
CHALONE SIGNAL TRANSDUCTION PATHWAY IN DICTYOSTELIUM 

DISCOIDEUM: A POSSIBLE SIGNALING MECHANISM FOR CELL 

PROLIFERATION INHIBTION 

 

 

An Undergraduate Research Scholars Thesis 

by 

CHRISTINA PIERREPONT ALLEN 

 

 

Submitted to Honors and Undergraduate Research 
Texas A&M University 

in partial fulfillment of the requirements for the designation as an 
 

 

UNDERGRADUATE RESEARCH SCHOLAR 
 

 

Approved by 
Research Advisor:             Dr. Richard Gomer 
 

 

May 2015 
 

 

Major: Biology 

 
 



TABLE OF CONTENTS 

Page 

ABSTRACT .................................................................................................................................. 1 

DEDICATION .............................................................................................................................. 3 

ACKNOWLEDGEMENTS .......................................................................................................... 4 

NOMENCLATURE ..................................................................................................................... 5 

CHAPTER  
 
 I INTRODUCTION ................................................................................................ 6 
 
             Manifestation of Cancer ........................................................................................ 6 

Chalone mechanism .............................................................................................. 7 
  Overview of Dictyostelium discoideum .............................................................. 11 

Vital genetic components to the chalone mechanism ......................................... 13 
Size of the chalone .............................................................................................. 13 
Overview of polyphosphate ................................................................................ 14 
Hypothesis of polyphosphate as a potential chalone .......................................... 15 
 

 II METHODS ......................................................................................................... 17 

            What is the size of the chalone? .......................................................................... 17 
            Which genetic components are vital to the chalone mechanism? ....................... 17 
            Is polyphosphate present in the conditioned media? .......................................... 21 
            Would a mutant lacking polyphosphate have chalone function?........................ 21 
            How does polyphosphate affect unicellular development? ................................ 22 
            How does polyphosphate affect cells on a multicellular level? .......................... 22 
 
 III RESULTS ........................................................................................................... 24 
 
         Chalone function exhibited after 2kDa filtration ................................................ 24  
 Knockout cell lines “wreck and check” growth curve analysis .......................... 26 

Polyphosphate is present in the conditioned media ............................................ 30 
Attempts to produce true ppk gene knockout was unsuccessful ......................... 30 
Polyphosphate inhibited cell proliferation in vegetative cells ............................ 31 

 Polyphosphate had effects on multicellular development .................................. 32 
 
 IV CONCLUSION ................................................................................................... 36 

 
REFERENCES ........................................................................................................................... 39

 
 



ABSTRACT 

Chalone Signal Transduction Pathway in Dictyostelium discoideum: A Possible Signaling 
Mechanism for Cell Proliferation Inhibition. (May 2015) 

 

Christina Pierrepont Allen 
Department of Biology 
Texas A&M University 

 

Research Advisor: Dr. Richard Gomer 
Department of Biology 

 

Cancer is a group of diseases characterized by uncontrolled cell proliferation. Cancer is 

responsible for nearly 1 of every 4 deaths, and ranks as the second highest cause of death 

worldwide, and costs the American population more than $216 billion annually. The 

fundamental mechanism that controls cell density regulation in cancer and in healthy tissues is 

not well understood. Some healthy cells appear to secrete a diffusible, extracellular factor called 

a chalone. The chalone is involved in a signal transduction pathway, which inhibits cell 

proliferation once cells sense that a high enough chalone concentration has been collectively 

secreted signaling the desired cell population density has reached.  However, currently there is 

not a solid understanding of the genetic components and proteins involved in this pathway.  

 

Dictyostelium discoideum, a slime mold, was used as the model organism. Dictyostelium 

discoideum is eukaryote and has many genes that are homologous to human genes. This makes it 

a valuable model organism applicable to human cancer research. 

 

Dictyostelium discoideum is a eukaryote model organism, which uses a chalone mechanism to 

control cell density. Dictyostelium discoideum will be used as a model organism to elucidate the 
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components involved in the chalone pathway by comparing differences in the rate of 

proliferation, maximum population size reached, and length of cell survival between wild type 

cells and cells missing a specific genetic component when exposed to various chalone 

concentrations. Understanding this pathway could lead to possible therapeutics for inhibiting cell 

proliferation in cancer. The results of this research will be important to the biomedical field and 

useful in future scientific research on cell density regulation via the chalone mechanism. 
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NOMENCLATURE 

 

D. discoideum (Dicty)  Dictyostelium discoideum  

IPCR    Inverse polymerase chain reaction 

KA    Klebsiella aerogenes 

kDa    Kilodaltons 

Mb    Map-based 

ppk    Polyphosphate kinase   

REMI    Restriction Enzyme Mediated Insertion 
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CHAPTER I 

INTRODUCTION 

 

Manifestation of cancer 

Cancer is a group of diseases characterized in part by uncontrolled cell proliferation [3]. Cancer 

is responsible for nearly 1 of every 4 deaths, and ranks as the second highest cause of death 

worldwide, and costs the American population more than $216 billion annually [1,2]. Despite 

many types of FDA-approved cancer treatments (i.e. surgery, chemotherapy, radiation therapy), 

the ability to combat cancer effectively is limited to treatments with harmful and invasive side 

effects since there is not a solid understanding about how to control cell proliferation [1]. A 

thorough understanding of the necessary components of the chalone mechanism could influence 

the way cancer is treated; for instance, noninvasive treatment techniques to fight cancer might be 

developed by mimicking the pathway responsible for tumor dormancy. Tumor dormancy is a 

stage in cancer when the cells halt proliferation but survive in an inactive form until the 

surrounding environment reverts to suitable conditions for growth and cell division resumes [8].  

 

Tissue size regulation 

Tissue size regulation is not only important in cancer research, but is also a fundamental question 

in organ size determination within healthy tissues. Understanding the chalone mechanism’s role 

in cell proliferation regulation may also give insight into the mechanics of tissue size 

determination of vital organs which would have medical applications with regards to organ 

transplants [Figure 1]. For example, this could give health care professionals a way to grow 

replacement organs in vitro. Therefore, exploring endogenous cell proliferation regulation 
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mechanisms is of high importance, because the information gained could not only save lives of 

cancer patients and those in need of organ transplants, but also prevent the expenditure of 

billions of dollars within the health care system [9].  

