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ABSTRACT

One of the foremost concerns facing pump users today is that of
pulsation problems in their piping systems and manifolds. In cases

where a fluid excitation is coincident with both an acoustic
resonance and a mechanical resonance of the piping system, large
piping vibrations, noise, and failures of pipes and attachments can
occur. Other problems that uncontrolled pulsations can generate
include cavitation in the suction lines, valve failures, and degrada-
tion of pump hydraulic performance. The potential for problems
greatly increases in multiple pump installations due to the higher
energy levels, interaction between pumps, and more complex
piping systems involved.

The aim of this tutorial is to provide users with a basic under-
standing of pulsations, which are simply pressure disturbances that
travel through the fluid in a piping system at the speed of sound,
their potential for generating problems, and acoustic analysis and,
also, to provide tips for prevention of field problems. The target
audience is users who have had little previous exposure to this
subject. Accordingly, the tutorial neglects the high level mathemat-
ics in the interest of presenting fundamental concepts in physically
meaningful ways in the hope that benefit will be provided to the
layman.

INTRODUCTION

Overview

One of the foremost concerns facing pump users today is that of
pulsation problems in their piping systems and manifolds. In cases
where a fluid excitation is coincident with both an acoustic
resonance and a mechanical resonance of the piping system, large
piping vibrations, noise, and failures of pipes and attachments can
occur. Other problems that uncontrolled pulsations can generate
include cavitation in the suction lines, valve failures, and degrada-
tion of pump hydraulic performance. The potential for problems
greatly increases in multiple pump installations due to the higher
energy levels, interaction between pumps, and more complex
piping systems involved.

The aim of this tutorial is to provide users with a basic under-
standing of pulsations, which are simply pressure disturbances that
travel through the fluid in a piping system at the speed of sound,
their potential for generating problems, and acoustic analysis and,
also, to provide tips for prevention of field problems. The target
audience is users who have had little previous exposure to this
subject. Accordingly, the tutorial neglects the high level mathemat-
ics in the interest of presenting fundamental concepts in physically
meaningful ways in the hope that benefit will be provided to the
layman.

Accordingly, the tutorial begins with a discussion of pulsations
and why they are important in pumping systems. Since pulsation
problems are almost always associated with the resonant excitation
of acoustic natural frequencies, the fundamental concepts of
acoustic natural frequencies, mode shapes, acoustic impedance,
and resonance are described. For the many users who are familiar
with mechanical systems, an analogy with mechanical natural fre-
quencies is drawn and the basic acoustic elements of compliance,
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inertia, and resistance are compared to their mechanical equiva-
lents (springs, masses, and dampers, respectively). Natural
frequency equations and mode shapes are then given for the
simplest piping systems, the quarter-wave stub and half-wave
element. The dependence of acoustic natural frequencies on piping
diameters, lengths, end conditions, and the local acoustic velocity
(which, itself, is dependent on many parameters) is also discussed.

The three most common pulsation excitation sources in pumping
systems are then described in detail. The first and probably best-
known is the pumping elements, particularly those of reciprocating
pumps. Although reciprocating pumps, and their characteristic
pulsatile flows, are deservedly infamous in this area, pulsations at
vane-passing frequency can also occur in centrifugal pumps, espe-
cially when running at off-design conditions and possessing
positively-sloped head-flow characteristics. Second, excitations
can arise due to vortex shedding arising at piping discontinuities
such as tees and valves. Finally, transient excitations due to a
sudden change in the piping system, such as the opening or closing
of a valve, can lead to the so-called “water hammer” problems.

The tutorial then addresses the various pulsation control
elements that are available and methods for sizing them and
locating them within the system. Elements discussed in detail
include surge volumes, accumulators (which include a gas-filled
bladder to allow significant size reduction), acoustic filters
(networks of acoustic volumes and inertia elements), and dissipa-
tive elements such as orifices. The advantages and disadvantages of
each type, including the frequency ranges over which each is most
effective, are discussed in detail. Emphasis is placed on proper
location of these elements since a perfectly-sized element placed at
the wrong point in the system can actually do more harm than
good.

General Rules

A pulsation is simply a fluctuation in pressure that occurs in the
piping system of a pump. Pulsations are generated by all kinds of
physical phenomena, including the action of a reciprocating pump,
vortex shedding at a discontinuity in a pipe, and vane-passing
effects in centrifugal impellers. These simple pulsations are usually
not large enough to cause serious problems. However, if these pul-
sations are amplified through the action of resonance, which is
identical to the idea of resonance in a mechanically vibrating
system, they can become highly destructive.

There are two general types of pulsation sources, oscillatory
flows and transient flows. Oscillatory flows are periodic driving
forces that usually originate in reciprocating machinery but also
can come from centrifugal pumps, vortex shedding at piping dis-
continuities, and resonances within the piping system, such as at a
chattering valve. These types of sources lead to steady-state
problems since they can typically last an indefinite amount of time.
On the other hand, transient flows represent excitations that only
last for a short period of time, usually no longer than a few
seconds. These are the so-called “water hammer” problems that
result from some rapid change in the flow path such as the opening
or closing of a valve, the abrupt shutting off of a pump, etc.

All of the discussion provided in this tutorial assumes that the
pulsations can be treated as one-dimensional plane waves. This
means that at any given location in a pipe, the relevant oscillating
properties, namely pressure and particle velocity, are assumed to
be constant over the entire cross-section. In other words, variations
in the radial direction are assumed to be zero. The assumption
inherent in this treatment is that the pipe diameter is small
compared to the wavelengths of the pulsations of interest.
Fortunately, this assumption is valid for the vast majority of
practical pump pulsation problems a user will encounter.

A distinction must be made between the fluctuating parameters
and the steady-state parameters. In the general case of a fluid
flowing through a pipe, its steady-state parameters are the flow rate
and its static pressure along the length of the pipe. When pulsation

occurs, fluctuating pressures and flows are superimposed on the
steady-state values. For example, since the fluctuations are sinu-
soidal in nature, the pressure at a given point can be expressed as
follows:

(1)

Where:
P (t) = Pressure at a given point as a function of time
PSS = Steady-state pressure
PCYCLIC = Fluctuating pressure (pulsation)

The flow and velocity behave in exactly the same manner. Thus,
when one speaks of the pressure or flow at a point, it could refer to
one of two quantities—the steady-state value or the fluctuating
value. However, since the main focus of this tutorial is on pulsa-
tions, the discussion almost always focuses on the fluctuating
value, not the steady-state value. This should be kept in mind when
a statement such as, “at a velocity node, the velocity is zero,” is
made. That type of statement is sometimes a source of confusion
since the steady-state velocity at a velocity node is quite often not
zero (although it could be). In any case, the point to remember is
that, unless otherwise specified, the discussion applies to the fluc-
tuating parameters, not the steady-state ones.

FUNDAMENTALS

Mechanical Waves

In order to understand how pressure pulsations travel through
the piping systems of pumps, one must first have a basic familiar-
ity with mechanical waves and their behavior. These fundamentals
can be found in most elementary physics texts. One of the best
treatments of this subject that the authors have seen is that of
Resnick and Halliday (1977), which, not surprisingly, is a physics
text. Accordingly, the following discussion follows their general
treatment.

A mechanical wave is simply a disturbance that travels through
a medium. Unlike electromagnetic waves, mechanical waves will
not travel through a vacuum—they need a solid, liquid, or gas
medium in order to propagate. Mechanical waves are normally
initiated via displacement of some portion of an elastic medium
from its equilibrium position. This causes local oscillations about
the equilibrium position that propagate through the medium. It
should be noted that the medium itself does not move along with
the wave motion—after the wave has passed through a portion of
the medium, that portion returns to rest. Waves can, and frequently
do, transmit energy over considerable distances. A good example
of this phenomenon is an ocean wave.

Regardless of the phenomenon that causes it, the speed that a
mechanical wave travels through a particular medium is always the
same. This is similar to the well-known mass-spring system that
always executes free vibration at its natural frequency regardless of
the origin of the vibration. Similar to the mass-spring system, the
properties of the medium that determine the wave speed are its
elasticity and its inertia. The elasticity gives rise to the restoring
forces that cause a wave to be generated from an initial disturbance
while the inertia determines how the medium responds to said
restoring forces.

There are two primary types of mechanical waves of interest in
physics—transverse waves and longitudinal waves. A transverse
wave is a wave in which the motion of the particles conveying the
wave is perpendicular to the direction that the wave travels in. A
prominent example is the vibrating string shown in Figure 1. In the
figure a horizontal string under tension is moved transversely at its
left-hand end, thereby causing a transverse wave to travel through
the string to the right.

Conversely, a longitudinal wave is a wave in which the motion
of the particles conveying the wave is in the same direction that the
wave is traveling in. To illustrate this, Figure 2 shows a vertical
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Figure 1. Example of a Transverse Wave.

coil spring that is subjected to an up and down motion at its top
(free) end. As a result of this, the coils vibrate back and forth in the
vertical direction and the wave travels down the spring. It should
be noted that the acoustic waves that transmit pulsations in piping
systems are longitudinal waves. However, since they often lend
themselves better to visualization and understanding, transverse
waves (specifically, the vibrating string) will be frequently used
herein to illustrate various concepts.

Figure 2. Example of a Longitudinal Wave.

The Vibrating String

One of the simplest forms of mechanical waves is the vibrating
string, which is simply a string under tension that is subjected to a
transverse displacement.

As was shown in Figure 1, if a single transverse movement is
applied to the free end of a string under tension, a single “pulse”
will travel through the string. Each individual particle in the string

remains at rest until the pulse reaches it. At that point it moves for
a short time, after which it again returns to rest. If, as is shown in
the figure, the end of the string is subjected to periodic transverse
motion, a “wavetrain” will move through the string. In such a case,
every particle in the string executes simple harmonic motion.

Figure 3 shows a single pulse traveling to the right (in the
positive x-direction) with velocity, c, in a string. Assuming that
there is no damping present, the pulse retains its shape as it moves
through the string. The general equation for a traveling wave
moving in the positive x-direction is as follows:

(2)

Where:
y = Amplitude at any position and time
f = Any function
x = Position in direction of wave propagation
c = Wave velocity
t = Time

Figure 3. Pulse Traveling to the Right in a String.

Likewise, the general equation for a traveling wave moving in the
negative x-direction is as follows:

(3)

Since, in both of these equations, y is provided as a function of
x, the shape of the string at any given time (such as times, 0 and t,
in the figure) can be obtained from these equations. In the words of
Resnick and Halliday (1977), they provide a “snapshot” of the
string at a particular moment in time. Additionally, for those inter-
ested in the behavior of a particular point on the string (i.e., at a
given x value), these equations also give y as a function of time.
This shows how the transverse position of any given point on the
string varies with time.

As a specific example of Equation (2), the equation for a sine
wave traveling in the positive x-direction in a string, is:

(4)

Where:
y = Amplitude at any position and time (inch)
yMAX = Amplitude of sine wave (inch)
x = Position in direction of wave propagation (inch)
c = Wave velocity (in/sec)
t = Time (sec)
λ = Wavelength (inch)

This case is illustrated in Figure 4, which shows the string at two
distinct times, t = 0 and t = t. This figure facilitates the definition
of some of the most fundamental parameters associated with sine
waves. The wavelength, λ, is the physical distance between two
adjacent points having the same amplitude and phase. The period,
T, is defined as the time required for the wave to travel a distance
of one wavelength. The frequency, ν, is defined as the number of
complete waves that propagate past a fixed point in a given time
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interval. The wave velocity, c, is the rate at which a given point on
the wave travels in the direction of propagation. These parameters
are all related by the following:

(5)

Figure 4. Sine Wave Traveling to the Right in a String.

Based on these definitions, at any given time, the amplitude at a
position, x + λ, is equal to that at position, x. Additionally, at any
given position, x, the amplitude at a time, t + T, is identical to that
at time, t.

Two more fundamental parameters are the angular frequency, ω,
and wave number, k, which are defined by the following:

(6)

(7)

It is a simple exercise to show that the following is also true:

(8)

Then, the general expression for a traveling sine wavetrain is as
follows:

(9)

It is seen that any given point on the string undergoes simple
harmonic motion about its equilibrium position as the wavetrain
travels along the string.

Standing Waves

If two traveling wavetrains of the same frequency are superim-
posed on one another, they are said to be in a state of interference.
There are two primary types of interest—constructive and destruc-
tive. Constructive interference occurs when two waves traveling in
the same direction have about the same phase. In this case, the waves
basically add together, as is shown in the top plot of Figure 5. On the
other hand, destructive interference occurs when two waves
traveling in the same direction are approximately 180 degrees out-
of-phase with each other. As is shown in the bottom plot of the
figure, for this case, the two waves essentially cancel each other out.

In most practical situations, interference occurs when wavetrains
that originate in the same source (or in sources having a fixed phase
relationship with respect to one another) arrive at a given point in
space via different paths. The manner in which the waves interfere
is entirely dependent on their phase difference, φ at the point of
interference, which, in turn, is directly dependent on the difference
in the lengths of the paths they took from their respective sources to
the interference point. The path difference can be shown to be equal
to φ/k or (φ/2π)λ . Thus, when the path difference turns out to be an
integral multiple of the wavelength, λ (i.e., 0, λ, 2λ, 3λ, etc.), so that
the phase difference is 0, 2π, 4π, etc., the two waves interfere con-
structively. Conversely, for path differences of 0.5λ, 1.5λ, 2.5λ,
etc., the phase difference is π, 3π, 5π, etc., and the waves interfere
destructively. All other path differences yield some intermediate
result between these two extremes.

Figure 5. Constructive and Destructive Wave Interference.

The concept of interference is important in the analysis of the
vibrating string because of the fact that traveling waves propagat-
ing through the string are reflected when they reach the end of the
string. This reflection generates a second wave, having the same
frequency and speed as the first, which travels in the opposite
direction. Since the string now contains two waves, the initial (also
known as incident) wave and the reflected wave, the two waves
interfere. The resultant of these two traveling waves is called a
standing wave.

Mathematically, two wavetrains of the same frequency, speed,
and amplitude that are traveling in opposite directions along a
string have the following governing equations, which directly
follow from Equation (9):

(10)

(11)

The resultant of these two waves can then be shown to be as
follows:

(12)

This is the equation of a standing wave. It is seen that, similar to
a traveling wavetrain, all particles in the string execute simple
harmonic motion at the same frequency. However, in direct
contrast to the traveling wave, the vibration amplitudes are not the
same for all particles. Instead, they vary with the particle’s location
on the string.

The points of primary interest in a standing wave are the
antinodes and the nodes. Antinodes are points that have the
maximum amplitude (2 • yMAX in the above example) while nodes
are points that have zero amplitude. The antinodes are spaced one
half-wavelength apart, as are the nodes.

Standing waves are generated whenever two traveling waves of
the same frequency propagate in opposite directions through a
medium. The manner in which this occurs is illustrated in Figure 6,
which shows all three waves (the two traveling waves and the
standing wave) at four moments in time. From the figure, it is
clearly seen that energy cannot flow in either direction in the string
since the lack of motion at the nodes prevents energy transmission.
Thus, the energy remains constantly distributed or “standing” in
the string and simply alternates form between potential and kinetic
energy. Although, in the illustrated case, the two traveling waves
had equal amplitudes, this is not a prerequisite for formation of a
standing wave.
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Figure 6. Formation of a Standing Wave.

Further examination of the figure reveals how the energy associ-
ated with the oscillating string shifts back and forth between
kinetic and potential energy in a standing wave. At t = 0, every
point in the string is at its maximum amplitude and the string is at
rest. At this point, all of the string’s energy is in the form of
potential energy. At t = T/8 (not shown), an eighth cycle later, the
tension in the string has forced the string to start moving back
toward the equilibrium position and the potential and kinetic
energies are equal. At t = T/4 seconds, another eighth of a cycle
later, the string has no displacement but its particle velocities are at
their maximum values. All of the energy at this point is, thus, in the
form of kinetic energy. This cycling between kinetic and potential
energy continues indefinitely in the same manner as that of the
vibrating mass-spring oscillator.

Vibrating String Reflection Laws

The type of reflection that occurs when a traveling wave reaches
an end of the vibrating string depends on the end conditions. As is
shown in Figure 7, which is based on Resnick and Halliday (1977),
if a pulse traveling along a string encounters a perfectly rigid end,
it will exert an upward force on the support. Since the support is
rigid, it does not move but it does exert an equal and opposite force
on the string. This generates a reflected pulse that travels through
the string in the opposite direction. A key item to note is that the
reflected pulse is the exact reverse of the incident pulse.

Figure 7. Reflection of a Vibrating String Pulse from a Fixed End.

The same effect occurs if a wavetrain traveling through a string
encounters a fixed end. This will generate a reflected wavetrain and
the combination of the two will set up a standing wave in the string.
Since the displacement at any point in the standing wave is the sum
of the displacements of the two traveling waves and since, by def-
inition, the displacement at a fixed end must be zero, the reflected
wave must exactly cancel the incident wave at the fixed end. This
means that the two waves must be 180 degrees out-of-phase. Thus,
one of the ground rules for a vibrating string is that reflection from
a fixed end is accompanied by a 180 degree phase change.

The other extreme end condition that a vibrating string can have
is a free end. As is shown in Figure 8, which mimics Resnick and
Halliday (1977), a free end can be simulated by assuming that the
string terminates in a very light ring that is free to slide without
friction along a transverse rod. If a pulse traveling through the
spring encounters the free end, it will exert an upward force on the
ring. This causes the ring to accelerate upwards until it reaches the
position where it has exactly the same amplitude as the pulse.
However, when it reaches this point, the ring’s inertia causes it to
overshoot this position, such that it exerts an upward force on the
string. This generates a reflected pulse that travels back through the
string in the opposite direction. However, in direct contrast to the
situation at the fixed end, the reflected pulse has the same sense as
the original pulse.

Figure 8. Reflection of a Vibrating String Pulse from a Free End.

The same effect occurs if a wavetrain traveling through a string
encounters a free end. This will generate a reflected wavetrain and
the combination of the two will set up a standing wave in the string.
Since the displacement at any point in the standing wave is the sum
of the displacements of the two traveling waves and since, by def-
inition, the displacement at a free end must be a maximum, the
incident and reflected waves must interfere constructively at the
free end. Thus, the reflected wave must be in-phase with the
incident wave at the free end. Accordingly, whenever a standing
wave occurs in a string there must be a vibration node at all fixed
ends and an antinode at all free ends.

The two cases just described represent the ideal cases where
total reflection occurs at the end of a string. However, in the
general case, there will be partial reflection at an end, along with
partial transmission. For example, instead of the string being
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attached to a wall or being completely free, assume that its end is
attached to that of another string under tension. An incident wave
reaching the junction of the two strings would then be partially
reflected and partially transmitted. In this case, the amplitude of
the reflected wave will be less than that of the incident wave due to
the energy that is lost to the adjacent string. Both the reflected and
transmitted waves would have the same frequency as that of the
incident wave. However, since the adjacent string would almost
certainly have a different characteristic wave speed than the first
string, the transmitted wave will travel at a different speed, and
have a different wavelength, from the incident and reflected waves.

Wave Speed in the Vibrating String

As was stated previously, the velocity at which waves travel
through the vibrating string is a characteristic property of the string
that is determined by its elasticity and inertia. The equation for the
wave speed is as follows:

(13)

Where:
c = Wave speed
F = Tension in string
µ = Mass per unit length of string

The tension represents the string’s elasticity while the mass per
unit length quantifies its inertia. In any given string, waves will
always travel at the speed given by the above equation, regardless
of their source, frequency, or shape. Additionally, the frequency of
a wave will always be equal to the frequency of its source. Thus, if
a given source is applied to two strings having different velocities,
the generated waves will have equal frequencies but their wave-
lengths will be different.

Resonance in the Vibrating String

As is the case in most studies of oscillating systems, the concept
of resonance is critical in pulsation analysis. In general, resonance
can be defined as the condition where an elastic system is subjected
to a periodic excitation at a frequency that is equal to or very close
to one of its characteristic natural frequencies. At resonance, the
system oscillates with amplitudes that are extremely large and are
limited only by the amount of damping in the system.

For a vibrating string, any frequency that satisfies the boundary
conditions at both ends is a natural frequency. For a string having
two fixed ends, this occurs at all frequencies that give nodes at both
ends. There may be any number of nodes in between or no nodes
at all. Stated another way, the natural frequencies are those fre-
quencies that yield an integral number of half-wavelengths, λ/2,
over the length of the string. The natural frequencies for such a
string are given by the following equation:

(14)

Where:
fN = Nth natural frequency (Hz)
L = Length of string (inch)
c = Wave velocity in string (in/sec)
N = 1, 2, 3, etc.

The dependence of the natural frequencies on the wave velocity
should be noted, as this is a fundamental concept in acoustics.

As stated previously, if a traveling wavetrain is introduced into
one end of a string it will be reflected back from the other end and
form a standing wave. If the traveling wave’s frequency is equal or
nearly equal to one of the string’s natural frequencies, the standing
wave will have a very large amplitude, much greater than that of the
initial traveling wave. The amplitude will build up until it reaches a
point where the energy being input to the string by the source of
excitation is exactly equal to that dissipated by the damping in the
system. In this condition, the string is said to be at resonance.

If the excitation frequency is more than slightly away from the
string’s natural frequencies, the reflected wave will not directly add
to the excitation wave and the reflected wave can do work on the
excitation source. The “standing” wave that is formed is not fixed in
form but, instead, tends to “wiggle about.” In general, the amplitude
is small and not much different from that of the excitation. Thus, the
string absorbs maximum energy from the excitation source when it
is at resonance and almost no energy at all other conditions.

Acoustic Waves

When pulsations occur in a piping system, they are propagated
through the system as acoustic waves or sound waves. Acoustic
waves are mechanical waves that are highly similar to the vibrating
string discussed above with one major exception—whereas the
vibrating string represents a transverse wave, acoustic waves are
longitudinal waves. The following treatment, which is also based
on that given in Resnick and Halliday (1977), builds on the
previous discussion of the vibrating string to describe the behavior
of acoustic waves.

Figure 9, which is based on Resnick and Halliday (1977), illus-
trates how acoustic waves, or pressure pulsations, can be
generated. The figure shows a piston at one end of a long tube
filled with a compressible fluid. The vertical lines divide the fluid
into “slices,” each of which is assumed to contain a given mass of
fluid. In regions where the lines are closely spaced, the fluid
pressure and density are greater than those of the undisturbed fluid.
Likewise, regions of larger spacings indicate areas where the
pressure and density are below the unperturbed values.

Figure 9. Generation of Acoustic Waves by a Piston.

If the piston is pushed to the right, it compresses the fluid
directly adjacent to it and the pressure of that fluid increases above
its normal, undisturbed value. The compressed fluid then moves to
the right, compressing the fluid layers directly adjacent to it, and a
compression pulse propagates through the tube. Similarly, if the
piston is withdrawn from the tube (moved to the left in the figure),
the fluid adjacent to it expands and its pressure drops below the
undisturbed value. This generates an expansion, or rarefaction,
pulse which also travels through the tube. If the piston is oscillated
back and forth, a continuous series of compression and expansion
pulses propagates through the tube. It should be noted that these
pulses behave in exactly the same way as the longitudinal waves
previously shown traveling in the mechanical spring of Figure 2.

