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ABSTRACT

Computing Central Values for Elliptic Curve L-Functions

Meghan Shanks
Department of Mathematics

Texas A&M University

Research Advisor: Dr. Matthew Young
Department of Mathematics

Texas A&M University

We give an experimental method for calculating the central values of elliptic curve

L-functions. We begin by providing some theoretical analysis of the method, and show

that, on average, with appropriate choice of parameters, it can be expected to work well.

In addition, we provide some data on elliptic curve L-functions of large conductor that

support this method.

ii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. THEORETICAL SUPPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. EMPIRICAL SUPPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Empirical Support for Average Case Results . . . . . . . . . . . . . . . . 14
3.2 Analysis of Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

APPENDIX A. FUNCTIONS USED IN CALCULATIONS . . . . . . . . . . . . 23

APPENDIX B. ELLIPTIC CURVES WITH LARGE VALUES OF |XTAIL| . . . . 26

APPENDIX C. ADDITIONAL GRAPHS . . . . . . . . . . . . . . . . . . . . . . 27

iii



LIST OF FIGURES

FIGURE Page

3.1 Distribution of Ltail Values for Given Elliptic Curves . . . . . . . . . . . . 14
3.2 Distribution of Ltail

2 Values for Given Elliptic Curves (Ltail
2 > 0.004 not

shown) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Conductor vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . . . . . 16

3.4 Distribution of |Xtail| Values for Given Elliptic Curves . . . . . . . . . . 17

3.5 Conductor vs |Xtail| for Given Elliptic Curves . . . . . . . . . . . . . . . 18

3.6 |Ltail| vs |Xtail| for Given Elliptic Curves . . . . . . . . . . . . . . . . . . 19

3.7 L vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . . . . . . . . . . 20

3.8 Frequency of Central Values for Given Elliptic Curves (L(1/2, E) > 20
not shown) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C.1 Conductor vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . . . . . 27

C.2 Discriminant vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . . . . 27

C.3 L(1/2, E) vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . . . . . . 28

C.4 Real Period vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . . . . . 28

C.5 |X| vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . . . . . . . . . 29

C.6 Tamagawa Number vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . 29

C.7 |Etors| vs |Ltail| for Given Elliptic Curves . . . . . . . . . . . . . . . . . . 30

iv



LIST OF TABLES

TABLE Page

B.1 Relevant Data for Elliptic Curves with Large |Xtail| . . . . . . . . . . . . 26

v



1. INTRODUCTION

Elliptic curves are the object of some of the most challenging current problems in

number theory. These problems range from applications in cryptography to the famous

Birch and Swinnerton-Dyer conjecture. An elliptic curve can be defined as the set of

solutions to the equation y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. Over most fields,

elliptic curves can be written in the form y2 = x3 + ax+ b, known as Weierstrass Normal

Form. For the purposes of this paper, we will consider this to be our definition of an elliptic

curve.

Mathematicians are particularly interested in understanding the rational solutions to

elliptic curves. The rational solutions to an elliptic curve, E(Q), form a group. The

identity of this group is an extra point known as the point at inifinity. Addition of two

points, P + Q, is defined by drawing a line through P and Q. This line will generally

intersect with a third point, R. Then we say that P + Q = −R, where −R is the point

R reflected over the x-axis. When P = −Q, the points lie on a vertical line and do not

intersect a third point on the curve. In this case, we define P +Q to be the point at infinity.

Therefore reflection of a point over the x-axis does indeed produce its additive inverse.

In [Mor22], Mordell showed that E(Q) is a finitely generated and therefore can be

written

E(Q) ∼= Zr ⊕ Etors. (1.1)

The value of r, known as the rank of the elliptic curve, is indicative of the size of the group

of rational solutions.

Since then, much work has been done towards determining the rank of elliptic curves.

Much of this work is summarized in [RS02]. However, it is still not known, in general,

how to find the rank of an elliptic curve. In fact it is not even known if the rank is uniformly
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bounded for all elliptic curves over Q.

Elliptic curve L-functions can be used to study the rank of elliptic curves. An Elliptic

curve L-fucntion, L(s, E), is defined

L(s, E) =
∏
p-NE

(
1− ap

ps+
1
2

+
1

p2s

)−1 ∏
p|NE

(
1− ap

ps+
1
2

)−1

, (1.2)

where NE is the conductor of the elliptic curve and ap = p + 1− |E(Fp)| when p 6= 2, 3.