 

 

Figure 1: Example of how a chalone could contribute to proper tissue size regulation in  
the human body. Credit: Christina Allen 
 

Chalone mechanism 

It is hypothesized that cell proliferation is regulated by a chalone mechanism [2]. A chalone is a 

signaling molecule that is secreted by a cell [3]. It is suspected that each proliferated cell secretes 

an equivalent unit of a chalone. As proliferation continues and cell density increases, the 

concentration of the chalone increases. Thus, cells can determine the surrounding cell density by 

sensing the concentration of the chalone in their immediate environment [4] [Figure 2].  Once 

proper tissue size is reached and the chalone concentration is high enough to indicate an intended 

cell density, then the chalone will trigger a signal transduction pathway, which will inhibit the 

cells’ physiological activity, thus regulating cell proliferation [4-6]. The chalone mechanism 

operates by a negative feedback loop system as demonstrated by Figure 3. The chalone will 

become more concentrated as cell density increases, and the chalone will activate a signal 

transduction pathway to inhibit cell proliferation [7]. It has been observed, firsthand, that the 

chalone concentration increases simultaneously as cell density increases. Our goal is to identify 
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the chalone and to determine the validity of the hypothesized chalone mechanism role in cell 

proliferation regulation. 

 

 

Figure 2: Illustration summarizing a possible chalone signal transduction pathway. Credit: 

Christina Allen 
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Figure 3: Diagram describing how the chalone mechanism operates via a negative feedback loop 
system to regulate cell proliferation. Credit: Christina Allen 
 

Examples of chalone mechanism in humans 

The existence of chalones, autocrine factors that negatively regulate the growth and/or 

proliferation of secreting cells, is supported by many observations in science [2]. Myostatin is a 

prime example of a chalone. Myostatin is a polypeptide secreted by myoblasts that acts as a 

signaling molecule. Myoblasts can sense the density of surrounding cells by sensing the 

concentration of myostatin, which increases as skeletal muscle mass increases. When myostatin 

concentration reaches high enough levels indicating that muscle tissue size is appropriate, then 

myostatin will trigger a signal transduction pathway that halts myoblast proliferation in order to 

regulate human muscle tissue size [10]. Myostatin is responsible for inhibiting skeletal muscle 

mass when appropriate size is achieved [11, 12]. Consequently, as skeletal muscle mass 

increases, more myostatin is secreted by myoblast [10]. When the chalone reaches a high enough 
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concentration indicating the muscle tissue has reached appropriate size, then the chalone acts as a 

negative regulator of muscle growth and operates by inhibiting myoblast proliferation [13]. 

 

Myostatin binds to a cell bound receptor (activin type II receptor), which triggers a negative 

feedback loop mechanism to regulate muscle size differentiation. Myostatin inhibits myoblasts 

proliferation by halting growth during the G1- to S-phase of the cell cycle, thus signaling cell 

proliferation inhibition when a certain concentration of myostatin is reached [14]. A result of 

having a deficiency or no myostatin would be a lack of regulation of myoblast proliferation, 

which would lead to abnormally large muscle tissue [12]. Mutations of myostatin or a disruption 

of a necessary component active in the signal transduction pathway controlling muscle tissue 

size regulation has been observed to be consequential in impediment of healthy skeletal muscle 

tissue size regulation causing abnormally large muscles [12].  

 

 

Figure 4: Diagram of how myostatin concentration regulates skeletal muscle tissue cell 
proliferation inhibition serves as an example of a chalone mechanism [12]. Credit: American 
Meeting of Neurological Association 
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Overview of Dictyostelium discoideum 

Dictyostelium discoideum (also referred to as “Dicty” or “D. discoideum”), a slime mold, is used 

as the model organism in this project. Dicty is an eukaryotic model organism with a 34 Mb 

genome [15]. The National Institutes of Health chose this organism to be declared a model 

organism in the Model Organism Initiative because D. discoideum has a high degree of sequence 

similarity to genes in vertebrate species [29]. Many D. discoideum genes are homologous to 

human genes. This makes it a valuable model organism applicable to human cancer research. In 

addition, D. discoideum has many suitable characteristics to make it a suitable human model 

organism including having a relative short lifetime, a unique asexual lifecycle, and life cycle 

involves four developmental stages (vegetative, aggregation, migration, and culmination) that 

can be easily identified under a microscope by observing the morphology of D. discoideum 

[Figure 5]. This allows observation of unicellular behavior (vegetative stage in shaking culture) 

or multicellular level (colonies grown on agar plates). 

 

 

Figure 5: Image (left): Representation of Dictyostelium discoideum life cycle stages. Credit: 
Photo taken by M.J. Grimson and R.L. Blantay, dictyBase [8]; Image (right): Dictyostelium life 
cycle. Credit: Diagram drawn by Hideshi and authored by Tijmen Stam, Wikimedia Commons 
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Maintenance of Dictyostelium discoideum 

The vegetative stage is observed when D. discoideum is grown in shaking flask culture. D. 

discoideum were grown in shaking flasks and were allowed to grow in log phase for two to three 

days depending on the rate of proliferation and generation time [15]. The cultures genomic 

integrity was maintained by not allowing the cells to reach a high density for too long and was 

supplied with fresh media prior to experimentation to prevent increased chances of mutations. 

Mutant cell lines were kept frozen in a -140 freezer prior to being used [15]. D. discoideum will 

be used to explore a chalone mechanism regulating cell proliferation [16].  

 

D. discoideum, a social slime that forms fruiting bodies with spores when in non-vegetative cell 

form, can be observed on a multicellular level when grown on plates on SM/5 agar plates [21]. 

Observing D. discoideum on a multicellular level will allow movement, chemical signaling, and 

growth development to be analyzed [Figure 5]. This technique will also allow chemotaxis 

patterns to be observed if present. Using D. discoideum as a model organism has many 

advantages due to its simplicity, and D. discoideum research applications may allow findings to 

be discovered that might be applicable to human research.  

