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ABSTRACT

A Novel Continuum Manipulator

Eric C. Cochrane
Department of Computer Science

Texas A&M University

Research Advisor: Dr. Dylan Shell
Department of Computer Science

We address the problem of controlling continuum manipulators and evaluate Reinforcement Learn-

ing to produce a control policy for a robotic platform. Our approach discretizes the state and action

spaces to reduce the training needed to converge to an optimal policy. We integrate Q-Learning,

computer vision, and a pneumatic system into a single robotic platform. The agent is tasked with

tracking and striking a target with a continuum manipulator modeled by a party-blower. We de-

scribe Reinforcement Learning, the methods used to train the agent, and describe the performance

of the optimal policy successfully striking the target.
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CHAPTER I

INTRODUCTION

Chameleons to robots

What do chameleon tongues, elephant trunks, and octopi have in common? They are all contin-

uum manipulators due to the near infinite degrees of freedom of these appendages. Continuum

manipulators are compliant, compact, and have the potential to solve some problems that rigid link

manipulators can not. Traditional path planning methods are successful for rigid manipulators,

however difficulties arise when applied to continuum manipulators due to their many degrees of

freedom [4]. When applied to continuum manipulators, rigid manipulator path planning requires

prohibitive computational overhead, so different methods of control are needed. Much of the ex-

isting work is concerned with exploiting the simplified path planning to easily grasp objects, while

little work has been done trying to target and strike objects quickly. Continuum manipulators

are often used in steerable catheter needles, and other medical applications where rigidity could

cause injury to the patient [5]. Furthermore, the development of new methods and algorithms for

computationally expensive problems could lead to an increased use of continuum manipulators in

conventional robotics.

Reinforcement learning has promise in producing a control policy that scales well with the many

degrees of freedom of continuum manipulators [6]. Model-free Reinforcement Learning algo-

rithms, such as SARSA and Q-Learning, have the potential to provide an effective control system

without explicitly modeling the complex kinematics of continuum manipulators. Our approach

shows that Q-Learning can be used to control a robotic platform with a continuum manipulator in

order to strike a target with some probability.
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CHAPTER II

SO MANY STATES AND NOT ENOUGH TIME

The problem

Reinforcement learning algorithms such as Q-Learning are self-contained feedback loops between

the learning agent and the environment. A learning agent performs an action in a given state, and

the environment returns a reward and the new state. Depending on the exploration function used

the agent will select and action based on whether it wishes to explore the environment for a greater

reward or exploit its current knowledge. At first the solution may seem obvious: map all possible

action-state pairs to their reward, and select the maximizing action for each pair. This seems

plausible, however the manipulator agent is operating in continuous space and some simplification

of the problem is needed to accelerate the learning process. The exploratory behavior varies based

on the flavor the reinforcement learning algorithm, but an uninformed or random search through

the state space would greatly increase the amount of training needed to form a policy since the

probability for the agent to randomly strike the target is relatively low. To address this problem we

discretized the state and action space coarsely in an attempt to minimize the amount of training

needed to produce an optimal policy for the agent by reducing the total number of states-action

pairs. Another potential problem is that even if the agent were to undergo thousands of training

sessions it could fall victim to over-fitting the policy to the training scenario. For example, if the

agent was only trained using targets that were outside of the range of the manipulator, the emergent

behavior would learn never to strike at all. Although this behavior is undesirable it is the optimal

policy for the given scenario under the current reward structure. To avoid convergence to similar

unwanted optimal policies, target positions during training should occur with uniform probability

within a fixed distance from the experiment space.

Less is more

The approach discussed in this paper discretizes the state space by limiting the servo positions,

and hashing the target location into one of several partitions. The target location is taken from

the image produced by the camera, and its state is represented by pixel coordinate of the centroid
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of the target. Even with the reduction of the state-action space, it is still large enough to warrant

an automated testing system or computer simulation for training. A simulator was created in

Matlab and is used to train the agent using a simple 3-dimensional model of the experiment. The

training data gathered in simulation will not take into account the possibility that the party-blower

deviates from a straight line trajectory but it is less time consuming than running thousands of

trials while the algorithm has a sparse number of successful actions in its exploration phase. Real-

world training should correct for the non-deterministic behavior of the party blower not taken into

consideration by the simulation producing a more accurate policy.
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CHAPTER III

THE DETAILS

The manipulator agent

The base

The base is a pan and tilt gimbal in the horizontal and vertical plane. The base is connected to

a servo controller, and a computer. The SCC-32 servo controller has a serial connection and has

supporting software and firmware that reduce the execution time of passing commands to the base.

