
DYNAMIC REGION RRT: APPLICATION TO KINODYNAMIC SYSTEMS

An Undergraduate Research Scholars Thesis

by

ANDREW BREGGER

Submitted to the Undergraduate Research Scholars program
Texas A&M University

in partial fulfillment of the requirements for the disignation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Nancy Amato

May 2017

Major: Computer Science

ABSTRACT

Dynamic Region RRT: Application to Kinodynamic Systems

Andrew Bregger
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Nancy Amato
Department of Computer Science and Engineering

Texas A&M University

In the general motion planning problem the robot must satisfy basic constraints such as

avoiding obstacles and remaining within the boundary of the environment. Kinodynamic

motion planning is a type of planning where additional constraints must be satisfied. Kin-

odynamic planning is a more realistic planning problem as the robot must operate under

constraints such as friction, gravity, velocity, and acceleration while avoiding obstacles.

Sampling-based methods are often used to solve these types of problems. These methods

generate robot configurations throughout the environment in order to eventually connect

them to form a valid path from the start position to the goal. Rapidly-exploring Ran-

dom Trees (RRT) are types of sampling-based methods that grow a tree from the start to

goal. One important problem with these types of methods appears when planning in an

environment with a narrow passage or cluttered space. In these problems it is unlikely

to generate a sample in the narrow spaces and the robot does not explore these locations.

Dynamic Region-biased Rapidly-exploring Random Trees (DRRRT) is a method that ad-

dresses these issues by guiding an RRT with dynamic sampling regions along an embed-

ii

ded graph of the workspace. DRRRT is effective in general motion planning problems, but

faces issues in kinodynamic problems. Oftentimes, a sample is generated near an obstacle

that is valid, but is found to be unrecoverable because if the robot were to move from that

state with any of the available controls it would collide with an obstacle. This often occurs

in environments with narrow spaces and tight turns such as a maze.

In this work, we address the address the problems DRRRT faces in the kinodynamic

problem with a series of improvements. First, we use the embedded graph to bias the

direction that the tree extends to keep the robot moving along the graph. Second, also

using the embedded graph we limit the candidates while neighborhood finding so that the

entire tree is not searched each time a sample is chosen. Lastly, instead of uniformly se-

lecting which region to be sampled, a bias is applied to the regions according to a heuristic

designed to promote more successful regions.

iii

ACKNOWLEDGMENTS

I would like to thanks to Jory Denny, Read Sandstrom, and Nancy Amato for their help

with this research and paper.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vi

LIST OF TABLES . vii

1. INTRODUCTION AND LITERATURE REVIEW 1

2. RELATED WORK . 3

2.1 Motion Planning . 3
2.2 Sampling-based Planning . 4
2.3 Rapidly-exploring Random Trees (RRTs) 4
2.4 Dynamic Region-biased RRT . 5
2.5 Synergistic Combination of Layers of Planning 6

3. METHOD DESCRIPTION . 7

3.1 Topological Bucketing . 7
3.2 Velocity Sampling . 9
3.3 Region Weighting . 11

4. EXPERIMENTS AND RESULTS . 13

4.1 Experiments . 13
4.2 Results . 13
4.3 Discussion . 14

5. CONCLUSION . 17

5.1 Further Study . 17

REFERENCES . 19

v

LIST OF FIGURES

FIGURE Page

2.1 The embedding graph (2.1a) represents paths of exploration through the
workspace. These are explored by dynamic sampling regions that guide
RRT growth (2.1b). 5

3.1 Example progression of Bucket Neighborhood finder: (a) Embedded graph
(magenta) and buckets (blue outline); (b) RTT growth and assositation
with buckets; (c) collection of candidate set (red outline). 9

3.2 Motivation for Velocity Biasing: (a) general direction of embedded graph
(red arrow) and the direction of new configuration (yellow arrow); (b) al-
lowable direction for velocities (red outline). 11

4.1 The experiment environments shown with a solved path for a helicopter.
(a) 4x4 GridMaze (b) 3x3 Grid . 14

4.2 On-line planning times comparing the new Dynamic Region-biased RRT
with the original Dynamic Region-biased RRT, RRT, and SyCloP in two
non-holonomic problems. The average run times of all methods over 33
runs. The error bars show the standard deviation. 15

vi

LIST OF TABLES

TABLE Page

4.1 The success rates for each method on all environments. 16

vii

1. INTRODUCTION AND LITERATURE REVIEW

Sampling-based motion planning is the task of determining a valid path through an

environment from an initial state to a goal state by randomly selecting a state within the

environment. This path is represented by a collection of states, or configurations, that are

described by a set of parameters representing the location and orientation of the robot.