A closer examination of the state of affairs in a compression
pulse is provided in Figure 10, which is also based on Resnick and
Halliday (1977). The figure shows a single compression pulse that

PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL PUMP USERS SYMPOSIUM • 2005142

( )c F= /
/µ 1 2

(

( )f N c LN = • •/ 2

(



could be generated by giving the piston of Figure 9 a short, rapid,
inward stroke. The compression pulse is shown traveling to the
right at speed, v. For the sake of simplicity, the pulse is assumed to
have clearly defined leading and trailing edges (labeled “compres-
sion zone” in the figure) and to have uniform pressure and density
within its boundaries. All of the fluid outside of this zone is
assumed to be undisturbed. Following the lead of Resnick and
Halliday (1977), a reference frame is chosen in which the com-
pression zone remains stationary and the fluid moves through it
from right to left at velocity, v.

Figure 10. Close-Up View of Compression Wave.

If the motion of the fluid contained between the vertical lines at
point C in the figure is examined, it will be seen that this fluid
moves to the left at velocity, v, until it encounters the compression
zone. At the moment it enters the zone, the pressure at its leading
edge is P + ∆P while that at its trailing edge remains at P. Thus, the
pressure difference, ∆P, between its leading and trailing edges acts
to decelerate the fluid (i.e., F = ma) and compress it. Accordingly,
within the compression zone, the fluid element has a higher
pressure, P + ∆P, and a lower velocity, v 2 ∆v, than it previously
had. When the element reaches the left face of the compression
zone, it is again subjected to a pressure difference, ∆P, which acts
to accelerate it back to its original velocity, v (assuming no losses).
After it has left the compression zone, it proceeds with its original
velocity, v, and pressure, P, as is shown at point A.

Accordingly, an acoustic wave can be treated as either a pressure
wave or a velocity (or displacement) wave. Since Resnick and
Halliday (1977) show that, even for the loudest sounds, the dis-
placement amplitudes are minuscule (approximately 1025 m), it is
usually more practical to deal with the pressure variations in the
wave than the actual displacements or velocities of the particles
conveying the wave. A very important point is that the pressure and
velocity waves are always 90 degrees out-of-phase with each other.
Thus, in an acoustic traveling or standing wave (which behave in
the same manner as their vibrating string counterparts), when the
displacement from equilibrium at a point is a maximum or
minimum, the excess pressure is zero. Likewise, when the dis-
placement and velocity at a point are zero, the pressure is either a
maximum or minimum.

Acoustic Wave Reflections

When an acoustic wave traveling in a fluid-filled pipe reaches
the end of the pipe, it will be reflected in exactly the same manner
previously described for traveling waves in a vibrating string. Once
again, interference between the incident and reflected waves gives
rise to acoustic standing waves.

From the standpoint of reflection of a pressure wave, a pipe end
that is completely open behaves in the same manner as a vibrating
string’s fixed end. Since a pulse impinging on an open end can
generate absolutely no pressure (there is “nothing to squeeze the
fluid against”), the acoustic pressure at an open end must be zero.
Additionally, since the pressure at any point in the standing wave
is the sum of the pressures of the two traveling waves and since this
sum must be zero, the reflected wave must exactly cancel out the
incident wave at the open end. This means that the two waves must
be 180 degrees out-of-phase and have opposite signs (i.e., a com-

pression wave is reflected as an expansion wave). Thus, one of the
fundamental behaviors of acoustic waves is that reflection of a
pressure wave from an open end is accompanied by a change in
sign and a 180 degree phase change. Additionally, an open end is a
pressure node in a standing wave.

Figure 11, based on Diederichs and Pomeroy (1929), illustrates
the reflection. The top plot in this figure illustrates reflection of a
pressure wave from an open end. The wave to the left of the
dividing wall is the incident wave and that to the right is the
reflected wave. The reflected waves are drawn in dotted line to
indicate that they do not really exist in the position shown. Instead,
the incident waves should be visualized as passing from left to
right (as shown) but the reflected waves should be thought of as
moving from right to left, starting at the partition.

Figure 11. Reflection of Pressure Waves from Closed and Open
Pipe Ends.

Examination of the figure indicates that the reflected wave has
the same amplitude as the incident wave (a lossless system is
assumed) and that it is 180 degrees out-of-phase with the incident
wave. The sense of the reflected wave is also seen to be opposite
that of the incident wave—that is, a positive incident wave
generates a negative reflected wave. In other words, an incident
compression wave will generate a reflected expansion wave. In
order to determine the resultant pressure at the open end, the
ordinates of the incident and reflected waves are simply added
together. Thus, for the case shown, the pressure at the open end is
seen to be zero. Similarly, the resultant pressure at any other point
in the pipe can be obtained by adding the amplitudes of the two
waves at that point.

On the other hand, reflection of a pressure wave at a closed end
can be visualized by again referring to Figure 11, this time to the
bottom plot. Examination of this plot indicates that the reflected
wave has the same amplitude as the incident wave (a lossless
system is assumed) and that it is perfectly in-phase with the
incident wave. The sense of the reflected wave is also seen to be
the same as that of the incident wave—that is, a positive incident
wave generates a positive reflected wave. In other words, an
incident compression wave will generate a reflected compression
wave. The important thing to remember here is that a pressure
wave encountering a closed end reflects with no change in sign and
no phase change.
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As was stated previously, the displacement and pressure waves
are 90 degrees out-of-phase with each other. This means that the
pressure variations (above and below the steady-state pressure) are
maximum at displacement nodes and zero (i.e., constant pressure)
at displacement antinodes. In other words, displacement nodes are
equivalent to pressure antinodes and displacement antinodes are
pressure nodes. Since most of the upcoming pulsation discussion
will deal with the pressure wave, this means that closed pipe ends
represent pressure antinodes and open ends are pressure nodes.

Resnick and Halliday (1977) provide a physical explanation for
these relationships by pointing out that two small elements of fluid
on either side of a displacement node are vibrating out-of-phase
with one another. Thus, when they are approaching one another,
the pressure at the node rises and when they withdraw from one
another, the node pressure drops. On the other hand, two small
fluid elements on opposite sides of a displacement antinode vibrate
perfectly in-phase with one another, which allows the antinode
pressure to remain constant.

As was the case with the vibrating string, the two reflection
cases just described (i.e., closed end and open end) represent the
ideal cases where total reflection occurs at the end of a pipe.
However, in the general case, where the pipe end is neither com-
pletely closed nor open, there will be partial reflection at an end,
along with partial transmission. For example, instead of the pipe
being completely closed, assume that its end is attached to another
pipe having a 25 percent smaller diameter. An incident wave
reaching the junction of the two pipes would then be partially
reflected and partially transmitted. In this case, the amplitude of
the reflected wave will be less than that of the incident wave due to
the energy that is lost to the second pipe. Both the reflected and
transmitted waves would have the same frequency as that of the
incident wave. However, if the second pipe had a different charac-
teristic wave speed than the first, the transmitted wave would travel
at a different speed, and have a different wavelength, from the
incident and reflected waves.

Acoustic Velocity

As was the case with the vibrating string, acoustic waves
traveling through a fluid in a pipe will always travel at the same
wave velocity, which is referred to as the acoustic velocity. The
basic equation for the acoustic velocity in a fluid is as follows:

(15)

Where:
c = Acoustic velocity
KBULK = Fluid adiabatic bulk modulus
ρ = Fluid density

This equation is seen to be in the exact same form as Equation
(13) for the vibrating string. Specifically, the characteristic wave
velocity is seen to be the square root of the ratio of the medium’s
elasticity (represented by the bulk modulus) to its inertia (charac-
terized by the fluid density). Much more discussion on the acoustic
velocity will be provided in upcoming sections of this tutorial.

Acoustic Resonance

The condition of acoustic resonance is responsible for the vast
majority of pulsation-related problems experienced in piping
systems. Similar to a vibrating string, a fluid within a pipe has
certain acoustic natural frequencies. If the pipe is closed at both
ends, resonance will occur for any frequencies that yield displace-
ment nodes at both ends. There may be any number of nodes in
between or no nodes at all. Stated another way, the natural fre-
quencies are those frequencies that yield an integral number of
half-wavelengths, λ/2, over the length of the pipe. The natural fre-
quencies for such a pipe are given by the following equation:

(16)

Where:
fN = Nth natural frequency (Hz)
L = Length of pipe (inch)
c = Acoustic velocity in pipe (in/sec)
N = 1, 2, 3, etc.

It is interesting to note that this is exactly the same as Equation
(14), which gives the natural frequencies for a vibrating string
having two fixed ends.

For a pipe having one end open and the other closed, the
boundary conditions that must be satisfied are a displacement node
at the closed end and a displacement antinode at the open end.
These can be satisfied when the pipe length is exactly equal to a
quarter-wavelength, λ/4, which yields a first natural frequency as
follows:

(17)

As stated previously, if a traveling acoustic wave is introduced
into one end of a pipe it will be reflected back from the other end
and form a standing wave. If the traveling wave’s frequency is
equal or nearly equal to one of the pipe’s natural frequencies, the
standing wave will have a very large amplitude, much greater than
that of the initial traveling wave. The amplitude will build up until
it reaches a point where the energy being input to the string by the
source of excitation is exactly equal to that dissipated by the
damping in the system. In this condition, the pipe is said to be at
acoustic resonance.

Diederichs and Pomeroy (1929) provide a good description of
the physics of acoustic resonance. As stated previously, acoustic
wavetrains traveling in a pipe are reflected when they reach the end
of the pipe, which generates a second wavetrain traveling in the
opposite direction. This reflected wavetrain can, in turn, also be
reflected once it reaches the opposite end of the pipe, thereby gen-
erating a third wavetrain that travels in the same direction as the
initial wavetrain. These reflections can continue indefinitely until
the system’s damping is sufficient to finally cause the wavetrain to
die out. As a result of all of these reflections and re-reflections, at
any given time, there can be a multitude of wavetrains traveling
throughout the pipe. All of these trains travel throughout the pipe
as if the other trains were not there but, as described previously for
the case of two wavetrains, all of the wavetrains combine to form
a standing wave in the pipe. At any given point in the pipe, the
pressure and velocity at any time are simply equal to the sum of the
pressures and velocities of all of the trains passing that point at that
instant.

Figure 12, which is based on Diederichs and Pomeroy (1929),
illustrates how this multitude of wavetrains can rapidly combine to
generate a standing wave having large amplitudes at resonance.
Imagine a piston is being employed to excite a pipe having an open
end opposite the piston. In the figure, horizontal distances
represent time in seconds and vertical distances represent lengths
along the pipe in feet. The two horizontal lines represent the two
ends of the pipe—the upper line is the mid-plane of the piston
(which acts as a closed end) and the lower is the open end. Since
the system is assumed to be in resonance with the first acoustic
mode, the pipe length, L, is equal to c 3 T/4, where T is the period
in seconds.

In the figure, the pressure wave generated by the piston, desig-
nated wave A, is shown on the upper line beginning at time zero.
In accordance with the physics of this system, this pressure wave
will arrive at the open end as an incident wave, A1, at time, T/4.
The laws of reflection at an open end then yield a negative wave,
A2, which travels back through the pipe toward the piston. Upon
reaching the piston at time, T/2, this wave is reflected without a
change in sense and produces another negative wave of equal
magnitude (the system is assumed to have no losses), A2. However,
at this exact same time, the piston is producing another negative
wave, A3. The fact that these two waves are perfectly in-phase with
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Figure 12. Illustration of Acoustic Resonance.

one another is the driver of the resonance phenomenon. Thus, these
two waves are additive and the total pressure proceeding down the
pipe toward the open end is the sum of A2 and A3, or A4 (which has
an amplitude of 2A). However, the total pressure at the piston is
greater than that since, at any instant, it is the sum of the pressures
in the incident wave, reflected wave, and piston-generated wave.
Thus, the pressure at the piston is A2 + A2 + A3 = A5, which has an
amplitude of 3A. 

The negative wave, A4, traveling down the pipe then encounters
the open end T/4 seconds later and is reflected with a change of
sense. The reflected wave is, thus, a positive wave, A6 (which has
an amplitude of 2A). This wave then travels back toward the piston
and arrives T/4 seconds later. It again reflects from the piston
without a change in sense at the same time that the piston is gen-
erating a positive wave, A3. The pressure traveling back down the
pipe is then the sum of A6 and A3, or A7, which has an amplitude
of 3A. However, the amplitude of the pressure at the piston is the
sum of 2A6 and A3, or A8, which has an amplitude of 5A. Positive
wave, A7, then travels down the pipe and this phenomenon repeats
itself indefinitely. At the open end, the reflected and incident waves
always cancel so there are no pressure oscillations there. However,
as has been shown, the pressure amplitude at the piston builds up
rapidly. In fact, in the absence of damping, none of the waves
would ever die out and the pressure at the piston would, theoreti-
cally build up to infinity. The potentially damaging ramifications of
such a phenomenon on a practical piping system are quite easy to
visualize.

ACOUSTIC VELOCITY

It is hoped that the previous section made it clear that the
acoustic velocity of a fluid in a piping system plays a large role in
determining the system’s pulsation behavior. In this section, the
meaning of acoustic velocity is discussed more fully and equations
are given for several situations of interest.

The technical definition of acoustic velocity is the rate at which
a pressure disturbance (or noise) travels within a fluid. If a fluid is
at rest, pressure disturbances will travel in any direction at the
acoustic velocity. However, if the fluid is flowing in a pipe with a
given average velocity, the upstream and downstream propagation
velocities are different. If the disturbance is traveling upward, it

travels at the difference between the acoustic velocity and the flow
velocity—if it is traveling downstream, the velocities are summed.
However, since in almost all practical pumping applications, the
flow velocity is at least an order of magnitude smaller than the
speed of sound, it is safe to treat pulsations as if they travel at the
acoustic velocity in all directions. Per Resnick and Halliday
(1977), typical acoustic velocities for air and water are 1087 and
4760 ft/sec, respectively.

Per Brennen (1994), the acoustic velocity for any fluid is given
by the following:

(18)

Where:
c = Acoustic velocity
P = Fluid pressure
ρ = Fluid density

In words, this means that the acoustic velocity of a fluid depends
on how much a change in fluid pressure causes the fluid density to
increase (or, alternatively, the volume to decrease). From this defi-
nition, it is seen that, for the purely theoretical case of a perfectly
incompressible fluid, the acoustic velocity is infinite. However,
since all real fluids have some compressibility, all have finite
acoustic velocities. A measure of a fluid’s compressibility is its
bulk modulus, KBULK, which is defined as follows:

(19)

Where:
∆P = Change in fluid pressure (psi)
∆V = Change in fluid volume
V = Initial fluid volume

Using this parameter, the general equation for a fluid’s acoustic
velocity is as follows:

(20)

If the walls of the pipe contain some flexibility, then an increase
in pressure will impact the density of the fluid through two
phenomena. First, the fluid’s volume will change due to the com-
pressibility of the liquid. Second, the flexibility of the pipe walls
will also result in a change in fluid volume and density. Thus, the
flexibility of the pipe walls acts as another “compressibility” in the
system, which acts to further lower the acoustic velocity.

Accordingly, the above equation is strictly only valid when the
pipe walls can be considered to be rigid. However, since gases have
much smaller bulk moduli than liquids, pipe wall flexibility effects
are seldom of importance when analyzing gases. Conversely, for
liquids, these effects often have significant impact and are
normally accounted for using the following equation, known as the
Korteweg correction (which is valid for thin-walled pipes, having
a wall thickness less than 1/10 of the diameter):

(21)

Where:
c = Actual acoustic velocity (ft/sec)
cRIGID = Acoustic velocity calculated using rigid pipe assump-

tion (ft/sec)
KBULK = Fluid bulk modulus (psi)
d = Pipe diameter (inch)
E = Pipe elastic modulus (psi)
t = Pipe wall thickness (inch)

Obviously, the above correction only applies to pipes having
circular cross-sections. However, Wylie and Streeter (1993) point
out that when subjected to an internal pressure, a pipe having a
noncircular cross-section deflects into a nearly circular section.
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Since the increase in cross-sectional area for a given pressure
change is greater than that for a circular pipe, the noncircular cross-
section pipe has a larger effective compliance. Accordingly,
employment of noncircular conduit can greatly reduce the acoustic
velocity that, as will be shown later, is sometimes desirable.

If a liquid contains even minute amounts of entrained gas, or gas
that has come out of solution, the acoustic velocity is drastically
reduced. The presence of the gas has two effects—it modifies the
effective bulk modulus of the fluid and it also decreases its
effective density. Singh and Madavan (1987) provide the following
equation for the acoustic velocity in a liquid-gas mixture contain-
ing small amounts of gas:

(22)

Where:
cM = Acoustic velocity in mixture
c0 = Acoustic velocity in liquid
KBULK = Liquid bulk modulus (psi)
PL = Line pressure (psi)
VGAS = Gas volume
VL = Liquid volume

Wylie and Streeter (1993) present a plot that shows how the
introduction of entrained air into a liquid can result in a dramatic
reduction in acoustic velocity. It is noteworthy that the introduction
of an amount of air as small as 0.1 percent by volume can essen-
tially cut the acoustic velocity in half.

PIPING ACOUSTIC BEHAVIOR

Organ Pipe Resonances

The two fundamental “organ pipe” resonances are the half-
wavelength resonance and the quarter-wavelength resonance. A
half-wavelength resonance occurs in a pipe of constant diameter
that has the same condition at both ends—either both open or both
closed. For a pipe having two closed ends (also known as “closed-
closed pipe”), any vibrating frequency that yields displacement
nodes at both ends is a natural or resonant frequency of the system.
There may be any number of nodes in between or no nodes at all.
Stated another way, the natural frequencies are those frequencies
that yield an integral number of half-wavelengths, λ/2, over the
length of the pipe. The natural frequencies for such a pipe are given
by the following equation:

(23)

Where:
fN = Nth natural frequency (Hz)
L = Effective length of pipe (inch)
c = Acoustic velocity in pipe (in/sec)
N = 1, 2, 3, etc.

Another way of looking at this is via the phenomenon of the
buildup of a standing wave illustrated in Figure 12. Assume that a
closed-closed pipe has a sinusoidal excitation source, such as the
piston of Figure 9, located at one of its ends (a piston always
behaves as a moving closed end). As the piston oscillates back and
forth, it generates alternating compression and expansion pulses.
Let us follow the motion of one of the compression pulses. Since
the pulse travels at the acoustic velocity, c, it reaches the other
closed end in a time of L/c seconds. Since a closed end reflects a
wave with no change in sense, the reflected wave is also a com-
pression wave. The reflected compression wave then travels back
toward the piston and again takes L/c seconds to traverse the pipe.
Thus, the total time elapsed from the generation of the initial pulse
to the return of the reflected pulse is 2L/c seconds.

What happens at the piston is now highly dependent on the
phasing between the pulse being generated at the piston and the
reflected pulse. Since the reflected pulse is a compression pulse, it

will add to the piston’s pulse if the piston is just starting to generate
another pressure pulse. By definition, the period of the piston’s
motion is the time between the generations of consecutive com-
pression (or expansion) pulses. It is, thereby, seen that if the pulse’s
travel time, 2L/c, is exactly equal to the period of the piston, the
newly generated wave will be perfectly in-phase with the reflected
wave and resonance will occur. Thus, the resonant period is 2L/c
or, in other words, the resonant frequency is c/2L, which is the
value given by the above equation when N equals one.

However, that is not the only resonant frequency for the system.
If the piston’s period is one-half that of the previous case, or L/c, it
will generate a compression pulse at the time, L/c, that the initial
pulse reaches the other closed end and a second compression pulse
at the time, 2L/c, the reflected pulse reaches the piston. Since this
second pulse will be in-phase with the reflected pulse, this is also
a resonant condition. Taking this to the general case, it can be seen
that resonance will occur whenever the period of the piston is equal
to 2L/Nc, as long as N is an integer. This translates into resonant
frequencies of Nc/2L, as are given by the above equation.

In order to illustrate the system’s physical behavior, mode
shapes are plotted for acoustic standing waves in the same fashion
as they are for mechanical vibrations. The only difference is that
each acoustic mode has two distinct mode shapes—one for
pressure and one for velocity. The pressure mode shape provides
the amplitudes of pressure fluctuations at each point along the
pipe. Similarly, the velocity mode shape shows the velocity sinu-
soidal amplitudes at each point within the pipe. As has been stated
before, the two mode shapes are always 90 degrees out-of-phase
with each other.

Figure 13 provides the pressure and velocity mode shapes for
the first mode for the closed-closed pipe just discussed. Since this
is the half-wave resonance, it comes as no surprise that both mode
shapes are in the shape of a half-wave. The pressure mode shape
has antinodes at both closed ends and a node at mid-length while
the velocity mode shape is exactly the opposite. The ways that the
pressure varies with time are also depicted for several points along
the pipe.

Figure 13. Pressure and Velocity Mode Shapes.

The first mode is known as the fundamental mode and the higher
order modes are known as overtones. In cases such as this, where
the higher order frequencies are simply integer multiples of the
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fundamental, these modes are referred to as harmonics. The
pressure mode shapes for the first three modes are provided in
Figure 14. The fundamental mode is seen to consist of a single half
wave, the second mode contains two half waves, and so on.

Figure 14. Pressure Modes Shapes for Organ Pipe Modes.
(Courtesy of Jungbauer and Eckhardt, 1997, Turbomachinery
Laboratory)

For an open-open pipe, the situation is very similar except the
boundary conditions that must be satisfied are displacement
antinodes at both ends. The natural frequencies for this case are
again given by Equation (23) and the first three mode shapes are
provided in Figure 14. It is seen that although the natural frequen-
cies are identical to those for a closed-closed pipe, the mode shapes
are different.

Kinsler, et al. (1982), state that the effective length of an open-
open pipe is not the physical length but, rather, is given by the
following:

(24)

Where:
LEFF = Effective pipe length
L = Actual pipe length
r = Pipe radius

The other major organ pipe resonator is a pipe of constant
diameter having one open end and one closed end, or an open-
closed pipe. The boundary conditions that must be satisfied for this
pipe are a displacement antinode at the open end and a displace-
ment node at the closed end. The natural frequencies for such a
pipe are given by the following equation:

(25)

Where:
fN = Nth natural frequency (Hz)
L = Length of pipe (inch)
c = Acoustic velocity in pipe (in/sec)
N = All odd integers (i.e., 1, 3, 5, etc.)

The pressure mode shapes for the first three modes are again
provided in Figure 14. Similar to the open-open pipe, the funda-
mental mode is seen to consist of a single quarter-wave. For this
reason, the open-closed pipe is often referred to as a “quarter-wave
stub.” However, in direct contrast to the open-open and closed-
closed pipes, all of the harmonics are not present. Specifically, all
of the even harmonics are missing. This is because the even
harmonics of the fundamental all consist of integral multiples of
half-wavelengths that have already been shown to yield the same
condition at both ends (i.e., either both nodes or both antinodes).
Since the open-closed pipe requires opposite boundary conditions
at the two ends, only the odd harmonics are present.