When p is 2 or 3, ap is defined slightly differently. Note that the definition for L(s, E)

above only converges when Re(s) > 1. In [Wil95] and [TW95], Wiles and Taylor showed

that there is an analytic continuation of L to the complex plane along with a functional

equation relating s to 1 − s. It is conjectured by Birch and Swinnerton-Dyer that the

rank of an elliptic curve is equal to its analytic rank, i.e. the order of vanishing of its

L-function at the central point, s = 1
2
. Because of this conjecture, calculating the central

value L-function and it’s derivatives is of interest.

Using the functional equation, the central value of the L-function can be calculated

using the infinite sum

L(1/2, E) = (1 + ωE)
∞∑
n=1

λE(n)√
n

exp

(
−2πn√
NE

)
(1.3)

where ωE is the root number of the elliptic curve, NE is its conductor, and each λE(n) =

an√
n

. The root number, ωE , has the value −1 when the analytic rank of the elliptic curve

is odd and 1 when the analytic rank of the elliptic curve is even. We can easily see that

when ωE = −1, L(1/2, E) = 0. Thus, for the interests of our investigation, we are only

interested in elliptic curves where ωE = 1. The L-function of the elliptic curve, in this
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case, can be written as:

L(1/2, E) = 2
∞∑
n=1

λE(n)√
n

exp

(
−2πn√
NE

)
. (1.4)

The other notable paramater in the central value computation is the function λE(n). As

previously mentioned, λE(n) = an√
n

. In particular, when p is prime, λE(p) = p+1−|E(Fp)|√
p

.

We define λ(n) for non-prime value of n by equating the original defintion of the L-

function at s = 1/2 with the series definition given above. We can determine that λ(n)

is multiplicative, and that λ(pj) is defined by a Cheybyshev polynomial. Because of this,

λE(pk) must be periodic modulo p.

The obvious way to attempt to compute this value is to merely sum as many terms

of the series as is necessary to achieve the desired precision, usually O(
√
NE logNE)

terms. Hinkel and Young suggest in [HY15] that, assuming the Birch and Swinnerton-

Dyer conjecture, we can an obtain a precise result by summing significantly fewer terms.

For reference, the Birch and Swinnerton-Dyer conjecture states that, for a curve of rank r,

L(r)(1/2, E)

r!
=
|XE|ΩEREcE
|Etors|2

(1.5)

where XE , ΩE , RE , and cE are respectively the Tate-Shafarevich group, the real period,

the regulator, and the global Tamagawa number of the elliptic curve. All of the quantities

on the right hand side of this equation can be efficiently calculated, except for |XE| and

RE . However, for curves of rank zero, RE = 1. In addition, since |XE| is the order of a

group, it must be an integer if it is finite. It is known that |XE| is finite for elliptic curves

of analytic rank zero and one, and it is conjectured to be finite in general. Therefore, for

curves of analytic rank zero, we only need to calculate L(1/2, E) with enough precision to

estimate |XE| to within 0.5 of its actual value. Then, by rounding to the nearest integer,
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we can determine the actual value of |XE| and use it to obtain L(1/2, E).

Hinkel and Young suggest in [HY15] that, based on data,
√
N terms is a sufficient

initial approximation of L(1/2, E) for NE ≤ 1010. My work demonstrates that 1
2

√
N

terms is enough, reducing total time needed to compute L(1/2, E). In section 2, I provide

theoretical support that this will work on average for small enoughN using the framework

provided in [You10], and discuss how this needs to grow for larger N . In section 3, I give

empirical support for this claim and provide some analysis of the outliers for which this

method does not work as well.

4



2. THEORETICAL SUPPORT

In this section, we seek to provide theoretical support that our approximation method

will work for reasonably sized conductors. Ideally, we would like to show that for a

given elliptic curve E, Lapprox(1/2, E) = 2
∑

n≤δ
√
NE

λE(n)√
n
e

−2πn√
NE allows us to make a

good enough approximation of the actual value of L(1/2, E) to determine the exact value

of X assuming the Birch and Swinnerton-Dyer conjecture. We determine this by using the

Birch and Swinnerton-Dyer conjecture to set |XE| = L(1/2,E)|Etors|2
ΩEcE

. We let |Xapprox,E| =
L(1/2,E)approx|Etors|2

ΩEcE
. If ||Xapprox,E| − |XE|| < 1/2, then, since |XE| must be an integer, we

know that by rounding to the nearest integer we will obtain the exact value of |XE|.

Unfortunately, Lapprox(1/2, E) is difficult to work with for a general elliptic curve.

