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ABSTRACT

The transformation between work and other forms
of energy is accomplished in turbomachinery. The abil-
ity of a turbine to produce work when handling a com-
pressible fluid and when taking either its axial or radial
configuration is presented for the user of the equipment
rather than the designer or research worker.

The basic conservation principles of mass, linear
momentum, energy, and angular momentum in their
steady, one-dimensional form are summarized; the fig-
ures of merit of turbine stage performance including
efficiency, reaction and reheat are defined and inter-
related. Correlation of losses with performance parame-
ters is presented first for the cver-all stage. Then the
Soderberg correlation is provided for handling the axial
stage, component by component, and the Benson corre-
lation is introduced for use with a radial stage. An
example lists all of the parameters and flow conditions
which can be predicted for a prospective design or evalu-
ated for an existing unit of hardware.

INTRODUCTION

Turbomachinery is commonly used to bring about
the transformation between work and other forms of
energy including internal, potential, and kinetic energy,
and to a much lesser extent, heat. As a transformer of
energy, turbomachinery plays an important part in in-
dustrial processes and systems. It is to the designer and
operator of such systems, who must be able to set realis-
tic specifications and verify achievable performance, that
this paper is directed.
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The apparatus in which the transformation from
work to the other energy forms takes place is called a
pump when handling incompressible fluids and a com-
pressor when handling compressible fluids. Conversely,
the transformation of the various energy forms into work
occurs in a turbine regardless of the compressibility or
incompressibility of the working fluid. We shall be
concerned only with turbines handling compressible
fluids in this paper.

The production of work by a turbine depends upon
its ability to first produce then reduce the angular mo-
mentum of the working fluid. Where a large mass flow
is handled by the turbine, the angular momentum change
can be carried out at essentially a constant radial posi-
tion from the rotor axis of rotation: such a configura-
tion is an axial turbine. However, where only a small
mass flow is available to the turbine, a reduction in both
tangential velocity component and radial position of the
fluid is necessary to realize the greatest possible angular
momentum change: the resulting configuration is an
inward radial flow turbine. After considering the con-
cepts which are applicable in general to both turbine
types, we shall develop the loss correlations in parallel
for the axial and radial turbine.

Since every effort has been made to make the paper
self-contained, the subject has been circumscribed. An
account of the performance, design methods and proce-
dures, research efforts and unsolved problems would
comprise a monograph or book on each turbine type.
As a consistent continuation of the work on axial tur-
bines, the book by Horlock! is recommended to the read-
er. No comparable book exists on the radial turbine
but the monograph by Mizumachi® is suggested.

DESCRIBING EQUATIONS

We begin with the describing equations. The prin-
ciples of the conservation of mass, linear and angular
momentum, and energy describe the fluid flow phe-
nomena in turbomachine components. The formulations
of these principles are often misleadingly called the gov-
erning equations even though, of course, they exert no
influence on the fluid dynamic events.

A general view with nomenclature of an element of
a turbomachine passage is shown in Figure 1. A com-
plete list of the nomenclature used in the paper appears
in section 1. In Figure 1, the passage is oriented with
respect to a cylindrical coordinate system (r, 9, z). The
unit vector in the r-direction is i, rotating i 90° in the
positive ¥-direction locates j. Perpendicular to the plane
formed by ¢ and j is the unit vector k in the z-direction,
shown positive in the figure. Rotation of the turboma-
chine rotor takes place about the z-axis and is considered
positive in the sense of positive ¥. A fluid particle p
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Figure 1. Flow Along a Surface of Revolution in a
Turbomachine.

located at a radius R by the radius vector r from the
origin moves with the velocity ¢. The components of
the velocity in the three coordinate directions are u, v, w,
respectively. However, these velocity components are
usually replaced by a more convenient group in the tur-
bomachinery context. The tangential or blade-to-blade
component of ¢ is denoted ¢, and the meridional com-
ponent of ¢, which is the resultant of u and w, is denoted
¢w- Then u is used to denote the rotor tangential velocity
at the point in question (uz s+ ¢,) and w indicates the
particle velocity relative to a coordinate system rotating
with the angular velocity of the rotor. Finally, n is a
unit vector positive in the sense of being outward drawn
from the surface to which it is perpendicular. Thus, at
the inlet station (1), n, is parallel to ¢, but of opposite
sense while at (2), n, and ¢, are parallel and of the same
sense.