 

Growth kinetics of Dictyostelium discoideum  

Some cells secrete a diffusible factor called a chalone [2]. When the cells attain the programmed 

suitable tissue size, the cells become saturated with the chalone, which signals a transduction 

pathway inhibiting proliferation and bringing the population to stationary phase [17]. The 

stationary phase is initiated during the transitioning period between the Gap phase 2 (G2) to the 

mitosis phase (M) in the cell cycle [18]. This process is enzymatically regulated by Cyclin β and 
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Cyclin-dependent kinase 2 (Cdc2) [4]. Currently, additional upstream or downstream genetic 

components in the signal transduction pathway responsible for halting cell proliferation are not 

well understood. 

 

Vital genetic components to the chalone mechanism  

Evidence suggests that a chalone mechanism responsible for cell proliferation regulation triggers 

a signal transduction pathway. Comprising this signal transduction pathway, the upstream and 

downstream genetic components that are vital to chalone function are unknown. Identifying 

potential vital and non-vital genetic components through “wreck and check” assays will help 

characterize the signal transduction pathway responsible for cell proliferation regulation. This 

could not only reveal what is controlling cell proliferation regulation and give insight into 

missing or mutated components causing a lack of cell proliferation regulation in cancerous cells, 

but could also give insight into other genetic components to target for cancer therapeutics. 

 

Size of the chalone 

In preliminary experiments, conditioned media was collected from the Axenic (Ax2) cells (wild 

type cells), which had been allowed to reach stationary phase indicating the presence of the 

chalone. Then the conditioned media containing the chalone was filtrated with a 2kDa and a 

10kDa filter. Then this conditioned media was exposed to axenic cells and growth curves were 

recorded and analyzed. In our preliminary research, if the cells still exhibited a normal stationary 

phase as observed in screens of axenic cells using non-filtrated conditioned media, then we can 

conclude the size of the chalone must by smaller than the filtrate size (2kDa or 10kDa). Results 
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had shown that the chalone is smaller than 2kDa. So the conditioned media containing the 

chalone in these assays all have been 2kDa filtrated. 

 

Overview of polyphosphate  

Inorganic polyphosphate is a ubiquitous stable polymer made of repeating phosphate residues. 

Polyphosphate can range in length from a few phosphate residues up to hundreds of residues.  

Polyphosphate is present in prokaryotes, simple eukaryotes such as D. discoideum, and even 

higher eukaryotes such as mammals, and in all cell types and organisms [19]. Inorganic 

polyphosphate plays important biological roles in the cell. The cellular roles of polyphosphate 

vary between organisms, and polyphosphate’s role is dependent upon several factors such as its 

location within the cell [19]. Polyphosphate also plays critical roles in animal cells, because it 

affects the cells’ development, cellular proliferation and the differentiation of regulatory 

processes [9]. In bacteria, polyphosphate participates in the induction of rpoS [20]. RpoS is an 

RNA-polymerase subunit, which is known to regulate the expression of genes that function to 

implement adaptation to the stationary growth phase, and external stress responses that serve to 

increase survival [20]. 

 

Polyphosphate found to be present in the 2kDa filtrated conditioned media and enzyme 

responsible is unidentified 

In preliminary experiments, in addition to purifying the chalone, the team also took steps to 

purify the different components in the 2kDa filtrated chalone conditioned media and found 

polyphosphate to be present which favors the hypothesis of polyphosphate potentially being 

involved in the chalone mechanism. Polyphosphate is known to be a molecule smaller that 2kDa. 
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In the beginning, we had thought the polyphosphate kinase gene (ppk gene) to be responsible for 

extracellular polyphosphate regulation that seemed to be correlating the chalone mechanism in 

D. discoideum cells [27]. However, the team’s experiments attempting to recreate Kornberg’s 

DdPPK1 gene (also known as the ppk gene) knockout had failed, but instead had generated 

another knockout that also lacked extracellular polyphosphate. This is a significant finding. It 

revealed that another unidentified gene is responsible for extracellular polyphosphate regulation. 

Identifying this gene and protein could give hints to an enzyme homolog in humans. 

 

Polyphosphate presence in Dictyostelium discoideum and humans 

Extracellular polyphosphate is known to be present in D. discoideum and in mammalian cells. In 

fact, it is estimated that polyphosphate is found at levels up to 20 percent in all subcellular 

organelles of the cell dry weight in mammalian eukaryotes [21, 28]. However, the mammalian 

enzyme that produces polyphosphate in mammalian organisms is unknown despite the 

acknowledged presence of polyphosphate. The polyphosphate kinase gene (ppk gene) is known 

to be one regulator of extracellular polyphosphate in D. discoideum [27]; however, humans do 

not have a ppk gene. We have found that there is another unidentified gene or genes that is 

regulating extracellular polyphosphate in D. discoideum. This gene could potentially have a 

homolog in the human genome.  

 

Hypothesis of polyphosphate as a potential chalone 

Observations in preliminary research and known characteristics of indicate that polyphosphate 

meets the criteria of being an involved vital component in the chalone mechanism the many 

ways aforementioned. These findings inspired the hypothesis of polyphosphate as a potential 
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chalone that triggers the signal transduction pathway to inhibit cell proliferation ultimately 

responsible for cell proliferation regulation in D. discoideum. Assays will be purposed to test this 

hypothesis and to characterize chalone mechanism and the genetic components involved in 

signal transduction pathway that it triggers to regulate cell proliferation.  

 

The purpose will be to examine polyphosphate and to determine if it fits the criteria to be 

potentially the chalone. The following questions will be ask to explore the hypothesis: 

1. What is the size of the chalone? 

2. Which genetic components are vital to the chalone mechanism?  

3. Is polyphosphate present in the conditioned media?  

4. Would a mutant lacking polyphosphate have chalone function? 

5. How does polyphosphate affect unicellular development? 

6. How does polyphosphate affect cells on a multicellular level?  
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CHAPTER II 

METHODS 

 

Prior to beginning my investigation, I completed proper training for Texas A&M University 

Biosafety Level 1 (BSL1) and Biosafety Level 2 (BSL2) requirements in addition to specialized 

safety training, which is required to participate in Dr. Gomer’s laboratory. Techniques from cell 

biology, microbiology, biochemistry, and genetics will be employed during my experiments.  

 

What is the size of the chalone? 