The conductor as well as λE behave somewhat erratically, and so bounding the difference

between Lapprox(1/2, E) and L(1/2, E) becomes problematic. Because of these problems,

we will consider the average of this difference over a family of elliptic curves, and show

that, for a large enough δ, we can expect our method to work on average. This is not

sufficient to show that our method will always work, since the worst case may be much

different than the average case, and may cause our method to fail. However, we expect

that most elliptic curves will behave more like the average case than the worst case, and

so our approximation should be sufficient for many elliptic curves.

In addition, some of the complications above necessitate simplifying assumptions.

Many of our assumptions are similar to those made in [CFK+05]. The assumptions gen-

erally involve ignoring error terms that are not entirely insignificant. While these assump-

tions cannot be rigorously justified, data seems to indicate that these assumptions work

when taken together. That this works in our case is justified by our data in Section 3.

Our main result in this section is the following:
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Heuristic 2.1. LetLapprox(1/2, E) and |Xapprox,E| be defined as above. Let δ ≥ 1
24π

logNE−

C2 log logNE for some constant C2 such that 4πC2 < 1. On average, as the conductor

approaches infinity, we expect ||Xapprox,E| − |XE|| < 1/2.

In order to support Heuristic 2.1, we first estimate 1
4|A||B|

∑
|a|≤A
|b|≤B

λEa,b(m)λEa,b(n):

Heuristic 2.2. Let A,B,m, n ∈ Z such that A,B,m, n > 0. Then

1

4|A||B|
∑
|a|≤A
|b|≤B

λEa,b(m)λEa,b(n)

is approximately 1 when m = n and 0 otherwise.

Our support for this heuristic is as follows:

Assumem = p1
α1p2

α2 . . . pk
αk and n = p1

β1p2
β2 . . . pk

βk . Then λEa,b(m) =
∏

i λEa,b(pi
αi),

and similarly for λEa,b(n). Since λ(pk) is periodic over p, λEa,b(m)λEa,b(n) is necessarily

periodic over mn. Therefore, if 4AB is a multiple of mn, we can write:

1

4|A||B|
∑
|a|≤A
|b|≤B

λEa,b(m)λEa,b(n) =
1

(mn)2

∑
a,b mod mn

λEa,b(m)λEa,b(n). (2.1)

Our first simplifying assumption is that equation 2.1 is a good approximation in gen-

eral. This is a reasonable approximation when AB is much larger than mn, as in this

case anything remaining after the final full period will be small compared to the total sum.

However when AB is small, and in particular is smaller than mn, it is likely that the re-

mainder will be large compared to the total sum. As mentioned before, due to [CFK+05],

we do not expect this approximation error to affect our final result.

Using the Chinese remainder theorem and the previous assumption, we can determine
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that

1

4|A||B|
∑
|a|≤A
|b|≤B

λEa,b(m)λEa,b(n) ≈ 1

(mn)2

∏
pi

∑
a mod pαi+βii

∑
b mod pαi+βii

λEa,b(pi
αi)λEa,b(pi

βi).

(2.2)

We will next apply the Hecke relation, which states that λEa,b(p
m)λEa,b(p) is equal to

λEa,b(p
m+1) + λEa,b(p

m−1) if p does not divide the discriminant of Ea,b, and λEa,b(p
m+1)

if p does divide the discriminant. Our second simplifying assumption will be to only

consider the case where p does not divide the discriminant of Ea,b. A careful reading of

equations 4.8-4.12 in [You10] suggest that this estimation will not have a large effect on

our final result. In this case, λEa,b(pi
αi)λEa,b(pi

βi) =
∑

0≤d≤min(αi,βi)

λEa,b(p
αi+βi−2d
i ), and

we can write

1

4|A||B|
∑
|a|≤A
|b|≤B

λEa,b(m)λEa,b(n) ≈ 1

(mn)2

∏
pi

∑
a mod pαi+βii

∑
b mod pαi+βii

min(αi,βi)∑
d=0

λEa,b(p
αi+βi−2d
i ).

(2.3)

Since λEa,b(p
αi+βi−2d
i ) is periodic modulo p, this can be rewritten as

1

4|A||B|
∑
|a|≤A
|b|≤B

λEa,b(m)λEa,b(n) ≈ 1

(mn)2

∏
pi

∑
0≤d≤min(αi,βi)

p
2(αi+βi−1)
i

( ∑
a mod pi

∑
b mod pi

λEa,b(p
αi+βi−2d
i )

)
.