The formulation of the conservation of mass princi-
ple is summarized in Table 1a. We do not look at dis-
crete particles but rather at a continuum of particles
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Table la. Conservation of Mass Principle (Continuity
Equation).

comprising the system moving through the turbomachine
passage. The mass of the system is defired by eq. (1).
The conservation of mass of that system is expressed
by eq. (2). The conditions of the system moving
through the passage are then related to conditions in the
flow as observed from a fixed position by means of
Reynolds Transport Theorem. Application of this theo-
rem results in eq. (3) which is a useful, integral formu-
lation of the principle. The principle in the form of a
differential equation appears in eq. (1) where an ap-
propriate form of Green’s Theorem relating area and
volume integrals was used to first modify eq. (3). The
simplification to steady, one-dimensional flow is most
important to our present interests. For steady flow,
changes with respect to time do not occur (¢/ 0t =10);
for one-dimensional flow, changes in flow conditions
occur only in the direction of flow. The second integral
in eq. (3) can then be evaluated with the result shown
in eq. (5). The useful forms, eq. (3}, (4) and (5) are
each often called the continuity equation.

The reader must realize that the equations in Table
la do not constitute a derivation of eq. (5) but they are
a reminder of the important ideas behind the existence
of eq. (5). A more complete explanation and derivation
can be found in the basic reference books by Shapiro®,
Daily and Harleman®, Owczarek”, and Thompson". The
comments apply equally to the other parts of Table 1.

A summary of the principle of conservation of
linear momentum appears in Table 1b. After defining
the momentum of the system in eq. (6}, we see that it
can be changed by the application of body and surface
forces. The principle is expressed in eq. (7) and is just
Newton’s second law of motion. The integral form for
fixed coordinates is given in eq. (8) where an important
simplification has been introduced. Surface forces arise
from the application of stress to the surface. Such stress
is, in general, both normal (pressure) and tangential
(shear) to the surface. Here the shear stress is omitted
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Table 1b. Conservation of Linear Momentum Principle
(Equations of Motion).
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as a consequence of assuming negligible viscosity of the
working fluid, and only a surface force due to the pres-
sure appears in eq. (8). Nonetheless, viscosity is at the
basis of the existence of losses in turbomachine passages.
We shall reintroduce this effect at a later point in this
paper by using loss coefficients which modify the results
of inviscid flow calculations. The differential form of
the equations of motion is given by eq. (9} and is often
called Euler’s equation. Once again applying the condi-
tions of steady, one-dimensional flow, integration of eq.
(8) results in Bernoulli’s equation, eq. (10). It is valid
for both rotational flow along a streamline and irrota-
tional flow throughout the flow field. If one assumes
isentropic flow (ds == 01}, the integral in eq. (10) be-
comes the enthalpy and the Bernoulli constant is synony-
mous with the stagnation enthalpy.

The conservation of energy principle is outlined in
Table 1c, where the energy of the system is defined by
eq. (12). The principle is well known as the first law
of thermodynamics where the change of energy of the
system is the net effect of the heat and work transfers,
eq. (13). Referred to a fixed observer, we have eq.
(I4a) and after a considerable calculation, this becomes
eq. (14b). It is then convenient to group all the volume
integrals and write the differential form eq. (15). Now
assuming no heat or work transfer together with steady,
one-dimensional flow, we obtain the simplified differen-
tial form eq. (16) which is interpreted to be the product
of the magnitude of the velocity and the directional
derivative of the Bernoulli constant in the direction of
the flow. Since the velocity is not zero, the change of
the Bernoulli constant along a streamline must be zero.
Integrating eq. (16), we can only conclude that the stag-
nation enthalpy is constant along a streamline, eq. (17).
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Table 1c. Conservation of Energy Principle (First Law
of Thermodynamics).
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Table 1d. Conservation of Angular Momentum Princi-
ple (Moment of Momentum).