Similar to the open-open pipe, the effective length of the quarter-
wave stub is also greater than the actual length. Rogers (1992)

states that experimental measurements indicate that the effective
length can be anywhere from 1 to 12 percent greater than the actual
length.

An important point to remember is that the above simplified
relations are only applicable to segments of pipe where the
diameter is constant. If a segment contains a change in diameter,
even a small one, reflections occur (as will be discussed shortly)
and the above equations are invalidated. Another way of stating
this is that the above equations only pertain to pipes where the
characteristic impedance (defined in the next section) is constant.

Impedance

A highly important concept in the study of pulsations is
impedance, which comes straight from electrical theory. In
general, the impedance of an acoustic component is that
component’s resistance to acoustic particle flow. However, since
there are several different definitions of impedance, this is a
concept that is often misunderstood. In order to keep this as simple
as possible, the only impedance referred to herein will be the
acoustic impedance.

The acoustic impedance, Z, at any point, x, in an acoustic system
is defined as the complex ratio of the oscillatory pressure, P, to the
oscillatory volumetric flowrate, Q, at that point, as follows:

(26)

Where:
Z = Acoustic impedance at point x
P (x, t) = Oscillatory pressure at point x
Q (x, t) = Oscillatory volumetric flow at point x

Per Wylie (1965), the acoustic impedance is seen to be a
complex number calculated from physical and dynamical flow
properties of the system. In a particular pipe, it varies with x,
boundary conditions, and frequency of oscillation. Per Kinsler, et
al. (1982), in the metric system, the acoustic impedance units are
Pa-sec/m3, often termed an acoustic ohm.

The characteristic acoustic impedance for a fluid filled pipe is
given by the following:

(27)

Where:
Z0 = Characteristic impedance
ρ = Fluid density
c = Acoustic velocity
A = Cross-sectional area

It is important to understand that, in general, the acoustic and
characteristic impedances are not the same. The characteristic
impedance refers to the simple case where a single traveling wave
propagates through the pipe with no reflections. In a pipe of
constant diameter, the characteristic impedance is constant every-
where in the pipe. It should be noted that in an infinite line, where
there are no reflections, the acoustic impedance is equal to the
characteristic impedance everywhere.

However, as will be discussed in the next section, most real pipe
problems will involve two waves—an incident wave propagating in
the positive direction and a reflected wave propagating in the
negative direction. The acoustic impedance of a pipe containing
both of these waves can then be shown to be:

(28)

Where:
Z = Acoustic impedance of pipe
Z0 = Characteristic impedance of pipe
PI = Pressure amplitude of incident wave
PR = Pressure amplitude of reflected wave
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In general, the acoustic impedance at any point is a complex
number and can be expressed as follows:

(29)

Where:
ZX = Acoustic impedance at point x
RX = Resistive component of impedance
XX = Reactive component of impedance
j = Square root of negative one

The acoustic impedance at a constant head reservoir, or open
end, is zero. The acoustic impedance at a closed end is infinity. A
simple line that is connected to a reservoir or open end behaves as
a fluid inertia. On the other hand a simple line that is connected to
a closed end behaves as a hydraulic compliance.

Reflections

As has been stated previously, when an acoustic traveling wave
propagating through a pipe encounters a closed or open end, it is
reflected, and a traveling wave moving in the opposite direction is
generated. These are specific cases of the more general rule that
whenever a traveling wave moving through a piping system
encounters a change in characteristic acoustic impedance, Z0, a
reflection occurs. Except in the extreme case of an open end, two
new traveling waves are generated—a reflected wave and a trans-
mitted wave. The reflected wave is the wave that travels back
through the pipe in the opposite direction from the incident wave.
Its frequency, propagation speed, and wavelength are always the
same as those of the incident wave. With the exception of the
special cases of complete reflection that occur at closed and open
ends (where the pressure amplitudes are equal), the amplitude of
the reflected wave is always smaller than that of the incident wave.

Up to this point, scant mention has been given to the second
wave generated, the transmitted wave. The transmitted wave is
another traveling wave that proceeds in the second pipe in the same
direction as the incident wave. The transmitted wave will always
have the same frequency as the incident wave but, depending on
the fluid properties in the second pipe, its acoustic velocity and
wavelength could be different from those of the incident wave. In
stark contrast to the case with the reflected wave, the pressure and
displacement amplitudes associated with the transmitted wave are
often larger than those of the incident wave, with a maximum
amplitude increase of 2.0 for a closed pipe.

Per Campbell and Graham (1996), physical elements that
impose such characteristic impedance changes include the
following:

• Closed ends (infinite impedance).

• Open ends (zero impedance).

• Changes in pipe diameter (expansions and contractions).

• Branches.

• Tees.

• Flow restrictions, such as orifices, valves, etc.

• Changes in density or acoustic velocity.

Conspicuous by their absence from the above list are elbows and
bends. This is in accordance with Chilton and Handley (1952), who
assert that laboratory tests have proven conclusively that elbows
and bends do not form reflection points for pressure pulses since
they do not represent a change in acoustic impedance.

In general, the ratios of the pressure amplitudes of the reflected
and transmitted waves to those of the incident wave depend on the
characteristic acoustic impedances and acoustic velocities in the
two pipe elements. Two characteristic parameters associated with
any reflection are the pressure transmission and reflection coeffi-
cients, which are defined by Kinsler, et al. (1982), as follows:

(30)

(31)

Where:
T = Pressure transmission coefficient
R = Pressure reflection coefficient
PI = Complex pressure amplitude of incident wave
PT = Complex pressure amplitude of transmitted wave
PR = Complex pressure amplitude of reflected wave

Another parameter that is of interest at a reflection, especially
when the effectiveness of acoustic filtering devices is being
evaluated, is how the incident wave’s acoustic energy is divided
between the reflected and transmitted waves. Although there are
several parameters that measure the acoustic energy, Kinsler, et
al.’s (1982), acoustic intensity will be employed in this tutorial.
Kinsler, et al. (1982), define the acoustic intensity of a sound
wave as the average rate of flow of energy through a unit area
normal to the direction of propagation. Using this definition, the
acoustic intensity can be shown to be given by the following
equation:

(32)

Where:
I = Acoustic intensity (W/m2)
P = Complex pressure amplitude
ρ = Fluid density
c = Acoustic velocity

Kinsler, et al. (1982), also note that the intensity transmission
and reflection coefficients are real and are defined by:

(33)

(34)

Where:
TI = Intensity transmission coefficient
RI = Intensity reflection coefficient
II = Intensity amplitude of incident wave
IT = Intensity amplitude of transmitted wave
IR = Intensity amplitude of reflected wave

Kinsler, et al. (1982), give the following equations for the
pressure transmission and reflection coefficients for a simple step
change of characteristic impedance, from Z1 to Z2, in a pipe:

(35)

(36)

The intensity transmission and reflection coefficients for that
same step change are as follows:

(37)

(38)

If the flow areas of the upstream and downstream pipes are S1
and S2, respectively, Kinsler, et al. (1982), and Diederichs and
Pomeroy (1929) both show that the above equations can be written
in terms of the areas as follows:

(39)
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(40)

(41)

(42)

It should be noted that all of the above equations implicitly
assume that no losses occur during reflection. The above equations
have several important ramifications including the following:

• The reflection coefficient, R, is always real. Thus, the reflected
wave must always be in-phase or 180 degrees out-of-phase with
the incident wave.

• The reflection coefficient, R, is always less than or equal to
unity. This means that the pressure amplitude in the reflected wave
is always less than that in the incident wave, unless the reflection
is from a closed end.

• For the trivial case of no area change (S1 = S2), the reflection
coefficient, R, is zero and the transmission coefficient, T, is unity.
This just states the obvious fact that there is no reflection if there
is no impedance change.

• For a sudden contraction (S1 > S2), the reflection coefficient, R,
is positive. This means that the reflected wave is in-phase with the
incident wave and has the same sense (i.e., a compression wave is
reflected as a compression wave). This is the same result that was
obtained for closed ends earlier.

• In the limiting case for a contraction (S1 >> S2), the reflection
coefficient, R, approaches unity and the transmission coefficient, T,
approaches 2.0. This simply confirms that a closed end generates a
reflected wave that is equal in amplitude to the incident wave and
that it generates a pressure that is twice that of the incident wave.

• For a sudden expansion (S1 < S2), the reflection coefficient, R,
is always negative. This means that the reflected wave is 180
degrees out-of-phase with the incident wave and has opposite sense
(i.e., a compression wave is reflected as an expansion wave and
vice versa). This is the same result that was obtained for open ends
earlier.

• In the limiting case for an expansion (S1 << S2), the reflection
coefficient, R, approaches 21.0 and the transmission coefficient,
T, approaches zero. This simply confirms that an open end
generates a reflected wave that is equal in amplitude but opposite
in sense to the incident wave and a transmitted wave that has a
pressure amplitude of approximately zero.

• The transmission coefficient, T, is always real and positive.
Thus, the transmitted wave must always be in-phase with the
incident wave and it also must have the same sense (i.e., a com-
pression wave generates a transmitted compression wave).

• For a sudden contraction (S1 > S2), the transmission coefficient,
T, is greater than unity. This means that the transmitted wave
always has a larger amplitude than the incident wave.

• For a sudden expansion (S1 < S2), the transmission coefficient,
T, is less than unity. This means that the transmitted wave always
has a smaller amplitude than the incident wave.

• If the areas are significantly different (i.e., S1 >> S2 or S1 << S2),
the intensity transmission coefficient, TI, approaches zero. Thus,
the system acts as an acoustic filter, protecting the downstream line
from high energy pulsations. This will be addressed in greater
detail in a subsequent section.

The above rules can be generalized by stating that whenever a
compression wave encounters an increase in impedance, it is
reflected as a compression wave and whenever it reaches a
decrease in impedance, it is reflected as an expansion wave.

Resonance

It should be emphasized that the existence of quarter-wave and
half-wave resonant modes in a piping system does not, by itself,
necessarily mean that the system will encounter pulsation
problems. In fact, all piping systems will have such modes, along
with other resonant modes that are more complex. In order for
these modes to represent a problem, there must be a means for
exciting them. In most cases, the excitation is in the form of a flow
or pressure variation generated by the pump. As has been stated
before, resonance will occur when the total time it takes for the
excitation to travel up the pipe, be reflected, and return to the
source is such that the reflected wave is perfectly in-phase with a
subsequent perturbation being generated by the source. Another
way of saying this is that the frequency of the excitations must
match one of the resonant frequencies of the system. When this
happens, standing waves are formed in the piping system and the
pressure and displacement amplitudes can build up to very large
values in the manner described previously. Since the large pressure
amplitudes are the element of most concern, the pressure antinodes
are the areas of concern. It should be remembered that, even at
resonance, the fluctuating pressures at a pressure node are zero.

If the system contained absolutely no damping, the pressure
fluctuations at the antinodes would theoretically be infinite.
However, all real piping systems contain acoustic damping due to
the following mechanisms, taken from Wachel, et al. (1995):

• Viscous fluid action (intermolecular shearing)

• Piping resistance (pipe roughness, restrictions, orifices, etc.)

• Transmission (lack of total reflection) at line terminations,
junctions, diameter changes, etc.

While the damping created by the first two items is probably
easy to visualize, the effect of transmission may be less so. In order
to understand this, it must be remembered that the previous
description of amplitude buildup at resonance assumed perfect
reflections at both ends of the pipe. That means that the reflected
wave had the same amplitude as the incident wave. However, as
was shown in the last section, the only cases where perfect reflec-
tions occur are when there are perfectly closed or open ends. In all
other cases, there is only partial reflection and the reflected wave
is smaller in amplitude than the incident wave. A glance at Figure
12 reveals that these losses would have the impact of retarding the
amplitude growth at resonance.

In flowing piping systems, the damping is a direct function of
the ρv2 pipe friction losses. For typical flows and flow velocities
seen in pumps, these losses normally dwarf those that occur on the
molecular level, such that the first item on the above list is almost
always inconsequential. Since the pipe friction varies with the
square of flow, the system damping is much larger for higher
steady-state flows than for low flows. For this reason, Sparks
(1983) observes that acoustic resonances are more prominent at
low flows, where the system is very lightly damped.

Even when the flows are not low, most pump piping systems are
relatively lightly damped from an acoustic standpoint. A measure of
the amount of damping is the amplification factor at resonance, or Q
factor, which is analogous to that associated with mechanical vibra-
tions. The larger the amplification factor, the sharper the peak
(corresponding to lighter damping) and the more dangerous the mode
is. The acoustic amplification factor can be calculated using the
amplitude bandwidth factor commonly used for mechanical systems.
To implement this, the two half power points (frequencies where the
pressure amplitudes are 0.707 times the amplitude at resonance) must
be identified from a frequency response (also known as Bode) plot.
The difference between these two frequencies is then designated the
bandwidth and the amplification factor is obtained by simply
dividing the resonant frequency by the bandwidth.

Although few would argue that pump piping acoustic systems
are lightly damped, a review of the literature reveals some signifi-
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cant discrepancies in amplification factor magnitudes. Parry (1986)
states that amplification factors can be as high as 15 while Beynart
(1999) cites a value of 40. Wachel and Price (1988) effectively
span these values when they provide a range from 10 to 40. At the
extreme end of things are references, including Schwartz and
Nelson (1984) and Singh and Madavan (1987), which cite a
maximum possible amplification factor of 100. In general, the
amplification factor is dependent on flow, line size, and frequency.

It should be remembered that resonance can only occur when
reflections allow a standing wave to build up. Since an infinite pipe
gives rise to no reflections, it cannot suffer from resonance.
Accordingly, the pulsation levels at all locations in the pipe are
simply equal to those introduced by the excitation source.

Acoustic Behavior of “Real” Piping

Per the authors’ experience, the two organ pipe resonances most
likely to be excited in turbomachinery and piping systems are the
open-open and open-closed types. Although closed-closed modes
are occasionally encountered in pulsation control bottles and
acoustic filters, most practical piping is open at least at one end. As
Diederichs and Pomeroy (1929) point out, since in practically all
installations, the pump discharge line ends in a manifold connec-
tion or connections of larger cross-section, the pump discharge line
almost always has an open end at its terminal end. Likewise, since
the pump suction line usually begins at a reservoir or tank, the
suction pipe almost always begins with an open end. Additionally,
in a reciprocating pump, the pump ends of the discharge and
suction lines normally behave as closed ends, unless a surge
volume or accumulator is employed, since a pressure wave
traveling toward the pump will either hit a closed valve or a piston
(a piston behaves as a moving closed end).

Although there are many examples of perfectly closed and open
ends in practical pump piping systems, Diederichs and Pomeroy
(1929) state that there are also many cases where a configuration
can be treated as a closed or open end. For instance, although the
only condition where a valve represents a perfectly closed end is
when it is completely closed, many times when a valve is only
open a small amount, it acts like a closed end. A pipe also appears
to be closed-ended when it ends in a significant decrease in area.
According to API 618 (1995), if the diameter reduction is two-to-
one or more, a contraction can be treated as a closed end.

On the other hand, when a pipe is connected to a reservoir, tank,
or chamber, it behaves as if it is open-ended. Additionally, API 618
(1995) states that if a pipe is connected to a pipe having a diameter
that is at least twice as large, it can be considered to be open-ended.
Furthermore, per Diederichs and Pomeroy (1929), the dividing
surface between a liquid and a lighter fluid, such as air, behaves as
an open end, even when both fluids are pressurized.

Lewis, et al. (1997), provide a good illustration of how the
resonance modes of concern are sensitive to the boundary condi-
tions at the end of the pipe. They describe a case in which they had
a control valve located at one end of a pipe whose other end was
open. When the valve was open only 30 to 40 percent, it essentially
behaved as a closed end, as was confirmed by the presence of
quarter-wave resonances. On the other hand, when the valve was
open 80 percent or more, the valve behaved as an open end, which
changed the system to open-open, and half-wave resonances were
observed.

Wylie and Streeter (1993) state that every series piping system
has two different acoustic natural frequencies. The first is the the-
oretical frequency one obtains by using the organ pipe relations
and making reasonable approximations in areas where there is a
change in diameter. The second is the actual frequency observed in
the field. Unfortunately, except in the simple case of a constant
diameter pipe, the actual resonant frequency is usually quite
different from the theoretical frequency. The difference between
the theoretical and actual resonant frequencies results from the
partial reflections that occur at each impedance change.

Even in the simplest configurations, the theoretical and actual
resonant frequencies are often quite different. The authors demon-
strated this by analyzing the two configurations shown in Figure
15, which are assumed to be filled with water, using their acoustic
simulation code. The top configuration, referred to as the constant
area pipe, is a classic quarter-wave stub whose fundamental
frequency was found to be 58.7 Hz, which is very close to that
obtained using Equation (25).

Figure 15. Constant and Variable Area Pipes.

The problem arises when it comes time to analyze the bottom
configuration, referred to as the variable area pipe. Since it has the
same total length as the constant area pipe and has the same
diameter over two-thirds of that length, one would think that its
fundamental frequency could be reasonably approximated. One
thought might be to analyze the one inch diameter pipe as an open-
open pipe using Equation (23), which yields a fundamental
frequency of 176 Hz. Another reasonable approach might be to
treat the two inch diameter pipe as an open-closed pipe using
Equation (25), which also yields a fundamental frequency of 176
Hz. A third approach might be to ignore the change in diameter and
simply look at the entire pipe as an open-closed pipe, which yields
the same value obtained for the constant area pipe, 58.7 Hz.
However, the actual fundamental frequency determined by the
code is 36.8 Hz, which is far from all of the “theoretical” values. It
should be noted that the variable area pipe does have a mode in the
vicinity of 176 Hz (at 179.9 Hz) but it is the second mode, not the
fundamental.

In more complex systems, such as those containing branches or
parallel paths, the theoretical frequency does not even have any
meaning since there is no simple manner of calculating it that can
be reasonably justified. However, as in the preceding example, the
actual resonant frequency can be calculated with the aid of a good
acoustic analysis computer code. As is the case in simple pipes,
higher order natural frequencies are also present in complex
systems. However, unlike the situation with the organ pipe reso-
nances, the higher order frequencies in complex systems are
seldom harmonics of the fundamental.

When a piping system is subjected to an excitation whose
frequency is not in resonance with any of the system’s acoustic
natural frequencies, the excitation wave simply passes through the
system as a traveling wave without the formation of any apprecia-
ble standing waves. In this condition, the pulsation amplitudes
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everywhere in the system are essentially the same as those of the
source. Blodgett (1998) refers to these nonresonant pulsations as
“residual or forced pulsations.”

Figure 16 illustrates how the response of an acoustic system
varies with excitation frequency. The figure shows a piston
operating in a pipe with a closed end opposite the piston. Since this
system behaves as a closed-closed pipe, the resonant frequencies
are Nc/2L, which for the given dimensions, occur at 20, 40, 60, 80,
and 100 Hz. The plot in the figure represents the pressure ampli-
tudes at point A, located at the piston, as the piston excitation
frequency is varied from 0 to 100 Hz. Additional plots of the
response at points B and C, at the midpoint and closed end, respec-
tively, are provided in Wachel, et al. (1995). Examination of the
three plots leads to the following observations:

Figure 16. Typical Frequency Response. (Courtesy of Wachel and
Tison, 1994, Turbomachinery Laboratory)

• The resonances at 20, 40, 60, 80, and 100 Hz are seen clearly in
the response at points A and C.

• However, at point B, the only resonances observed are at 40 and
80 Hz, which are the even-numbered modes. 

• Examination of the mode shapes for the closed-closed pipe
(Figure 14) reveals that the midpoint is a pressure node for the odd-
numbered modes and a pressure antinode for even-numbered
modes. Thus, only the even-numbered modes can be detected.

• At points A and C, the peak pressures at resonance are approxi-
mately equal.

• As the frequency increases, the resonant amplitudes decrease.
This is because the lowest modes, starting with the fundamental,
have the most energy and, thus, are the most dangerous.

• In general, the responses at the nonresonant frequencies are
small but nonzero.

LUMPED ACOUSTIC SYSTEMS

In general, acoustic systems, like mechanical systems, can be
broken down into two basic types—distributed systems and
lumped systems. A distributed acoustic system is one in which all
of the properties associated with flow, velocity, and pressure are
continuously distributed along the length of the system. In mechan-
ical engineering, a simple example of a distributed system is a
cantilever beam. On the other hand, a lumped acoustic system is
one in which the acoustic properties can be “lumped” together at
various points in the system. In the field of mechanical vibration, a
prominent example of a lumped system is the well-known mass-
spring-damper system. Of course, all acoustic systems, as well as
mechanical systems, are distributed. However, some are simple
enough that the lumped approximation is reasonable. Use of a
lumped system facilitates understanding of the physical system and
lends itself to simpler solutions of the governing equations.

Per Kinsler, et al. (1982), the criterion that must be met in order
to make the lumped approximation valid for an acoustic system is
that the wavelengths of interest must be significantly longer than
the physical dimensions of the components being studied. To and
Doige (1979) state that the approximate cutoff point is when the
dimensions are less than one-eighth of the wavelength. When this
is true, each acoustic parameter remains time-variant but becomes
almost independent of distance. An example of this is a bottle
whose dimensions are all much smaller than the pulsation wave-
length of interest. When this is the case, the bottle can be treated as
a lumped element where the acoustic pressure is constant through-
out.

Lumped Acoustic Elements

As is the case with mechanical and electrical systems, there are
three basic elements in lumped acoustic systems. The first basic
element is fluid inertia, which is also sometimes referred to as fluid
inductance or the constricted element. This type of element is rep-
resented by a narrow or constricted passage that is short enough
that its contained fluid behaves as a rigid body whose inertia must
be overcome by the acoustic pressure difference across it. The
governing equation for this type of element is as follows:

(43)

Where:
∆P = Pressure drop across element
ρ = Fluid density
L = Effective length of passage
A = Cross-sectional area
Q = Volumetric flow rate

This leads to the definition of the fluid inductance of a given
line, IF, which is analogous to electrical inductance, as follows:

(44)

This also leads to an equation for the acoustic impedance of a fluid
inertia element as follows:

(45)

Where:
ZI = Acoustic impedance for fluid inertia element
ω = Angular frequency of excitation (rad/sec)
j = Square root of negative one

The second basic element is the fluid compliance (also known as
fluid capacitance) element. This type of element is represented by
a chamber or tank and represents the ability of a fluid to “store”
some of the volume flow entering it by converting it to pressure
energy by virtue of its compressibility. For long wavelengths, the
acoustic pressure is equal throughout the entire volume of the tank.
The governing equation for this element is as follows:

(46)

Where:
P = Pressure (assumed constant throughout volume)
Q = Volumetric flow rate into element
V = Volume
KBULK = Fluid bulk modulus

This leads to the definition of the fluid compliance, CH, also
sometimes referred to as capacitance, for a volume, as follows:

(47)

This also permits the quantification of the acoustic impedance of a
fluid compliance element, ZV, as follows:
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(48)

The third basic element is the fluid resistance element. This type
of element is represented by an orifice and represents any element,
such as an orifice, valve, restriction, etc., having a fairly small flow
area such that a relatively large pressure drop is required to
generate fluid flow through the element. The governing equation
for this element is simply the acoustic impedance equation:

(49)

Where:
RF = Acoustic resistance
∆P = Pressure drop across element (psid)
Q = Volumetric flow through element (in3/sec)

It is easily seen that the acoustic impedance of a resistive element
is simply equal to its resistance.