Preliminary research was lead by Dr. Gomer and graduate student, Patrick Suess. Vegetative 

cells grown in shaking culture were exposed to filtrated conditioned media containing the 

chalone collected from media of cells at stationary phase with a 2kDa filter to determine chalone 

size. If cells exposed to the 2kDa filtrate still exhibited normal proliferation inhibition enzymatic 

activity, then the chalone would be smaller than 2kDa. The chalone was found to be smaller than 

2kDa. 

 

Which genetic components are vital to the chalone mechanism?  

“Wreck and check assay” were used to determine if certain genetic components are vital to 

chalone function, possibly directly or indirectly interacts with the chalone function, or is not vital 

at all to the chalone function. True knockout cell lines were exposed to three different conditions: 

0%, 25%, and 50% conditioned media containing the chalone. Vegetative cells were grown in 

shaking culture and standard growth curves were recorded. If a knockout cell line shows 

sensitivity to the chalone and does not significantly deviate from the control’s normal 
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proliferation pattern, then the known missing gene does not affect the function of the chalone 

mechanism and is not a necessary component for signal transduction pathway.   

 

The purpose of these assays was to determine the components necessary for the chalone’s signal 

transduction pathway to function and will involve multiple steps. Step one will be to cultivate 

and maintain knockout strains of D. discoideum each missing a different genetic component. 

Step two will be to isolate and purify that chalone from axenic cell media collected from cell 

culture that has been allowed to reach stationary phase to create the conditioned media. Step 

three will be to screen these knockout strain cultivated in step one with the conditioned media 

containing the partially purified chalone collected in step two. Cell counts will be performed in 

order to obtain growth curves to determine how different strains behave in the presence of the 

purified chalone. This experiment will determine if the missing component in the each different 

knockout strains is necessary for the chalone signal transduction pathway to function by 

evaluating any deviations from the normal behavior of the axenic cell proliferation patterns.  

 

Step One: Dictyostelium discoideum cell culture 

Cells used came from the D. discodium Ax2 line, which were obtained from the dictyBase stock 

center [15]. The cells were maintained in shaking culture flasks and grown at approximately 

25°C (room temperature) in HL5 media supplemented with tetracycline and streptomycin. Old 

media was replaced by new media every 48 hours.  A working stock culture had to be below 10 

million cells per milliliter (10 × 106 cells/ml), and ideally would never get close to that high of a 

concentration. Cell counts for each shaking flask culture were preformed everyday in order to 

determine if the media had to be changed. Media exchange was performed routinely in order to 
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maintain cell character as outlined in the protocol found on dictyBase [15]. Each cell line was 

kept in shaking culture no longer than one and a half months to prevent compromise to the 

integrity of the cell lines and to reduce risk of mutation. 

 

Step Two: Chalone isolation and purification 

To understand the chalone mechanism, the growth kinetics of the amoebae D. discoideum will be 

studied. These axenic cells will be allowed to grow in synthetic defined minimal media (SIH) 

supplemented with tetracyline and streptomycin. Synthetic defined minimal media (SIH) is a 

synthetic media in which we know all the components, which is useful for purpose of 

purification [26]. The cells were cultivated in shaking culture in a 100ml volume flask with the 

synthetic defined minimal media (SIH). The media used to grow the cells was then collected and 

used to generate the conditioned media [26]. Cell counts were recorded daily until stationary 

phase was reached. Cell counts were preformed manually by taking aliquots of the sample and 

counting them using a hemocytometer under a microscope. Cells are always secreting the 

chalone. It is when the chalone is at its highest concentration that stationary phase is triggered. 

Thus, waiting for cells to reach stationary phase before collecting the media allows that chalone 

concentration to be at its highest when isolated, allowing the purification of the conditioned 

media to have a more efficient yield. Once the cells reach stationary phase, it is suspected that 

the cells will secrete the chalone. Thus, the media was collected at the stage of growth where the 

chalone is supposed to be at a high enough concentration to trigger the cells to enter stationary 

phase. The media containing the chalone at its highest concentration was extracted and purified 

by a series of steps. Firstly, the intact cells were removed by centrifuging the media at 3000 

RPM. Secondly, the chalone will be partially isolated from the media via gel filtration 
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chromatography. Thirdly, the media containing the chalone will be filtered through a 2kDa filter 

via ultra-centrifugation. In preliminary research, it was observed that the chalone’s enzymatic 

activity can still be observed after the media was purified via a 2kDa filter suggesting that the 

chalone is smaller than 2kDa; hence, this is the reason why this method was chosen to purify the 

chalone.  

 

Step Three: Screening knockout strains at different chalone concentrations 

Knockout cell lines were screened with different concentrations of the chalone at uniform time 

increments to identify if any of the missing components are necessary for the signal transduction 

pathway mechanism, which triggers a halt in cell proliferation, thus, initiating a stationary phase. 

Twenty different knockout strains were screened in 72-hour increments. Each knockout strain 

lacked a different pre-known component such as a gene encoding a specific protein. Each 

knockout strain was exposed to three different conditions comprised of different concentrations 

of conditioned media suspended in normal HL5 media supplemented with tetracycline and 

streptomycin. The three conditions tested will be 0%, 25%, and 50% conditioned media. Each 

flask initially contained 5ml of the designated combination of conditioned media and normal 

HL5 media supplemented with the tetracycline and streptomycin. Differences in proliferation 

rate, the maximum population density achieved, and total cell survival over a time period of 72 

hours will be observed. Cell cultures will be seeded initially at 0.5 x 106 cells/ml on the first day. 

Cells will be counted in aliquots of the cultures using a hemocytometer in regular increments 

over the ten-day growth period. Then the growth curves of each sample will be analyzed. Each 

knockout cell line will undergo at least three trials. The data was analyzed using Prism Software 

Version 2.6. A standard growth curve of cell density vs. time (days) was determined. From this 
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information, we were able to determine which knockout cell lines had a missing component that 

potentially was involved in the chalone’s signaling transduction pathway responsible for halting 

cell proliferation. 

 

Step Four: Screens were repeated for a ten day time period for selected knockout strains  

Screens for selected knockout cell lines that had shown results differing from the normal growth 

pattern were subjected to repeated screens (the same as before) except for an extended time 

increments of 10 days instead of 72 hours. 

 

Is polyphosphate present in the conditioned media?  

The team found polyphosphate to be present in the media collected to generate the conditioned 

media, which contains the chalone. Polyphosphate is smaller than 2kDa and was not filtered out, 

and therefore, was not filtrated out of the conditioned media. 