The form of eqgs. (14) and (15) was developed with
a view to yielding eq. (17). The reader is advised that
many forms of the energy equation are developable for
other purposes as is evident in the books referred to
above. Our purpose in obtaining eq. (17) was twofold.
Under the assumptions identified above, the energy equa-
tion and Bernoulli’s equation of motion are not inde-
pendent and unique results, but rather one and the same
thing. On the other hand, as pointed out in the intro-
duction, it is the purpose of turbomachinery to effect the
transformation between work and other forms of energy.
Thus in a rotor passage or in a turbomachine stage which
includes a rotor passage, the work term will not be zero,
the consequence of which is to change the value of the
Bernoulli constant of the flow upon passage through the
rotor.

The last of the conservation principles is concerned
with angular momentum (moment of momentum) and
is summarized in Table 1d. The angular momentum of
the system, eq. (18) is just the moment of the linear
momentum of the system, eq. (6). In addition to the
moments of the body and surface forces, we admit the
possibility of mechanical moments or torques, as are
encountered in turbomachine applications, having an ef-
fect on or being affected by the angular momentum
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change of the system, eq. (19). To a fixed observer,

the result is eq. (20).

Up to this point we have attempted to present the
summaries in the parts of Table 1 with a certain sym-
metry. It is not possible to carry that idea any further
in the present example. The angular momentum princi-
ple is usually used for one of two purposes. Had the
full stress tensor been included in the linear momentum
equation, the conservation of angular mometum could
have been used to show that that tensor must be sym-
metric, a result which has consequences in the study of
viscosity and the constitutive equations of the working
fluids. Such considerations are outside the scope of the
present paper. Of more immediate importance is the use
of the angular momentum equation to compute the torque
or mechanical work transfer of a turbomachine in which
the angular momentum of the flowing fluid is changed.

In eq. (20), the resultant moment of the body force,
the surface force and the mechanical torques is a vector
quantity with components acting about the three coordi-
nate axes. The components about the axes in the ¢ and
J directions are simply equilibrated by the bearings of a
turbomachine rotor. The moment about the z-axis, the
axis of rotation of the rotor, is capable of producing a
work transfer across the boundaries of the machine. The
remainder of Table 1d is devoted to calculating this
torque and the mechanical work transfer which results.

The component of the moment about the z-axis is
written in general in eq. (21). After applying the sim-
plifications of steady, one-dimensional flow, eq. (22) is
easily obtained and is known as Euler’s Turbine Formula.

-
The circumflex over the product Rv denotes a “suitable”
average. Consistent with the one-dimensional calcula-
tions in connection with the previous conservation equa-
tions, v (or c¢,) is considered constant over the cross-
section. Where R is also constant as at the discharge
of a radial compressor impeller, no problem arises.
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Figure 2a. Radial Turbine Stage Configuration.
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Figure 2b. Axial Turbine Stage Configuration.

Where R varies over the cross-section, as at both the
inlet and exit of an axial turbine rotor. a root-mean-
square value of R is often used but no generally accepted
custom seems to exist. Again if R is the constant tip
radius then QR = u and QRe¢,, = uc,. Remember, how-
ever, that only a special average leads to this attractive
result.

The mechanical energy or work term for the energy
equation may be calculated by dividing the product of
the torque and the angular velocity by the mass flow
rate. Substituting this result in the energy equation for
adiabatic flow (no heat transfer) results in eq. (23),
which together with the momentum equation eq. (11)
and the continuity equalion, eq. (5), is a basic tool of
one-dimensional aerodynamic analysis or synthesis.