Per Yeow (1974), at very low frequencies, the fluid behaves as if
it were incompressible so fluid compliance effects (which depend
on compressibility) and inertia effects (which depend on
frequency, ω) can safely be neglected. In this case, the only
acoustic element that needs to be considered is the fluid resistance.
Yeow (1974) also provides a mathematical discussion of when a
given element should be represented as a fluid inertia and when it
should be represented as a compliance.

Mechanical and Electrical Analogies

The authors are well aware that many pump users are far more
familiar with mechanical systems than they are with acoustic
systems. The authors are also acquainted with users that specialize
in electrical engineering. Accordingly, in this section analogies are
drawn between acoustic and mechanical and electrical systems in
the hopes of facilitating understanding of basic acoustic concepts.

Now that the three basic acoustic elements have been defined, the
analogies to mechanical and electrical systems can be drawn as follows:

• Acoustic volumetric flowrate = Mechanical displacement =
Electrical current

• Acoustic pressure = Mechanical force = Electrical voltage

• Acoustic inertia = Mechanical mass = Electrical inductance

• Acoustic compliance = Mechanical compliance (spring element)
= Electrical capacitance

• Acoustic resistance = Mechanical damping (dashpot element) =
Electrical resistance

Some of the ways that the three systems are analogous include
the following:

• The governing equations for the three basic elements in each
system have exactly the same form.

• Each system has a “through” variable (flow, displacement, and
current) and an “across” variable (pressure, force, and voltage).

• As has been done for the acoustic elements above, equations for
the impedances of the basic mechanical and electrical elements can
also be written and shown to be of equivalent form to those above.

• Each system has two elements that are incapable of energy dis-
sipation. In the acoustic system, these elements are the fluid inertia
and compliance. These elements are incapable of energy dissipa-
tion because their pressure and velocity are 90 degrees
out-of-phase with one another. This is similar to the situation with
mechanical masses and springs and electrical inductors and capac-
itors. All of these elements are referred to as reactive elements.

• Each system has only one element that is capable of energy dis-
sipation—the acoustic resistor, the mechanical damper, and the
electrical resistor. These elements dissipate energy because their
through variables are in-phase with their across variables.

• Systems consisting of only the two reactive elements (a fluid
inertia and compliance, a mass-spring system, and an L-C circuit)
are one degree of freedom oscillators. The equations for the natural
frequencies of these systems are essentially equivalent.

• When the purely reactive systems are excited at their natural fre-
quencies, their amplitudes become infinite. All of these systems
require the third element (acoustic resistance, mechanical dashpot,
and electrical resistance) to provide damping to limit the resonant
amplitudes to finite values.

• Each system has one element that acts to store kinetic energy
(acoustic inertia, mechanical mass, and electrical inductor) and one
that acts to store potential energy (acoustic compliance, mechani-
cal spring, and electrical capacitor).

The above analogies have more usefulness than the facilitation
of the understanding of acoustic systems. In the days before the
advent of the digital computer, acoustics problems were often
solved by converting the piping network into its equivalent electri-
cal circuit and then either building the circuit or analyzing it on an
analog computer. Chilton and Handley (1952) give a good illustra-
tion of these techniques.

RECIPROCATING PUMP EXCITATIONS

As has been stated previously, in order for resonant pulsation
problems to occur, an excitation source is needed to excite the
acoustic system at one of its natural frequencies. In the pumping
world, reciprocating pumps are probably the most notorious
sources of these types of excitations. Although it is commonly
believed that reciprocating pumps are the only type of positive dis-
placement pump that can excite pulsation problems, that is far from
the truth. For example, the authors have a great deal of experience
with pulsation problems that were generated by gear and vane
pumps. However, in the interest of keeping this tutorial to a man-
ageable length, reciprocating pumps are the only type of positive
displacement pump that will receive a detailed treatment. In
general, the pulsations generated by positive displacement pumps
are low frequency and high amplitude while those generated by
centrifugal pumps (which are discussed later in this tutorial) are
high frequency and low amplitude.

Figure 17, based on Wylie and Streeter (1993), shows a
schematic of one cylinder in a reciprocating pump. Most recipro-
cating pumps are simple slider-crank mechanisms that consist of a
rotating crankshaft, connecting rods, and pistons. They are essen-
tially like an automobile engine running with the power
transmission in the opposite direction. Specifically, the crankshaft,
which is normally driven by an electric motor, transmits torque to
the connecting rods, which convert the crankshaft’s rotary motion
into the reciprocating motion of the piston assemblies.

Figure 17. Schematic of Reciprocating Pump.

The reciprocating motion of the piston combines with the action
of the suction and discharge valves to pump fluid from the suction
line to the discharge line. When the piston is retracting from the
cylinder (moving from left-to-right in the figure), the pressure in
the cylinder drops, allowing the suction valve to open and the
discharge valve to close. During this time the cylinder fills with
fluid from the suction line. Once the piston reaches bottom dead
center, it begins to move toward the cylinder, compressing the fluid
within. This pressure rise forces the suction valve to close and the
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discharge valve to open. As the piston extends, it continues to force
fluid out of the cylinder and into the discharge line until it reaches
top dead center. At this point, the suction stroke again commences.

It should be noted that because the suction and discharge valves
for any given cylinder are never simultaneously open (assuming
that they are working correctly), the suction and discharge systems
in a reciprocating pumping application are completely isolated
from each other from an acoustics standpoint. Accordingly, the
suction and discharge piping represent two completely distinct
acoustic systems that must be analyzed separately. Additionally,
pulsation problems occurring in the discharge system usually have
no impact on the suction system and vice versa. It should be noted
that the separation of the two systems only occurs with reciprocat-
ing pumps—in centrifugal pumps, the opposite is true.

Flow Excitations

Reciprocating pumps generate two distinct types of excitations
that can generate pulsations in the suction and discharge piping—
flow excitations and acceleration excitations. Since the flow
excitations are almost always predominant in the discharge piping,
these are the only reciprocating pump excitations discussed in
many references on the subject. However, in some suction systems,
the acceleration excitations are more dangerous than the flow exci-
tations and, therefore, both types of excitations need to be
considered in any pulsation analysis.

Typical pressure disturbances introduced into the suction and
discharge systems by a reciprocating pump are shown in Figure 18,
which is for a triplex pump and is taken directly from Miller (1988).
Per Miller (1988), there are three apparently unrelated pressure dis-
turbances, labeled “A,” “B,” and “C” in the figure. The “A”
disturbances are the flow-excited disturbances that are the subject
of this section. The “B” excitations, which occur at the beginning of
each plunger stroke, and the “C” excitations, which occur at each
point of flow velocity change (i.e., valleys in the figure) represent
the acceleration excitations that are described in the next section.

Figure 18. Reciprocating Pump Pulsations.

The flow excitations at “A” arise because the action of the
pistons, along with the opening and closing of the valves, generates
a pulsatile flow in both the suction and discharge systems. In fact,
the flowrate generated by any reciprocating pump will vary from
instant to instant. This is because during the discharge or suction
stroke, the plunger begins at rest, accelerates to a maximum
velocity at approximately midstroke, and then decelerates to rest
again. Since the generated flow is the product of the plunger
velocity and the plunger area, the flow associated with each
cylinder varies in exactly the same manner. The magnitude of the
pump’s overall flow pulsation is dependent on the number of
plungers in the pump and will normally decrease as the number of
plungers increases since the plungers can be phased to smooth out
these effects. In the theoretical limit of an infinite number of
plungers, the flow can be imagined to be uniform.

The flow in the discharge piping can be obtained from the
following equations from Miller (1988):

(50)

(51)

Where:
QD = Flow into discharge system (in3/sec)
PCYL = Cylinder pressure at any given time (psi)
PD = Discharge pressure (psi)
AP = Cylinder area (in2)
s = Piston stroke (inch)
θ = Crank angle
ω = Crankshaft rotating speed (rad/sec)
LC = Connecting rod length (inch)

Similar equations can be written for the suction flow. From the
above equation, the presence of the ω term means that the magni-
tudes of the excitations increase with pump speed. It is also seen
that for the ideal case where the connecting rod length, LC, is infi-
nitely long, the flow pulsations would be completely sinusoidal.
However, the finite length of the connecting rod causes the actual
flow to vary from a perfect sinusoid, as is illustrated in Figure 2 of
Tison and Atkins (2001). Specifically, the sin (2θ) term means that
the flow pulsations from a single cylinder will contain a significant
23 (two times per revolution) excitation as well as the 13

component associated with the perfect sinusoid.
Since those excitations occur in each cylinder, it stands to reason

that the two largest excitations in a multiplunger pump would be
obtained by multiplying those excitations by the number of
plungers. In other words, the predominant excitations would be at
the plunger frequency and at twice the plunger frequency, which
would be 33 and 63 for a triplex pump. In Figure 21 of Wachel, et
al. (1995), this is verified to be, indeed, true for an ideal pump
having equal performing plungers and valves. In fact, for this ideal
case, the only harmonics that are present are integral multiples of
the plunger frequency (i.e., 33, 63, 93, etc.)—all others are zero.
However, in real pumps, the other harmonics are present in small
amounts.

The resultant flow seen by both the suction and discharge
systems in a real pump is shown in Figure 19, which is taken
directly from Blodgett (1998). This profile is for a triplex pump
and is fairly typical. It is seen that for a triplex pump, there are six
points of maximum flowrate and three points of minimum flowrate
per crankshaft revolution. This has the effect of generating excita-
tions at 33 and 63. In fact, Blodgett (1998) states that, in general,
the only harmonics for which flow excitations are significant are
integer multiples of the number of plungers (i.e., 23, 43, 63, etc.,
for a duplex pump). Wachel and Price (1988) essentially agree
when they state that even though a reciprocating pump generates
excitations at all harmonics of pump speed (i.e., 13, 23, 33, etc.),
the only harmonics containing significant amounts of energy are
the integral multiples of the plunger frequency. Naturally, if any of
these harmonics coincide with an acoustic natural frequency of the
discharge piping system (or, in some cases, the suction system),
resonance occurs and pulsation-related problems may follow.

The situation in double-acting pumps is different. In Figure 18
of Wachel, et al. (1995), it is shown that in an ideal double-acting
pump (perfectly symmetrical piston areas, ideal valves, and infinite
length connecting rod), all of the odd harmonics cancel for a given
cylinder such that the even harmonics are the only ones that are
left. Thus, in an ideal double-acting triplex pump, the only
harmonics present would be 63, 123, 183, etc. However, as is
shown in Figure 19 of Wachel, et al. (1995), the real effects of
unequal area pistons (due to the presence of the connecting rod),
nonperfect valves, and finite connecting rod length allow the odd
harmonics (33, 93, 153, etc.) to appear.
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Figure 19. Triplex Pump Flow Excitations.

The flow pulsations convert to pressure pulsations based on the
nature of the discharge and suction piping. Since the pump
discharge pressure is normally set by resistance losses in the
discharge piping (pipe friction, bends, expansions, etc.) which are
normally a function of the square of the flowrate, the squared law
causes the pressure pulsations to be larger (percentage-wise) than
the flow pulsations. For example, consider a hypothetical system
that has a discharge pressure of 500 psi that is totally generated by
pipe friction loss at nominal flowrate. If the flow pulsation was 20
percent, that would translate into a pressure variation of 44 percent
(1.202 = 1.44), or 220 psi, which is substantial.

Acceleration Excitations

The other type of excitation generated by reciprocating pumps is
the acceleration excitation, sometimes also called an inertia excita-
tion. These excitations can be understood by visualizing the liquid
in the suction piping, which must be completely at rest during the
discharge stroke. Once the suction stroke begins and the suction
valve opens, the pump must accelerate the fluid in the suction line
from rest to maximum piston velocity. At the end of the suction
stroke, the suction valve closes and the fluid must then be deceler-
ated to rest. The same phenomenon occurs with the liquid in the
discharge line. The magnitude of the fluid acceleration can be
determined from the equation for piston acceleration as a function
of crank angle, from Miller (1988):

(52)

Where:
aP = Piston acceleration (in/sec2)

All of these sudden accelerations generate pressure pulses in
both the suction and discharge lines. Per Miller, these pulses are
normally of the “water hammer” type and are often in the range of
75 to 200 Hz. Miller (1988) gives the following equation, which is
based on Newton’s law of motion, for calculating the pressure
pulsation amplitude due to acceleration effects:

(53)

Where:
P = Pressure pulsation (psi)
L = Pipe length (inch)
ρ = Fluid density (lbf-sec2/in4)
a = Fluid acceleration (in/sec2)

This equation applies equally to the suction and discharge piping
as long as the appropriate pipe dimensions are used. Miller (1988)

states that even pumps with short suction piping (and, therefore, a
fairly small mass of fluid to accelerate) can experience accelera-
tion-excited pulsations of more than 25 psi. Warwick (1999) has
observed these effects to be unexpectedly large, and to have caused
problems in both suction and discharge systems, when pumping
acids, because of their high densities.

As has been stated previously, increasing the number of plungers
has the beneficial effect of reducing the flow-excited pulsations.
However, Miller (1988) states that there is evidence that increasing
the number of cylinders has no impact on the acceleration-excited
pulsations.

Since Miller (1988) states that a typical acceleration-excited
pressure pulsation is around 25 psi, the flow-excited pulsations,
which were 220 psi in the example given above, are normally pre-
dominant in the discharge piping. Exceptions to this rule occur
when the pump discharge pressure is generated by sources other
than frictional losses. For example, if the pump is delivering into a
low friction, high pressure system such as a short vertical pipeline
as shown in Figure 10 of Miller (1988), the flow-excited pressure
pulsations will be negligible. In these rare cases, the acceleration
excitations can become the disturbance of concern in the discharge
system.

The situation in the suction piping is quite different. Since
pump suction systems normally employ short pipes of large
diameter to meet net positive suction head (NPSH) requirements,
the frictional pressure drop in suction lines is usually quite low.
For this reason, flow-excited pulsations often have little impact
on the suction system. For instance, if the pump described in the
example above had a suction pressure of 25 psi, the 44 percent
pressure pulsations only translate into 11 psi in the suction
piping. This is hardly enough to generate piping vibrations or
structural damage, although it could still be a concern from a cav-
itation standpoint.

Interestingly enough, Beynart (1999) states that there is
evidence that flow and acceleration excitations cannot coexist
during any given suction or discharge stroke of a pump. If the flow
excitation is present, the acceleration disturbance will be absent,
and vice versa. It appears that the dominant disturbance over-
whelms and reduces the effect of the other. Beynart (1999)
postulates that the reason for this is that a disturbance of either type
will instantaneously reduce the volumetric efficiency sufficiently
to make it impossible for the pump to reinstate the flow fast enough
for another disturbance to occur in the short period of time
(typically about 3 msec) available.

CENTRIFUGAL PUMP IMPELLER EXCITATIONS

Although the reciprocating pump is the most notorious source of
pulsation problems in the pumping world, the authors have sub-
stantial experience with such problems occurring in centrifugal
pumping systems. Centrifugal pumping systems suffer from
pulsation problems due to three very different phenomena. First,
the pump can generate high frequency pulsations at vane-passing
frequency that can excite acoustic resonances in the manner just
described for reciprocating pumps. This is the subject of this
section. Second, vortex shedding occurring at discontinuities in the
piping system can also excite acoustic resonances. This is the
subject of the next section.

The third phenomenon is complex interaction between the
dynamic characteristics of the pump and those of the piping
system. In some cases, the centrifugal pump can act as an amplifier
or attenuator of excitations generated by other sources, such as
reciprocating pumps. In other cases, the slope of the pump’s head-
flow curve can combine with the system characteristics to yield a
system having negative damping, which is unstable. A discussion
of all of these effects would be worthy of a tutorial all of its own.
The interested reader is referred to Greitzer (1983), Sparks (1983),
and Sparks and Wachel (1976) for more information on this highly
complex and interesting subject.
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As stated above, this section will focus on high frequency pulsa-
tions generated by centrifugal pump excitations at vane-passing
frequency and its harmonics. Apparently the authors are not the only
ones who have experience with pulsation problems created by these
excitations as Wachel (1992) describes a case study in which a four-
stage centrifugal pump suffered problems when a half-wave
resonance in the crossover piping at 415 Hz was excited by pump
vane-passing frequency (73). Wachel (1992) also provides another
case study where a centrifugal impeller having seven vanes excited
an acoustic resonance at twice vane-passing frequency, 143. Finally,
Fraser, et al. (1977), experienced a case where a centrifugal pump
having a tight tip-to-volute clearance generated significant pulsa-
tions at one, two, three, four, and five times vane-passing frequency.

These vane-passing excitations are generated by the action of the
impeller vane passing stationary objects that are in close quarters
to it. As a vane passes a stationary object, the wakes that are
present on the suction surface of the vane impinge on the station-
ary object and generate a pressure pulse. Since each blade must
pass the stationary object once each revolution, the pulses are
generated at the vane-passing frequency. Of course, if there is more
than one of these stationary objects (as in a double volute pump),
the excitations are then generated at integer multiples of the vane-
passing frequency. Per Guelich and Bolleter (1992), the pulsation
spectrum for a centrifugal pump impeller typically shows peaks at
vane-passing frequency and its harmonics (the second harmonic is
often noticeably strong), as well as at 13.

In direct contrast to the pulsations generated by reciprocating
pumps, vane-passing pulsations occur at high frequencies. Price
and Smith (1999) state that pulsation problems associated with
these excitations normally occur at frequencies of 500 Hz or
greater, although systems having large diameter vessels can expe-
rience problems at frequencies lower than this. As Howes and
Greenfield (2002) point out, at these frequencies, the one-dimen-
sional plane wave assumption that has been employed throughout
this tutorial, becomes questionable. Since Howes and Greenfield
(2002) cite the excitation of shell modes in piping and pulsation
dampeners as problems that can be caused by pulsations at vane-
passing frequency, it is obvious that three-dimensional effects are
often important. This makes the analysis much more complex.

In general, the amplitudes of the vane-passing pulsations and
their harmonics are relatively low. Lewis, et al. (1997), state that
vane-passing frequency pulsations are normally about one-third of
1 percent of the pressure rise generated by the impeller. Price and
Smith (1999) quote a figure of 0.5 psi peak-to-peak or less.

Guelich and Bolleter (1992) give the following equation for nor-
malized pressure pulsations generated by the wake in an impeller:

(54)

Where:
∆P* = Normalized pulsation coefficient
∆P = Pressure pulsation
ρ = Fluid density
u2 = Circumferential velocity at impeller exit

Based on a number of tests of single and three-stage pumps,
Guelich and Bolleter (1992) state that virtually all pressure pulsa-
tions (95 percent confidence limit) have normalized coefficients
below 0.015 at best efficiency point (BEP) flow and below 0.02 at
25 percent of BEP flow. These values are for the tightest radial
clearances between impeller and diffuser or volute (ratio of
collector diameter to impeller diameter of about 1.02). The test
data, as functions of radial gap and flow, are given in Figures 7 and
8 of Guelich and Bolleter (1992).

Although the amplitudes of vane-passing pulsations are very
difficult to predict analytically, the following factors, taken from
Guelich and Bolleter (1992), Price and Smith (1999), Wachel
(1992), Fraser, et al. (1977), and Schwartz and Nelson (1984), are
known to have an impact on their magnitudes:

• Radial clearance between the impeller tip and the stationary
collector (diffuser vanes or volute cutwaters)—In general increas-
ing this clearance is the most sure way to reduce pulsation
amplitudes. Guelich and Bolleter (1992) state that pulsations have
been empirically found to vary inversely with this gap to the 0.77
power.

• Pump speed—Pulsations, like pressure generation, tend to
increase with speed squared.

• Flow—Pulsations are normally minimized at BEP. As the flow
moves away from BEP (in either direction), pulsation amplitudes
increase.

• Geometry (thickness and form) of the vane trailing edge

• Vane loading (difference in velocity between pressure and
suction sides of vane)

• Number of vanes—Increasing number of vanes normally
reduces pulsations.

• Type of impeller—Pulsations tend to increase with increasing
specific speed. Thus, pure radial impellers have the lowest pulsa-
tions, followed by Francis impellers and axial impellers.

• Reynolds number

• Combination of number of impeller and diffuser vanes

• Staggering of impellers in multistage pumps (obviously, stag-
gering acts to reduce pulsations)

• Fluid properties, including content of free gases

• Fluid acoustic velocity

• Impeller tip speed—Higher tip speeds mean larger pulsations.

• Symmetry of the impeller and collector

Unlike the pulsations generated by a reciprocating pump, which
are sometimes large enough to cause problems even in the absence
of resonance, the centrifugal impeller excitations are so small that
they can only do damage if they are amplified via acoustic
resonance. Additionally, the impeller must be located at or near an
antinode in the velocity mode shape in order for amplification to
occur. If the impeller is located near a velocity node, it will have a
very difficult time exciting that particular acoustic mode.

One other difference between a centrifugal pump and a recipro-
cating pump is the relationship between the suction and discharge
piping systems. As stated previously, the valves in a reciprocating
pump act to isolate the suction and discharge piping from one
another. On the other hand, a centrifugal pump provides no such
isolation. The suction piping, pump internal passages, and discharge
piping all comprise a single acoustic system. It is not unusual to
observe resonances generated by other sources in the system where
the standing wave passes right through the impeller. When modeling
these systems, the impeller’s acoustic characteristics must be
accounted for, normally through a specialized transfer matrix.

Table 2 of Guelich and Bolleter (1992) provides a list of design
guidelines for keeping impeller pressure excitations in check.
Probably the most basic are that the ratio of collector diameter to
impeller diameter should exceed 1.04 and that the impeller and
collector should never have the same numbers of vanes. Table 3 of
the same reference provides design features that can be incorpo-
rated into centrifugal pumps to further reduce pulsation amplitudes.

In closing this discussion, it should be mentioned that another
mechanism by which a centrifugal pump can excite pulsations in
the piping system is rotating stall. Dussourd (1968) documents a
case where rotating stall in a 10-stage boiler feed pump generated
large pressure fluctuations and piping vibrations in the discharge
system. Rotating stall occurs when a passage or group of passages
in the impeller and/or diffuser stall out. The stall cells are unstable
and, therefore, they rotate from passage to passage in the impeller
in the direction opposite to rotation.
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VORTEX SHEDDING

The next pulsation excitation mechanism often present in cen-
trifugal pumps is vortex shedding. Unlike the excitations
previously described for reciprocating and centrifugal pumps,
vortex shedding excitations occur within the piping system, not at
the pump. Vortex shedding occurs when flow passing over an
obstruction, side branch, or a piping discontinuity generates fluid
vortices at a regular interval. Under certain conditions, these
vortices can excite acoustic resonances and generate pulsation
problems. Although vortex shedding can, theoretically, also cause
pulsation problems in reciprocating pumping systems, it has been
the authors’ experience, and that of Howes and Greenfield (2002),
that these problems are much more likely to occur in centrifugal
pumping systems.

