Effect of Gas Seals on Pump Performance at Low Suction Pressure and Flow

Chris Graser, P.E.
Bill Goodman
Objective

Understand the interaction between the gas required to lubricate the seal and the effect of the gas on pump performance.
Background

- NPSH test problem with a gas seal
- API end suction pump (1x2-9)
- Tested NPSH\(_r\) at the rating was 3.7m
- NPSH\(_a\) is 3.0m
- Customer required that the NPSH\(_r\) can not exceed 1.5m
- Quoted NPSH\(_r\) was 0.6m
- Pump normal flow 10% BEP & rated flow 15% BEP – these are system requirements
 - Pump designed to operate down to 10% BEP
Operating Conditions

- **Service:** C4700 Suction Condensate Injection
- **Liquid:** Hydrocarbon
- **Temp.:** 31º C
- **Vapor Pressure:** 18 kPa abs. (1.8 m abs.)
- **Specific Gravity:** 0.666
- **Viscosity:** 0.330 cp
- **Capacity:** 2.3 m³/hr Normal, 3.2 m³/hr Rated

- **Head:** 65 m
- **Speed:** 2930 rpm
- **NPSHr:** 0.6 m
- **NPSHa:** 3.0 m
- **Suction Pressure:** 40 kPa gauge (4.08 m gauge, 14.29 m abs.)
- **Min. Flow:** 2.11 m³/hr
- **Seal:** Non-Contacting Seals Back-to-Back, API Plan 74
Pump Performance Curve
Cross Sectional as Tested

All Flows

>50% BEP

<50% BEP

Balance Hole Location
Baseline Data

B.H. = Balance Hole
S.S. = Contacting Single Wet Seal w/ Plan 11
Effect of Varying Gas Pressure

Prod Test

Perf Curve

Prod Test w/o B.H. & Gas
Seal Set @ 0.5 Mpa

Prod Test w/o B.H. & Gas
Seal Set @ 0.85 Mpa

Prod Test w/o B.H. & Gas
Seal Set @ 1.0 Mpa

B.H. = Balance Hole
Cross Sectional - Bypass Line to Suction Vessel & Std. Throat Bushing

<50% BEP
Test with Bypass Line to Suction Vessel & Std. Throat Bushing

Flow (m³/hr)

NPSHr (m)

- Prod. Test
- Perf. Curve
- Prod. Test w/o B.H. & Gas Seal Set @ 0.5 Mpa w/ Bypass Line

B.H. = Balance Hole
Cross Sectional - Bypass Line to Suction Vessel & Close Clr. Bushing

<50% BEP
Test with Bypass Line to Suction Vessel & Close Clearance Throat Bushing

![Graph showing NPSHr vs Flow for different test conditions.]

- **Prod. Test**
- **Perf. Curve**
- **Prod. Test w/o B.H. & Gas Seal Set @ 0.85 Mpa w/ Bypass Line & Close**

B.H. = Balance Hole
Bypass line was clear to visually see size and quantity of gas bubbles
Installation
Conclusions & Recommendations

- Nitrogen gas caused the impeller to stall
 - Different than impeller cavitation due to insufficient NPSH
- Testing performed on only one pump type
 - Further testing needed to fully understand all of the effects
- Varying gas pressure
 - No significant impact
- Impeller without balance holes
 - Reduces amount of gas reaching impeller inlet
 - Increase in thrust loading
 - Increase seal chamber pressure
 - Requires increase in gas supply pressure
 - At low flow internal recirculation occurs
- Bypass line to suction vessel
 - Reduces amount of gas reaching impeller inlet
 - Larger the size of the line the better (≥ 25 mm)
 - Bringing the line back to vessel assures gas will dissipate prior to reaching impeller inlet
Conclusions & Recommendations

- Close clearance throat bushing
 - Assures gas enters bypass line
- All three were required for this application
- Didn’t achieve liquid seal tested value of 0.6m but reduced NPSH_r by 4x from initial test
- Being at 94% vacuum
 - Requires system to be 100% sealed
 - Harder to seal under vacuum than under pressure
 - As pressure is reduced size of bubbles increases
 - \(0.1\)mm @ atmosphere -> \(0.14\)mm @ 50% vacuum -> \(0.2\)mm @ 75% vacuum -> \(0.32\)mm @ 90% vacuum -> 1mm @ 100% vacuum
- Avoid gas seals
Questions?