
PATIENT-CENTERED MONITORING AND IMAGE PROCESSING ON

SMARTPHONE

An Undergraduate Research Scholars Thesis

by

CHENJIE LUO

Submitted to the Undergraduate Research Scholars program at

Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Tie Liu

May 2017

Major: Electrical Engineering

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGMENTS .. 2

CHAPTER

I. INTRODUCTION .. 3

1. Segmentation and Deformation .. 3

2. Realization on the Smartphone ... 4

II. METHODS ... 5

1. GrabCut ... 5

2. Segmentation by Using GrabCut .. 6

3. Thin Plate Spline ... 7

4. Deformation by Using Thin Plate Spline .. 8

III. RESULTS ... 9

IV. CONCLUSIONS... 11

REFERENCES ... 12

APPENDIX ... 13

1

ABSTRACT

Patient-Centered Monitoring and Image Processing on Smartphone

Chenjie Luo

Department of Electrical & Computer Engineering

Texas A&M University

Research Advisor: Dr. Tie Liu

Department of Electrical & Computer Engineering

Texas A&M University

 Surgery Site Infection (SSI) is an infection that occurs after surgery in the part of the

body where the surgery took place. It typically occurs within 30 days after the surgery (and

discharge from the hospital). With rapid advance of sensing and mobile technologies, today more

methods may be used to control the risk of SSI. In particular, mobile phones can be one of the

most convenient and effective tools for monitoring SSI prognosis. The purpose of this research

was to develop an algorithm for deforming the surgery site image to help monitor SSI risk and

implement the algorithm on IOS devices. With proper deformation, the surgery site image can be

readily analyzed using mobile phones with limited computational power. Our work focused on

the so-called thin-plate spline interpolation, which is a two-dimensional extension of the cubic

spline in one dimension. Compared with other spatial interpolation functions, the thin-plate

spline is smooth and numerically stable. We implemented a thin-plate spline based deformation

algorithm using both Matlab (for PCs) and Object-Oriented C (for IOS devices) programming

languages, and showed promising deformation results for surgery site images.

2

ACKNOWLEDGMENTS

I would like to express my special gratitude to Professors Tie Liu and Xiaoning Qian,

who gave me the opportunity to be part of this project and served as my advisers throughout the

project.

3

CHAPTER I

INTRODUCTION

The goal of this project is to develop a prototype system to monitor surgical region,

which can predict the possibility that the patient has been infected. According to the previous

research, symptoms like abnormal temperature and fast heart rate can be signs of SSI. However,

many of current prognostic models of SSI have not made full use of physical information for SSI

prediction. They are merely based on the medical knowledge or heuristics, and most of the

models are only qualitative, rather than quantitative. Besides, most current models only

incorporate static variables known as of the end of the surgery. It is thus necessary to incorporate

dynamic information to improve the analytical method for SSI prediction. In order to solve this

problem, we need to build up a dynamic system on smartphone which is able to process the

image, analysis the image and provide risk score of the patient in the end. The first step we will

do for image processing is either segmentation or deformation of the image.

1. Segmentation and Deformation

The reason why we need to operate deformation of the surgery image is that we would

like to reform the surgery site into a line without losing any image information. As a result, we

will be able to conduct the later image analysis. At the beginning, we attempted to use GrabCut

algorithm to realize the segmentation. However, the result is far from satisfaction. Different from

other images, medical images cannot offer an apparent borderline between background and

foreground. Therefore, the algorithm may mark some foreground region as background by

4

mistake. And we use second option which is Thin Plate Spline deformation. According the

surgery site, certain fixed points can be obtained in order to operate deformation.

2. Realization on the Smartphone

Due to the fact that we would like to build up a smart phone application, the algorithm

need to be run on the phone correctly and precisely operate image processing before analyzing it.

Because Thin Plate Spline function is hard to precisely proceed surgery site deformation, we

build the function interactively. The user will be required to touch the screen along the surgery

site to obtain certain fixed points. In Method section we will discuss why we need these points.

After the deformation, the image will be saved to the album and display on the screen. Therefore,

further image analysis will be conducted to obtain risk information.