When a fluid flow passes over any body having a bluff (broad)
trailing edge, such as a cylinder, vortices are shed from both sides
of the body. The vortex shedding is not simultaneous—instead,
vortices are alternately shed from one side and then the other. This
alternating shedding causes pressure fluctuations to occur on both
sides of the body. Under certain conditions, these fluctuating
pressure forces can cause the body to vibrate.

A good physical description of how vortices are formed on a
cylinder is given by Blevins (2001). As a fluid particle approaches
the leading edge of the cylinder, its pressure is increased from the
free stream pressure to the stagnation pressure. This high fluid
pressure near the leading edge causes fluid to flow around both
sides of the cylinder, generating boundary layers as it does so.
However, at high Reynolds numbers, the pressure in the vicinity of
the leading edge is not high enough to force the flow all the way
around the back of the cylinder. Instead, at approximately the
widest portion of the cylinder, the boundary layers separate from
the cylinder and form two shear layers that extend beyond the
cylinder and, thereby, bound the wake directly behind the cylinder.
Since the no slip condition requires the innermost portions of the
shear layers (which are in contact with the cylinder) to move much
more slowly than the outermost portions (which are in contact with
the free stream), the shear layers roll into the wake, where they fold
on each other and generate a series of discrete swirling vortices. As
is shown in Figure 20, a regular pattern of vortices, called a vortex
street, forms in the wake.

Figure 20. Vortex Streets. (Courtesy of Price and Smith, 1999,
Turbomachinery Laboratory)

Although the above discussion was specifically related to
cylinders, vortex shedding occurs with flow over bluff bodies of
any cross-section. The vortex streets tend to be quite similar,
regardless of the body shape. In general, the type of vortex street
formed is a function of Reynolds number. Blevins (2001) defines
seven distinct flow regimes, all shown in Figure 20, for vortex
shedding from a smooth circular cylinder.

The frequency at which vortices shed from each side of a body
has been empirically determined to be a function of a dimension-
less characteristic parameter known as the Strouhal number, which
is defined as follows:

(55)

Where:
fS = Frequency that vortices shed from one side of body (Hz)
S = Strouhal number
U = Characteristic flow velocity (ft/sec)
D = Characteristic dimension of body (ft)

For internal flows, such as those in pipes, the characteristic flow
velocity, U, is simply the mean velocity. For external flows, such
as those over a cylinder, the characteristic flow velocity is the free
stream velocity. Since the vortices are formed by the interaction of
the two shear layers on either side of the body, the characteristic
dimension, D, is simply the width between the two flow separation
points. For all practical purposes, this can be assumed to be the
maximum width of the structure perpendicular to the flow. For
example, if the body is a cylinder, D is simply the diameter. For the
case of flow past a tee or branch, one of the most common config-
urations of interest in pump piping systems, D is the inside
diameter of the branch, with any rounding at the branch entrance
accounted for. Per Chen and Florjancik (1975), for abrupt expan-
sions, the characteristic dimension is simply the difference
between the two pipe diameters. Au-Yang (2001) recommends that
for “real” bodies, which often have tapered or nonconstant cross
sections, the shedding frequencies should be calculated for both
the smallest and largest widths to bound the problem.

It is customary to refer to the frequency obtained from the above
equation, that associated with only one side of the body, as the
vortex shedding frequency. Accordingly, it is easily seen that the
fluctuating pressure force generated by the vortex shedding acting
in the direction perpendicular to the flow (i.e., lift direction) acts at
the vortex shedding frequency. On the other hand, since vortex
shedding is occurring on both sides of the body, the fluctuating
force acting in the direction of flow (i.e., drag direction) acts at
twice the shedding frequency.

Blevins (2001) and Au-Yang (2001) both provide plots of
Strouhal number versus Reynolds number obtained from tests for
flow around circular cylinders. Au-Yang (2001) summarizes the
results as follows:

• For 1000 < Re < 100,000—Strouhal number equals 0.2

• For 100,000 < Re < 2.0E6—Strouhal number lies between 0.2
and 0.47

• For 2.0E6 < Re < 1.0E7—Strouhal number lies between 0.2 and
0.3

Au-Yang (2001) continues to say that even though the above
rules were obtained from testing on circular cylinders, they can
also be employed for bodies having just about any cross-section.
Additionally, Figure 3-6 of Blevins (2001) gives representative
Strouhal numbers as functions of Reynolds number for various
geometries. In Figure 3-7, Blevins (2001) also provides Strouhal
numbers as a function of inclination angle for an inclined flat plate.
In general, the more the plate deviates from being perpendicular to
the flow, the larger the Strouhal number becomes.

In centrifugal pumping systems, the primary locations where
vortex shedding occurs are at valves and other restrictions and at
flow past tees and side branches. The types of valves where signif-
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icant vortex shedding can occur include relief valves, throttling
valves, and pressure regulators. Although Lewis, et al. (1997), state
that typical Strouhal numbers provided by valve manufacturers
range from 0.1 to 0.3, Wachel (1992) states that the Strouhal
numbers for all of these types of valves can usually be assumed to
be about 0.2. Baldwin and Simmons (1986) state that under
resonance conditions, the relatively small vortex pulsations
generated at a side branch connection can be amplified to levels of
about 200 psi peak-to-peak at the closed end of the side branch
(where a relief valve is often located).

Rogers (1992) provides the following formula for the Strouhal
number for flow past a side branch, which is valid for main flow
Reynolds numbers greater than 1.6 3 107:

(56)

Where:
St = Strouhal number
d = Sidebranch diameter
DP = Diameter of main pipe

Wachel (1992) presents a case where vortex shedding at the
opening of a dead-ended sidebranch generated a 25 to 30 Hz
resonance with the quarter-wave frequency of the side branch,
resulting in fatigue failures of valves, gauges, and instrumentation.
Lewis, et al. (1997), report on a case where vortex shedding in a V-
sector ball throttling valve, located immediately downstream of a
centrifugal pump, excited a standing wave in the main discharge
line, leading to pulsation problems.

Since the pulsation amplitudes of the vortices are always very
small, they can only create problems if they excite an acoustic
resonance. Additionally, vortices can only excite a resonance if
they are located at or near a velocity antinode. One of the reasons
that vortex-related problems frequently occur in side branches is
that most side branches act as quarter-wave stubs that have a
velocity antinode (open end) right at the location of vortex genera-
tion. Side branch problems can also be affected by the acoustics of
the main line. If the main line is also in resonance and its standing
wave also happens to have a velocity antinode at the side branch
location, the problem can be exacerbated. On the other hand, if the
main line has a velocity node at this location, side branch pulsa-
tions will be attenuated. For this reason, side branch resonance
problems can sometimes be eliminated by making small changes to
the length of the main line. Chen and Florjancik (1975) demon-
strated this concept when they completely eliminated a side branch
pulsation problem by merely cracking a valve, which had been
shut, in the main line downstream of the branch.

Baldwin and Simmons (1986) state that vortex-excited side
branch resonances normally occur in the 200 to 400 Hz range. In
order to avoid such resonances, Baldwin and Simmons (1986)
provide the following design guideline:

(57)

Where:
d = Stub diameter
L = Stub length
U = Flow velocity in main pipe
c = Acoustic velocity

Baldwin and Simmons (1986) further state that in order to avoid
side branch problems, the side branch should be designed to
minimize its length-to-diameter ratio and to eliminate all sharp
edges, which generate vortices. In Figure 5 of Baldwin and
Simmons (1986), two side branch designs that they have found to
be successful in eliminating vortex excitation problems are
presented.

In one of their case studies, Lewis, et al. (1997), provide a good
method for troubleshooting pulsation problems if vortex shedding
is suspected to be the excitation source. Using the observed

pulsation frequency, the known flow velocity, and the expected
Strouhal number, they back-calculated the characteristic
dimension, D, from Equation (55). They then searched their system
for a flow obstruction or gap of about that size and pinpointed the
stiffening rings on the strainer as the cause of their problem.

One of the best ways to minimize or eliminate vortex shedding
is via streamlining of the downstream side of the flow obstruction.
Per Blevins (2001), in order for this path to be effective the
included angle between the two downstream surfaces cannot be
more than 8 to10 degrees. Vortex shedding can also be reduced by
adding a vortex suppression device to the obstruction. Figure 3-23
of Blevins (2001) shows several common configurations. All of
these devices act to retard the generation of an organized, two-
dimensional vortex street Blevins (2001) provides specific
guidelines for the design of each of these devices.

If prevention of vortex shedding is not practical, the vortex
shedding frequencies can be shifted away from acoustical and/or
mechanical natural frequencies by making the effective width of
the obstruction larger or smaller. Alternatively, the flow path can be
modified to change the velocities across the obstruction.

WATER HAMMER

All of the pulsation excitations discussed so far (i.e., reciprocat-
ing pumps, centrifugal impellers, and vortex shedding) can be
classified as steady-state excitations in that they are capable of gen-
erating pulsations that can last an indefinite amount of time.
However, those are not the only types of pulsation problems that
can occur in pumps. Transient pulsations, which can be grouped
together under the name “water hammer” are also possible and are
the subject of this section.

The term “water hammer” is normally associated with the rapid
changes in internal liquid pressure that occur in a pipe when the
flow is suddenly interrupted via the closing of a valve and the
“hammering” sound that may accompany those changes. A
common, everyday example is the noise that sometimes occurs in
the pipes of an old building when a water faucet is shut off. In spite
of those connotations, water hammer can also occur under other
circumstances such as the rapid opening of a valve or the sudden
starting or stopping of a pump. In short, any transient pulsations
that occur as the result of a rapid change in flow conditions can be
referred to as water hammer. These phenomena are sometimes also
referred to as surge or fluid shock.

Cornell (1998) provides a colorful analogy of what happens
when a valve is closed instantaneously. At the instant of closure,
the flow at the valve is stopped but the column of fluid behind it
will continue moving forward. Cornell (1998) likens this to a
speeding train where the engine abruptly hits a brick wall.
Obviously, the wall stops the engine but all of the other cars in the
train continue moving forward. The primary difference between a
train and fluid flow is that the train is not contained and the cars,
therefore, derail. Since the fluid is contained, it, instead, generates
a large pressure spike. If the pressure spike is not sufficient to
rupture the pipe or some other component, the compression wave
created will reverse and travel back down the pipe toward the
pump. When the wave hits the check valve or pump, it will again
reverse and continue to reverberate until something finally breaks
or the energy completely dissipates due to system damping. Even
if nothing fails initially, this scenario subjects the system to
repeated stresses, which could ultimately lead to fatigue failures.

In order to describe what physically takes place during water
hammer, the treatment given by Wylie and Streeter (1993) will be
followed. In Figure 21, which is based on a similar figure in Wylie
and Streeter (1993), the fluid is assumed to be flowing from left to
right at a constant velocity, v0, and head, H0, when the valve at the
right-hand end of the line is suddenly closed. At the moment the
valve closes (t = 0), the fluid immediately adjacent to it is deceler-
ated from v0 to rest. This causes its pressure to rise sharply, which
causes the elastic pipe wall to stretch, as is shown in Figure 21a. As
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soon as that first fluid layer is brought to rest, the same action is
then applied to the next layer, causing its pressure to rise and its
pipe wall to stretch. In this manner, a compression wave of
amplitude, H, travels from right to left at the acoustic velocity, c,
and at a sufficient pressure to just bring the upstream fluid to rest.

Figure 21. Illustration of Water Hammer.

The fluid upstream from the valve continues to flow downstream
with velocity, v0, until it encounters the compression wave. The
compression wave continues to move from right to left, bringing
the fluid to rest as it passes, compressing it, and stretching the pipe.
When the wave reaches the reservoir at the end of the pipe (t =
L/c), all of the fluid is at rest, at a greater head (H0 + H) then it
started at, and all of its initial kinetic energy has been converted
into elastic energy (stored in both the fluid and the pipe wall).

When the compression wave reaches the reservoir, it is
reflected. Since the reservoir behaves as an open end and since the
laws of reflection require a wave to change sense upon encounter-
ing an open end, the compression wave is reflected as an
expansion wave of the same amplitude, 2H, moving from left to
right at the acoustic velocity. As the expansion wave moves
through the still fluid, the higher pressure on the right side of the
expansion wave causes the fluid to start flowing from right to left
at velocity, v0 (refer to Figure 21b). The fluid remains at rest until
it encounters the expansion wave, after which it flows to the left at
v0. The expansion wave returns the pressure to its value prior to
valve closure, H0, thereby leaving the fluid uncompressed and the
pipe wall returns to normal. At the instant, 2L/c, that the expansion
wave arrives at the valve, the pressures and pipe wall are back to
normal everywhere in the pipe and the velocity everywhere is v0
to the left. The system energy is then all in the form of kinetic
energy.

When the expansion wave arrives at the valve, it is reflected.
Since the closed valve behaves as a closed end and since the reflec-
tion laws state that reflection from a closed end brings no change
in sense, the expansion wave is reflected as an expansion wave of
the same amplitude, 2H, moving from right to left. As the
expansion wave passes through the successive layers of fluid, the
pressure difference across it decelerates the fluid to rest (refer to
Figure 21c). Each fluid layer that the expansion wave passes
through has its pressure reduced to H0 2 H. This low pressure
allows the fluid to expand (via its compressibility) and the pipe
wall to contract. When the wave reaches the reservoir at time, 3L/c,
all of the fluid is at rest and at a pressure of H0 2 H and all of the
energy is, once again, in the form of potential energy.

When the expansion wave reaches the reservoir, it is again
reflected. Since the reservoir behaves as an open end and since the
laws of reflection require a wave to change sense upon encounter-
ing an open end, the expansion wave is reflected as a compression

wave of the same amplitude, H, moving from left to right at the
acoustic velocity. As the compression wave moves through the still
fluid, the higher pressure on the left side of the compression wave
causes the fluid to start flowing from left to right at velocity, v0
(refer to Figure 21d). The fluid remains at rest until it encounters
the compression wave, after which it flows to the right at v0. The
compression wave returns the pressure to its value prior to valve
closure, H0, thereby leaving the fluid uncompressed and the pipe
wall returns to normal. At the instant, 4L/c, that the compression
wave arrives at the valve, the pressures and pipe wall are back to
normal everywhere in the pipe and the velocity everywhere is v0 to
the right.

A check of these conditions reveals that they are exactly the
same as at the instant of valve closure, 4L/c seconds earlier. Thus,
the above chronology begins all over again and continues to repeat
itself every 4L/c seconds until the damping in the system due to
fluid friction and imperfect elasticity in the fluid and pipe wall dis-
sipates all of the energy and allows the fluid to come to rest.

The transient behavior in the pipeline just described can be visu-
alized in the x-t plane of Figure 22, based on Wylie and Streeter
(1993). The distance values plotted as the abscissa represent the
distance along the pipe measured from the reservoir at the left-
hand end. The time values plotted as the ordinate represent the total
time that has elapsed after the instant of valve closure. Since the
water hammer compression and expansion waves take L/c seconds
to travel from one end of the pipe to the other, the sloped lines in
the figure may be visualized as the wavefronts of the compression
or expansion waves as they traverse the pipe.

Figure 22. Illustration of Water Hammer in x-t Plane.

For instance, the lowest sloped line between t = 0 and t = L/c
represents the initial compression wave that is generated as a result
of valve closure. As stated previously, that wave travels from right
to left and reaches the reservoir at time, L/c. Accordingly, that
sloped line represents the position of that wave at any given time,
t. Additionally, the sloped line divides the fluid into two segments,
each having a different value of velocity and pressure. All of the
fluid to the left of the wavefront has not encountered the compres-
sion wave yet and, thus, remains at the initial fluid velocity, v0, and
pressure, H0. This is indicated by the velocity and pressure values
immediately to the left of the sloping line in the figure. On the
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other hand, the fluid to the right of the wavefront has already been
compressed by the compression wave and is now at rest and at a
higher pressure, H0 + H. This is indicated by the velocity and
pressure values immediately to the right of the sloped line. The
figure can, thereby, be utilized to determine the velocity and
pressure at any point in the pipe at any given time.

It should be noted that the compressibility of the liquid and elas-
ticity of the pipe serve to cushion the shock generated in the above
scenario. In fact, if the pipe was rigid and the liquid was truly
incompressible, the pressure spike would be infinite in the case of
instantaneous valve closure.

The most important question associated with the previous
example is what magnitude of pressure, H, is generated by the
sudden valve closure. Wylie and Streeter (1993) provide the
answer via the basic equation of water hammer, known as the
Joukowsky relation, which is as follows:

(58)

Where:
∆H = Change in head (ft)
∆v = Change in fluid velocity (ft/sec)
c = Acoustic velocity (ft/sec)
g = Gravitational acceleration (ft/sec2)

The above equation provides the magnitude of the pressure wave
(in terms of head) generated by an instantaneous change in flow,
such as that which occurs when a valve is opened or closed. The
negative sign means that the pressure wave travels upstream in the
pipe and the positive sign refers to downstream propagation. For
the simple case given where a valve is initially flowing at a
velocity, v0, and a valve is suddenly closed, the amplitude of the
pressure wave that travels upstream is simply ρ • c • v0. Stepanoff
(1949) points out that if the valve is only partially closed, so that
the final velocity through it is given by vF, the magnitude of the
pressure wave is reduced to ρ • c • (v0 2 vF).

It is seen from the above equation that the amplitude of the
induced pressure pulsation is strongly dependent on the acoustic
velocity. However, the impact of the acoustic velocity goes even
further than that since it determines the length of time that corre-
sponds to an “instantaneous” change in valve position. This is
because as long as the valve closes in a shorter time than the time
it takes for the pressure wave to travel down the pipe to the other
end, reflect, and then travel back up the pipe to the valve, the
impact on the system is exactly the same as if the valve had closed
instantaneously. As was demonstrated in the previous example, this
critical time interval is 2L/c. As long as the valve closes completely
in less than this time the impact on the system will be the same,
regardless of how quickly the valve actually closes. Although all
systems are different, Cornell (1998) states that a valve that closes
in less than 1.5 seconds will normally behave as if instantaneous.

This critical time phenomenon occurs because if the reflected
wave has time to get to the valve before it is finished closing, it will
diminish the amplitude of valve closure seen by the system. When
this occurs, the pressure rise at the valve becomes the sum of that
created by instantaneous closure and the pressure carried by the
reflected wave. Since it has already been shown that the reflected
wave is an expansion wave, this results in a maximum pressure rise
at the valve that is lower than that for the case of instantaneous
closure. For this case of gradual valve closure, the maximum
pressure rise occurs at the valve and the pressure rise reduces
linearly along the length of pipe until it reaches zero at the
reservoir. This is in contrast to the case of instantaneous closure
where the maximum pressure rise, H, occurs at every point within
the pipe.

Graf and Marchi (1997) provide a slightly different version of
the above equation that allows determination of the head rise for
cases where the valve closure cannot be considered to be instanta-
neous, as follows:

(59)

It is seen that the only change to the equation is the introduction
of the new term, K. Graf and Marchi (1997) provide a plot of this
term as a function of the ratio of the valve opening or closing time,
T, to the critical time, 2L/c. For all values of T less than 2L/c, the
value of K is 1.0 and the case of the instantaneous valve is repro-
duced. However, if T is greater than 2L/c, the value of K is less
than 1.0, and decreases as a logarithmic function of (T/(2L/c)).

For the case where the pipe is made up of a series of pipes of
different diameters, Stepanoff (1949) provides the following
equation for the equivalent initial velocity to be used in the above
equations:

(60)

Where:
vEQUIV = Equivalent velocity
LI = Length of ith section of pipe
vI = Fluid velocity in ith section of pipe
L = Total length of pipe

In a typical pumping system, the events that can lead to water
hammer problems include the following:

• Rapid closing of a valve.

• Rapid opening of a valve.

• Abrupt startup of a pump against a pipeline full of static fluid.

• Abrupt shutdown of a pump.

• Shutdown of one or more pumps due to power failure.

The potentially damaging effects of water hammer are obvious.
If the pressure generated by the transient is high enough, pipes
could rupture or valves and other components could fail. In
general, the pipe’s ability to withstand water hammer decreases as
pipe diameter increases. Theoretically, the pipe could also fail by
collapsing inwards during the negative pressure (expansion) wave
but that rarely occurs since the pipe wall is normally stronger in
compression than tension.

In general, since suction pipes tend to have short lengths and low
flow velocities (due to the employment of large pipe diameters),
water hammer problems seldom originate in the suction piping.
However, in centrifugal pumping systems not employing check
valves, if water hammer occurs in the discharge piping, its effects
can pass through the pump and into the suction piping. Stepanoff
(1949) describes several cases where water hammer originating in
the discharge piping led to failures in the suction system.

Dodge (1960) states that sharp bends and elbows reduce the
shock of water hammer and decrease the amplitude of the pressure
wave. In general, the more branches there are in a circuit, the
greater the damping. Thus, as a rule, complex circuits do not
normally suffer from water hammer problems.

There are several methods for reducing the effects of water
hammer. First, the valve or other quick-acting component can be
modified to smooth out its flow and/or lengthen its opening or
closing time. Examples provided by Dodge (1960) are the tapering
of valve spools, nesting of springs to better control the closing
force in a solenoid valve, addition of dashpots to valves, and the
employment of cams to time valve or pilot operation.

Since, as was shown earlier, the severity of water hammer is
highly dependent on the acoustic velocity, a reduction in acoustic
velocity will always be beneficial from the standpoint of fluid tran-
sients. Since it has been previously shown that even minute amounts
of gas can greatly reduce the acoustic velocity of a liquid, Wylie and
Streeter (1993) state that entraining air into the liquid flow in a
system is widely used to eliminate water hammer problems. This is
normally done at a section in the system where the pressure is below
atmospheric, such as at the entrance to a draft tube.
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Finally, a system’s transient performance can be improved by
going to larger pipe sizes. Since the pressure spike is proportional
to the initial flow velocity, doubling the pipe diameter has the
effect of reducing the spike by a factor of four. This design change
is often particularly helpful in suction piping since it can greatly
reduce the likelihood of cavitation. If such measures are not
feasible, a pulsation control device, such as an accumulator, can be
added to the system to absorb the pressure spikes. Pulsation control
devices are discussed in much greater detail in an upcoming
section.

PIPING VIBRATION

The previous sections have focused on the main sources of
pulsation problems in pump piping systems—reciprocating pumps,
centrifugal pumps, vortex shedding, and water hammer. Equally
important are the adverse effects that pulsation can render.
Although there are many of these, the biggest problem occurring in
discharge piping is piping vibration and the biggest headache asso-
ciated with suction systems is cavitation. Accordingly, these two
troublesome areas are the subjects of this and the next section.

Of course, there are many other problems that can result from
pulsation that space constraints do not permit detailed discussions
of. First, if an acoustic resonance happens to coincide with the
resonant frequency of one of the many valves in the piping system
(relief valves, pressure regulators, etc.), that essentially behave as
mass-spring oscillators, valve chatter can occur. Second, large
pressure and/or flow fluctuations in the vicinity of the pump can
impair pumping performance.