(2.4)

At this point, we will use our next simplifying assumption. By [You10], we know the
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following is true:

∑
a mod p

∑
b mod p

λEa,b(p
j) =



0, j odd

p2, j=0

0, j even and 2 ≤ j ≤ 8

xp,j, j even and ≥ 10

(2.5)

where xp,j is related to the trace of a Hecke operator. Since this last case occurs rela-

tively rarely and makes λEa,b(p
j) difficult to work with, we approximate λ in the following

manner: ∑
a mod p

∑
b mod p

λEa,b(p
j) ≈


p2, j=0

0, otherwise
(2.6)

As stated before, we expect this approximation to have little effect on our final result for

the reasons described in [CFK+05].

Using the above definition, we can determine that
∑

a mod pi

∑
b mod pi

λEa,b(p
αi+βi−2d
i ) ≈ 0

unless αi + βi = 2d, and

1

4|A||B|
∑
|a|≤A
|b|≤B

λEa,b(m)λEa,b(n) ≈ 1

(mn)2

∏
pi

∑
0≤d≤min(αi,βi)
αi+βi=2d

p
2(αi+βi)
i . (2.7)

But, since d ≤ min(αi, βi), αi + βi = 2d only when d = αi = βi. Also, when αi = βi for

all i, m = n. Thus, when m 6= n, we get 0, and when m = n, we can write

1

4|A||B|
∑
|a|≤A
|b|≤B

λEa,b(m)λEa,b(n) ≈ 1

m4

∏
pi

p4αi
i ≈ 1

m4
m4 ≈ 1 (2.8)

which gives us Heuristic 2.2.
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We will next use Heuristic 2.2 to estimate howLtail(1/2, E) = L(1/2, E)−Lapprox(1/2, E) =

2
∑

n≥δ
√
NE

λE(n)√
n
e

−2πn√
NE grows as we take larger families. In order to do this, we need to

make a fourth simplifying assumption. We will approximate Ltail with

L∗tail = 2
∑

n≥δ
√
XA,B

λE(n)√
n
e

−2πn√
XA,B (2.9)

where XA,B is a value that is on the same order as the conductors of the elliptic curves in

the family. We then get the following heuristic:

Heuristic 2.3.

lim
A,B→∞

1

4|A||B|
∑
|a|≤A
|b|≤B

(L∗tail,Ea,b)
2 ≤ e−4πδ

πδ

We begin our discussion of support for this heuristic by noting that

(L∗tail,Ea,b)
2 =

2
∑

n≥δ
√
XA,B

λE(n)√
n
e

−2πn√
XA,B


2

(2.10)

= 4
∑

n1≥δ
√
XA,B

∑
n2≥δ
√
XA,B

λE(n1)λE(n2)
√
n1n2

e
−2π(n1+n2)√

XA,B . (2.11)

Therefore we get

1

4|A||B|
∑
|a|≤A
|b|≤B

(L∗tail,Ea,b)
2 =

4

4|A||B|
∑
|a|≤A
|b|≤B

∑
n1≥δ
√
XA,B

∑
n2≥δ
√
XA,B

λEa,b(n1)λEa,b(n2)
√
n1n2

e
−2π(n1+n2)√

XA,B

(2.12)

= 4
∑

n1≥δ
√
XA,B

∑
n2≥δ
√
XA,B

e
−2π(n1+n2)√

XA,B
1

4|A||B|
∑
|a|≤A
|b|≤B

λEa,b(n1)λEa,b(n2)
√
n1n2

.

(2.13)
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However, by Heuristic 2.2, the innermost sum is approximately 0 unless n1 = n2, in

which case it is 1. Therefore

1

4|A||B|
∑
|a|≤A
|b|≤B

(L∗tail,Ea,b)
2 ≈ 4

∑
n≥δ
√
XA,B

e
−4πn√
XA,B

n
. (2.14)

Since n ≥ δ
√
XA,B, we know that

4
∑

n≥δ
√
XA,B

e
−4πn√
XA,B

n
≤ 4

δ
√
XA,B

∑
n≥δ
√
XA,B

e
−4πn√
XA,B . (2.15)

Approximating via integration yields that

4

δ
√
XA,B

∑
n≥δ
√
XA,B

e
−4πn√
XA,B ≤ 4e−4πδ

δ
√
XA,B

+ 4

∫ ∞
δ
√
XA,B

e
−4πt√
XA,B dt (2.16)