 

Would a mutant lacking polyphosphate have chalone function? 

The purpose of this experiment was to generate a a mutant lacking extracellular polyphosphate 

production and determine if it would exhibit chalone function. This could directly determine if 

polyphosphate could in fact be the chalone.  Graduate student, Patrick Suess, generated random 

mutants via Restriction Enzyme Mediated Insertion (REMI) to attempt to find a mutant with a 

desired phenotype (exhibiting a lack of inhibition and no stationary phase) with the purpose to 

identify the missing component. Then, I used Inverse Polymerase Chain Reaction (IPCR) to 

identify the REMI generated mutations. Once the mutated gene had been located via molecular 

markers, then I attempted to generate a knockout of this gene via homologous recombination. 
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Then gel electrophoresis was preformed and the product was sent to Star Labs in Houston, 

Texas, for DNA sequencing to try to determine the mutation in the REMI mutant. However, this 

experiment was not successful and the gene responsible for the lack of extracellular 

polyphosphate is still unknown. However, we were able to prove that it was not the ppk gene. 

 

What is observed via growing vegetative cells grown in shaking cultures? 

Vegetative cells were grown in shaking culture and screened with different concentrations of 

inorganic polyphosphate to observe polyphosphate’s effect cell development and cell 

proliferation behavior on a unicellular level.  Standard growth curves were recorded and 

compared to the control growth curve screened with different concentrations of conditioned 

media containing the chalone to determine if there is a correlation. 

 

How does polyphosphate affect cells on a multicellular level?  

By observing cells in a multicelllular state, non-vegetative cells were grown on SM/5 plates and 

screened with different concentrations of inorganic polyphosphate to evaluate polyphosphate’s 

effect on growth development and cell proliferation behavior on a multicellular level. If cells 

exposed to the polyphosphate race faster across the plate than the control plate without 

polyphosphate, this could support polyphosphate identity as also a potential chemoattractant. 

Using the edge plate technique, D. discodium wild-type Ax2 cells were plated with a lawn of KA 

bacteria on SM/5 agar plates comprised of three different concentrations of inorganic 

polyphosphate. The purpose of this assay is to observe difference in development and 

proliferation patterns due to the different concentration of inorganic polyphosphate in the SM/5 

plates. Specifically, the three conditions are as follows: a control SM/5 agar plate, a 0.5 mg/1.0 
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ml inorganic polyphosphate SM/5 plate, and a 1.0 mg/1.0 ml inorganic polyphosphate SM/5 

plate. This is a newly developed technique. Initially the SM/5 agar plates were made per the 

normal accepted protocol on dictyBase [25]. The only deviation form this protocol was to add 

different concentrations of inorganic polyphosphate to two of the three conditions. Inorganic 

polyphosphate was added at its appropriate concentration respectively and allowed to fully 

dissolve in solution after the SM/5 agar media had been autoclaved and allowed to cool to room 

temperature on a magnetic stir pad. KA was used to make bacteria lawn for the D. discoideum to 

consume. Then AX2 cells were plated to make an edge plate. By adding the polyphosphate to the 

agar, it is hypothesized that the D. discoideum exposure to inorganic polyphosphate in the media 

will cause the organism to develop at a faster rate than the control containing no polyphosphate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23 
 



CHAPTER III 

RESULTS 

 

The overall purpose of this project is to characterize the chalone of a chalone signal transduction 

pathway in D. discoideum and the potential genetic components vital to the chalone mechanism 

function. This project was divided into six different approaches to characterizing the chalone. 

The purpose of each approach was to characterize the size of the chalone, give insight into the 

chalone signal transduction pathway by determining necessary genetic components, to determine 

if polyphosphate fits the criteria to potentially be the chalone, to attempt to determine the genetic 

component responsible for polyphosphate regulation, to test inorganic polyphosphate as a 

possible component of the chalone and to observe its effect on vegetative cells, and to observe 

inorganic polyphosphate’s effect on cell development on a multicellular level. 

 

Chalone function exhibited after 2kDa filtration  

Preliminary experiments done by Patrick Suess showed that the necessary components that make 

up the chalone mechanism must be all less than 2kDa in size since proliferation patterns did not 

change when the cells were exposed to conditioned media containing the chalone filtered with a 

2kDa filter [Figure 6]. The assay described in Figure 6 was performed to determine if the 

chalone was greater than 2kDa in size by filtering the chalone in a 2kDa filter. The conditioned 

media containing the chalone was filtrated with a 2kDa and a 10kDa filter. The 2kDa filtrate still 

showed enzymatic activity inhibiting cell proliferation showing that the chalone still was present 

and functional. 
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Figure 6 compares proliferation patterns for D. discoideum axenic cells exposed to conditioned 

media comprising the chalone at a 50% concentration. The chalone was collected from media 

from axenic cell culture that was allowed to reach stationary phase indicating chalone potency. 

The axenic cells were exposed to conditioned media filtered by different size filters to determine 

the size of the chalone by analyzing cell proliferation regulation function. The following are the 

five different conditions the axenic cells were exposed: normal conditioned media with no filter, 

2kDa filtrated conditioned media, 2kDa non-filtrated conditioned media, 10 kDa filtrated 

conditioned media, and 10 kDa non-filtrated conditioned media.  

 

 

Figure 6: The chalone size is smaller than 2kDa. Standard Plot Showing Cell Density 
Proliferation Patterns in 2kDa Filtrated 50% Conditioned Media Verses 10kDa Filtrated 50% 
Conditioned Media. 
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Knockout cell lines growth curve analysis  

72-hour knockout screenings in different conditioned media concentration 

The purpose of this approach is to use “wreck and check” assays to determine which genetic 

components (genes, proteins, etc.) are necessary for the chalone signal transduction pathway. 

“Wreck and check” assays exposes cell lines that are missing a single genetic component to 

different conditions and then compares its growth curves to the growth curve of the control 

(wild-type AX2 cell line that is not missing any genetic components) exposed to the same 

conditions. The genetic components tested are specified in Table 1. Deviation from the normal 

growth curve pattern indicates that the missing genetic component is vital to the chalone 

function. The results from this approach displayed in Figure 7 will allows us to better understand 

plausible components involved in cells experiencing unregulated proliferation as exemplified in 

cancer cells.  