It should be noted that the work calculated by eq.
(23} corresponds to the energy actually yielded by the
working fluid but is diminished by three small parasite
losses before delivery as shaft work by the turbine. Rotor
disk friction returns a small amount of the work as heat
to the downstream flow while seal and bearing friction
dissipates a small amount of the work which is lost from
the system.

FIGURES OF MERIT
Stage Configuration

Before proceeding to summarize the various defini-
tions of efficiency, reaction, etc. and to show their inter-
relations, we have assembled in Figure 2 sketches of the
physical configuration of both a radial and an axial
turbine stage, the stage blading and velocity diagrams
as well as an enthalpy-entropy diagram on which the
stage flow processes can be traced. Corresponding sta-
tions (1), (2), (3), and (1) are shown in Figures 2a
and 2b for each turbine type. Stations (1) and (2)
designate stator or nozzle inlet and exit respectively while
stations (3) and (1) specify rotor inlet and exit respec-
tively. Other nomenclature and terms are clearly shown
on the figure.
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Figure 2c. Stage Nomenclature and Velocity Triangles.

With little effort, Figure 2c can be imagined applica-
ble to both radial and axial turbine types. In each case
the gap between stations (2) and (3) is exaggerated to
accommodate the velocity diagrams. Two of the many
blades in both the stator and the rotor are shown in the
figure. To the left, the geometry of the blade profile
is illustrated. The stator blade angle & is measured
between a line tangent to the camber line at the blade
edge and the direction parallel to the rotor axis (the
meridian line). The rotor blade angle measured rela-
tive to the moving blade is denoted B8 and again meas-
ured between camber line tangent and meridian line.
Other profile dimensions and angles are shown. To the
right, the geometry of the gas flow over the blade profile
is illustrated. The gas velocity ¢ makes an angle a at
the stator blade edge and is measured with respect to
the meridian line. The gas relative velocity w makes
an angle B at the rotor blade edge and is measured with
respect to the meridian line. Other components of the
gas velocity and the rotor tangential velocity are shown
on the velocity diagrams.

The distinction between the blade angle and the gas
angle at the same station has been emphasized above
because a difference at the blade leading edge, say, of
the gas flow direction and the blade camber line results
in flow at incidence and a loss occurs. At the blade
trailing edge, similar misalignment is called a deviation.
To complete the nomenclature the sum of the blade

angles is called the blade camber while the sum of the
gas angles about a blade describes the turning of the
flow and is called the deflection. Expressions for these
terms for both stator and rotor are included in Figure 2c.

Stage h-s Diagrams

Perhaps the most important diagram for describing
the flow phenomena in a turbine stage at our present
level of one-dimensional flow analysis and loss correla-
tion is the enthalpy-entropy diagram for the stage shown
in Figure 2d. Station numbers on this diagram coincide
with those on the previous parts of Figure 2. Two lines
denoting the flow process are shown even though, of
course, only one process takes place. The top line con-
nects stagnation conditions at the several stations while
the lower line denotes the static conditions. Notice that
the same entropy value is applicable to both static and
stagnation conditions at a given station. Also note that
an actual process terminates in an unprimed station num-
ber while the same process under ideal isentropic con-
ditions would have terminated at the station designated
by the corresponding single primed number.

Isentropic Efficiency and Reaction

There are numerous parameters by which the ability
of a turbine to convert energy into mechanical work can
be judged. As a group they may be designaled figures
of merit and we shall guard against allowing the group
to become too large.

A summary of the formulations of the figures of
merit is given in Table 2. Eqgs. (24), (25) and (26}
comprise the definitions of the stator or nozzle efficiency,
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Figure 2d. h-s Diagram for Turbine Stage Process.
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Table 2a. Figures of Merit: Isentropic Efficiency and
Reaction.

the rotor efficiency and the stage isentropic efficiency
respectively. The station points at which the enthalpy is
evaluated are those shown in Figure 2d. The stage
isentropic efficiency is often called the stage adiabatic
efficiency. The thermodynamic basis for making such
a definition of stage efficiency is discussed by Horlock!