=
4e−4πδ

δ
√
XA,B

+
e−4πδ

πδ
. (2.17)

As A and B go to infinity, XA,B also goes to infinity. But as XA,B goes to infinity, the

first term gets small compared to the second term. Thus we can write

lim
A,B→∞

1

4|A||B|
∑
|a|≤A
|b|≤B

(L∗tail,Ea,b)
2 ≤ e−4πδ

πδ
. (2.18)

We are now ready to give our support for Heuristic 2.1. We would like to show that

|XE,tail| = |Xapprox,E −XE| <
1

2
. (2.19)
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We first note that, using the Birch and Swinnerton-Dyer conjecture, we can write

|XE,tail| = |
Lapprox(1/2, E)|Etors|2

ΩEcE
− L(1/2, E)|Etors|2

ΩEcE
| (2.20)

= |Ltail(1/2, E)|Etors|2

ΩEcE
|. (2.21)

We will consider how this grows as the conductor gets large. By Heuristic 2.3, we ex-

pect that, on average for large conudctors, Ltail ≤
√

e−4πδ

πδ
. Mazur showed in [Maz77] that

the order of the torison group, |Etors| is uniformly bounded by a constant. The Tamagawa

number, cE , is an integer, and therefore always at least 1. Finally, a heuristic by Watkins

[Wat08] states that as the conductor NE goes to infinity, ΩE � N
−1/12
E .

Therefore, we can estimate that, on average for large conductors,

|XE,tail| ≤

√
e−4πδ

πδ
|Etors|2

N
−1/12
E cE

. (2.22)

We would like to consider how δ must grow so that

√
e−4πδ

πδ
|Etors|2

N
−1/12
E cE

<
1

2
(2.23)

as NE gets large.

We first rewrite this as
NE

1/6e−4πδ

4πδ
<

c2
E

16|Etors|4
. (2.24)

We note that this will definitely be true when

NE
1/6e−4πδ

4πδ
<

1

16|Etors|4
, (2.25)

since cE ≥ 1. In addition, this estimate will not cause us to significantly underestimate
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our bound for δ, since cE is almost constant.

If we let δ ≥ 1
24π

logNE − C2 log logNE for some constant C2, then

e−4πδ ≤ e−4π( 1
24π

logNE−C2 log logNE) (2.26)

= e
−1
6

logNE+4πC2 log logNE (2.27)

= N
−1
6
E e4πC2 log logNE (2.28)

= N
−1
6
E (logNE)4πC2 . (2.29)

Therefore, for large enough NE ,

NE
1/6e−4πδ

4πδ
<

(logNE)4πC2

4π( 1
24π

logNE − C2 log logNE)
(2.30)

=
(logNE)4πC2

1
6

logNE − 4πC2 log logNE)
. (2.31)

If we pick C2 such that 4πC2 < 1 (for example, C2 = 1
8π

), then for large NE this will

approach 0 as the denominator grows more quickly than the numerator. In other words,

when δ ≥ 1
24π

logNE−C2 log logNE and the conductor is large,
√
e−4πδ

πδ
|Etors|2

C1N
−1/12
E cE

< 1
2
. Since,

as previously mentioned, |XE,tail| can be approximated, on average, by
√
e−4πδ

πδ
|Etors|2

C1N
−1/12
E cE

when

the conductor is large, we get Heuristic 2.1.

It is important to note that Heuristic 2.1 represents an average case result and not a

worst case result. In other words, it is possible that even when we picked δ as described

above, there may be outliers where this is not a good enough estimate to allow us to recover

the actual value of |X|. Ideally, these points are relatively rare, and our method can be

expected to work most of the time.
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3. EMPIRICAL SUPPORT

In Section 2, we provided theoretic support that our method should work. In this

section, we will examine our method empirically.

In order to gather data, we implemented the described algorithm in PARI/GP [PAR16].

The code itself can be found in appendix A. We decided to test our code primarily on

families with maximum conductors on the order of 1010 and 1011. In particular, we col-

lected data for all elliptic curves E : y2 = x3 + ax2 + b where 630 ≤ |a| ≤ 900,

10000 ≤ |b| ≤ 14000, ωE = 1 and E is a global minimal model. These conductors are

large enough that it has previously been difficult to compute the L-functions efficiently.

However, they are still small enough that, with the method being discussed, they can be

computed in a few seconds. This allows us to collect data for many elliptic curves.