 

Knockout cell lines were screened with different concentrations of the chalone in shaking culture 

in SIH media that were counted at uniform time increments to identify if any of the missing 

components affected the signal transduction pathways ability to regulate cell proliferation. We 

screened in 72-hour increments knockout cell lines each lacking a pre-known component 

specified in Figure 7 with three different concentrations of the chalone (0%, 25%, and 50% 

conditioned media). See Table 1 to reference the missing genetic component and the resulting 

absent gene products specified for each knockout tested: Ax2, pten-, tpp1-, Akt1-/2-, rasC-/rasG-, 

gcA/sgcA-, pldβ-, pkc-, pakD-, Sml A-, crlA-, gβ-, gdt4, and r2F-. Observations were made based 

on differences in proliferation rate, the maximum population density achieved, and total cell 

survival over the 72 hours time period. 
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As seen in Figure 7 and Figure 8, pten-, Akt1-/2-, pldβ-, pakD-, and gβ- all showed deviation 

from the normal proliferation pattern. To prove a genetic component has a direct and vital 

interaction with the chalone mechanism, we would expect to see a situation where in the growth 

curves, the increase in chalone concentration does not trigger a significant amount of increase in 

inhibition in the cell knockout cell lines as normally expected in the growth curve of the cell line 

not missing any genetic components (Ax2 cells - Control). However, signal transduction 

pathways involve many components and alternate routes in pathways to compensate when a 

genetic component is absent and so results may not always yield an “all or nothing” response. 

Therefore, any deviations from the normal cell growth curve pattern classified the knockout cell 

line as candidates to be explored. These are the genetic components that potentially have some 

kind of direct or indirect interaction with normal chalone functions and should be researched 

further to validate a more solid conclusion. However, what we can conclude is that the knockout 

cell lines that do not show significant deviation from the normal growth curve pattern (inhibition 

increases as the chalone concentration increases) exhibited by normal Ax2 cells (Control) are not 

missing components that are vital to chalone function.  Cell lines that demonstrated sensitivity to 

the chalone and exhibited the normal growth curve pattern, and therefore, are not missing vital 

component to chalone function are the following: crlA-, gcA/sgcA-, gdt4-, pkc-, r2F-, rasC-

/rasG-, SmlA-, and tpp1-. (Results for cell lines for the following cell lines were confirmed by 

extended growth curve results in Figure 8: crlA-, r2F-, rasC-/rasG-, and SmlA-.) 
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Table 1: Name Descriptions, Gene Products, Gene ID, and Genetic Location of Null Genes in 
Knockouts. 

Summary of Dictyostelium discoideum Knockout Strain Characteristics 
Abbrev. Name Description Gene Product Gene ID/ Location 
Ax2 Axenic strain (wildtype)  

 
N/A N/A 

Akt1-/2- Also known as “pkbA”. 
pkb = Protein Kinase B 

AKT/PKB protein kinase 
PkbA 

DDB_G0268620; 
Chromosome 1 coordinates 1977388 to 
1978925, Watson strand 

crlA- Cyclic AMP Receptor-Like 
 

cAMP receptor-like protein 
G-protein-coupled receptor 
(GPCR) family protein 

DDB_G0280983; Chromosome 3 coordinates 
4253816 to 4255131, Crick strand 

gβ- glb1 beta-galactosidase 1 DDB_G0290217; Chromosome 5 coordinates 
3809656 to 3811671, Crick strand 

gcA/sgc
A- 

gc= Guanylyl Cyclase 
 

guanylyl cyclase DDB_G0275009; 
Chromosome 2 coordinates 5230828 to 
5235376, Watson strand 

scg = Soluble Guanylyl Cyclase  DDB_G0276269; 
Chromosome 2 coordinates 6582943 to 
6592973, Crick strand 

gdt4- Growth-Differentiation 
Transition 

MLK family protein kinase 
Gdt4 

DDB_G0270550; Chromosome 1 coordinates 
2926042 to 2931347, Watson strand 

pakD- P21-Activated protein Kinase serine/threonine protein 
kinase PakD 

DDB_G0269696; Chromosome 1 coordinates 
3345400 to 3350536, Watson strand 

pldβ- PhospoLipase D 
 
 

glycosylphosphatidylinositol 
phospholipase D 

DDB_G0276919; 
Chromosome 2 coordinates 7179136 to 
7182209, Watson strand 

pkc- DDB_G0288147 
 

PKC domain-containing 
protein, PE/DAG binding 
protein kinase, TKL group 
tyrosine kinase-like protein 

DDB_G0288147; 
Chromosome 5 coordinates 1147360 to 
1151873, Watson strand 
 

pten- Phosphatase and TENsin 
homolog 
 

protein tyrosine phosphatase 
3-phosphatidylinositol 3-
phosphatase 

DDB_G0286557; 
Chromosome 4 coordinates 4733890 to 
4735609, Crick strand 
 

r2F- prf = Peptide chain Release 
Factor 
RF2 = Release Factor 2 

class I peptide chain release 
factor; peptide chain release 
factor 2 

DDB_G0288835; 
Chromosome 5 coordinates 2047432 to 
2048948, Watson strand 

rasC-
/G- 

ddRASG or 
RAt Sarcoma viral oncogene 
homolog 

Ras GTPase RasG DDB_G0293434; Chromosome 6 coordinates 
2877682 to 2878372, Crick strand 

rasC or  
RAt Sarcoma viral oncogene 
homolog 

Ras GTPase DDB_G0281385; 
Chromosome 3 coordinates 4519070 to 
4520084, Watson strand 

Sml A- SMaLl aggregates Unknown 
 

DDB_G0287587; Chromosome 5 coordinates 
461888 to 462739, Watson strand 

tpp1- tpp = TriPeptidyl Peptidase I 
cln2 = similar to Ceroid-
Lipofuscinosis, Neuronal 2 

tripeptidyl-peptidase 1 DDB_G0269914; 
Chromosome 1 coordinates 3852049 to 
3853851, Crick strand 
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Figure 7: Standard Plots of Three Day Growth Curve Showing Ax2 Expected Cell Proliferation 
Patterns When Exposed to the Following Three Different Concentrations of the Chalone: 0%, 
25%, 50% Conditioned Media.  
 