The subject of piping vibration is so vast that it is easily worthy
of a tutorial of its own, which the authors may very well generate
at some later date. In the interest of brevity, the treatment herein
will only touch on how pulsations can lead to pipe vibration
problems. Readers interested in a more comprehensive treatment
of this subject are referred to Wachel, et al. (1990).

On its own, pressure pulsations are not capable of producing
piping vibration. For instance, if an infinitely long straight pipe
were subjected to traveling pressure waves of extremely large
amplitudes, no vibration would occur (of course, the pipe could
rupture from simple overpressure). In order for vibration to occur
there must be some way for the pressure pulsations to translate into
an oscillatory force that is applied to the piping. For instance, if the
straight pipe referred to above were terminated in an elbow, the
pulsations acting on the elbow’s cross-section would generate the
needed oscillating force and the pipe would probably vibrate
excessively. The elbow is, thereby, referred to as a point of acousti-
cal-mechanical coupling. In general, such points occur when the
pulsating pressures act on unbalanced areas. Components in
typical piping systems where this type of coupling occurs include
elbows, sudden expansions and contractions, capped ends of
bottles and manifolds, orifices, and valves.

In typical piping systems, the most common coupling point is at
elbows or bends. The manner in which this coupling occurs at an
elbow is illustrated in Figure 23 for the special case of a 90 degree
elbow. If the pulsating pressure at the bend is P and the cross-
sectional area of the pipe is A, it is easily seen that this will act to
generate fluctuating forces in both the x and y-directions (where
the x and y-directions are the directions of the legs and do not nec-
essarily have to be horizontal and vertical) per the following:

(61)

Where:
FX = Cyclic force acting on elbow in x-direction (lbf)
FY = Cyclic force acting on elbow in y-direction (lbf)
P = Amplitude of Pressure pulsations (psi)
A = Pipe Cross-sectional area (in2)

Vector addition can then be used to show that the net resultant
force, FNET, for the 90 degree bend has a magnitude of 1.414 • P  • A

Figure 23. Shaking Forces Generated in an Elbow.

and acts at an angle of 45 degrees with respect to the x and y-axes.
For the more general case where the angle between the two legs of
the bend is θ, the resultant force can be shown to be:

(62)

It is, thereby, seen that as the bend angle, θ, is made greater than
90 degrees, the magnitude of the shaking force is reduced. Thus, the
worst case is also the most prevalent—the 90 degree, right angle
elbow. Accordingly, if the piping must make a 90 degree change in
direction, it is better, from a vibration standpoint, to employ two 45
degree elbows than a single 90 degree bend. Additionally, since
elbows always convert pulsations into dynamic forces, it is good
design practice to employ clamps in the vicinity of elbows to
prevent them from applying shaking forces to the piping system.

Another source of dynamic coupling in a piping system is a
change in piping diameter, either a contraction or expansion. It is
easily shown that for either case, the shaking force is given by the
following:

(63)

Where:
D1 = Larger diameter
D2 = Smaller diameter

Another source of coupling is any enclosed vessel such as a
surge volume, bottle, manifold, etc. In such devices, the pulsation
forces present at each end must be assessed, along with those
acting on any vessel internals present such as baffles and supports,
in order to determine the total unbalanced force. As will be shown
shortly, there are some acoustic modes that generate large shaking
forces on a vessel and others that generate no force, regardless of
the amplitude of the pulsations. It all depends on the phasing of the
forces with respect to one another.

This concept is illustrated for a typical vessel in Figure 24, which
is taken directly from Wachel and Tison (1994). Since any vessel
represents a closed-closed pipe, the first mode is a half-wavelength
mode as shown in the top illustration in the figure. Since the pressure
pulsations are 180 degrees out-of-phase, when the pressure on the
left-hand end is positive, that on the right-hand end is negative, and
vice versa. Accordingly, since the effect of both pressures is to
generate a force acting from right to left, the two effects are directly
additive. The resultant force is, thereby, given by the following:
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(64)

Accordingly, whenever any vessel, such as a pulsation bottle or
manifold, is in resonance with its fundamental mode, large shaking
forces can result.

Figure 24. Shaking Forces Generated in a Vessel.

Examination of the figure reveals that the situation for the
second (two half-wavelength) mode is entirely different. This time,
the pressure pulsations at the two ends are perfectly in-phase. The
forces acting on the left and right-hand ends, therefore, cancel each
other out. Although they act to put the vessel in tension and com-
pression, they generate no net force capable of exciting vibration,
regardless of how large the pulsation amplitudes are. From the
figure, it is easily visualized that all odd numbered modes generate
large shaking forces (per Equation (64)) in vessels and all even
numbered modes generate no shaking force at all.

A similar situation occurs when a volume-choke-volume filter’s
fundamental closed-closed mode is excited, as is shown in Figure
25. Again, the pressures acting on the two ends are 180 degrees
out-of-phase but the shaking force is nowhere near as large as for
the last case. The reason for this is that the pressures within the two
volumes, PA and PB, are assumed to be uniform everywhere
throughout the volumes. Thus, if the right-hand volume is looked
at, the force generated by pressure, PB, acting on the right-hand
side of the volume is almost totally counterbalanced by the force
produced by PB acting on the left-hand side. The only difference
between the two areas is the choke area, ACHOKE, which generates
a net force acting to the right. The situation in the left-hand volume
is exactly the same—the differential area is again the choke area.
Since the two volumes’ pressures are 180 degrees out-of-phase
(i.e., PB = 2PA), the forces in the two volumes are additive so that
the total shaking force is given by the following:

(65)

It is seen from all of the above equations that the shaking forces
that are capable of exciting piping vibration are all proportional to
the amplitude of the pressure pulsations. Since the pulsation ampli-
tudes in suction piping are almost always a fraction of those in
discharge systems, piping vibration problems are much more
common in discharge systems.

A piping system behaves in the manner of any elastic mechani-
cal system—it has natural frequencies that are characteristics of the

Figure 25. Shaking Forces Generated in Volume-Choke-Volume
Filter.

system. If the piping system is excited by an oscillatory force
having a frequency equal to or close to one of its natural frequen-
cies, mechanical resonance occurs and the vibration amplitudes,
forces, and stresses can become excessive. This is exactly the same
situation as the piping acoustic resonance discussed earlier. Per
Parry (1986), in typical piping systems, mechanical resonance can
be associated with amplification factors as high as 20, a number
verified by Beynart (1999). This means that the vibration ampli-
tudes are 20 times what they would be if the same force were
applied statically.

Of course, the worst of all worlds is when a piping system has
an acoustic resonance that is coincident with or close to a piping
mechanical resonance. In this case, the acoustic amplification
factor, which Parry (1986) states can be as high as 15, combines
with the mechanical amplification factor (20, from above) to
generate an overall amplification factor that can be as much as 300.
It is not hard to visualize how such a situation could lead to
problems.

The most important thing in piping system design is, therefore,
to ensure that acoustic resonances are not capable of exciting any
piping mechanical resonances. In order to ensure that a piping
system will operate troublefree in the field, a thorough acoustic
analysis should be combined with a good piping vibration analysis.
Although the details of the latter are well outside the scope of this
tutorial (interested readers should refer to Wachel, et al., 1990),
there is one aspect of the analysis process that should be brought
up—the relative accuracy of the piping acoustic analysis versus
that of the mechanical vibration analysis.

In an ideal world, a piping system would be designed using both
analysis types in a complementary fashion. However, in reality,
many engineers put much more emphasis on one discipline or the
other. For instance, some engineers believe that if they employ a
rigorous pulsation analysis to ensure that pulsation levels are kept
low at all frequencies of concern, they can get by with only a rudi-
mentary piping vibration analysis. On the other hand, other
engineers prefer to utilize a rigorous piping vibration analysis to
show that the piping is theoretically sound and not worry about the
pulsation analysis.

In the authors’ experience, and that of Tison and Atkins (2001)
and Grover (1966), the two approaches are not even close to being
equally effective. Because of the accuracies that the two analyses
can be performed to, the first approach is highly preferable to the
second. Unfortunately, the second approach is much more
common, for two primary reasons. First, most organizations have
at least a few engineers who are highly proficient at using finite
element analysis computer codes for structural analysis. Second,
acoustic simulation codes are nowhere near as prevalent as finite
element codes and, more importantly, the number of engineers
skilled at using such codes is relatively low.

The primary reason for the preference for the first approach is
the large amount of error that is present in even the best piping
vibration analyses. Based on their field experience, Tison and
Atkins (2001) state that even under the best of circumstances,
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piping mechanical natural frequencies can only be calculated to an
accuracy of ± 20 percent. This is under the optimum situation
where the piping’s boundary conditions are accurately known and
the piping system and supporting structure are modeled in extreme
detail. Under more typical circumstances, Tison and Atkins (2001)
estimate the error in piping natural frequency calculations to be ±
50 percent, or even higher.

The biggest reason for these large inaccuracies is the difficulty
in accurately modeling the piping boundary conditions. In the
words of Tison and Atkins, a piping/structural support system is
not a “polished machined part,” for which finite element models
can be accurately prepared. As Tison and Atkins (2001) point out,
in many real world installations, pipe supports become loose or
break, leaving the piping unsupported at that location. If the
analysis had counted on that support to keep the mechanical
natural frequencies above a certain threshold, the loss of that single
support invalidates the analysis. Tison and Atkins (2001) provide a
list of several other factors that add to the inaccuracy of such
analyses.

In addition to natural frequency analyses, the other major type of
piping vibration analysis, the forced response analysis, is not likely
to be more accurate, and is probably even less so. Per Tison and
Atkins (2001), all of the items that create inaccuracies in natural
frequency calculations have the same effect on response analyses.
In addition, since the exact amount of damping present in a piping
system is almost impossible to calculate, an amplification factor at
resonance must be assumed. Per Tison and Atkins (2001), this can
vary all the way from 10 to 100. Since, in steady-state response
analyses, the piping displacements and stresses vary inversely with
the assumed amplification factor, this can introduce an uncertainty
of as much as 10-to-one to the results. Tison and Atkins (2001)
even go so far as to say that response analyses are almost useless
unless test data from the field is available to anchor the model so
that it yields the correct natural frequencies and damping.

Another shortcoming in most piping vibration analyses is that
the models often do not include the components that are most vul-
nerable to vibration-related failures. Tison and Atkins (2001) state
that many vibration-related problems are not associated with the
main process piping itself, but with other attached components
such as valve actuators, tubing, conduit and cable trays in rack
systems, instrument connections (thermocouples, pressure trans-
ducers), and small branch connections (for instruments, vents, and
drains). Other common problems cited by Lovelady and Bielskus
(1999) include failures of electronic instrumentation, sight gauges,
thermal wells, pressure taps, and brackets. It is not at all
uncommon for the main process piping to have low vibrations but
to also act as an exciter for resonances in the attached components.
However, most models do not account for any of these compo-
nents.

All of the above problems are in stark contrast to the accuracies
achievable in pulsation analysis. For instance, Tison and Atkins
(2001) state that acoustic natural frequencies can normally be cal-
culated to accuracies of ± 5 percent. Accordingly, Tison and Atkins
(2001) recommend overcoming the inaccuracies inherent in piping
vibration analyses through robust acoustical design. The authors
are in complete agreement with this approach.

Although the previous discussion questions the value of detailed
piping vibration analysis during the design stage, the authors do
advocate the calculation of the pulsation-induced shaking forces,
which are relatively straightforward as long as a good pulsation
analysis has been performed, during this stage. While acknowledg-
ing the difficulty in determining an acceptable shaking force level,
Tison and Atkins (2001) state that there is no question that much
higher forces are permissible at lower frequencies (defined as fre-
quencies that are significantly below the lowest piping mechanical
natural frequency). Table 4 of Tison and Atkins (2001) provides
allowable forces in terms of the total shaking force in a straight run
of pipe divided by the number of supports that resist axial vibration

of that particular run. The allowable forces are given as multiples
of the nominal pipe size (thereby, larger pipes have larger
allowable forces) and are provided for nonresonant and potentially
resonant frequencies (with regards to piping mechanical
resonance). The allowable levels for elevated piping, such as in
pipe racks and offshore platforms, are given as one-half of those
for ground level pipes.

In spite of the problems inherent in analyzing piping vibrations,
there are some general rules that can be employed during design to
minimize the chances of piping vibration problems occurring.
These include the following, taken from Wachel, et al. (1995),
Lovelady and Bielskus (1999), Cornell (1998), Grover (1966), API
618 (1995), Tison and Atkins (2001), and Wachel and Tison
(1996).

• The number of elbows should be minimized.

• In the areas where elbows must be employed, 45 degree bends
are preferential to 90 degree versions.

• All elbows and concentrated masses such as valves should be
rigidly supported with clamps.

• Avoid using threaded connections for instrumentation (suscepti-
ble to vibration-related failures at thread roots).

• All welded connections should be stress relieved.

• Pipe braces, not hangers, should be employed to support the
piping.

• Pipe supports should be attached to relatively rigid anchor struc-
tures.

• The stiffnesses of piping clamps and supports should be at least
twice the stiffness of the basic pipe span.

• Avoid using gravity-based supports.

• If the piping natural frequencies in reciprocating pumping
systems can be accurately determined, they should be kept well
above (Tison and Atkins, 2001, suggest a margin of 50 percent) the
frequencies of significant pulsation-induced forces

CAVITATION

Although piping vibration is often a troublesome problem in
pump discharge piping, in suction piping, the pressure levels are
normally too low for significant vibration amplitudes to arise.
Instead, the most likely adverse consequence of large pulsation
levels in the suction system is cavitation. That is not to suggest that
piping vibration problems do not occur in suction systems—they
do occasionally occur. However, when they occur, the triggering
mechanism is usually pressure spikes due to cavitation, not
pressure spikes due to pulsation alone.

Cavitation occurs when the local static pressure in a liquid falls
below its vapor pressure. The liquid flashes locally and a gas
bubble is formed. The formation of cavitation bubbles relies on the
presence of microscopic gas nuclei within the liquid. Nuclei are
normally present in the form of impurities, dissolved gas, and
surface imperfections. The presence of these nuclei is the reason
why liquids cannot withstand a tensile force. In the initial stages of
cavitation, the nuclei give rise to the formation of gas bubbles in
regions of low static pressure. The pump’s flow then carries many
of these bubbles to regions where the static pressure is above the
vapor pressure. This causes the bubbles to collapse and produce
high intensity pressure waves. This process continues as long as
regions of pressure that are below the vapor pressure persist. Per
Beynart (1995), although this repeating cycle normally lasts for
only a few milliseconds, the localized pressures and temperatures
can be as high as 60,000 psi and 1500°F.

Cavitation can occur at a pump’s inlet, inside the cylinders of a
reciprocating pump, in the suction manifold, and in other places
where changes in fluid velocity occur. The repeated pulses
generated during bubble collapse can generate pulsations, noise,
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and vibration of pump components or piping. They also can do sig-
nificant damage to the pump internals. If the collapses occur in the
vicinity of any metal parts, microscopic jets of liquid impinging on
the metal can eventually lead to erosion damage. Cavitation also
can degrade pump performance, sometimes drastically, if enough
bubbles are present.

Figure 26 shows how pressure pulsations can cause cavitation. It
is seen from the figure that the mean static pressure for this hypo-
thetical pump, PMEAN, is above the liquid’s vapor pressure,
PVAPOR. Accordingly, if there were no pulsations in this suction
system, there would be no cavitation. However, the presence of a
pulsating pressure, PCYCLIC, means that the minimum static
pressure in the system is now PMEAN 2 PCYCLIC. If, as is shown in
the figure, this minimum pressure is below the vapor pressure, the
liquid will theoretically cavitate. It is, thereby, seen that higher
pulsation amplitudes increase the likelihood of cavitation.

Figure 26. Pulsation-Generated Cavitation.

As most pump designers will recognize, the treatment shown in
the figure is conservative. Although whenever the negative
pressure peak manages to drop below the vapor pressure for an
instant, cavitation will occur in theory, a more severe condition is
required to generate any noticeable effects. As Wachel, et al.
(1989), note, this simplistic theory of when cavitation occurs
neglects factors such as frequency, duration of time that the
pressure is below vapor pressure, and other factors that have been
proven to be important in cavitation.

In an attempt to rectify this shortcoming, Wachel, et al. (1989),
define a cavitation potential number (CPN), which gives the
percent of the cycle that the static pressure is below the vapor
pressure. Wachel, et al. (1989), further state that based on their
experience, a CPN value above 25 percent is required before sig-
nificant cavitation will occur. Additionally, they state that values
above 50 percent are normally required to generate the 3 percent
reduction in flow capacity that is conventionally used to define the
onset of cavitation. Wachel, et al. (1989), further state that while
the exact CPN number associated with significant cavitation
failures is not yet known, the use of the CPN method has permitted
them to better understand why some pumps operate satisfactorily
even though cavitation is theoretically present. While the authors
do not have any personal experience using this methodology, it
certainly appears superior to the overly simplistic method of Figure
26.

If pressure pulsations are successful at generating significant
cavitation, it can usually be easily seen in a pressure versus time
plot obtained from the field. Whereas normal pulsation generates a
sinusoidal wave, the presence of cavitation will cause a squaring
off of the bottom portions of each of the waves, as is shown in
Figure 1 of Wachel, et al. (1989). This squaring off occurs because
a fluid cannot support a negative pressure below the vapor
pressure. After the initial signs of cavitation, the pressure signature
also often shows a series of sharp pressure spikes, indicative of
cavitation bubble collapse.

The manner in which pump designers traditionally attempt to
avoid cavitation is via specification of the net positive suction head

at the pump inlet flange. The NPSH is simply the difference
between the absolute total pressure at the pump inlet flange and the
liquid’s true vapor pressure at the inlet temperature. There are two
types of NPSH—net positive suction head required (NPSHR) and
net positive suction head available (NPSHA). The NPSHR is the
amount of head that is required at the pump inlet flange in order to
fully charge the pumping elements without causing the liquid to
cavitate. NPSHR is normally specified by the pump manufacturer
based on tested pump performance. In general, higher values of
NPSHR represent more stringent conditions. On the other hand, the
NPSHA is the actual amount by which the total pressure at the inlet
flange exceeds vapor pressure. In general, NPSHA is a measure of
how much margin the suction system has against cavitation (higher
NPSHA values represent larger margins).

In order to determine how much NPSHA a given pump needs to
have in order to avoid cavitation, the Hydraulic Institute provides a
standard calculation procedure, as follows:

(66)

Where:
NPSHA = Available net positive suction head at the pump inlet 

flange (ft)
hS = Total head at source (ft)
hF = Frictional head loss in suction lines (between source 

and pump inlet) (ft)
hA = Acceleration head (ft)
TVP = Absolute vapor pressure at pumping temperature (ft)

The way that this equation is utilized is that, starting with the
NPSHR value obtained from the pump manufacturer, the system
designer decides how much NPSHA is desired. The NPSHA must
be at least equal to the NPSHR but is often made somewhat greater
in order to provide margin. Using this desired value and calculated
values for the friction head, hF, and acceleration head, hA, the
required total head at the source can then be back-calculated. 

The term of interest from the standpoint of pulsation is the accel-
eration head, hA. The acceleration head is supposed to account for
the pressure pulsations occurring in the suction line. However,
inspection of the equations used for its calculation reveals that the
quantity being calculated is basically the amount of head required
to accelerate the mass of fluid in the suction line into the pumping
elements. Accordingly, this is basically an attempt to account for a
dynamic phenomenon with a static calculation. Not surprisingly,
there are many situations, especially if any acoustic resonances
occur in the suction system, where this method underpredicts the
pulsation amplitudes, often by a substantial amount. Thus, in such
cases, the calculated NPSHA could very well meet the required
value but the pump could still suffer from severe cavitation.

Parry (1986) suggests that the above flaw be corrected by sub-
tracting the actual pulsation amplitude in the suction system from
the value of NPSHA calculated from the above equation to obtain
the actual NPSHA. However, as Wachel, et al. (1989), note,
knowledge of the actual pulsation amplitude requires that an
indepth pulsation analysis be performed, the likes of which is often
not available at the time of suction system design. Thus, Wachel, et
al. (1989), state that the unknown pulsations have traditionally
been accounted for by using conservative values for the accelera-
tion head term.

Miller (1988) states that one of the first expressions for acceler-
ation head is the following, which was empirically developed from
test data:

(67)

Where:
hA = Acceleration head (ft)
L = Actual length of suction line (ft)
v = Velocity of liquid in suction line (ft/sec)
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N = Crankshaft rotating speed (rpm)
g = Gravitational acceleration (ft/sec2)
K = Constant that compensates for liquid compressibility
C2 = Constant, depending on type of pump

Miller (1988) states that the first constant, K, is equal to 1.4 for
cold water. Wachel, et al. (1995), expand on this by stating that the
value of 1.4 is representative for relatively incompressible liquids,
such as deaerated water, while a more representative value of K for
liquids having high compressibility (such as hydrocarbons) is 2.5.
Table 3 of Miller (1988) provides values for the second constant,
C2, for different types of single and double-acting pumps. In
general, C2 decreases as the number of cylinders increases.
Additionally, for a given number of cylinders, C2 for the double-
acting version is less than or equal to that for the single-acting
pump. It should be noted that while the above equations account
for dynamic modulation of the liquid as it fills the pump cylinder,
they are incapable of accounting for resonant pulsations.

When pulsation-induced cavitation problems occur in the field,
the natural response of raising the system’s suction pressure will
sometimes eliminate the cavitation problem. However, obviously,
it has no impact on the pulsation amplitudes. Since pulsation-
induced piping vibration and other structural problems become
more likely at higher values of system pressure, this remedy will
sometimes result in the simple exchange of one problem for
another. Once again, the best remedy is the employment of proper
pulsation control elements, designed on the basis of a good
acoustic simulation.

PULSATION CONTROL ELEMENTS

At this point, the reader should have some appreciation for how
much trouble uncontrolled pulsations can cause. In order to assist
in the control of pulsations, there are many commercially available
devices that can be installed in suction and discharge piping
systems. Although they go by many different names, such as
pulsation dampeners, surge suppressors, acoustic filters, accumula-
tors, stabilizers, snubbers, and desurgers, most of them operate on
very similar principles. In fact, the large number of devices
available can almost all be placed into one of three basic cate-
gories—energy absorbing devices (surge volumes), acoustic filters,
or dissipative components. Of course, some devices incorporate
features from more than one of these basic categories.

Helmholtz Resonator

One of the fundamental elements in acoustics, which is strongly
related to surge volumes and accumulators, is the Helmholtz
resonator. A Helmholtz resonator consists of a rigid-walled cavity
of volume, V, that is fed by a neck of area, S, and length, L. If a
lumped approach is permissible, the neck acts as a fluid inertia, the
volume behaves as an acoustic compliance, and the neck opening
radiates sound as a simple source does and, therefore, behaves as
an acoustic resistance. Of course, the neck also generates viscous
losses. However, per Kinsler, et al. (1982), if the neck is larger than
about 0.4 inch, the viscous losses are usually less than the radiation
losses and can, therefore, be ignored.