A python script sends commands to the SSC-32 from the workstation computer in the following

format: #<Channel Number>P<Servo Position>. The servo position for both the lateral

and horizontal servos are fixed to 3 uniformly space positions that span each servos range. The

horizontal servo ranges from 48◦ to 132◦ and the vertical servo ranges from 57◦ to 123◦.

Fig. III.1. A view from above of the the robotic agent.
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The pneumatic system

The pneumatic system consists of a small capacity air compressor, a manifold, an electronically

controlled pneumatic valve, a regulator, and a party blower. The air compressor feeds a 3
4 inch

hose into the manifold that houses the pneumatic valve. The valve will then connects to the fitting

on the party blower. The party blower is mounted on top of a C bracket perched on top of the base.

The valve is controlled by the servo controller, and the regulator flow will be static. For the time

being, the learning algorithm would be over-complicated by the addition of another dimension to

the action space if the regulator was dynamically adjusted. The regulator is set to around 10 PSI.

Fig. III.2. The pneumatic system of experimental setup.
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The sensors

The only true sensor is the Kinect camera which is perched behind the manipulator facing the

operating area of the manipulator agent. Its location is fixed slightly above the party blower, and

does not move with the base. OpenCv [1] is used to track the target’s position in the plane of

the image, and only tracks objects that are a particular shade of green. This is accomplished by

passing the acquired image through a threshold that only accepts a range of the color green. Then

the moments of the image are calculated:

mi, j = ∑
x

∑
y

xiy jI(x,y). (III.1)

where I(x,y) is the grey-scale pixel intensity at pixel (x,y), and mi j is the raw image moment. The

pixel coordinate of the centroid of the largest moment is computed. Using color tracking simplifies

the problem of tracking so that we may focus our efforts on the learning component of the agent

rather than its sensors and actuators. The calculation of the centroid returns a singe pixel coordinate

which is placed into one of nine grid cells. Each grid is indexed and reduces the targets location to

membership of the partitions.

Fig. III.3. The camera image partitioned into the 9 target positions; the green target is
located in the middle left cell.
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The state space

In reality, the full description of the state space takes into account the servo positions, denoted by

α and θ , in the horizontal and vertical plane, whether the party blower is inflated or deflated, and

the location of the target in 3 dimensions:

State := {θ ,α,xtarget ,ytarget ,ztarget}. (III.2)

Our approach only uses one camera, and depth is not explicitly sensed by the agent:

State := {θ ,α,xtarget ,ytarget}. (III.3)

In this case the target’s x and y position are the pixel coordinates where x and y axis are the width

and height of the image. Furthermore, the both servos have a range of 0◦-180◦, but due to the

limited field of view of the camera the pan servo in the horizontal plane has a range of 30◦-150◦ ,

and the tilt servo has a range of 50-120◦. The are 9 possible combined servo positions. Although

this makes the motion of the manipulator more coarse and less precise when aiming the party

blower, it greatly reduces the size of the Q-Table, and decreases the number of trials needed to

converge on an optimal policy.

Q-learning

Q-learning is an alternate method of temporal difference reinforcement learning which learns

action-utility pairs and their associated reward; if the agent takes action a in state s then reward

r is given. The most important property of Q-learning for our purposes is that Q-learning, un-

like other machine learning methods, does not require a model of the task environment, i.e. is a

model-free method [3]. The model-free aspect of Q-learning allows us to tackle problems which

have unknown or complicated models like our control and targeting system for the continuum

manipulator.

There are several other properties of Q-learning like the reward structure, the exploration function

and delayed gratification which affect the way the agent learns and navigates through the paired

state-action space, and the rate at which the agent will converge on an optimal policy.
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Convergence

While Q-learning may seem to be the Excalibur of machine learning it has several trade-offs and

limitations imposed by the construction of the action and state spaces, and the complexity of the

problem faced by the agent. If the state and action spaces are both very large, the rate of conver-

gence to an optimal policy will be slow, and may only converge after a hundred-thousand trials or

more. In our case, each learning episode is a physical experiment that requires confirmation that

the agent struck the target with the continuum manipulator. If the strike was a success, a reward

signal is then passed to the learning agent, but without an automated training system to move the

target and confirm a successful strike this tedious operation must be performed by a human. Pro-

viding the validation for each learning episode is prohibitively time consuming, especially over

several thousand trials.

Exploration vs. Exploitation

One of the fundamental, and unsolved problems of Reinforcement Learning is selecting the optimal

scheme for balancing exploration and exploitation in the general case. Reinforcement learning

agents must explore their environment to gain any useful information that may later be exploited

to maximize their reward and yield the optimal policy for a given state-action pair. The k-armed

bandit problem is the simplest illustration of the tradeoff between exploration and exploitation.