The theoretical results from section 2 tell us that picking

δ ≥ 1

24π
logNE − C2 log logNE (3.1)

with constant C2 such that 4πC2 < 1 is necessary to approximate L(1/2, E) precisely

enough to accurately determine |X|, and thus L(1/2, E). In particular, if we pickC2 = 1
8π

and NE = 1011, then

δ ≥ 1

24π
log 1011 − 1

8π
log log 1011 (3.2)

≈ 0.2 (3.3)

is at least necessary to determine |X|.

For our tests, we chose to use δ = 0.5. In addition to recording the final central value

(L) which we obtained for each elliptic curve, we also recorded the intermediate values
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Figure 3.1: Distribution of Ltail Values for Given Elliptic Curves

Lapprox, X, and Xapprox that were calculated during the process. In section 3.1, we will

examine this collected data in relation to our average case results, while in section 3.2, we

will consider the data points that differ significantly from our average case results.

3.1 Empirical Support for Average Case Results

We first give some empirical support that Heuristic 2.3 applies to the elliptic curves

we are considering. This heuristic suggests that the average value of Ltail
2 over a family

of elliptic curves similar to the one we are working over is expected ot be smaller than

e−4πδ

πδ
. In particular, when δ = 0.5, we expect that Ltail

2 < 0.0012 on average. Figure 3.1

shows the frequency with which different value of Ltail appear. We can see that most of

the elliptic curves seem to have Ltail that is very close to zero. In fact, the average value of

Ltail
2 over the given elliptic curves is .00054 (see figure 3.2). This is smaller than 0.0012,

supporting our heuristic.
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Figure 3.2: Distribution of Ltail
2 Values for Given Elliptic Curves (Ltail

2 > 0.004 not
shown)

However, it is important to note that we only expect the heurisitc to hold on average,

not in general. One can see in figure 3.1 that there are some elliptic curves for which

|Ltail| is larger than expected. Figure 3.3 gives an idea of what these outliers look like.

We can see that the values of |Ltail| are, for the most part, very close to 0. However, there

are occasionally elliptic curves with |Ltail| of up to almost 0.3. This disparity between the

average case and worst case will be discussed in further detail in section 3.2.

We next use our collected data to examine Heuristic 2.1. As noted previously, our

choice of δ = 0.5 is well above the δ = 0.2 that Hueristic 2.1 suggests is necessary to

handle elliptic curves with conductors on the order of 1010 and 1011. Because of this,

we would expect to see value of |Xtail| = ||X| −Xapprox| that are much smaller than

1
2
. Figure 3.4 shows the frequency with which different values of |Xtail| appear over the

elliptic curves for which we collected data. We can see that for the most part, |Xtail| was
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Figure 3.3: Conductor vs |Ltail| for Given Elliptic Curves

smaller than 0.1, which is well below the 0.5 we expected.

Figure 3.5 also shows that most of the elliptic curves have small values of |Xtail|.

However, this figure more clearly shows the outliers. It should be noted that since |X|

was obtained by rounding |Xapprox| to the nearest integer, it is impossible to obtain a value

of |Xtail| larger than 0.5. If |Xtail| should be larger than 0.5, our algorithm will return the

incorrect value of |X| and 1−|Xtail|. However, since all of our values are well below 0.5,

it is likely that rounding gave us the correct value for |X|. In addition, as noted earlier,

it is conjecture that |X| will always be a perfect square. Therefore the accuracy of our

method is further supported by the fact that, in all of our data, the value we obtained for

|X| is a perfect square.
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Figure 3.4: Distribution of |Xtail| Values for Given Elliptic Curves

3.2 Analysis of Outliers

We previously showed that our data supports our average case results. However, our

average case results tell us nothing about what happens in the worst case. It is possible that,

even if we chose δ as desribed in Heuristic 2.1, |Xtail| will be greater than 0.5, making it

difficult to correctly obtain |X|. Therefore, if we can determine for which elliptic curves

|Xtail| is likely to be large, we can use larger δ or a different method to ensure we calculate

the central value correctly.

