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ABSTRACT 

Morphogenesis Modeling of Conical Stromatolites 

 
Andres Montalvo 

Department of Geology & Geophysics 
Texas A&M University 

 

Research Advisor: Dr. Michael M. Tice 
Department of Geology & Geophysics 

Texas A&M University 
 
 

 Stromatolites are the oldest macroscopic fossils that record the interaction between 

sediments and microbes. The question that remains is why do microbial mats tend to give a 

conical geometry to stromatolites. Prior researches on the diffusive gradients that occur around 

such structures have supplied an analytical view onto how microbial mats develop such conical 

shapes. Numerical modeling of diffusion has shown how the process of diffusion acts within the 

microbial mat and leads to the formation of a stromatolite. Moreover, past research has found 

that in order to study a stromatolites growth, one has to utilize many other factors and functions, 

not just look at the diffusion equation. Present models have been made but also have some 

assumptions to them due to the time span that stromatolites have been existence for.  
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CHAPTER I 

INTRODUCTION 

 

Stromatolites are attached, laminated, lithified, sedimentary rocks accreting from a point 

or limited surface (Petroff et al. 2010). Physical, chemical, biological-are all processes that 

produce stromatolites. It has been shown through past research that the topographic reliefs of 

such stromatolites were shaped from microbial mats: bacterial communities that form in layers 

growing on different rough surfaces (Tice et al. 2011). As the mat grows it will eventually need 

way of attaching and sticking together. In order to stick together, bacteria produce exopolymers, 

or EPS, that allow for the adhesion of the microbial mat (Tice et al. 2011). Nevertheless, it can 

be said that stromatolites are the structures made due to mat growth (biological), the trapping and 

lithification of sediments (physical), and or mineral encrustation (chemical) (Tice et al. 2011).  

These structures are not uniform in shape. They can form domes, mounds, cones, and 

even columns. However, the shape and texture of a stromatolite can tell us about the kind of 

microbial metabolism that caused such structure (Petroff et al. 2010). The primary purpose for 

this research is to understand what mechanisms allow for the creation of conical stromatolites by 

comparing some existing models. Recent studies on modern stromatolites have shown that the 

diffusion of metabolites along with the process of photosynthesis, allow for the spatial 

organization of modern stromatolites (Petroff et al. 2010). Nevertheless, it is also believed that 

conical stromatolites were not built through the influence of biological or environmental factors. 

Rather, they were created through a geometric feature defined by diffusion through a thin film 

(Petroff et al. 2013). The process of diffusion produces a diffusive gradient that causes minerals 

to precipitate at different speeds in respect to curvature: higher curvature leads to faster 
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precipitation (Petroff et al. 2013). The diffusion equation shows that the concentration of the 

chemical species changes in time. Moreover, there exist 3 time scales that account for the growth 

of stromatolites. First you have the time for the diffusion of small molecules; defined as Td –

(do
2/D), where Td = the time for diffusion, do =microbial mat thickness=, and D=diffusive 

coefficient of small molecules (Petroff et al. 2013). Secondly, you have the time scale over 

which the microbial mat grows (Tg). The last time scale is the rate at which a stromatolite grows 

due to the precipitation of minerals; defined as Ts –(do /co)>>Tg  (co is the accumulation rate of 

carbonate platforms, must be <<1cm/yr) (Petroff et. al 2013). Since the time scales of both 

microbial mat and stromatolite growth are significantly longer than the diffusive time scale, the 

concentration is always at a steady state, thus defining the Laplace equation (Petroff et al. 2013).  