This problem has applications in many fields, such as robotics, video games/animations,

computer-aided design, and bio-informatics.

One method for solving motion planning problems is the Rapidly-exploring Random

Tree (RRT) [1]. RRT is effective in single query scenarios and non-holonomic systems.

Non-holonomic systems or kinodynamic systems are systems that must obey kinematic,

dynamic, and force constraints [2]. The past configurations will determine the current

velocities, accelerations, and momentum that are associated with the robot at that instant

in time. In many environments there exists a narrow passage. Narrow passages are sections

of the environment that have small sampling area. This causes a problem when sampling

because there becomes of its small probability of selection. Dynamic Region-biased RRT

(DRRRT) addresses this issue.

RRT is used as a basis for DRRRT [3], which uses an embedding graph to represent

the topology and homotopy of the environment. Regions are moved along the graph and

sampling is biased within these regions. The embedding graph is generated by decompos-

ing the environment and building a graph from the resulting decomposition. However, this

graph can often be jagged and can cause the region to be partially inside of an obstacle.

When considering a non-holonomic systems there are a few problems which DRRRT

does not address. In DRRRT much of the running time is spent in neighborhood finding.

When a new sample is chosen the nearest neighbor in the tree must be selected so that

1

the tree can extend from the neighbor to the new sample. This results in a search over the

entire tree. To limit this we introduce a topological bucketing neighborhood finder that

limits this search to a smaller set of candidates associated with the embedding graph.

Another issue pertains to the dynamics introduced by a non-holonomic problem. In a

non-holonomic problem configurations may also consist of velocity parameters. The sim-

ple approach is to generate these velocities randomly. We introduce a method to bias the

randomly generated velocity along the embedding graph provided by DRRRT to improve

exploration. Lastly, we introduce a region weighting scheme. When generating a new

sample, DRRRT must select a region to sample from. Previously, this was done uniformly

over all regions and the environment. We aim to improve this by assigning each region

a probability of being selected depending on the region’s sampling history. If a region

generates more successful samples its probability of being selected for future samples will

increase 1.

We demonstrate the method on autonomous drones. To do this, we must simulate the

physics of a flying drone; however, due to limitations in the physics engine we am only

able to apply gravity and not give the robot the ability to move itself in the direction of

gravity. Gravity must be the only force that is able to move the robot in that direction. To

show the viability of this method, we perform experiments on two simple environments

with a helicopter robot. The method is compared to the old DRRRT without the changes,

RRT, and SyCloP, another workspace planner, in a uniform grid an a small maze.

1This work is done in collaboration with Ben Smith. The methods are the same between our theses. The
differences are in our applications and results. I am applying these methods to drones, while he is applying
them to autonomous vehicles.

2

2. RELATED WORK

In this chapter, we discuss the important background information for the motion plan-

ning problem and other work related to this method.

2.1 Motion Planning

Motion planning is the task of finding a path through some environment from a start to

a goal position. Traditionally, this path must fit constraints such as avoiding the obstacles

and boundaries of the environment and allowing the object or robot to move along it with-

out collision. In this paper, we discuss motion planning for holonomic and non-holonomic

robots. A holonomic robot is a robot where all of its degrees of freedom (DOFs) are con-

trollable. The DOFs of a robot parameterize its position and orientation. They include the

robot’s position, rotation, and joint angles if applicable. A non-holonomic robot is one

where not all DOFs are controllable, such as a car, which cannot move laterally without

first turning. The motion planning problem is often represented by the workspace and

configuration space or Cspace.

The workspace of a motion planning problem is the environment which consists of

obstacles and a boundary. Cspace is the set of all configurations of a given robot. A config-

uration is one unique set of values for a robot’s DOFs. For a simple robot in a 2-d world

one configuration could be q = 〈x, y, θ〉 where x and y are the robot’s position in the

world and θ is its rotation angle. Cspace also consists of two subsets, free space (Cfree) and

obstacle space (Cobst). Cobst is the set of configurations in Cspace that are in collision with

an obstacle in the workspace and Cfree is the set of configurations in Cspace that are not in

collision. With this information we can represent the motion planning problem as finding

a continuous path of configurations in Cfree from the start to goal configurations.