As noted in section 2,

|Xtail| =
∣∣∣∣Ltail(1/2, E)|Etors|2

ΩEcE

∣∣∣∣ . (3.4)

In other words, |Xtail| is likely to be large when either |Ltail| or |Etors| is large, or when
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Figure 3.5: Conductor vs |Xtail| for Given Elliptic Curves

ΩE or cE is small. Examining all of the elliptic curves with |Xtail| > 0.2 suggests that the

most important factor is a large |Ltail|, since all of these elliptic curves have |Ltail| larger

than 0.1 (see appendix B). Plotting |Ltail| against |Xtail| (Figure 3.6) shows that this is

mostly true. As can be seen in the graph, the data organizes itself in bands, where each

band is characterized by the ratio |Xtail|
Ltail

. This is explained by the fact |Xtail|
Ltail

is determined

by ΩE , cE , and |Etors|. Since ΩE remains relatively constant over the family of elliptic

curves and both cE and |Etors| take on discrete values, each band must represent a different

value of |Etors|
cE

Understanding that |Xtail| is determined primarily by the value of Ltail leads us to the

question “What makes Ltail large?" Figure 3.3 suggests that the value of the conductor is

not a significant factor, since there are examples of both elliptic curves of small conductor

and elliptic curves of large conductor that have a large value for Ltail. In order to see if
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Figure 3.6: |Ltail| vs |Xtail| for Given Elliptic Curves

there was any easily identifiable property of an elliptic curve that correlated to a large value

of Ltail, we plotted the value of Ltail against several different values associated with elliptic

curves. The resulting graphs can be seen in appendix C. Examining these, it appears that

elliptic curves with a small real period, tamagawa number, or torsion group are more likely

to have a large value of Ltail. However, this is not very telling, since most of the elliptic

curves in our family have a small real period, tamagawa number, and torsion group. Thus

any given elliptic curve, including a particular elliptic curve with a large value of Ltail,

is most likely going to have a small real period, tamagawa number, and torsion group.

Therefore this observation tells us little about how to predict whether an elliptic curve will

have an unusally large value for Ltail.

The other elliptic curve property that appears to correlate with the value of Ltail is the

central value itself. As we can see in Figure 3.7, most of the elliptic curves with a large
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Figure 3.7: L vs |Ltail| for Given Elliptic Curves

central value also had a large value of Ltail. However, it is important to also note that many

elliptic curves with a central value very close to 0 also have a larger value of Ltail. In other

words, an elliptic curve with large central value is very likely to also have a large value of

Ltail, but there are additional elliptic curves with very small central values that also have

large values of Ltail.

Since we have determined that elliptic curves with large central value are likely to have

large values of Ltail, we can take extra measures while working with these elliptic curves to

ensure that we get an approximation that allows us to accurately determine X. However,

there are still many elliptic curves with large Ltail that are not accounted for. These appear

to generally have central values very close to 0. Since, as seen in Figure 3.8, almost all

of the elliptic curves have central values very close to 0, this gives us little information to

work with. It would be useful to, in the future, determine a method to differentiate between
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Figure 3.8: Frequency of Central Values for Given Elliptic Curves (L(1/2, E) > 20 not
shown)

those elliptic curves with small central value and small Ltail from those with small central

value and large Ltail.
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APPENDIX A. FUNCTIONS USED IN CALCULATIONS

The following function is the primary function used to calculate and record elliptic
curves along with their central values:

get_values(a1,a2,b1,b2,o_filename) = {

local(E, root_no, L, t_approx, T, diff, time, L_1d,
o_filename2, tors, tama, period, L_tail, L_appr);

o_filename = concat(o_filename, ".csv");

write(o_filename, "delta, a, b, N, root_no, L_approx,
sha_approx, sha, diff, L, time (s), tors, tama,
rlperiod, L_tail, disc");

for(a=a1,a2,
for(b=b1, b2,

E = ellinit([a, b]);
root_no = ellrootno(E);

if(check_min(E),
if(root_no==1,

gettime();
write1(o_filename, .5);
write1(o_filename, ", ");
write1(o_filename, a);
write1(o_filename, ", ");
write1(o_filename, b);
write1(o_filename, ", ");
write1(o_filename, ellglobalred(E)[1]);
write1(o_filename, ",");
write1(o_filename, root_no);
write1(o_filename, ", ");
L_appr = L_approx(E, .5);
write1(o_filename, L_appr);
write1(o_filename, ", ");
t_approx = tsg(E, L_appr);
write1(o_filename, t_approx);
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write1(o_filename, ", ");
T = round(t_approx);
write1(o_filename, T);
write1(o_filename, ", ");
diff = abs(T - t_approx);
write1(o_filename, diff);
write1(o_filename, ", ");
L = L_act(E, T);
write1(o_filename, L);
write1(o_filename, ", ");
time = gettime();
write1(o_filename, round(time/1000));
tors = elltors(E)[1];
tama = ellglobalred(E)[3];
period = get_real_period(E);
write1(o_filename, ",");
write1(o_filename, tors);
write1(o_filename, ", ");
write1(o_filename, tama);
write1(o_filename, ", ");
write1(o_filename, period);
write1(o_filename, ", ");
L_tail = abs(L-L_appr);
write1(o_filename, L_tail);
write1(o_filename, ", ");
write(o_filename, E.disc););