  



5 

CHAPTER II 

PAST RESEARCH AND ANALYSIS 

 

The geometric features of stromatolite deal directly with the dynamics common to the 

process of diffusion through a thin film. Such processes have to be studied by how the laminas in 

the structure are formed, which are affected due to the chemical changes in precipitating 

minerals as they change depending on the chemical and physical conditions. However, even 

though lamina can differ from stromatolite to stromatolite, their conical shape infers that they 

were formed by the same class of dynamics defined by diffusion through a thin film. Past 

research has produced mathematical models showing the functions that go along side these 

diffusive processes, which have not only allowed for the previous study of the shape of such 

structures but also have allowed for a quantitative prediction of what future or past stromatolites 

may look like (Petroff et al. 2013). Moreover, the inefficiency in the molecular diffusion within 

the microbial mat couples the growth of a stromatolite with the overlying mat geometry of the 

structure therefore defining that a stromatolite grows at a rate proportional to the diffusive 

gradient at the base of the microbial mat. For such reasons, the largest diffusive gradients tend to 

be normal to the surface of the stromatolite, therefore defining the rate at which stromatolite 

grows as a process influenced by the thickness of the microbial mat. 

Stromatolites have three relevant time scales that breakdown their growth into three parts 

and make for a steady state system. 𝜏d , 𝜏d~𝑑!
!/D, represents the typical time for diffusion of 

small molecules in a microbial mat (Petroff et al. 2013). The time is a function of microbial mat 

thickness d0, and the diffusion coefficient of small molecules or ions in the mat D. The second 

time scale 𝜏g, time over which a microbial mat grows, has to be estimated but can be said to 
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range between tens of hours and weeks (Petroff et al. 2013). The last time scale, 𝜏s, is the rate at 

which the stromatolite grows through the precipitation of minerals. Although it still difficult to 

estimate very old samples, the scale is much greater than 𝜏g and can be defined as 𝜏s~
!!
!!

, c0 being 

the rate of precipitation. The separation of time scales only holds if c0 is much less than 1cm/yr 

(Petroff et al. 2013).  

In his paper, Petroff assumed that the rate of mineral precipitation is limited by diffusion 

through a thin microbial mat. Two processes have been said to create this diffusion-limited 

growth. The first process states that stromatolite growth could be limited by the diffusive flux of 

ions related to the precipitation of minerals. The second states that the rate of mineral 

precipitation could be limited by the rate at which the degradation of bacteria provides nuclei for 

heterogeneous precipitation. Even though two possible processes cause diffusion-limited growth, 

the rate of mineral precipitation and the diffusive flux will scale with each other at the base of the 

microbial mat. 

  In order to understand how the shape of a stromatolite is affected by the process of 

diffusion through a thin film we must look at the diffusion equation 

𝜕ψ
𝜕𝑡 = 𝐷∇!𝜓    (1) 

where D is the coefficient in the microbial mat. However the concentration of 𝜓 is always at 

steady state due to the time scale difference of the diffusive timescale when compared to the 

microbial mat and stromatolite growth time scales. For such reasons we must solve the function 

∇!𝜓 = 0 in order to find the rate at which minerals precipitate in the microbial mat. In order to 

do this, the function must be evaluated in a coordinate system that expresses the shape of a 

simple stromatolite. After making the switch to this coordinate system and after applying the 

Laplacian, the function, close to the surface of a stromatolite, can be expressed as 
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𝜕!𝜓
𝜕𝑛! + 2𝐻

𝜕𝜓
𝜕𝑛 + ∇!

!𝜓 = 0    (2) 

where H is the mean curvature of the stromatolite surface.  

Petroff also states, that the largest diffusive gradients tend to form normal to the surface 

of the stromatolite. In order to show this, a rescaling of every quantity in equation (2) must be 

done. The concentration 𝜓 is rescaled by taking the difference in concentrations between the 

surface mat and the surface of the stromatolite therefore yielding a dimensionless concentration 

𝜙 = !!!!
!!!!!

. The typical radius of curvature R0 must rescale the curvature H giving a 

dimensionless curvature 𝜂 = 𝑅!𝐻. We also must rescale the coordinates, therefore defining the 

dimensionless coordinates 𝜎! =
!!
!!