3

2.2 Sampling-based Planning

One common and effective technique for addressing the motion planning problem is

sampling-based planning. The goal of sampling-based planning is to construct a graph

that represents Cfree by generating sample configurations in Cfree. These samples are then

connected to form a graph or roadmap. Once the roadmap is constructed, the start and

goal configurations can be connected to the closest point on the roadmap and a path can be

found. One example of sampling-based planning is the Rapidly-exploring Random Tree

[1], which is further explained in the next section.

2.3 Rapidly-exploring Random Trees (RRTs)

Rapidly-exploring Random Trees are a type of sampling based planning algorithm that

are effective single query motion planning problems. That is problems consisting of only

one start and one goal configuration. Rapidly-exploring Random Tree solves a problem

by iteratively expanding outwards from root configuration (qroot). For each iteration, a

random configuration (qrand ∈ Cspace) is generated. Then the nearest configuration to qrand

in the tree (qnear) is found and is extended from qnear in the direction of qrand some distance

∆D. The end position of the extension becomes a new configuration (qnew) which is added

to the tree if and only if there is a valid path between qnear and qnew.

One specific type of RRT is Reachability-guided RRT (RGRRT) [4]. A reachable

set is defined as a set of configuration that can be reached by a robot given its controls

and configuration. A control is a force that can be applied to a robot to move it from

one configuration to another. RGRRT uses the reachable set to bias the sampling. When

generating samples, if qrand is closer to qnear than any configuration in the reachable set

qrand is discarded. This approach allows to the RRT to better sample the unexplored space

of the environment.

4

(a) Example embedding graph (b) Execution of Dynamic Region-biased RRT.

Figure 2.1: The embedding graph (2.1a) represents paths of exploration through the
workspace. These are explored by dynamic sampling regions that guide RRT growth
(2.1b).

2.4 Dynamic Region-biased RRT

In this paper, we extend Dynamic Region-biased RRT (DRRRT) [3] to better support

kinodynamic motion planning problems. Dynamic Region-biased RRT is based on RRT

with some key differences. DRRRT computes a representation of the workspace topology

and uses dynamic sampling regions to guide an underlying RRT planner. The representa-

tion of the workspace topology is known as an embedding graph (Magenta lines in Figure

2.1a). The embedding graph is a skeleton of the workspace represented by an undirected

graph. Next the embedding graph is converted to a directed graph from the start to goal

configurations called a flow graph. This represents the exploration direction of the robot

from the start to goal. A region is a bounded volume in the workspace such as a bounding

box or a bounding sphere (Green circle in Figure 2.1b). After computing the flow graph, a

region is created at the beginning of the graph and is guided along the graph to the goal. If

the flow graph splits, representing different paths, or homotopies, through the workspace,

multiple regions are dynamically created to explore each path. At each iteration of the al-

gorithm a region or the environment is chosen and a sample is generated within that region

or environment. Finally, the underlying RRT extends to this new sample if it is valid.

5

2.5 Synergistic Combination of Layers of Planning

Synergistic Combination of Layers of Planning [5] (SyCLoP) addresses the problem of

non-holonomic planning. In SyCLoP, the workspace is decomposed to construct a model

of the problem. At each iteration of the algorithm a high-level planner searches this model

for a feasible path which can be used to guide an underlying tree structure. They test their

method on robots with high-dimensional dynamics including a unicycle, a flying unicycle,

and a tractor trailer in environments with multiple narrow passages and a maze.

6

3. METHOD DESCRIPTION

3.1 Topological Bucketing

Algorithm 1 Algorithms for tree extension with topological bucketing.
1: function EXTENDWITHREGION(Region r, Tree t)
2: qrand ← Sample(r) // Or BiasedSample...
3: candidates← FindCandidates(r)
4: qnear ← FindNearestNeighbor(candidates)
5: qnew ← Extend(t, qrand, qnear)
6: if qnew ∈ Cfree then
7: BucketMap[r.Center()].Append(qnew)
8: end if
9: end function

10: function FINDCANDIDATES(Region r)
11: p← r.GetCenter()
12: candidates← BucketMap[p]
13: e← r.GetSkeletonEdge()
14: d← 0
15: while d < threshold do
16: d += distance(p, e.PointBefore(p))
17: p← e.PointBefore(p)
18: candidates.Append(BucketMap[p])
19: end while
20: return candidates
21: end function

One bottleneck in Dynamic Region-biased RRT is in neighborhood finding. This is

caused by using a brute force method which searches the entire tree for the nearest con-

figuration. To improve on this approach we would like to utilize the information provided

by the embedding graph to limit the candidates for neighborhood finding. The solution

to this is topological bucketing. The algorithm for this method is given in Algorithm 1.