If all of the preceding lumped element assumptions are valid, the
natural frequency for a Helmholtz resonator is as follows:

(68)

Where:
ωN = Natural frequency (rad/sec)
c = Acoustic velocity (in/sec)
S = Neck cross-sectional area (in2)
LEFF = Effective length of neck (inch)
V = Volume of cavity (in3)

Kinsler, et al. (1982), explain that acoustic radiation effects
render the effective length of the neck to be greater than its actual

length, L. If the outer end of the neck is flanged, Kinsler, et al.
(1982), suggest adding 85 percent of the neck diameter to the
actual length, L, and if unflanged, they suggest 75 percent.

The acoustic impedances for the fluid compliance and inertia
elements can be calculated using the equations given previously.
With viscous effects ignored, the acoustic resistance of the neck is
given by Kinsler, et al. (1982), as follows:

(69)

Where:
R = Acoustic resistance
c = Acoustic velocity
ρ = Fluid density
ω = Excitation frequency (rad/sec)

Whenever an incident acoustic wave has a frequency at or near
the resonator’s natural frequency, greatly amplified acoustic
pressure will be produced within the cavity. Although this is
probably of interest to the designer of stereo speakers, the
relevance from a pulsations standpoint is that, at the resonant
frequency, the Helmholtz resonator behaves like an electrical short
circuit and transmits almost zero power to the downstream pipe.
Thus, if such a device were placed at a side branch between a recip-
rocating pump and the main discharge line, at the resonant
frequency, the discharge piping would be almost completely
isolated from the pulsations generated by the pump. The transmis-
sion loss of a Helmholtz resonator is provided as a function of
frequency in Figure 2.4 of Junger (1997).

Energy Absorbing Devices (Surge Volumes)

The first class of pulsation control devices is energy absorbing
devices or surge volumes. A surge volume is a relatively large,
empty bottle that is connected to the suction or discharge of a
pump. The bottle behaves as an acoustic compliance that can
isolate the fluid in the suction and discharge lines from the pulsa-
tions generated by the pump. A mechanical analogy is the use of a
low stiffness coupling in a torsional system to isolate the vulnera-
ble elements in the system from the torsional excitation source
(normally, a reciprocating engine or synchronous motor). Since the
compliance associated with well-designed surge volumes is
usually quite high, the presence of the surge volume normally
results in the lowering of the system’s acoustic natural frequencies.

In addition to their isolation capabilities, surge volumes can also
be looked at as flow smoothers. In a reciprocating pump applica-
tion, the surge volume acts to absorb the peaks of the flow
pulsations and returns the flow to the main line during the
“valleys.” In this manner, the fluid in the suction and discharge
lines see a much smoother flow.

In general, the effectiveness of a surge volume is directly pro-
portional to its acoustic compliance. Since referral to Equation (47)
reveals that the compliance is directly proportional to volume,
larger volumes tend to be more effective, consistent with intuition.
Cost and space constraints normally place an upper limit on the
bottle volume that can be used in a given application.

In general, surge volumes are most effective at damping out pul-
sations at low frequencies, such as those generated by a
reciprocating pump. Miller (1988) states that the frequency at
which these devices start to lose their effectiveness is at about 50
Hz. This means that they should be effective at attenuating the
plunger frequency excitations of reciprocating pumps as long as
the pump does not run faster than 500 rpm or have more than six
cylinders.

Although all surge volumes operate on the same basic princi-
ples, they can basically be broken down into two distinct
categories, liquid volumes and accumulators. Liquid volumes are
precisely what the name suggests—surge volumes in which the
working fluid is liquid. On the other hand, accumulators employ
some type of inert gas, usually dry nitrogen, as the working fluid.
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Although some accumulators permit the gas to directly communi-
cate with the pumped liquid, most utilize some form of bladder or
diaphragm to keep the two separate.

Beynart (1999) suggests that surge volumes for reciprocating
pump suction systems be equal to10 times the total displacement
of the pump, where the displacement is simply the number of
cylinders multiplied by the cylinder bore area and the piston stroke.
Blodgett (1998) goes further by suggesting that in addition to the
total pump displacement, the surge volume should also be
compared to the total volume of fluid between the valves and the
surge element. Blodgett (1998) suggests that the surge volume be
at least five times larger than those two volumes.

In addition to the volume, the physical lengths of all dimensions
within the tank need to be kept small enough to make the lumped
parameter assumption valid. Per Chilton and Handley (1952), this
means that all surge volume dimensions must be less than about
1/12 of the expected wavelength.

Accumulators

As stated previously, accumulators employ a gas as the working
volume. Although there are some accumulators where the gas and
liquid are in direct contact with each other (sometimes called gas-
over-liquid types) still in use, most accumulators employ a bladder
to separate the two. Accumulators are commonly used on both the
suction and discharge sides of reciprocating pumps.

The reason that accumulators use gas as the working fluid is that it
takes a much smaller volume of gas (compared to liquid) to generate
a desired acoustic compliance. The equivalent volume of liquid
provided by a specified volume of gas is given by the following:

(70)

Where:
VEQUIV = Equivalent volume of liquid
VGAS = Actual volume of gas
KLIQUID = Liquid bulk modulus
KGAS = Gas bulk modulus

Since the bulk modulus of a gas is directly dependent on the gas
pressure, this ratio is dependent on line pressure. In some systems,
this ratio can be as large as 10,000 to one although Singh and
Chaplis (1990) indicate that a 2000 to one ratio is probably more
typical. In other words, to achieve the same pulsation attenuation,
a liquid surge volume would need to have a volume 2000 times that
of the gas in an accumulator. The advantages provided by using gas
are obvious.

Accumulators are highly effective at controlling pulsations at
low frequencies, such as the flow-excited pulsations generated by
reciprocating pumps. However, since the bladder must flex every
time the liquid pressure changes, their response is greatly degraded
at higher frequencies. Parry (1986) states that the effectiveness
limit for most bladder-type accumulators is around 50 to 75 Hz.

The precharge pressure of an accumulator is the pressure that the
gas in the bladder is set at during installation. The performance of
the accumulator can be dramatically affected by the precharge
pressure. If this pressure is set too low, the bladder will be in a
perpetual state of motion, which can lead to early bladder fatigue.
Low precharge pressure also reduces the effective volume of the
accumulator. On the other hand, if the precharge pressure is made
too high, the accumulator will not respond whenever the line
pressure drops below the precharge pressure.

Although the optimum precharge pressure is somewhat
dependent on the application, in general, Miller (1988) recom-
mends that it be set at 60 to 70 percent of average discharge
pressure. Singh and Chaplis (1990) state that most accumulator
manufacturers recommend somewhere between 50 and 70 percent
of line pressure. Cornell (1998) agrees with the 50 percent number
for suction accumulators but recommends that discharge accumu-
lators be precharged to 80 percent of discharge pressure.

Unfortunately, the ratio of charge pressure to line pressure can
vary in field installations for several reasons. First, since the
discharge pressure in a reciprocating pumping system is normally
set by the flow resistances in the system, as was discussed earlier,
changes in flow result in changes in discharge pressure.
Additionally, when that resistance is generated by one or more
variable area valves, changes in valve position also affect discharge
pressure. Finally, bladders can develop leaks over time, creating a
loss in charge pressure.

Fortunately, Singh and Chaplis (1990) report on tests that
showed that as long as the precharge pressure stayed between 10
and 90 percent of discharge pressure, the discharge accumulator’s
performance was not seriously affected. They believe that the
reason for this is that, even at very small gas volumes, the high
compliance of gas maintains the accumulator’s effectiveness. Of
course, if the precharge pressure ever exceeds 100 percent of the
discharge pressure, the bladder would expand to its maximum
value and the system’s level of protection would be minimal, if
anything. Wachel, et al. (1985), report on a case where pressure
pulsations increased dramatically whenever the discharge pressure
dropped below the accumulator’s charge pressure.

The effectiveness of accumulators can be reduced by bladder
stiffness, bladder permeability to certain liquids, and restriction of
bladder expansion and contraction by accumulator internals such
as constraining cages, mandrels, etc. Additionally, since their per-
formance depends on their acoustic capacitance, which in turn
depends on volume and bulk modulus, their effectiveness can be
degraded by large variations in line pressure, upon which both
volume and bulk modulus depend. All of these complicating
factors make prediction of the performance of accumulators more
difficult than that of all-liquid surge volumes.

There are two basic configurations by which accumulators can
be incorporated into a piping system. The first is with the accumu-
lator attached to the main line via a side branch. Such an
accumulator is referred to as an appendage accumulator, or side
branch accumulator. In the other configuration, the accumulator is
actually right in the main line so that all of the flow has to pass
through it. Such a device is called a flow-through accumulator.

In an appendage accumulator, the gas-filled bladder is separated
from the main flow via a neck and a volume of liquid beneath the
bladder. The factors that affect the acoustic performance of an
acoustic accumulator include the neck, the compliance of the
liquid that is in contact with the bladder (usually insignificant), the
elastic and mass properties of the bladder, and the compliance of
the gas within the bladder. Since the neck behaves as an acoustic
inertia, these devices are usually most effective at low frequencies.
However, since the presence of the neck renders the accumulator
highly similar to a Helmholtz resonator, it can improve the attenu-
ation at the resonant frequencies, compared to designs that do not
employ necks.

The dynamics of an appendage accumulator can be understood
by referring to its mechanical analogy. Since the neck behaves as
an inertia and the gas behaves as a compliance, the mechanical
analogy is a simple mass-spring system. This system has a resonant
frequency that Wachel and Price (1988) state will normally be less
than 100 Hz. At frequencies much above this frequency, a mass-
spring system and, by analogy, an accumulator, have serious
response limitations.

Some appendage accumulators are designed to be used with a
“diverter,” which Figure 1E of Wachel and Price (1988) shows
schematically. Basically, a diverter is a device that is placed in the
main line opposite the accumulator neck, with the purpose of
directing the main flow right at the bladder. Since, as stated above,
appendage accumulators are limited at high frequencies, accumu-
lator manufacturers claim that the use of a diverter will improve the
high frequency performance of the accumulator. Test data have
shown this to be true.

While acknowledging the better high frequency performance
that a diverter provides, Wachel and Price (1988) dispute that the
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reason for this improvement is the diversion of the flow. Instead,
they believe that since the presence of the diverter in the main line
increases the pressure drop, the diverter is providing additional
acoustic damping. Wachel, et al. (1985), corroborate the lack of
benefit of directing the flow at the accumulator by reporting a case
study where, at the suggestion of the accumulator manufacturer,
the piping was changed to direct the flow at the bladder and the
accumulator’s performance showed no change. Wachel and Price
(1988), therefore, recommend that the diverter be modeled as an
acoustic resistance and they state that models of that type have sat-
isfactorily explained the observed improvement in high frequency
performance.

The primary advantage of using a flow-through accumulator,
compared to an appendage design, is that the elimination of the
neck allows it to provide significant attenuation over a larger
frequency range. Thus, these devices behave very similarly to
appendage accumulators without necks. The expanded frequency
range makes it less critical that the accumulator’s maximum atten-
uation frequency be matched to the main system excitation
frequency than in appendage accumulators. According to Beynart
(1999), these devices also carry the advantage of quicker bladder
response time. However, for a given gas volume, flow-through
accumulators are somewhat larger than their counterparts and,
therefore, are normally more expensive. Additionally, as was
shown in the discussion of the Helmholtz resonator, the presence
of the neck in an appendage accumulator provides damping via
acoustic radiation and viscous dissipation.

Chilton and Handley (1952) state that flow-through accumula-
tors will normally outperform appendage designs, unless the latter
can be designed to be essentially neckless. Graf and Marchi (1997)
are even more emphatic, claiming that appendage accumulators
will only reduce pulsations by 10 to 30 percent of the attenuation
of the same size accumulator in a flow-through arrangement.

Although larger gas volumes are normally associated with
higher accumulator capability, the two do not necessarily go hand-
in-hand. Wachel, et al. (1995), provide a case study where
increasing the bladder volume actually increased the pulsation
amplitudes. The explanation for this was the larger volume (and,
therefore, higher compliance) lowered the acoustic natural
frequency sufficiently to put it in the vicinity of the excitations
coming from the triplex pump. Furthermore, Wachel, et al. (1989),
state that a system having an incorrectly sized accumulator can
experience higher pulsations than one having no accumulator at all.
Thus, accumulator sizing, like the design of all pulsation control
components, needs to be performed using a rigorous acoustic
analysis of the system.

Per Warwick (1999) metering pumps in chemical and water
services normally employ an appendage-type accumulator in the
discharge line. These accumulators are normally installed at a tee
in the discharge line and should be no further than 40 pipe
diameters to the pump discharge flange. The pipe between the tee
and the accumulator should be straight, the same diameter as the
accumulator or larger, and no longer than 15 pipe diameters. As a
rule of thumb, the effective volume should be at least 15 times the
total displacement of the pump. Such accumulators will normally
be effective in minimizing the effects of both flow and acceleration
excitations.

Cornell (1998) states that accumulators can also be effectively
deployed to alleviate water hammer problems originating at quick-
closing valves. These devices absorb the pressure spike by
providing a secondary outlet to the flowing liquid after the valve
closes. Because of the quick response required, Cornell (1998) rec-
ommends that the dampener be installed immediately upstream of
the valve and no more than 10 pipe diameters away. Since the full
capacity of the accumulator must be available for this type of
service, Cornell (1998) recommends that the bladder be
precharged to 95 to 98 percent of line pressure.

Because of the large precharge, accumulators employed to
control water hammer essentially operate at the local system

pressure. Figure 27 shows a schematic of such a device—although
no bladder is shown, the behavior is the same whether a bladder is
used or not. If the valve is closed abruptly, a situation that normally
leads to water hammer, the pump flow enters the accumulator,
compresses the air in the bladder, and the flow in the line is
reduced as the pressure builds up (the pump is assumed to be a cen-
trifugal pump—no sane design would ever result in the
deadheading of a reciprocating pump). Although the system
pressure rises, the peak pressure is much less than for the case with
no accumulator.

Figure 27. Use of Accumulator to Alleviate Water Hammer.

Of course, if an accumulator is to be used to control water
hammer, the side branch connection and accumulator neck must be
designed to minimize accumulator response time. The gas volume
needs to be sized to handle the expected flow and pressure and the
accumulator’s liquid volume needs to be sized to avoid emptying
the accumulator during the water hammer low pressure cycle.

There are some applications where the conditions are such that
a bladder-type accumulator cannot be employed. Since bladders
are made from elastomers, they are not appropriate for high tem-
perature applications. Miller (1988) sets the limit at about 300°F.
Additionally, applications where the pumped liquid would chemi-
cally attack an elastomer are also off limits. In such cases, a
gas-over-liquid design, which is just as efficient from a dynamic
standpoint, must be employed or alternate pulsation control strate-
gies must be implemented. If the gas-over-liquid route is selected,
there are two main problems that must be overcome. First, the
maintenance of a constant gas volume is much more difficult
without the benefit of a bladder. Second, the gas can enter the
liquid and introduce two phase flow problems.

Acoustic Filters

Acoustic filters use combinations of the three basic acoustic
elements, inertia, compliance, and resistance, to prevent the trans-
mission of pulsations. In most pumps, these filters are placed in the
main line so that their primary function is to isolate the piping from
the pulsations generated by the pump. Since, unlike accumulators,
acoustic filters do not require the employment of any gas, they are
often referred to as “all liquid filters” when utilized in pumps.

In direct contrast to accumulators, acoustic filters can be
designed to be effective at either low or high frequencies, although
not usually both at the same time. However, the size of the filter is
inversely proportional to the frequency that has to be controlled.
Thus, filters required to be effective at frequencies below about 50
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Hz are usually extremely large and cost-prohibitive. Additionally,
since acoustic filters are liquid-filled devices, they can be very
expensive in high pressure systems.

The basic principle behind acoustic filters is one that has come
up again and again in this tutorial—the fact that when a traveling
pressure wave encounters a change in impedance, part of it is
reflected and part of it is transmitted. An acoustic filter acts as an
impedance change whose goal is to reflect as much of the incident
energy as possible and, thereby, transmit as little as possible. The
intensity transmission coefficient, introduced previously in
Equation (33), is, thus, a good measure of the effectiveness of an
acoustic filter. For instance, if an acoustic filter is placed between
a reciprocating pump and the main discharge line, if it transmits no
acoustic energy (i.e., intensity transmission coefficient of zero),
than it has completely protected the discharge pipe from the pulsa-
tions generated by the pump. Unfortunately, there are no filters that
can do this at all frequencies.

One of the most basic acoustic filters is the simple low-pass
filter. As its name suggests, this type of filter is highly effective at
preventing the transmission of high frequency acoustic waves and
highly ineffective at dealing with low frequency waves (i.e., it
allows them to “pass”). Although low-pass filters come in many
different configurations, one of the simplest is achieved by
inserting an enlarged section of pipe of cross-sectional area, S1,
and length, L, in a pipe of cross-section, S, as shown in Figure 10.6
of Kinsler, et al. (1982). Kinsler, et al. (1982), provide the
following equation for the intensity transmission coefficient for
this filter:

(71)

Where:
TI = Intensity transmission coefficient
k = Wave number

The frequency dependence in the above equation is due to the
presence of the wave number, k. Per Kinsler, et al. (1982), this
equation predicts that at low frequencies, the transmission coeffi-
cient is 100 percent (thus, not a very good filter) but it gradually
decreases to zero at high frequencies. Figure 10.6 of Kinsler, et al.
(1982), provide a plot of this coefficient versus frequency for an
expansion chamber that is 1.965 inches long and has a cross-
sectional area that is four times that of the main pipe.

From the above equation, the transmission intensity coefficient
reaches its minimum value (i.e., location of optimum filtering)
when the value of kL is π/2, which corresponds to the length of the
filter being equal to a quarter wavelength. Following this
minimum, this coefficient gradually increases with frequency until
it again reaches a value of 100 percent when kL is equal to π. After
that, the behavior fluctuates through a series of minima and
maxima. The important point to note is that this device is not a low-
pass filter in the truest sense since it does not attenuate all high
frequency waves.

Another simple approximation of a low-pass filter may be
achieved by inserting a constriction of cross-section area, S1, and
length, L, into a pipe. Kinsler, et al. (1982), state that the above
equations can also be applied to this filter since their derivation
makes no assumption of whether S or S1 is larger. It should be
noted that these two simple filters are commonly used in the design
of automobile mufflers, gun silencers, and sound-absorbing
plenums used in ventilating systems.

The counterpart to the two low-pass filters just described is the
high-pass filter. As its name suggests, this filter is effective at atten-
uating low frequencies but allows high frequency waves to be
transmitted. One of the simplest high-pass filters is a simple side
branch having a radius, r, and length, L. Per Kinsler, et al. (1982),
the side branch has a power transmission coefficient given by the
following:

(72)

Where:
TI = Intensity transmission coefficient
r = Radius of side branch
S = Cross-sectional area of pipe
k = Wave number
LEFF = Effective length of sidebranch

Figure 10.8 of Kinsler, et al. (1982), shows that this yields a
transmission coefficient that is very nearly zero at low frequencies
but which rises to nearly 100 percent at higher frequencies.
Another manner of constructing a high-pass filter is by placing a
single orifice in a pipe. As the diameter of the orifice is increased,
the low frequency attenuation is improved, and the frequency cor-
responding to 50 percent power transmission is raised. If a number
of orifices are placed in series and are spaced at appreciable
fractions of the wavelength, the attenuation at low frequencies can
be greatly increased. It should be noted that the filtering provided
by an orifice has nothing to do with viscous dissipation—instead,
it is due to its ability to reflect incident waves.

A third basic type of filter is a band-pass filter. Unlike the
previous two types, instead of being effective at only low or high
frequencies, it has a specific band of frequencies over which it is
effective. The side branch, which is a high-pass filter, can be
converted into a band-pass filter by simply adding a fluid compli-
ance element to it. One way of achieving this is to simply make the
side branch extremely long and terminate it with a closed end.
Another, more common, method is to terminate the side branch
with a volume, which would form the Helmholtz resonator
discussed earlier. Per Kinsler, et al. (1982), the power transmission
coefficient for a Helmholtz resonator is as follows:

(73)

Where:
TI = Intensity transmission coefficient
c = Acoustic velocity
S = Cross-sectional area of pipe
ω = Excitation frequency
LEFF = Effective length of neck
SB = Neck cross-sectional area
V = Chamber volume

Figure 10.9 of Kinsler, et al. (1982), provides a plot of this for a
representative resonator. When the excitation frequency, ω, is equal
to the resonator’s natural frequency, ωN, obtained from Equation
(68), the transmission coefficient goes to zero, as was discussed
previously. It should be remembered that since all equations given
herein for the Helmholtz resonator neglect viscous losses in the
neck, these equations need to be modified to account for those
effects for the case of long, narrow necks.

Volume-Choke-Volume Filters

From the above discussion, it can easily be imagined that
acoustic filters having all kinds of diverse characteristics can be
built using various combinations of the three basic acoustic
elements. In most systems these elements are in the form of
volumes, constrictions, orifices, and enlargements. Many acoustic
filters are built via analogy to electrical filters whose performance
has already been demonstrated.

A particular combination of the basic acoustic elements is
employed in one of the most common types of acoustic filters used
in reciprocating equipment, the volume-choke-volume filter, which
is also known as a π-type filter. In the context of pump applica-
tions, these filters are sometimes also referred to as all liquid filters
since they do not require any gas. As is shown in Figure 25, as its
name suggests, this filter consists of two bottles (volumes) that are
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connected by a pipe of relatively small diameter (choke). If
properly designed, the filter’s components behave as basic lumped
acoustic elements—i.e., the bottles behave as acoustic compliances
and the choke acts like an acoustic inertia. These lumped charac-
teristics are valid as long as the excitation frequencies are below
the open-open resonant frequency of the choke tube and the
closed-closed resonant frequencies of the bottles.

Volume-choke-volume filters are basically low-pass filters,
similar to those described previously. Typical transmission charac-
teristics as a function of frequency are given in Figure 28, which is
based on Tison and Atkins (2001). It is seen that above a certain
frequency, known as the cutoff frequency, this filter is highly
effective at attenuating all pulsations. At lower frequencies, the
filter is nowhere near as effective and at the filter’s resonant
frequency, known as the Helmholtz frequency (shown at about 8
Hz in the figure), pulsations will actually be amplified. The
Helmholtz frequency can be calculated from the following
equations from API 618 (1995):

(74)

(75)

Where:
fH = Helmholtz frequency (Hz)
c = Acoustic velocity (ft/sec)
V1 = Volume of bottle nearest pump (ft3)
V2 = Volume of bottle remote from pump (ft3)
µ = Acoustical conductivity (ft)
LC = Actual length of choke tube (ft)
DC = Choke tube diameter (ft)
A = Area of choke tube (ft2)

Figure 28. Typical Frequency Response of Volume-Choke-Volume
Filter.