5

CHAPTER II

METHODS

To analyze the surgery images, several options could be used. Firstly, Segmentation

could be operated to differentiate the potential infected region and the normal region. A further

analysis could mainly focus on the potential infected region. This solution will need GrabCut

algorithm to differentiate two regions. Another option is analyzing the potential infection region

with the help of the mesh grids. Each mesh will be analyzed separately in order to deduct if it is

infected. The second option will need deformation to make sure surgery is a straight line in the

center of image and hence the mesh grids is able to segment the whole image into each mesh.

Therefore, further analysis based on each mesh will be easier to conduct.

1. GrabCut

GrabCut is basically an image segmentation method based on GraphCut. It defines an

energy function called Gibbs Energy function[Carsten, Vladimir and Andrew 2004] so that the

minimum should be able to operate a satisfactory segmentation. And the Gibbs Function is

defined as:

E(α, k, θ, z) = U(α, k, θ, z) + V(α, z) (1)

 In the above function, z which represents the grey values of the image, which is exactly

the same as in Graphcut energy function. The parameter α is called opacity value and can only

be either 0 and 1, which represents the pixel should be classified as foreground or background. θ

is used to describe grey-level distributions of foreground and background. Variable k is a new

variable imported to GrabCut to be a unique GMM component assigned to each pixel.

6

 The Gibbs Function is composed of two key factors: U and V. Factor U is used to decide

whether a pixel looks more like a foreground or not. However, color difference between adjacent

pixels could also contribute to deciding whether it belongs to foreground or background.

Therefore, U and V are defined as follows:

 U(α, k, θ, z) = ∑ 𝐷(α𝑛, 𝑘𝑛, 𝜃, 𝑧𝑛)𝑛 , (2)

where 𝐷(α𝑛, 𝑘𝑛, 𝜃, 𝑧𝑛) = − log 𝜋 (α𝑛, 𝑘𝑛) + 0.5× log 𝑑𝑒𝑡 ∑(α𝑛, 𝑘𝑛) + 0.5×[𝑧𝑛 −

𝜇(α𝑛, 𝑘𝑛)]T ∑(α𝑛, 𝑘𝑛)−1
[𝑧𝑛 − 𝜇(α𝑛, 𝑘𝑛)] (3)

and therefore:

 𝜃 = {𝜋(𝑎, 𝑘), 𝑢(𝑎, 𝑘), ∑(𝑎, 𝑘), 𝑎 = 0,1, 𝑘 = 1, … , 𝐾} (4)

Besides, the smoothness term is the same as the V(α, z) in GraphCut. And it is defined as:

 V(α, z) = 𝛾 ∑ [𝑎𝑛 ≠ 𝑎𝑚]𝑒𝑥𝑝 − 𝛽||𝑧𝑚 − 𝑧𝑛||2
(𝑚,𝑛)∈𝐶 (5)

Therefore, we use Factor V to describe this difference. With these two factors, the minimum of

the function should represent a good segmentation.

2. Segmentation by Using GrabCut

GrabCut is an algorithm to implement segmentation for a given image. We can manually

input a rectangle. And the region outside rectangle is assumed background and the region inside

is defined as unknown. After computation with help of Gaussian Mixture Model and mincut, the

image should be segmented based on the large difference in pixel color. However, different from

other kinds of images, surgery image color is relatively monotonous and they do not have a clear

borderline between potential infected region and normal region. In other words, pixel color does

not have a rapid change between two regions. Besides, after surgery most of patients will be

sutured upon the healing regions. It will be even more complicated to handle the segmentation

7

with stitches in the image. Therefore, the segmentation result is not as good as we expected.

Some image features will lose during the segmentation and more importantly segmentation result

cannot precisely differentiate the surgery and normal regions.

3. Thin Plate Spline

Thin Plate Spline, which is short for TPS, is commonly used to describe transform of

coordinate system (𝑥 , 𝑦) →(𝑥′ , 𝑦′) while function value at (𝑥𝑖′ , 𝑦𝑖′) equals to (𝑥𝑖 , 𝑦𝑖) and i

∈ (1 , n). Take a steel plate as an example, we assume there are M points Am on the plate and

treat this plate as a 2D image. After bending the steel plate, M points are supposed to shift to Bm

accordingly. Thin Plate Spline is such a kind of function that helps to solve the minimum energy

we require. And this newly-generated shape can help us determine all other points’ location on

the plate. Firstly, it is able to generate a transform which possesses minimum bending energy

where bending energy is defined as follows:

𝐼[𝑓(𝑥, 𝑦)] = ∬ ((
𝜕2𝑓

𝜕𝑥2)2 + 2×(
𝜕2𝑓

𝜕𝑥𝜕𝑦
)2 + (

𝜕2𝑓

𝜕𝑦2)2) 𝑑𝑥𝑑𝑦 (6)

Given the minimum bending energy, image transform formula is able to be defined as:

𝑓(𝑥, 𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + ∑ 𝑏𝑖𝑟𝑖
2𝑛

𝑖=1 𝑙𝑛𝑟𝑖 (7)

Where we then define U(r) = 𝑟2𝑙𝑛𝑟, 𝑟𝑖 is the distance between each corresponding point and

other ordinary point so 𝑟𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2.

 According to Thin Plate Spline function, certain number (N) of points need to be picked

out and obtain image grey values on each point. The grey values should be mapped with

corresponding 𝑓(𝑥, 𝑦). Plug into the formula we are able to obtain N equations to solve N + 3

unknowns. Therefore, further conditions will be needed to solve all unknowns. We have another

condition, which is:

8

∑ 𝑏𝑖
𝑛
𝑖=1 = ∑ 𝑏𝑖𝑥𝑖

𝑛
𝐼̇=1 = ∑ 𝑏𝑖𝑦𝑖

𝑛
𝑖=1 = 0 (8)

 Therefore, all the unknowns in (7) are able to be solved. We can then use the equation (7)

to obtain all values at every point in image. The new values obtained by the above equation

generated the transformed image.

4. Deformation by Using Thin Plate Spline

Deformation method basically uses the mesh grids to segment the image. Different from

GrabCut segmentation, no information will lose because we will not extract the portion of the

image out but directly focus on each mesh in the original image. However, most surgery are not

a straight line and nearly all risky regions are surrounding surgery site. Therefore, a deformation

will be needed to change the surgery outlook and we use Thin Plate Spline deformation. We

firstly divide the image into 𝑚×𝑛 meshes. Assuming the length of the original image is L, width

is W. Considering the following matrix calculation, the meshes should all be square. Suppose the

mesh length is α. Therefore, m = roundup(L/α), n = roundup(L/α). And then we can operate the

deformation using Thin Plate Spline function. After deformation, we can start analyze the image

based on the generated image. In the end, we will operate another reverse transform to the

original image. And then we will be able to tell which region may have been infected.

9

CHAPTER III

RESULTS

Here are the results by Thin Plate Spline, GrabCut, and simulations on the smartphone.

To begin with, the user will need to either take a picture over the surgery or load an existing

image from smartphone’s album. In the following simulation, we implemented with an open

source patient image (Figure 1). Secondly, the user will interact with the app by tapping certain

number of points as reference. And then smart phone will implement Thin Plate Spline based on

these fixed points (Figure 2). After that, a mesh grid will be added on the image (Figure 3) and

do the deformation again (Figure 4). Figure 5 and Figure 6 are the simulation result on a IOS

device. The output image will be both displayed on the screen and saved into album on

smartphone.

Figure 1. Original image. Accessed Figure 2. Image deformed using Thin Plate Spline.

http://photobucket.com/images/ Based on http://photobucket.com/images/

wound%20infection?page=1, wound%20infection?page=1, August, 2016

August, 2016

http://photobucket.com/images/%20Based%20%20on%20http:/photobucket.com/images/w
http://photobucket.com/images/%20Based%20%20on%20http:/photobucket.com/images/w

10

Figure 3. Deformed image with mesh. Figure 4. the image after 2nd deformation.

Based on http://photobucket.com/images/ Based on http://photobucket.com/images/

wound%20infection?page=1, August, 2016 wound%20infection?page=1, August, 2016

Figure 5. Simulation on the smartphone. Figure 6. Deformation on the smartphone.

Based on http://photobucket.com/images/ Based on http://photobucket.com/images/

wound%20infection?page=1, August, 2016 wound%20infection?page=1, August, 2016

http://photobucket.com/images/%20%20%20%20%20%20%20%20%20%20%20%20%20Based%20on%20http:/photobucket.com/images/w
http://photobucket.com/images/%20%20%20%20%20%20%20%20%20%20%20%20%20Based%20on%20http:/photobucket.com/images/w

11

CHAPTER IV

CONCLUSIONS

This project aims to assist medical centers and hospitals easily track their patients’

surgery site infection remotely. With the help of smartphones, general image processing and

medical diagnosis are able to be accomplished dynamically. The application will be embedded

more functions in order to enrich its features and increase its preciseness. For image processing,

both Thin Plate Spline and GrabCut are famous methods and are widely used in the relative field.