240-hour knockout screenings in different conditioned media concentration 

Figure 8 displays the results of the 240-hour knockout screenings in different conditioned media 

concentrations using the “wreck and check” assay. Some of the knockout cell lines that had 

shown significant differences from the normal growth pattern were subjected to repeated screens 

(the same as before) except for an extended time increment of 10 days (240 hours) for n=1 trial. 

The knockouts selected for extended 10-day screens were the following cell lines: Ax2 (control), 

rasC/rasG-, Sml A-, crlA-, and r2F-.  
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Figure 8: 10 Day Screenings with 0%, 25%, and 50% Conditioned Media Comparing Wild-type Ax2 
Cell Line Versus the Following Knockout Cell Lines: rasC-/G-, Sml A-, crl A-, r2F-. 
 

Polyphosphate is present in the conditioned media  

Polyphosphate was found to be present in the conditioned media containing the chalone. 

Polyphosphate is also smaller that 2kDa and is assumed to still be present in the 2kDa filtrated 

conditioned media that still exhibited enzymatic activity even after being filtrated. Polyphosphate 

fits the criteria to be the potential chalone so far. 

 

Attempts to produce true ppk gene knockout was unsuccessful  

A knockout showing lack of extracellular polyphosphate was proven to not be missing ppk gene. 

This means there must be another unknown gene responsible for extracellular polyphosphate 
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regulation. This experiment was lead by graduate student, Patrick Suess, and only supplemented 

by my aid for a couple steps in the procedure as described in the methods section. The team 

generated a random mutant suspected of missing the polyphosphate kinase (ppk) gene that 

exhibited a lack of extracellular polyphosphate. However the gene affected was found to not be 

the ppk gene, even though the mutant produced less extracellular polyphosphate. This means that 

there is another unknown gene responsible for polyphosphate regulation. Identifying this gene 

could potentially help identify a homolog in the human genome responsible for polyphosphate 

regulation. Consequently, the conclusion was not definitive, but these findings were important in 

leading to our hypothesis and the exploration of an unknown genetic component responsible for 

regulating extracellular polyphosphate that could reveal a homolog in the human genome. 

 

Polyphosphate inhibited cell proliferation in vegetative cells  

Effects of Different Concentrations of Polyphosphate on Ax2 Cell Proliferation Pattern 

The purpose of this assay was to test the hypothesis of inorganic polyphosphate as a being a 

possible component of the chalone. To explore this hypothesis, inorganic polyphosphate was 

added at different concentration to vegetative cells in shaking culture in liquid SIH media to 

determine the role it had on cell proliferation observed on a unicellular level. Axenic cells (Ax2) 

were exposed to the following four different concentrations of polyphosphate: 0.28 mM, 0.14 

mM, 0.07mM, and no polyphosphate control. This resulted in an obvious deviations form the 

normal expected proliferation pattern [Figure 9]. The results in Figure 9 show that 

polyphosphate at concentrations higher than 0.14 mM inhibits cell proliferation.When cells were 

treated with a higher concentration of 0.28 mM, cell proliferation was completely inhibited 

[Figure 9]. 
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Figure 9: Standard Plot Showing the Effects of Different Concentrations of Inorganic 
Polyphosphate on Cell Density Proliferation Patterns. 
 

Polyphosphate had effects of multicellular development  

The purpose of this assay was observe Dictyostelium discoideum developmental patterns and 

proliferation rate across when exposed to SM/5 edge plates laced with different concentrations of 

inorganic polyphosphate (0.0mg/ml, 0.5mg/ml, and 0.1mg/ml). If results were to support the 

hypothesis that polyphosphate is the chalone, we would expect to see a deceleration in cell 

proliferation of the Ax2 D. discoideum plated on edge plates with SM/5 agar infused with 

inorganic polyphosphate across the plate as polyphosphate concentration is increased. Trial A  

[Figure 10] and Trial B [Figure 11] were preformed with the purpose to test this hypothesis.  

 

Trial A: Effects of microwaved/polymerized polyphosphate infused media 

However, during Trial A, we discovered two characteristics about inorganic polyphosphate 

interactions that we were not looking for at the time that are quite interesting and didn’t 

contradict our hypothesis, but rather supplements the complexity of polyphosphate’s potential 

role in cell multicellular growth and development. Firstly, we found that omitting the method of 
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microwaving the SM/5 media containing the polyphosphate in the procedure in Trial B yielded 

extremely different results from Trial A when the technique of microwaving was included. It is 

possible that the inorganic phosphate was polymerized into long chains by the microwaving 

method. A Klebsiella aerogenes (KA) bacteria is a genus of non-motile, Gram-negative, oxidase-

negative, rod-shaped bacteria used to grow a bacteria lawn on agar plates to serve as a food 

source for D. discoideum. KA consumes polyphosphate. Polymerized inorganic polyphosphate 

yields a heighted energy food source for KA that in return increases the amount and quality of 

bacteria lawn yielded. D. discoideum eats the larger bacteria lawn, thus providing more energy 

for growth and development. Therefore, we propose that the reason there is an increase in D. 

discoideum growth in Trial A is because the inorganic phosphate had been polymerized by 

microwaving.  

 

Figure 10 shows pictures taken on day 5 of assay growing AX2 on edge plates laced with 

different concentrations of polymerized polyphosphate via microwaving. (Our intention was to 

heat the agar for pouring plates. Polymerization of polyphosphate was a discovery that we 

unintentionally discovered.) Observations showed that increasing polymerized polyphosphate 

(0.0 mg/ml. 0.5 mg/ml, 1.0 mg/ml polymerized polyphosphate) concentration in SM/5 agar 

plates increased cell proliferation rate and development across the plate and generated larger 

stalks. Surprisingly, polymerized polyphosphate increased the rate of growth and development 

on a multicellular level, an increased cell proliferation rate, more rapid collection of unicellular 

amoebae into a multicellular slug, a larger fruiting body, and taller and more developed stalks. 