. Moreover, due to the variance of  𝜓 over the thickness of the 

microbial mat d0  we must also define another dimensionless coordinate 𝑣 = !
!!

. After rescaling 

all quantities we get  

𝜕!𝜙
𝜕𝑣! + 2

𝑑!
𝑅!

𝜂
𝜕𝜙
𝜕𝑣 +

𝑑!
𝑅!

!

∇!!𝜙 = 0    (3)  

However, when the mat is much thinner that the stromatolite (d0<<R0), the concentration 𝜙 

becomes a one-dimensional solution equation  

𝜕!𝜙
𝜕𝑣! + 2𝜖𝜂

𝜕𝜙
𝜕𝑣 = 0   (4) 

where 𝜖 = !!
!!

<<1. The one-dimensional function defines the rate of precipitation as being 

influenced by the local geometry of the microbial mat and not by shape of the mat. It is 

important to note that equation (4) requires two boundary conditions; concentration of the 

diffusing species reaching a constant value at the base of the mat ( 𝜙 0 = 0 ) and at the surface 
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of the mat ( 𝜙(1+ 𝜖𝜂𝑑!)=1). After applying the boundary conditions to the equation we find 

that  

𝜙 𝑣 = 𝑣 + 𝜖𝜂 1− 𝑑! − 𝑣 𝑣 + Ο 𝜖!    (5) 

Some derivation of the function finds a diffusive flux 𝑗~𝐷 𝜓! − 𝜓! , which implies that 

wherever the overlying mat is thick, mineral precipitation will be slow. In other words, 

increasing the thickness of the mat in regions of high curvature will slow down the growth 

process of the stromatolite. Overall, the stability of a stromatolite shape depends on how the 

microbial mat reacts to the shape of the underlying surface. 

When studying stromatolite growth and their shape one must always keep in mind the 

relationship between the shape of the underlying stromatolite and the geometry of a microbial 

mat. However, due to their long time period of existence, and even going through both oxygenic 

phases of earth, there are difficulties in establishing a growth equation. As time progressed most 

stromatolites lived in different hydrodynamic environments therefore also implying a difference 

in the dynamics by which the stromatolite grew. Even though such conditions were true, it can be 

assumed that there is a nonsingular relationship between the curvature of the mat and the 

thickness of its growth. Moreover, the thickness is a function of the dimensionless curvature 𝜖𝜂, 

and because 𝜖 ≪ 1 the thickness of the mat can be approximated by a Taylor series 

𝑑 𝜖𝜂 ≈ 𝑑 0 +
𝜕𝑑
𝜕𝜂   (6) 

or can also be expressed as 

𝑑 = 𝑑! 1+ 𝜖𝜂𝑑!   (7) 

where 𝑑! = (!"
!"
)/𝑑! (Petroff et al. 2013). 
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The process of stromatolite translational growth relates the orientation of a point on the 

surface to the curvature of that point, as seen in the function below 

𝑐!
𝑐!
𝑐𝑜𝑠𝜃 = 1+ 1− 𝑑! 𝑑!𝐻 𝜃   (9),  

where H(𝜃) is the dependence on curvature on orientation. The function can be reexpresed as a 

differential equation for the shape of the translating stromatolite 

𝜒!!

1+ 𝑓!"
= 1− ∆

𝑟𝑓!! + 𝑓! 1+ 𝑓!"

2𝑟 1+ 𝑓!"
!
!

  (10) 

where the derivatives are with respect to r, the distance of a point on the surface from the central 

axis, and where the dimensionless precipitation rate 𝜒 = 𝑐!/𝑐! (Petroff et al. 2013). Moreover, in 

order to determine the shape of the growth under the influence of diffusion we must establish 

two boundary conditions, f(0)=0 specifying the coordinate system and f ‘(0)=0 (considering 

smooth stromatolites) specifying the slope of the stromatolite near the apex (Petroff et al. 2013). 