The difficulty in this project is to maintain the consistency for patients when taking different skin

colors and ambient conditions into account. However, because overlapping and missing points

still occur, the present function need to be improved. Furthermore, whether there exists a

smoother and faster algorithm is still to be verified. Since the present approach is still time

consuming and my focus will switch to comparison between different interpolation algorithms

on the given surgery site image.

12

REFERENCES

1) F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,”

in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 6, pp. 567-

585, Jun 1989. doi: 10.1109/34.24792.

2) K. Rohr and S. Wörz, "An extension of thin-plate splines for image registration with radial

basis functions," 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI),

Barcelona, 2012, pp. 442-445. doi: 10.1109/ISBI.2012.6235579Bartoli, Adrien et al.

“Generalized Thin-Plate Spline Warps.” International Journal of Computer Vision.

3) Gary Bradski and Adrian Kaehler, Learning OpenCV , pp. 163-172, September, 2008.

4) Carsten Rother, Vladimir Kolmogorov and Andrew Blake. “‘GrabCut’ — Interactive

Foreground Extraction using Iterated Graph Cuts.” ACM Transactions on Graphics, 2004.

5) Gianluca Donato and Serge Belongie. “Approximate Thin Plate Spline Mappings.” In

Proceedings of the 7th European Conference on Computer Vision-Part III (ECCV '02),

Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen (Eds.). Springer-Verlag,

London, UK, 21-31, 2002.

6) Open Source Links:

Accessed http://photobucket.com/images/wound%20infection?page=1, August, 2016

Accessed http://photobucket.com/images/surgical%20incision%20infection, August, 2016

http://photobucket.com/images/wound%20infection?page=1
http://photobucket.com/images/surgical%20incision%20infection

13

APPENDIX

1. Matlab Source Code

%Simulation of thin plate spline function

%Created by Chenjie Luo

%Created On October, 23rd, 2016

input_image=imread('1.jpg');

figure

imshow(input_image);

get_image2 = input_image;

N = size(input_image);

I = input_image;

[a,b] = ginput(1);

a=round(a);

b=round(b);

get_image = input_image;

n = 3;

len = -n:n;

X = b + (len)*100;

Y = a + (len)*100;

for i = 1: size(X)

 if X[i] > 0

 break;

 end

end

X = (i+1) * 100 + X;

for j = 1: size(Y)

 if X[j] > 0

 break;

 end

end

Y = j * 100 + Y;

round(X);

round(Y);

for m =1:7

 for k = [1, 3]

 input_image(X(m)+len, Y(1):Y(7), k) = 0;

 input_image(X(1):X(7), Y(m)+len, k) = 0;

 end

 input_image(X(m)+len, Y(1):Y(7), 2) = 255;
 input_image(X(1):X(7), Y(m)+len, 2) = 255;

end

14

img1 = input_image(X(1)-49:X(7)+49, Y(1)-49:Y(7)+49,:);% with mesh and mask

img2 = get_image(X(1)-49:X(7)+49, Y(1)-49:Y(7)+49,:);% with mask

img3 = get_image2(X(1)-49:X(7)+49, Y(1)-49:Y(7)+49,:);% with nothing

imshow(img1)

x = ginput;

x = x(:,[2,1]);

y = x;

d = [];

Zp = [];

for s = 1:100:length(x)

Zp = [Zp; 1,s];

Zp = [Zp; s,1];

end

Zp = [Zp;x];

for r = 1:(length(x(:,1))-1)

 d = [d, sqrt((x(r,1)-x(r+1,1))^2+(x(r,2)-x(r+1,2))^2)];

end

y(1,1) = x(1,1);

for r = 2:length(x(:,1))

 y(r,1) = d(r-1) + y(r-1,1);

end

y(:,2) = length(y)/2;

for s = 1:100:length(x)

Zs = [Zs; 1,s];

Zs = [Zs; s,1];

end

 Zs = [Zs; y];

img = img1;

outDim = [699, 699];

interp.method = 'invdist';

interp.radius = 10;

interp.power = 8;

