
55 6.32 62,006 85,902 51.68 68,381 75,131 501.74 70,590 99,252
50 6.29 61,889 88,577 51.65 68,621 79,646 501.70 72,741 105,225
45 6.39 62,134 88,395 51.80 68,400 80,744 501.86 73,345 105,126
40 6.37 61,782 89,052 51.78 67,713 85,603 501.83 75,233 108,043
35 6.26 61,960 90,550 51.59 68,545 80,151 501.64 72,944 110,516
30 6.15 62,560 90,092 51.43 69,743 78,403 501.46 72,477 106,910
25 5.92 60,656 89,535 51.09 67,069 83,806 501.11 73,637 110,731
20 5.72 61,514 89,050 50.81 68,346 81,262 500.82 73,131 106,903
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provided in Table 2. The shape parameterincreased when the data
length was reduced, which suggests a more right-skewed distribu-
tion of the data. The same quality can be found in the coefficient
of the skewness in Table 2. For the data from Yichang Station, the
scale parameter σ became larger when the data length was reduced,
whereas for Cuntan Station, σ became smaller. It can be inferred
that as the data length decreased, the AMFM values of Yichang
Station became more scattered, whereas those of Cuntan Station
became concentrated.

Marginal return periods of both stations were set as 10, 100,
and 1,000 years. Table 6 provides the joint return periods of the
two stations and their corresponding flood peak discharge values.
For marginal return periods of 10, 100 and 1,000 years, the joint
return period for the data sets changed slightly as the data length
was reduced; the value was approximately 6 years, 51–52 years,
and 500–501 years, respectively. The marginal AMFM values cor-
responding to each return period tended to increase when the data

length was reduced. The values exhibited fluctuating characteris-
tics, especially at shorter lengths.

For each data length, the conditional return periods of data from
Cuntan Station, given the AMFM values of Yichang Station, were
obtained using the chosen copula model. The marginal return peri-
ods were also calculated from the GEV distribution. As shown in
Fig. 5, the data lengths of 109, 90, 70, 50, and 30 years were
selected to illustrate how the change in data length would affect
the conditional return period. Given specific flood peak values, the
conditional return periods generally became larger with a longer
data length. However, there were some variations, and the data
length of 70 years had the largest return period compared to other
data lengths. Fig. 5(d) shows the marginal return periods of Cuntan
Station under each data length. The figure shows that the marginal
return periods were affected by the change in data length. Given a
fixed flood peak value, the marginal return periods obtained under
each data length tended to vary significantly, especially for larger

(a)

(c) (d)

(b)

Fig. 5. Return periods of Cuntan Station under different conditions and different data lengths: (a) conditional return period of Cuntan Station given
the AMFM of Yichang Station is 30,000 cm; (b) conditional return period of Cuntan Station given the AMFM of Yichang Station is 50,000 cm;
(c) conditional return period of Cuntan Station given the AMFM of Yichang Station is 70,000 cm; (d) marginal return periods of Cuntan Station of
different data lengths
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flood peaks. Therefore, while the fluctuation of conditional return
periods may be partly caused by copula modeling, it can also be
caused by the variation of marginal distributions.

Conclusions

This paper evaluates the effect of data length on the uncertainty in
the modeling results obtained by the use of the Clayton, Frank, and
G-H copulas with SPE and EKT for data sets collected from the
Yangtze River region. The uncertainty is considered from a statis-
tical point of view via entropy. Two criteria—AIC and Sn values—
are used.

Copula modeling results deteriorate as the data set length be-
comes shorter. While the best-fitting copula and estimator change
as the data length is reduced, the change may be due to the uncer-
tainty of the marginal data sets and the joint uncertainty—i.e., the
dependence between the data of the two stations for both cases.

On the whole, the data sets from the Yangtze River can be mod-
eled with the Frank copula and SPE estimator. Joint return periods
and conditional return periods are studied. While the joint return
periods tend to be slightly affected by the reduced data length, the
conditional return periods fluctuate when the data length is short-
ened. Marginal flood peak discharge exhibits higher variations
when the data length is shorter, as is the marginal return period.
Thus, it can be concluded that data length affects not only copula
modeling merely through the bivariate behavior, but it may also
have an adverse effect on the marginal, which is an important factor
when using a copula model to do bivariate analysis.

In practice, when using short lengths of records, practitioners
should pay attention to the uncertainty contained in the data set
itself before constructing their joint distribution.
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