7

The embedding graph structure consists of vertices with edges connecting them. These

edges have various edge points or intermediates along it, on which the region is centered

(Magenta line and points in Figure 4.1a). When generating a sample we add the sample

to a ’bucket’ (Defined by blue lines in Figure 3.1) associated with the edge point at the

center of the region. In doing this each successful sample is mapped to its nearest edge

point. When finding the nearest neighbor, instead of searching the entire tree, we can use

the buckets as input to the neighborhood finder and effectively reduce the size of the input.

Algorithm 1 explains this process. In Algorithm 1:1-9 a random sample is first gener-

ated and its candidates are found. Then these candidates are used as input to a brute force

neighborhood finder. A standard RRT extend is then called from the random sample to

the new configuration returned by the neighborhood finder. In Algorithm 1:6-8 the new

configuration is added to the bucket associated with the current region’s center. Here the

bucket map is an associative container that associates a region’s center point with a set of

configurations or a bucket (Figure 4.1b). Finding the candidates of a random sample is

done in Algorithm 1:10-21.

In order to determine which buckets to search over we initially set the candidates

(Red outline in Figure 3.1c) to be the bucket associated with the current region’s cen-

ter (Algorithm 1:11-12). Then we traverse the embedding graph backwards for a distance

d < threshold, adding the configurations in each bucket to the candidates set (Algorithm

1:15-19). For our purposes we set threshold to be the maximum distance that the extender

can extend.

In using this approach we observe two advantages over the standard brute force search

method. First, the size of the input that the neighborhood finder must search over is re-

duced from the entire tree to a small portion of the tree stored in the nearest buckets. Sec-

ond, the configurations in the candidates set are more likely to be near the newly sampled

configuration as they come from the buckets which are at most a distance d < threshold

8

away from the sampled configuration.

(a) Embedded graph defines
buckets

(b) Congifuration added to
closest bucket

(c) Traversing the embedded
graph for candidates

Figure 3.1: Example progression of Bucket Neighborhood finder: (a) Embedded graph
(magenta) and buckets (blue outline); (b) RTT growth and assositation with buckets; (c)
collection of candidate set (red outline).

3.2 Velocity Sampling

In kinodynamic motion planning each configuration can have DOF values that repre-

sent more than position, such as, velocity. When generating a random configuration one

approach for giving it velocity is to generate a random linear velocity for the configu-

ration. Although this method is fast, it can often lead to configurations which can only

travel in an unhelpful direction. For example, it is possible for a velocity to be generated

which directs a configuration backwards into the tree instead of towards unexplored free

space (Yellow arrow in Figure 4.1a). This is another problem we can address using the

information provided by the embedding graph.

The embedding graph represents the workspace topology and provides us with a guide

from the start to the goal. The embedding graph also consists of multiple intermediate

points along each edge which can be used to represent the direction of the graph (Red

arrow in Figure 4.1a). These directions can be used to bias randomly generated velocities

to be ’along’ the embedding graph. This approach is shown in Algorithm 2.

9

Algorithm 2 Algorithm for biasing velocity along skeleton.
1: function BIASEDSAMPLE(Region r)
2: qrand ← Sample(r)
3: e← r.GetSkeletonEdge()
4: p← r.GetCenter()
5: dir ← unit(e.PointAfter(p)− p)
6: coeff ← qrand.LinearVelocity() · dir
7: if coeff < alpha then
8: while coeff < alpha do
9: qrand ← Sample(r)

10: coeff ← unit(qrand.LinearVelocity()) · dir
11: end while
12: end if
13: return qrand
14: end function

First, in Algorithm 2:2-4 a random configuration is generated from the current region

with a random velocity. Then, from the region we obtain the current skeleton edge and

point. With this information we can compute the direction of the skeleton, dir, as the unit

vector between the current point and the next point on the skeleton. Next, we set coeff

to be the dot product between the unit vector of the configuration’s linear velocity and

the direction of the skeleton. In Algorithm 2:7-12 the goal is to minimize the difference

between the configurations velocity and the skeleton direction by using the properties of

the dot product. If the two velocities are in opposite directions then the dot product will

return -1, provided the vectors are unit vectors. If the two velocities are parallel the dot

product will return 1. We use a parameter, α, to maximize the dot product of the two

directions and generate a velocity which is along the skeleton within some bounds. This

is shown in Algorithm 2:8-9 where a new configuration and velocity is generated until the

dot product between the velocity and the skeleton direction becomes larger than α and

acceptable to use.