[imgw2, imgwr2, map2] = tpswarp(img1, outDim, Zp, Zs, interp);

imgw2 = uint8(imgw2);

figure('Position',[230 250 800 500])

get_image = imgw2;

n = 1;

len = -n:n;

X = 50 + (0:6)*100;

Y = 350 + (-3:3)*100;

img4 = get_image;
imshow(img4);

15

[imgw3, imgwr3, map3] = tpswarp(img3, outDim, Zp, Zs, interp);

imgw3 = uint8(imgw3);

figure('Position',[230 250 800 500]);

imshow(imgw3);

for m =1:7

 for k = [1, 3]

 imgw3(X(m)+len, Y(1):Y(7), k) = 0;

 imgw3(X(1):X(7), Y(m)+len, k) = 0;

 end

 imgw3(X(m)+len, Y(1):Y(7), 2) = 255;

 imgw3(X(1):X(7), Y(m)+len, 2) = 255;

end

imshow(imgw3);

Zt = Zp;

Zp = Zs;

Zs = Zt;

[imgw3, imgwr3, map3] = tpswarp(imgw3, outDim, Zp, Zs, interp);

imgw3 = uint8(imgw3);

figure('Position',[230 250 800 500]);

imshow(imgw3);

16

2. Objective-C code

//

// DeformationViewController.m

// Mobile Healthcare System

//

// Created by Chenjie Luo on 1/3/17.

#import "DeformationViewController.h"

#import "MeshView.h"

#import <MobileCoreServices/UTCoreTypes.h>

#import <AVFoundation/AVFoundation.h>

#import "MeshCaptureViewController.h"

#import <opencv2/opencv.hpp>

#import "SegmentationManager.h"

#import "CThinPlateSpline.h"

#include <iostream>

#include <vector>

@interface DeformationViewController ()

@property (strong, nonatomic) UITapGestureRecognizer *tapGestureRecognizer;

@property (weak, nonatomic) IBOutlet UIImageView *deformedImageView;

@property MeshView * meshView;

@property SegmentationManager * segmentationManager;

@property NSMutableArray * tapLocations;

@property (nonatomic) UIActivityIndicatorView *spinner;

@property (nonatomic) UIView* dimmedView;

@property CGPoint taplocation;

@end

@implementation DeformationViewController

const int majorGrid = 4;

const int minorGrid = 4;

- (void)viewDidLoad {

 [super viewDidLoad];

 self.deformedImageView.image = self.loadedImage;

 self.meshView = [[MeshView alloc] initWithFrame:self.view.frame andMajorGrid:majorGrid

andMinorGrid:minorGrid];

 self.segmentationManager = [[SegmentationManager alloc] init];

 [self.view addSubview:self.meshView];

 [self.view bringSubviewToFront:self.backButton];

 [self.view bringSubviewToFront:self.TakeScreenshot];

 [self.view bringSubviewToFront:self.AnalysisRecognizer];

 NSLog(@"%f", self.meshView.frame.size.width);

 self.tapLocations = [[NSMutableArray alloc] init];

17

 // Do any additional setup after loading the view.

}

-(void) touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event

{

 UITouch *touch = [[event allTouches] anyObject];

 CGPoint taplocation = [touch locationInView: touch.view];

 NSLog(@"x:%f y:%f", taplocation);

 NSValue *valueToStore = [NSValue valueWithCGPoint:taplocation];

 [self.tapLocations addObject: valueToStore];

NSLog(@"okok %lu", (unsigned long)self.tapLocations.count);

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

- (IBAction)screenshotPressed:(UIButton *)sender {

 NSLog(@"Button pressed");

 UIImage * screenshot = [self screenshot];

 self.deformedImageView.image = screenshot;

 [self showLoadingIndicatorView];

 __weak typeof(self)weakSelf = self;

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, (unsigned

long)NULL), ^(void) {

 cv::Mat img = [self.segmentationManager cvMatFromUIImage:self.deformedImageView.image];

 NSLog(@"ASDASD %d, %d", img.cols, img.rows);

 int i = 0;

 int j = 0;

 std::vector<cv::Point> iP, iiP;

 for(NSValue * tapPoint in self.tapLocations) {

 CGPoint currentPoint = [tapPoint CGPointValue];

 iP.push_back(cv::Point(currentPoint.x, currentPoint.y));