)));
write("~/Documents/research/summer_data/0_log.csv", ",1");
return(1);

};

The following is the set of helper functions called by the main funciton above:

get_real_period(E) = {
local(real_period);
real_period = E.omega[1];
if((E.disc>0),

real_period = real_period*2;
);
return(real_period);
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}

L_approx(E, delta = 1) = {
local(ans, root_no, an, cond);
root_no = ellrootno(E);
cond = ellglobalred(E)[1];
ans = 0;
all_ak = ellan(E, truncate(sqrt(cond))+1);
if(root_no!=-1,

for(i=1, delta*sqrt(cond),
an = all_ak[i];
ans = ans + an/i*exp(-2*Pi*i/sqrt(cond)););

ans = ans*(root_no+1);
);
return(ans)

};

tsg(E, L) = {
local(tors, period, tama, final);
tors = elltors(E)[1];
tama = ellglobalred(E)[3];
period = get_real_period(E);

final = L*sqr(tors)/period/tama;
return(final)

};

check_min(E) = {
local(temp);
temp = ellglobalred(E)[2];
if(temp == [1,0,0,0], return(1), return(0))

};

L_act(E, T) = {
local(rp, tama, tors, final);
tors = elltors(E)[1];
tama = ellglobalred(E)[3];
rp = get_real_period(E);
final = rp*T*tama/tors/tors;
return(final);

};
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APPENDIX B. ELLIPTIC CURVES WITH LARGE VALUES OF
|XTAIL|

In order to determine which elliptic curves are likely to have larege |Xtail|, we exam-
ined all elliptic curves with |Xtail| ≥ 0.2. The results are shown below.

a b |Xtail| Ltail |Etors| cE ΩE

665 11017 0.200 0.152 1 1 0.760
728 11302 0.214 0.159 1 1 0.746
743 10375 0.222 0.165 1 1 0.745
749 10288 0.227 0.169 1 1 0.744
752 11810 0.212 0.157 1 1 0.740
758 10627 0.232 0.172 1 1 0.742
794 10387 0.202 0.148 1 1 0.735
812 11855 0.248 0.181 1 1 0.729
827 10955 0.202 0.147 1 1 0.727
839 10163 0.207 0.150 1 1 0.726
842 10790 0.253 0.184 1 1 0.725
863 10795 0.207 0.149 1 1 0.720
875 10315 0.308 0.221 1 1 0.718
896 11941 0.278 0.198 1 1 0.713
665 13621 0.235 0.177 1 1 0.751
707 12065 0.221 0.165 1 1 0.748
707 13955 0.244 0.181 1 1 0.742
-787 13690 0.237 0.244 1 1 1.030
803 12415 0.223 0.163 1 1 0.729
818 12443 0.206 0.150 1 1 0.727
827 13295 0.213 0.154 1 1 0.723
854 13222 0.338 0.243 1 1 0.719
857 12125 0.202 0.146 1 1 0.720
860 12298 0.213 0.153 1 1 0.719
881 13852 0.202 0.144 1 1 0.713
884 12685 0.260 0.185 1 1 0.715
896 12373 0.225 0.161 1 1 0.713
899 12715 0.209 0.149 1 1 0.712
-847 13957 0.243 0.255 1 1 1.049
-826 13703 0.218 0.229 1 1 1.047

Table B.1: Relevant Data for Elliptic Curves with Large
|Xtail|
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APPENDIX C. ADDITIONAL GRAPHS

In order to determine what factors cause |Ltail| to be unusually large, we investigated
how |Ltail| correlates with other elliptic curve data. The results of this investigation are
shown below.

Figure C.1: Conductor vs |Ltail| for Given Elliptic Curves

Figure C.2: Discriminant vs |Ltail| for Given Elliptic Curves
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Figure C.3: L(1/2, E) vs |Ltail| for Given Elliptic Curves

Figure C.4: Real Period vs |Ltail| for Given Elliptic Curves
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Figure C.5: |X| vs |Ltail| for Given Elliptic Curves

Figure C.6: Tamagawa Number vs |Ltail| for Given Elliptic Curves

29



Figure C.7: |Etors| vs |Ltail| for Given Elliptic Curves
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