Since generating random samples is a relatively fast operation it is acceptable to re-

10

peatedly sample in this manner. Additionally, α can be tuned to increase the likelihood

to generate an acceptable velocity and decrease the total number of additional samples

needed to find an acceptable velocity (Red outline in Figure 4.1b).

(a) (b)

Figure 3.2: Motivation for Velocity Biasing: (a) general direction of embedded graph (red
arrow) and the direction of new configuration (yellow arrow); (b) allowable direction for
velocities (red outline).

3.3 Region Weighting

At each iteration of Dynamic Region-biased RRT a region is chosen and a new config-

uration is generated from that region. Originally, this decision was made uniformly over

all the regions and the entire environment itself. That is, each region, including the entire

environment, had an equal chance of being chosen for sampling. We know that for the

most part we want samples to be generated in a region, not the environment. Addition-

ally, we want to choose regions which have a history of generating successful samples

that help guide the RRT. To accomplish this we use a new region weighting scheme which

computes a probability, pi, for each region 〈r0, r1, . . . , rn〉 and the environment. We also

define a weight for each region wi = s/t, where s is the number of successful samples

generated in region i and t is the total samples generated in region i. The probability is

defined to be:

11

pi = (1− γ)
wi∑

j=1Kwj

+ γ
1

K + 1
(3.1)

where gamma is a constant in the range [0, 1] and K is the total number of current

regions. The first term is determined by the ratio of the region’s weight to the sum of all

current regions’ weights. This allows us to determine, to some extent, how well this region

is performing. The second term represents uniform probability to select a region based on

the input parameter γ. Here K + 1 is used to include the environment. If γ = 1 then the

probability is exactly uniform, and if γ = 0 the probability is strictly based on the region’s

weight compared to the sum of all regions’ weights. Since this probability is based on the

weight of all current regions, we must dynamically update each region’s probability when

any region is added, deleted, or generates a sample.

Using this scheme we effectively bias sampling to regions which historically generate

more successful samples, and thus, are more likely to be in areas of free space which have

higher clearance between obstacles and more space for exploration.

12

4. EXPERIMENTS AND RESULTS

4.1 Experiments

All methods were implemented in a C++ motion planning library developed at Parasol

Lab at Texas A&M University. It uses a distributed graph data structure from the Standard

Template Adaptive Parallel Library (STAPL) [6], a C++ library for parallel computing

developed at Parasol Lab.

All experiments were performed on a desktop, at Parasol Lab, running CentOS 7 with

Intel R© CoreTM i7-3770 at 3.40 GHz, 16 GB of RAM, and the GNU GCC compiler version

4.8.5.

4.2 Results

The modified Dynamic Region-biased RRT was compared against the original Dy-

namic Region-biased RRT [3], a RRT [2], and SyCloP [5]. SyCloP is a method designed

for kinodynamic motion planning that uses workspace information when planning. The

new algorithm is demonstrated on a non-holonomic drone in two environments, a 4x4

maze and a 3x3 uniform grid. These environments are shown in Figure 4.2. In these envi-

ronments a robot, which is a helicopter, has 6 DOF rigid body which uses a control set that

allows for motion in the forward, backward, and up directions as well as pitch, roll, and

yaw rotations. These controls do not allow for applying a control downwards, this is to

allow gravity to force the robot to traverse down when there is not enough upward force to

counter the act of gravity. To properly simulate the behavior of a drone, constraints were

added to limit the rotation along the pitch and roll axes. Simulation of proper air resistance

and drag are not currently simulated and are left for future work.

The experiments were ran until the query solved or the trial reached the vertex (20K)

or time (6 minute) limits. 35 experiments were ran for each environment using modified

13

Dynamic Regions, original Dynamic Regions, RRT, and SyCloP. Of the 35 experiments,

the fastest and slowest times were disregarded as outliers. The success rates of each trial

are shown in Table 4.1 and the average run time (in seconds) and the standard deviation

are shown in Figure ??.

(a) 4x4 GridMaze (b) 3x3 Grid

Figure 4.1: The experiment environments shown with a solved path for a helicopter. (a)
4x4 GridMaze (b) 3x3 Grid

4.3 Discussion

As Figure 4.2a shows, the new additions to DRRRT improve the performance com-

pared to RRT and SyCloP. However, the original DRRRT method performed slightly better

than the new DRRRT. We observed an decrease in the amount of time spent on neighbor-

hood finding, but an increase in the overall run time. As of yet, we have no explanation

for why this occurs.