If the filter’s design can be made symmetrical (i.e., both bottles
identical and bottle length same as choke tube length), API 618
(1995) states that Equation (74) can be simplified to the following:

(76)

Where:
fH = Helmholtz frequency (Hz)
c = Acoustic velocity (ft/sec)
L = Acoustic length of bottles and choke (ft)
DC = Choke tube diameter (ft)
D = Bottle diameter (ft)

Although, in some ways, the symmetrical design is optimum,
layout constraints usually preclude its use. It is typical to design the
filter so that the Helmholtz frequency is significantly below the
lowest pulsation frequency that needs to be attenuated. In general,
although API 618 (1995) defines the cutoff frequency as 1.414
times the Helmholtz frequency, the authors consider them to
provide adequate attenuation at all frequencies above approxi-
mately twice the Helmholtz frequency. It is, therefore, obvious that
the lower the Helmholtz frequency is, the greater the capability of
the filter. As a point of reference, API 618 (1995) provides the
following equation for the preferred Helmholtz frequency for
filters used in reciprocating compressor systems:

(77)

Where:
fH = Helmholtz frequency (Hz)
rpm = Compressor speed (rpm)

In comparison, Wachel, et al. (1995), recommend that the
Helmholtz frequency be kept below the 13 excitations, which is
equivalent to using a value larger than 60 in the denominator of the
above equation. However, there are many pump applications where
achieving this is impossible and one has to settle for placing the
Helmholtz frequency between two harmonics of running speed,
usually 13 and 23. This is not an easy task if the pump has to run
over a considerable speed range. If the application is for a multiple
cylinder reciprocating pump the authors recommend simply setting
the Helmholtz frequency at one-half of the plunger frequency.

In order to reduce the Helmholtz frequency, one must either
increase the volumes of the bottles or reduce the diameter of the
choke tube. Unfortunately, neither of these alterations come
without a price. As was stated previously for surge volumes,
increasing volumes of bottles is often in direct conflict with space
and cost constraints. Additionally, since the steady-state flow must
pass through the volume-choke-volume filter, a reduction in choke
diameter means the system must sustain additional pressure drop.

The mechanical analogy for the volume-choke-volume filter is a
low stiffness spring (volume) in series with a large mass (choke)
and another low stiffness spring (volume). If the excitation source
is placed on one side of the system and the components to be
protected on the other, it is easy to visualize that at frequencies
above the mechanical system’s natural frequency, the system
isolates the two from each other, with the isolation increasing with
frequency due to the inertia of the large mass. Likewise, in the
acoustic system, the filter acts to isolate the fluid in the discharge
line from the pulsations generated at the pump.

In order to demonstrate the performance of a volume-choke-
volume filter, the authors performed an acoustic simulation on the
system shown in Figure 29. The filter is placed in the main
discharge line between a reciprocating pump and a throttling valve.
The system is flowing water at 50 in3/sec and 250 psig discharge
pressure. The bottle volumes were chosen to be 100 in3, the tube
diameter was 0.40 inch, and the tube length was 24 inches. The
system was analyzed both with and without the filter and the
frequency responses, in terms of the valve flow fluctuations
divided by the pump flow fluctuations, converted to decibels, are
plotted in Figure 30.

Figure 29. Schematic of Volume-Choke-Volume Simulation Case.
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Figure 30. Volume-Choke-Volume Simulation Results.

Examination of the figure reveals that the filter performs in the
same general fashion described above. The filter is seen to be a true
low-pass filter since it attenuates the pulsations extremely well at
all frequencies above a certain cutoff frequency (approximately
160 Hz in this case). At low frequencies, the filter is seen to be
highly ineffective, being barely better than no filter at all. In the
vicinity of the 80 Hz Helmholtz frequency, the resonance condition
causes the performance with the filter to be worse than that with no
filter at all. However, once the frequencies reach the authors’
threshold level of twice the Helmholtz frequency, at 160 Hz, the
attenuation is seen to be good and it continues to improve as the
frequency increases.

Figure 31, which is patterned after Wachel and Tison (1994),
schematically shows several volume-choke-volume arrangements
that are employed in the field. The middle arrangement illustrates
that a volume-choke-volume filter can be created by simply adding
a baffle with an integral choke tube to a surge volume to divide the
volume into two separate chambers.

Figure 31. Possible Volume-Choke-Volume Filter Arrangements.

In addition to the Helmholtz resonance of the entire filter, the
filter’s internal components also have resonant frequencies.
Accordingly, when designing volume-choke-volume filters, as is
the case with all acoustic filters, the dimensions must be selected
to avoid acoustic resonances within the filter. Specifically, since
the choke tube behaves as an open-open pipe and the bottles act as
closed-closed pipes, the lengths of the bottles and choke tube must

be selected so as to avoid resonances with the expected excitation
frequencies. One of the reasons that the perfectly symmetric
arrangement is advantageous is that the bottles and choke tube
have the same length in that design. Accordingly, API 618 (1995)
specifies that as the preferred arrangement and also recommends
that, in the event that a perfectly symmetrical design cannot be
employed, the choke tube length should be made equal to one of
the bottle lengths, if possible.

While properly designed filter internals (i.e., choke tubes and
baffles) provide filtering that can greatly reduce unbalanced shaking
forces, the mechanical design of these components must always be
robust enough to withstand these forces, themselves. Wachel, et al.
(1995), provide some good design guidelines for choke tubes and
baffles in their Appendix. Although API 618 (1995) applies to com-
pressors, not pumps, it should be noted that it requires the use of
dished baffles, which are more robust, instead of flat baffles.

API 618 (1995) recommends that the diameter of the bottle
closest to the pump (referred to as the “cylinder bottle”) be greater
than or equal to the flow passage diameter at the pump flange.
Additionally, API 618 (1995) recommends that the diameter of the
bottle remote from the pump (referred to as the “filter bottle”) be
greater than or equal to three times the line piping diameter. If two
separate bottles are used to create a volume-choke-volume filter,
Wachel and Tison (1996) recommend that the external portion of
the choke tube between the two bottles be made straight in order to
minimize shaking forces.

Although volume-choke-volume filters are frequently used in
reciprocating compressor applications, their complexity is often
not needed in pump applications. Instead, many pumps use a deriv-
ative of this called a volume-choke all liquid filter, as is shown in
Figure 32. This filter is seen to employ a single bottle (volume)
near the pump flange, followed by a choke tube that may be either
internal or external to the bottle. The choke tube connects directly
to the main suction or discharge line through a reducer. This device
does not result in as sharp a cutoff of higher frequency pulsations
as does the volume-choke-volume filter but it is effective in pumps
since the allowable pressure drops in reciprocating pumping
systems are almost always higher than those in reciprocating com-
pressor applications. This allows pumps to reap the additional
filtering benefits provided by the smaller choke tubes that can be
employed and permits the elimination of the second bottle.

Figure 32. Volume-Choke All Liquid Filter. (Courtesy of Wachel
and Tison, 1994, Turbomachinery Laboratory)
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In addition to the obvious cost and space benefits, elimination of
the second bottle brings a couple of other changes. First, as stated
earlier, deleting this bottle reduces the attenuation of the filter, a
deficiency that is made up for by the employment of smaller choke
diameters in pumps. Second, removing the second bottle reduces
the Helmholtz frequency, which is an added benefit.

In the opinion of most experts, acoustic filters provide better
pulsation protection than accumulators and surge volumes.
Whereas, the effectiveness of the former is limited to low frequen-
cies, the latter’s ability to handle all frequencies above a certain
cutoff value means that they cover a much greater frequency range
than do the former. This greater range means that acoustic filters
will normally be effective over relatively large pump speed ranges.
Unlike accumulators, their performance is also relatively insensi-
tive to changes in line pressure since the acoustic velocities of most
liquids are virtually independent of system pressure. Additionally,
unlike accumulators, since they do not use any gas, they require
almost zero maintenance once they have been installed. On the
down side, acoustic filters are normally much larger than accumu-
lators due to the necessity of minimizing their pressure drop.
Additionally, they are also usually more expensive.

Of course, as Chilton and Handley (1952) point out, the above
advantages of acoustic filters over accumulators assume that the
main objective is to attenuate the pulsations within the lines, not
those within the pump itself. In general, accumulators do a better
job of attenuating the pulsations within the pump internals. Chilton
and Handley (1952) illustrate this by comparing the performance
of a single surge volume with that of an equivalent size volume-
choke-volume filter in a reciprocating compressor application.
They found that although the filter provided about twice as much
attenuation of the pulsations in the piping, it also resulted in
pressure fluctuations in the compressor that were more than twice
as large as those of the surge volume.

Dissipative Devices

Dissipative devices (also known as resistive devices) operate by
introducing damping into the system, similar to the function of a
viscous dashpot in a mechanical system. This is accomplished by
forcing the flow through small openings, thereby generating sub-
stantial pressure drop. The most frequently employed device of this
type is the orifice plate.

Of the three major types of pulsation control devices, orifices
are, by far, the cheapest and the one most amenable to “quick fix”
solutions. If a pulsation problem is uncovered in the field, it is rel-
atively easy to add an orifice to the system, compared to adding an
accumulator or acoustic filter. Of course, the likelihood that simply
placing an orifice in the most available location will solve the
problem is not terribly high. As with accumulators and acoustic
filters, the sizing and placements of orifices need to be guided
through an accurate acoustic simulation of the entire system.

Like energy absorbing devices and acoustic filters, the effective-
ness of dissipative devices is frequency-dependent. Normally, their
performance is better at high frequencies. Additionally, one of the
most important things about using orifices is that, in order for them
to be effective, they must be placed at or near the location of a
velocity antinode in the mode shape of the mode to be attenuated.
If, instead, the orifice is located at a velocity node, it will have no
impact on that particular mode. Since orifices are normally
installed at the pump flange and since a reciprocating pump
normally acts as a closed end (i.e., a velocity node), their effec-
tiveness is usually quite limited.

In general, a good starting point for sizing an orifice is to make
the orifice diameter equal to about one-half of the pipe diameter. In
fact, in order to provide any appreciable damping to the system, the
orifice diameter should not be any larger than one-half of the pipe
diameter. Thus, its best to start at the maximum size and work
downward’s, in the interest of minimizing steady-state pressure
drop.

In addition to adding damping to a system, orifices can also
change the natural frequencies. For instance, if an orifice is placed
at a velocity antinode (open end), it can change the end condition
from open to partially closed.

Per Vetter and Seidl (1993), in addition to providing damping by
viscous dissipation, orifices can also provide an isolating effect
since, since they represent a change in impedance, they generate
reflections.

Some engineers believe that the sizing of orifices is not as
critical to successful operation as the sizing of other pulsation
control devices. Although orifices undoubtedly lend themselves
better to trial and error in the field than other devices, a case study
reported by Lewis, et al. (1997), showed the impact the size of an
orifice can have on system acoustic behavior. In this study, they
were adding an orifice to the open end (i.e., velocity maximum) of
a pipe suffering from a quarter-wave resonance and they found:

• With an orifice sized to yield 2 psi pressure drop, pulsations
were reduced from 50 to 14 psi.

• With a 10 psi pressure drop orifice, pulsations were completely
damped out.

• With a 20 psi pressure drop orifice, the system changed to a
closed-closed pipe and half-wave resonances came into play.

Practical Considerations

When pulsation dampeners are employed in a system, the
question always arises as to what level of attenuation is sufficient
to avoid problems. Although nothing substitutes for the perform-
ance of a rigorous acoustic analysis, coupled with analyses of
potential problems, experience has proven that there are some
general pulsation levels that can be aimed for. For instance, Chilton
and Handley (1952) give a rule of thumb limit of 2 percent of line
pressure. They elaborate on this by stating that figure should be
decreased somewhat for high pressure lines and can probably be
increased for suction lines. Similarly, for a reciprocating compres-
sor installation, Grover (1966) recommends a limit of 2 percent of
line pressure for the peak-to-peak pulsations in the line and 7
percent of line pressure for the peak-to-peak pulsations at the com-
pressor. Grover (1966) continues by noting that certain parties have
advocated reducing the 2 percent figure to 1/2 percent for high
pressure systems and increasing that figure to 5 percent for very
low pressure designs.

Parry (1986) and Wachel, et al. (1995), both state that pulsation
dampener manufacturers normally size these devices based on
pump speed, flowrate, and operating pressure levels. Since they do
not normally consider the pulsation frequencies that need to be
controlled, this method is often inadequate. In addition to the size
of the dampener, its location in the system is critical. Many refer-
ences report on cases where a properly sized dampener placed in
the wrong location actually acted to increase pulsations, not
attenuate them. In general, in reciprocating pump applications, the
dampeners should be located as close to the plungers as possible—
thus, they are normally attached to the pump inlet and discharge
flanges. Regardless, in order to determine the proper size and
location for pulsation dampeners, a thorough pulsation analysis
must be performed.

Miller (1988) states that in multiple reciprocating pump installa-
tions, it is almost mandatory to employ properly designed
pulsation control devices in both the suction and discharge systems
for each and every pump. Even though multiple pumps are usually
designed to run at slightly different speeds, it is almost impossible
to prevent them from occasionally reaching a condition where all
of the individual pumps’ excitations act in-phase with one another
and are, thereby, directly additive. The amount of pulsation energy
and resulting pipe vibrations are then increased by a factor equal to
the number of pumps compared to their typical values.

When variable speed pumps are operated at speeds other than
their design speed, the effectiveness of most pulsation control
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equipment is degraded. This is because, as stated earlier, the
dimensions of such devices are selected to provide optimum atten-
uation at the normal excitation frequencies and wavelengths. Since
changing pump speed results in alteration of excitation frequencies
under most circumstances, the performance is degraded. Lovelady
and Bielskus (1999) suggest that the performance of acoustic
filters at off-design conditions can be improved by changing the
end conditions of choke tubes via tapering or perforations but such
practices usually hurt performance at the design speed.

Miller (1988) recommends that two or more accumulators
(having a total gas volume equal to that required for a single accu-
mulator) be considered for the discharge piping in long pipeline
service for two reasons. First, since pipeline system pressure is
brought up to operating levels quite gradually (over a period of
several minutes to an hour), there is a time where the discharge
pressure is lower than the precharge pressure that would be
employed in a lone accumulator, thereby leaving the system
without pulsation control. Employment of two accumulators with
different precharge pressures would alleviate that situation.
Second, it is often necessary to pump alternate batches of liquids
with greatly differing viscosities. Since the pipe frictional losses
for the two liquids will be greatly different, their discharge
pressure levels will also be different. The advantages of using dual
accumulators having different precharge pressures are apparent.

Singh and Chaplis (1990) report that due to the differences in
various manufacturers’ products, they have occasionally solved
field pulsation problems by simply switching the pulsation
dampener to an equivalent device from a different manufacturer.

In addition to money and size, the other cost almost always asso-
ciated with employing pulsation control elements is that they
introduce an additional parasitic pressure loss to the system (this is
particularly true for flow-through devices). Although the allowable
pressure loss is dependent on the system in question, API 618
(1995) gives a good ballpark number of 0.25 percent of the line
pressure at the location of the element.

Of course, adding an accumulator or filter to a system is not
always 100 percent beneficial from an acoustics standpoint,
either—the accumulator or filter can introduce pulsation problems
of its own. One common problem reported by both Blodgett (1998)
and Wachel and Price (1988) occurs when an acoustic filter or
flow-through accumulator is placed in the vicinity of a pump’s
suction or discharge flange (which is where they are located the
great majority of the time). This has the effect of introducing a
quarter-wave mode between the closed end of the pump manifold
and the entrance to the pulsation control element. This mode,
which Wachel and Price (1988) state normally has a resonant
frequency somewhere between 50 and 300 Hz is sometimes
referred to as an acceleration head mode. Per Wachel and Price
(1988), this mode, which is normally excited by higher plunger
harmonics, is responsible for the majority of cavitation problems
occurring in suction systems. In order to avoid problems, the
resonant frequency should be made as high as possible by locating
the element as close to the pump flange as possible. This mode can
also sometimes be controlled by installing an orifice at the pump
flange or accumulator entrance.

Another potential problem, courtesy of Wachel and Price (1988)
is that, in systems having multiple pumps, the units can interact
with each other to create severe problems if the gas charges in the
various accumulators are not identical. Additionally, if only one of
the accumulators loses its gas charge, the pulsations in all units can
be affected.

Although the preceding treatment is hardly exhaustive, it is
hoped that it provides the user with a flavor for the types of
pulsation control devices that are available. Probably the most
important concepts are that, regardless of what type of device is
used, it should be located as close to the excitation source (pump
or valve) as possible. Additionally, the selection and sizing of a
pulsation control device needs to be guided by a thorough system

pulsation analysis. In the words of Parry (1986), “Selection of
required pulsation dampeners should not be done until after the
acoustic analysis has been completed. The cost of this additional
analysis will pay for itself in increased production and reliability of
the piping system.”

ACOUSTIC SIMULATIONS

Since throughout a good portion of this tutorial, the authors have
continually emphasized the need for a good, thorough acoustic
simulation, this tutorial would not be complete without at least a
mention of that subject. However, since the authors recognize that
most pump users are not likely to ever need to run a pulsation
analysis of their own, this section is purposely limited to a short
overview.

There are two basic types of computer simulations for acoustic
problems, analog and digital. Naturally, the earliest simulations,
which began in the reciprocating compressor industry in the 1950s,
were all analog. Analog simulations rely entirely on the breaking
down of an acoustic system into its lumped approximation.
Although analog computer simulations can be done for the actual
acoustic system, the electrical analogies discussed previously are
often used to convert the acoustic system into an analogous elec-
trical network. The network is then analyzed on the analog
computer to determine the electrical system’s currents and voltages
as functions of time and the results are then converted to their
acoustic equivalents, flows and pressures.

Naturally, the advent of the high speed digital computer has
made digital simulations more popular and analog simulations rel-
atively obscure. In digital simulations, the governing equations of
fluid mechanics, the continuity equation, the Navier-Stokes
equations, and the thermodynamic equation of state, are directly
solved for the pressures and flows as a function of time. Since
digital simulations are fully capable of handling distributed
parameter systems, the limitations of lumped approximations that
are inherent in analog simulations are not an issue.

Although there are many different methods used in digital
acoustic simulation codes (finite volume, finite element, transfer
matrix or four-pole, and method of characteristics, just to name a
few), all of them are faced with the same task—the solution of the
two basic equations from fluid mechanics, the momentum equation
and the continuity equation. Normally, this is accomplished by
combining these two equations to obtain the one-dimensional wave
equation and then generating a numerical solution for that.

The authors’ acoustic simulation code employs a finite volume
scheme (similar to those used in CFD codes) to model the transient
or steady-state behavior of pump piping systems having any
number and arrangement of pumps, valves, pulsation control
elements, and piping. The one-dimensional wave equation is
solved using a staggered grid of pressure and flow nodes.

Regardless of the type of code employed, there are three basic
types of acoustic analyses that are normally performed—passive,
active, and transient. A passive analysis is used to determine the
system’s acoustic natural frequencies and associated mode shapes.
It is directly analogous to an undamped natural frequency analysis
in the field of mechanical engineering. Likewise, an active analysis
is analogous to a steady-state response analysis in the field of
mechanical vibrations. A continuous excitation, such as that
provided by a reciprocating pump, is applied to the system and the
system’s steady-state pulsations are computed. In an active
analysis, transient effects are assumed to quickly die out and are
not considered. A transient analysis models the behavior of the
system when it is exposed to a transient stimulus, such as the
closing of a valve. All water hammer problems require employ-
ment of a transient analysis.

Similar to a picture being worth a thousand words, a sample
analysis is probably more illuminating than the world’s greatest
description of one. Since the typical networks that the authors
analyze are far too complex to describe in the space available, the
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authors have invented the relatively simple, fictional case of Figure
33 to illustrate a typical analysis of a hydraulic transient or water
hammer problem. The system is seen to consist of a triplex recip-
rocating pump that is augmented by a charging boost pump of
centrifugal design. Both the suction and discharge of the triplex
pump are protected by surge volumes that span the three cylinders.
The pump provides flow to a branched line. Each branch contains
a throttling valve that permits adjustment of the flow split between
the two branches. Valve number 1 is a simple throttling valve that
is positioned mechanically while valve number 2 is an electro-
mechanical proportional valve.

Figure 33. Schematic for Transient Simulation Example.

At the time the transient begins, the valve areas are both wide
open such that the 200 gpm of water being output by the pump is
split evenly between the two lines, 100 gpm in each. The transient
consists of an abrupt failure in the power supply to valve number 2
at a time of 0.50 seconds, followed by an abrupt recovery 0.04
seconds later. Since the proportional valve is designed to fail
closed, the power failure and recovery result in the valve closing
and then reopening. Upon power failure, the valve’s flow area does
not close off instantaneously due to the mechanical response time
of the valve. Instead, the power failure and subsequent recovery
cause the flow area to vary in accordance with the top trace of
Figure 34.

Figure 34. Transient Simulation Example Results.

The results of the acoustic simulation are provided in the time
traces of Figure 34. Inspection of these traces reveals that the flow
through valve 2 drops to zero as it closes, causing the flow through
valve 1 to increase to 200 gpm. The sharp pressure spike corre-
sponding to water hammer is clearly seen in the line 2 pressure
trace. Additionally, line 1 also experiences a milder spike due to its
valve being abruptly forced to handle twice its initial flow.

It is hoped that this simple example provides the user with a
flavor for what goes into an acoustic analysis. Wachel, et al.
(1995), provide several other good examples of such analyses for
readers interested in seeing more.

All of this discussion of the value of pulsation analyses is
probably leading the user to question if such analyses are needed
in the design phase of every single pump and, if not, which appli-
cations can they be omitted on. Although the answer to the first
question is no, the dividing line between which pumping applica-
tions should be analyzed up front and which ones do not need to be
is in a highly gray area. In a lot of cases, it is a simple judgment
call based on how much risk the user is willing to take versus how
much up-front cost they are willing to incur. The authors believe in
erring on the side of caution since they are familiar with many
cases where the decision to forgo these analyses in the design
phase proved to be in the “penny wise, pound foolish” category. In
any event, the authors agree with Singh and Chaplis (1990) that, in
the very least, acoustic simulation in the design phase is imperative
for critical pump applications, high energy pumps, and configura-
tions employing multiple reciprocating pumps.

CONCLUSION

A relatively comprehensive look at the field of pressure pulsa-
tions in pumping applications has been provided. Although a great
deal of material has been covered, the key points that the user
should take away from this tutorial are as follows:

• Pressure pulsations are sources of significant problems in many
pumping applications.

• A large percentage of pulsation problems are associated with
acoustic resonance. In most situations, this condition needs to be
avoided.

• Systems employing reciprocating pumps, especially if there is
more than one, need to be handled with care.

• Although reciprocating pumps have a well-deserved notorious
reputation for causing pulsation problems, they are not the only
pump types that are culpable. Pulsation problems can also often
occur in centrifugal, gear, vane, and other pump types.

• In many applications, a thorough pulsation analysis should be
performed during the design phase.

• Most field pulsation problems are preventable.

• Pulsation control components (acoustic filters, accumulators,
orifices, etc.) should not be selected or sized without the guidance
of a good acoustic analysis.

• Pulsation analysis and the design of pulsation dampeners are not
exact sciences that can be performed by just anybody. The impor-
tance of the skill, judgment, and experience of the engineer
involved should never be underestimated. In the words of Blodgett
(1998), “It is also important to understand that the value and
quality of a design is more dependent on the quality of the engineer
who makes design decisions than on the analytical tools.”
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