It is important to note that the function for the shape of a translating stromatolite does not have a 

unique solution, therefore giving a number of distinct ways a stromatolite may grow. 

 The two main processes that influence the growth of a stromatolite are mineral 

precipitation and the diffusive gradients within the mat. Such processes can happen in so many 

ways that there could be various geometries to a stromatolite. The conical shape of a stromatolite 

just represents a balance between both processes where that slope of the walls record the rate of 

mineral precipitation relative to the speed of vertical growth and the curvature records the 

thickness of the microbial mat. 
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CHAPTER III 

RESULTS 

 

Petroff’s (Petroff et al. 2013) analytical methodology for stromatolite growth was 

replicated in deal.II, a C++ based FEM library that supports the creation of finite element codes. 

deal.II has very well-documented tools to build finite element codes for a broad variety of PDEs. 

The stromatolite growth was simulated using deal.II’s finite element model of diffusion process 

that is solved on a mesh, which resembles microbial mat geometry that overlies a stromatolite. 

Since stromatolite grows on geologic time scales (Petroff et al. 2013), we solved the diffusion 

equation (1) as a two-dimensional steady state or Laplace equation.  

The finite element mesh (Figure 1) was generated using GridGenerator :: 

hyper_rectangle function in deal.II, followed by mesh transformation using GridTools :: 

transform function. The top boundary of the mesh for this model is described by a non-

homogeneous boundary condition. The concentration or ψ values for this boundary condition are 

proportionate to the y-coordinate of each vertex of the mesh cell on that boundary. Since the 

mesh is a curved rectangular or parabolic shape, the center-top vertices have the highest ψ 

values. The bottom boundary of the mesh is set to a constant using the ConstantFunction in 

deal.II. The left and right boundary of the mesh are set to zero using ZeroFunction in deal.II.  

The set up and assemble procedure necessary to solve the system for this problem are 

similar to the one described in step-6 of the deal.II tutorials. The only exception is adaptive mesh 

refinement (AMR) algorithm; even though AMR approach is applied in step-6 of the deal.II 

tutorial, it not used for mesh refinement. The linear system of equations described by this model 

is solved using a SSOR Preconditioned Conjugate Gradient algorithm. Direct methods for 
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solving set of linear equations such as Gaussian elimination and LU decomposition are not very 

efficient solvers for such problems.  

After solving the Laplace equation or steady-state diffusion equation on mesh for current 

time step, the mesh is deformed by moving each vertex based on the displacement gradient 

(growth gradient) for that vertex in the current time step times a small deformation constant. This 

is done through the move_mesh function. For this model, the mesh was deformed for 1000 

timesteps.    

 

  

  

 

Figures 2(a, b, c, and d) show the stromatolite growth using a time-lapse series; each 

figure in the series is also overlaid by the original grid (timestep 0) when there is no deformation. 

The color bar next to the stromatolite shows the concentration scale, which can be used to 

compare the diffusion concentration and gradient over time.  

Figure 1: Geometry of the microbial mat/stromatolite structure represented by a mesh in deal.II 

along with appropriate boundary and initial conditions for this model. 
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Figure 2: Stromatolite growth at timestep = 0 (2a), timestep = 100 (2b), timestep = 200 (2c), and timestep = 500 

(2d). 
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CHAPTER IV 

CONCLUSION 

 

Results from Petroff et al. 2013’s paper were replicated in deal-II, a C++ software library 

that supports the creation of finite element models. However, in their paper, Petroff et al. does 

not include the hydrodynamic influence on stromatolite growth, a factor that would affect the 

growth rate and time due to constant shear and high-energy tidal environment. In order to 

simulate this growth, further research in COMSOL Multiphysics must be applied. COMSOL 

Multiphysics is a professional simulation package that supports multiple physics, described by 

different physics, and allows co-simulation with these physics. Nol et al. 2017 successfully used 

COMSOL Multiphysics to simulate coral growth; similar workflow will be applied to simulate 

stromatolite growth.  
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