Secondly, we found that polymerized polyphosphate showed signs of potentially being a 

chemoattractant for D. discoideum. The cells exposed to the polymerized inorganic 
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polyphosphate were observed to cross and consume the lawn of bacteria grown on the SM/5 

plates supplemented with polymerized polyphosphate approximately 75% faster than the cells 

not exposed to polymerized inorganic polyphosphate. The cells exposed to the polymerized 

inorganic polyphosphate also showed more uniform cell proliferation across the plate. The 

organism seemed to have directionality in its movement indicating polymerized inorganic 

polyphosphate possibly to play a role as a chemotaxis attractant. We aim to explore this idea 

further in future experiments.  

 

Figure 10: Trial A - Photograph of Dictyostelium discoideum Ax2 Edge Plate on Microwaved 
SM/5 Plate Laced with Different Concentrations of the Polymerized Inorganic Polyphosphate 
(0.0mg/ml, 0.5mg/1ml, and 1.0mg/ml) Displaying Cell Proliferation and Development 
Differences (n=2, day 5). 
 

Trial B: Effects of inorganic polyphosphate infused SM/5 edge plates on Dictyostelium 

discoideum on multicellular development  

Trial B [Figure 11] followed an identical procedure to Trial A except for omitting microwaving 

as a heating method. Figure 11 displays the results of the distance of the bacteria lawn consumed 

by Ax2 D. discoideum cells across the plate per time on edge plates laced with different 

concentrations of polyphosphate (not microwaved). Observations showed that increasing 
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polyphosphate (0.0 mg/ml. 0.5 mg/ml, 1.0 mg/ml, and 2.0mg/ml inorganic polyphosphate) 

concentration in SM/5 agar plates decreased cell proliferation rate and development across the 

plate and generated smaller stalks and smaller fruiting bodies. These results support of the 

hypothesis of polyphosphate potentially being the chalone. 

 

 

Figure 11: Trial B - Graph of distance covered across SM/5 Dictyostelium discoideum Ax2 plates 
supplemented with increasing concentrations (0.0mg/ml, 0.5mg/1ml, 1.0mg/ml, and 2.0mg/ml) 
of inorganic polyphosphate showed an increasing proliferation inhibition on multicellular level 
(n=2, day 14) 
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CHAPTER IV 

CONCLUSION 

  

The chalone mechanism is supported as a key component of cell proliferation regulation in the 

signal transduction pathway that inhibits cell proliferation and possibly plays a role in tissue-size 

regulation. The primary goal of this project was to identify the chalone and to characterize 

necessary genetic components of the chalone mechanism. We report that cells treated with 

polyphosphate shows similar behavior to cells treated with the unidentified chalone suggesting 

polyphosphate could potentially be the chalone. As chalone concentration is increased when 

exposed to vegetative wild-type cells, inhibition is increased [Figure 2]. As polyphosphate 

concentration is increased, inhibition is increased on a unicellular level [Figure 9] and a 

multicellular level [Figure 11].  

 

However, shockingly, despite finding that inorganic polyphosphate (that was not polymerized by 

microwaving) inhibited cell proliferation correlating with the behavior of the chalone, we found 

the quite a different effect to be induced when cells are exposed to polymerized polyphosphate. It 

was discovered that polymerized polyphosphate (via microwaving) actually increased cell 

growth and development in non-vegetative cells grown on agar plates and almost appeared to 

have a chemoattractant effect when observed on a multicellular level [Figure 10]. This finding 

demonstrates the complexity of the polyphosphate’s role in cell proliferation and multicellular 

development.  
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In addition to studying polyphosphate as the potential chalone, potential vital genetic 

components to chalone function was analyzed via “wreck and check” growth curves. Results 

showed that crlA-, gcA/sgcA, gdt4, pkc-, rasC/rasG-, r2F-, SmlA-, and tpp1- are not necessary 

genetic components in the chalone mechanism. However, the pten-, Akt1-/2-, pldβ-, pakD-, and 

gβ- knockout cell lines all showed some degree of insensitivity to the chalone and are candidates 

to be further explored as possible vital components to chalone function [Table 1, Figure 7, Figure 

8]. Further evidence is needed to support this conclusion, but this data could pave the way to a 

new approach to charactering the signal transduction pathway responsible for cell proliferation 

regulation ultimately yielding valuable information to our understanding of tissue size regulation 

and aid in uncovering genetic targets for cancer therapeutics development.  

 

In summary, the following conclusions listed below can be deduced: 

1. The chalone is smaller that 2kDa [Figure 6]. 

2. Genetic components vital to chalone function do not include the missing genetic 

components of the following knockout cell lines: crlA, gcA/sgcA, gdt4, pkc, rasC/rasG, 

r2F, SmlA, and tpp1. Plausible candidates of being potential necessary components have 

been narrowed down to include the following genetic components pten, Akt1/2, pldβ, 

pakD, and gβ [Table 1, Figure 7, Figure 8]. 

3. Polyphosphate is present in the conditioned media containing the chalone. 

4. Attempts to produce ppk gene knockout was unsuccessful. However, a different 

randomly generated REMI mutant proven to not be a ppk gene knockout that also showed 

a lack of extracellular polyphosphate was discovered. The gene of the this mutant 
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responsible for the extracellular polyphosphate could potentially lead us to identify a 

homolog gene in the human genome responsible for polyphosphate regulation in humans. 

5. Polyphosphate inhibits cell proliferation in vegetative cells in shaking culture [Figure 9].  

As observed, increasing the concentration of either inorganic polyphosphate or the 

chalone shows an inverse correlation to cell density; and, therefore, both appear to have a 

similar inhibiting effect on D. discoideum cell proliferation [Figure 2, Figure 9, Figure 

11]. 

6. In Trial A, it was discovered that using microwaving as a heating method polymerized 

polyphosphate in the SM/5 edge plates. Surprisingly, polymerized polyphosphate 

increased the rate of cell proliferation and multicellular development when cells were in a 

non-vegetative state. Polymerized polyphosphate also showed evidence of being a 

potential chemo-attractant. In Trial B, the microwaving step was omitted from the 

procedure. Results showed that increasing polyphosphate in SM/5 edge plates increased 

multicellular cell proliferation inhibition which matches the behavior of the chalone. 

 

Overall, the hypothesis of polyphosphate being the potential chalone has been supported by 

results. Although, not enough evidence has been collected to fully accept this hypothesis, 

observation look encouraging of the hypothesis and more experiments should be conducted to 

further explore polyphosphate’s role in the chalone mechanism.  
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