Figure 4.2b shows the run times of all the methods on a 3x3 grid environment. The

figure shows that all other method out performed DRRRT. Due to the simplicity of this

problem, RRT performs very well. This method can solve this environment by navigating

around the edge and potentially only make one turn on the outer corners. While the other

methods are navigating through the interior of the environment, forcing the planner to

14

make more turns through the obstacles. Another possible cause for slower performance of

both variants of DRRRT is exploration of non-optimal paths. In the 3x3 Grid, there are

many different paths to the goal. Some of these paths have more turns and cover a larger

distance then other paths. These turns are difficult to plan because selecting the correct

control to apply is time consuming or may not exist. For the maze, the paths that do not

lead to the goal are trimmed from the embedded graph making exploration of those paths

less likely.

The error bars show that there is an inconsistency when solving these kinds of prob-

lems. This can be attributed to our method getting into an unrecoverable state, that the

SyCloP method avoids. A configuration is known as an unrecoverable when computing

a successful extension is difficult. When these states are reached it becomes difficult to

continue sampling and progression through the environment halts. For DRRRT, we intend

to address this issue by introducing reachability guidance. This is discussed in Section 5.1.

(a) 4x4 GridMaze

 0

 10

 20

 30

 40

 50

3x3 Grid Times

(b) 3x3 Grid

Figure 4.2: On-line planning times comparing the new Dynamic Region-biased RRT with
the original Dynamic Region-biased RRT, RRT, and SyCloP in two non-holonomic prob-
lems. The average run times of all methods over 33 runs. The error bars show the standard
deviation.

15

Table 4.1: The success rates for each method on all environments.

New-Dynamic Regions Old-Dynamic Regions SyCloP RRT
GridMaze 100% 100% 100% 100%
3x3 Grid 100% 100% 100% 100%

The discrepancy between the expected and the observed outcomes could be attributed

to an error in the correctness of our implementation or an algorithmic error in the overall

ideas of our improvements. In either case, this leads to our future work which is discussed

in the next section.

16

5. CONCLUSION

In this paper we introduced modifications to Dynamic Region-biasing RRT which im-

proves performance for non-holonomic systems. These modifications are: topological

bucketing for neighborhood finding, a biasing method for sampling the velocities, and a

weighting scheme for region selection. We also show how the embedding graph’s prop-

erties can be extended to improve non-holonomic problems. We demonstrate how these

changes are applicable to non-holonomic robots; however, results indicate that there are

areas for improvement.

5.1 Further Study

In the future, we will investigate the causes of the poor running times. Specifically,

bucketing improves neighborhood finding times, however it appears to have an adverse

effect on the overall runtime. Another area for improvement is in velocity biasing. In ad-

dition to biasing the direction of a configuration’s velocity we would like to dynamically

adapt the velocity to the current speed of the robot and the expected extension distance.

This extension distance can also be dynamically updated based on the speed of the robot

and the size and direction of local embedding graph edges. Currently the extension dis-

tance is constant for each environment. However, many environments (especially cluttered

spaces) can have different regions of the environment which would need different exten-

sion distances. For example, an environment could have one region where the free space

is large and open, but another region with a narrow passage. In the former case a larger

extension distance would allow the robot to explore this more open space quickly, while a

short extension distance would allow more turning to navigate tighter spaces in the latter

case.

Additionally, we plan to introduce reachability guidance [4] into Dynamic Region-

17

biasing RRT. In reachability guidance, we use the controls of the robot to define what is

able to be reached by the vertex that is extending, also known as a reachable set. We will

be working on a method to compute or approximate the reachable set in-order to improve

the extensions and reduce the chances of getting into an unreachable state.

18

REFERENCES

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” tech.

rep., 1998.

[2] S. M. LaValle and J. J. Kuffener Jr, “Randomized kinodyanamic planning,” 2001.

[3] J. Denny, R. Sandstrom, A. Bregger, and N. M. Amato, “Dynamic region-biased

rapidly-exploring random tree (wafr 2016),” 2016.

[4] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling for planning

under differential constraints,” pp. 2859–2865, 2009.

[5] E. Plauk, E. Kavraki, Lydia, and M. Y. Vardi, “Motion planning with dynmaics by

a synergistic combination of layers of planning,” IEEE Transactions on Robitics,

vol. 26, no. 3, pp. 469–482, 2010.

[6] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,

and L. Rauchwerger, “STAPL: A standard template adaptive parallel C++ library,” Jul

2001.

19