The k-armed bandit problem proposes that an agent is an a casino with a infinitely long row of slot

machines (called one-armed bandits) hence the name "k-armed bandit". Imagine that you

are given a fixed number of pulls, and each slot machine has a independent fixed probability of a

payout yielding 1 or 0. The problem arises when we seek to maximize our total payout after n pulls.

Should the agent pull a new lever each time possibly finding the slot machine with the greatest

chance of a payout or stick to a slot machine where the chance of a payout is "good enough"

and repeatedly pull the lever. It should be noted that the larger n is, the larger the penalty of

converging to a sub-optimal policy by favoring exploitation over exploration [2].
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Reward Structure

The reward structure of any RL agent is central to posing a problem and directing the agent to

the problem it needs to solve effectively. We wish to encourage the agent to strike the target so

the state-action pair corresponding to a successful strike receives the greatest maximal reward.

Lesser rewards are used to shape the agent’s behavior away from undesirable policies. In our case,

the agent is penalized for moving from one servo position to another, and for firing at a target

but missing. If the agent was not penalized for striking a target, it would humorously remain

in the same place forever firing expecting the target to wander into its trajectory. Without this

penalty the agent would converge to maximal value after thousands of trials since the target could

coincidentally be in that position with a high enough probability to skew the expected reward.

Simulation Mechanics

In order to reduce the number of physical training sessions needed a simulator was created to pro-

vide virtual training sessions. The simulator takes into account the base and arm servo positions,

and the target’s position. Although the agent does not perceive any depth information about the

target, the simulator must have the distance from the target to the physical agent. In simulation,

the target position is randomly generated within the defined parameters of the physical experiment,

and placed into one of the target partitions of the agent’s state space;the agent behaves exactly as it

would if the input of the target’s coordinates were coming from the vision system. The core feature

of the simulation is computing the expected distance between the extended party-blower and the

target. Geometrically, this problem can be phrased as that of computing the distance between a

line segment and a point in three dimensions.

To compute this distance we must recognize that the solution will fall into three cases: the point

is perpendicular to the line segment, or closest to one of the end points of the line segment. To
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determine which case is at hand we first find the dot products of the line segment vector and the

vector of the endpoints and the point:

~V = P1−P0,

~W0 = T −P0,

~W1 = T −P1,

~W0·~V ≤ 0,

⇒ dist(T,L) = dist(T,P0).

~W1·~V ≥ 0,

⇒ dist(T,L) = dist(T,P1).

where P0 is the center of the base, P1 is the end point of the extended party-blower, and T is the

target’s location. The dot product is negative when the angle between the base of the party-blower

and the target is greater than 90◦, since ~A ·~B = |A||B|cos(θ).
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CHAPTER IV

RESULTS

Results from Simulation

The training epochs in simulation worked well in shaping the behaviors observed in physical test-

ing. The agent developed a belief that it could hit the target regardless of its distance to the agent

if the agent aimed at the perceived target location. This is expected as the agent does not perceive

any depth from itself to the target. This is the behavior we should expect to be optimal for the

given reward structure and phrasing of the problem. An optimal policy was found for each target

location in which the agent moves from its current position to the position corresponding to the

target location, and fires when in the target location. Since the servo positions are fixed to the

centers of the target partition there is a high probability that the agent will miss the target if the

target is not positioned near the partition center.

Physical Testing

Physical testing confirms the results from simulation in that the target is successfully struck if it

near the center of the partition and within the party-blower’s trajectory. Fifty training epochs of

a maximum of 25 actions were conducted in order to adjust the deterministic predictions of the

simulator with the probabilistic nature of the party-blower: occasionally the party-blower will fold

and strike in a random of perpendicular direction. Execution of the optimal policy also allows the

agent to strike a slowly moving target without modification of the policy found.

Optimal Policy

The optimal policy produced exhibits a high probability of success when the target is in range of

the manipulator and either near the center of the target partition or along the trajectory between the

center and manipulator. The penalty accrued by moving to a new servo position ensures that the

agent takes the shortest possible path to the target’s partition, and the randomness from previous

optimal policies has been replaced by a policy that moves the agent closer to the target.
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Fig. IV.1. The agent executing the optimal policy for target partition 6. Agent begins
in the bottom right grid cell.

Fig. IV.2. The optimal policy for all states with the target in the upper left grid cell.

Fig. IV.3. The agent executing the optimal policy for target partition 2. Agent begins
in the top left grid cell.
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Fig. IV.4. The optimal policy for all states with the target in the bottom right grid cell.
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