 }

 for(NSValue * tapPoint in self.tapLocations) {

 CGPoint currentPoint = [tapPoint CGPointValue];

 iiP.push_back(cv::Point(currentPoint.x, self.deformedImageView.image.size.height/2.0));

 NSLog(@"%f", self.deformedImageView.image.size.height/2.0);

 }

 for(i = 1; i <= self.view.frame.size.width; i+=60)
 {

 iP.push_back(cv::Point(i,1));

18

 iP.push_back(cv::Point(i,self.view.frame.size.height-1));

 iiP.push_back(cv::Point(i,1));

 iiP.push_back(cv::Point(i,self.view.frame.size.height-1));

 }

 for(j = 1; j <= self.view.frame.size.height; j+=90)

 {

 iP.push_back(cv::Point(1,j));

 iP.push_back(cv::Point(self.view.frame.size.width-1,j));

 iiP.push_back(cv::Point(1,j));

 iiP.push_back(cv::Point(self.view.frame.size.width-1,j));

 }

 CThinPlateSpline tps(iP,iiP);

 NSLog(@"Hey It works!");

 Mat dst;

 tps.warpImage(img,dst,0.01,INTER_CUBIC,BACK_WARP);

 UIImage * deformedImage = [self.segmentationManager UIImageFromCVMat:dst];

 self.deformedImageView.image = deformedImage;

 UIImageWriteToSavedPhotosAlbum(deformedImage, nil, nil, nil);

 NSLog(@"It works completely!");

 dispatch_async(dispatch_get_main_queue(), ^(void) {

 [weakSelf hideLoadingIndicatorView];

 });

 });

 NSLog(@"%f, %f", self.deformedImageView.image.size.height,

self.deformedImageView.image.size.width);

}

//Screen shot

- (UIImage *) screenshot {

 [self.backButton setHidden:YES];

 [self.TakeScreenshot setHidden:YES];

 UIGraphicsBeginImageContext(self.view.bounds.size);

 [self.view.layer renderInContext:UIGraphicsGetCurrentContext()];

 UIImage *viewImage = UIGraphicsGetImageFromCurrentImageContext();

 UIGraphicsEndImageContext();

 UIImageWriteToSavedPhotosAlbum(viewImage, nil, nil, nil);

 [self.backButton setHidden:NO];

 [self.TakeScreenshot setHidden:NO];

 return viewImage;
}

19

- (void)showLoadingIndicatorView

{

 [self showLoadingIndicatorViewWithStyle: UIActivityIndicatorViewStyleWhite];

}

- (void)showLoadingIndicatorViewWithStyle:(UIActivityIndicatorViewStyle)activityIndicatorViewStyle

{

 if (self.spinner != nil) {

 [self hideLoadingIndicatorView];

 }

 self.dimmedView = [[UIView alloc] initWithFrame:CGRectMake(0, 0, self.view.frame.size.width,

self.view.frame.size.height)];

 [self.dimmedView setBackgroundColor:[UIColor colorWithRed:0 green:0 blue:0 alpha:0.7]];

 [self.view addSubview:self.dimmedView];

 UIActivityIndicatorView *spinner = [[UIActivityIndicatorView alloc]

initWithActivityIndicatorStyle:activityIndicatorViewStyle];

 spinner.frame = CGRectSetOrigin(spinner.frame, CGPointMake(floorf(CGRectGetMidX(self.view.bounds)

- CGRectGetMidX(spinner.bounds)), floorf(CGRectGetMidY(self.view.bounds) -

CGRectGetMidY(spinner.bounds))));

 spinner.autoresizingMask =

UIViewAutoresizingFlexibleLeftMargin|UIViewAutoresizingFlexibleRightMargin|UIViewAutoresizingFlexib

leTopMargin|UIViewAutoresizingFlexibleBottomMargin;

 [spinner startAnimating];

 [self.view addSubview:spinner];

 self.spinner = spinner;

 [self.view setUserInteractionEnabled:NO];

}

CG_INLINE CGRect

CGRectSetOrigin(CGRect rect, CGPoint origin)

{

 rect.origin = origin;

 return rect;

}

- (void)hideLoadingIndicatorView

{

 [self.spinner stopAnimating];

 [self.spinner removeFromSuperview];

 self.spinner = nil;

 [self.dimmedView removeFromSuperview];

 self.dimmedView = nil;

 [self.view setUserInteractionEnabled:YES];

}

@end