(Chapter 1).

In general, the slope of the constant pressure lines
on the diagram is inversely proportional to the absolute
temperature for any gas. Such lines curve upward and
diverge slightly at increasing entropy. If a process does
not encounter either a large pressure change or a large
entropy change, then it is an acceptable approximation
to assume that the constant pressure lines are straight
and parallel. The approximation in eq. (27) is made
on this basis and manipulation of the enthalpy differ-
ences produces eq. (28) where the stage and rotor effi-
ciencies are identifiable. Expanding one of the terms
in eq. (28) yields eq. (29) in which the degree of reac-
tion of the turbine stage is defined. Putting it all to-
gether results in eq. (30), a remarkably simple relation
between stage, nozzle and rotor efficiency and the reac-
tion of the stage.

Nozzle and rotor efficiencies have been defined to
yield the simple relation eq. (30). Their definition is
identical or nearly identical to many appearing in the
literature. Originally the reaction of a stage was ex-
pressed in terms of the pressure when fluid flow condi-
tions were essentially incompressible. Now it is ap-
propriate to use enthalpy with compressible fluids. The
reaction expresses the ratio of static enthalpy change in
the rotor (h; — h,) to that over the stage (h; — h,). It
really describes the portion of the expansion taking place

in the rotor in comparison to the expansion across the
stage. The expression for the reaction in eq. (29) is
then recognized if the entering velocity &;, and the leav-
ing velocity &, are approximately equal to each other
and considered small with respect to ;.

Polytropic Efficiency and Reheat

In Table 2b, the definition of the figures of merit
of a turbine stage are continued. An incremental enthal-
py drop dh, occurs across a “small” stage and with this
the small stage efficiency is defined in eq. (31). If the
small stage efficiency is constant for a large number of
increments in a turbine stage, integration throughout the
stage yields eq. (32) where the constant efficiency ap-
plicable across the stage is called the polytropic effi-
ciency. Comparing terms in eq. (32) leads to eq. (33)
where n is the polytropic exponent used to relate the
pressure and the temperature in the actual expansion
process. Eq. (31), relating the polytropic efficiency to
the isentropic efficiency using the stage pressure ratio,
is found with a little algebraic manipulation.

Whereas the assumption of straight, parallel con-
stant pressure lines on the h-s diagram led to eq. (30),
the retention of their slightly diverging characteristic
leads to the stage or turbine reheat factor. The ratio of
the sum of the incremental isentropic enthalpy drops
through the many “small” stages to a single isentropic
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Table 2b. Figures of Merit: Polytropic Efficiency and
Reheat.
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enthalpy drop over the whole stage is defined as the
reheat factor, see eq. (35). Relating the isentropic drops
to the actual changes by means of the efficiency, the
reheat factor may be expressed as the ratio of the isen-
tropic to the polytropic turbine stage efficiency, eqs. (35)
and (36). Since the constant pressure lines diverge at
greater entropies, the sum of the small stage isentropic
enthalpy drops will be somewhat larger than the single
over-all isentropic change from the initial conditions over
the same pressure interval. Hence, the reheat factor is
somewhat greater than unity. Consequently, the turbine
isentropic efficiency is somewhat greater than the tur-
bine polytropic efficiency. In any event, since the poly-
tropic efficiency is less than unity, eq. (33) also shows
that the polytropic exponent is greater than the ratio of
the specific heats of the gas handled by the turbine.

Fluid Mechanics of a Turbine Stage

Many of the ingredients for a one-dimensional fluid
mechanical analysis or synthesis of a turbine stage are
now at hand. These include the equations of continuity
eq. (5), motion eq. (11}, energy eq. (17), conversion
between angular momentum and work eq. (23), and the
various definitions and interrelations between efficiency,
reaction and reheat just summarized. Occasionally some
additional knowledge of basic compressible fluid dy-
namics may be needed in carrying out a stage analysis,
knowledge which we will not be able to review here.
Reference to Horlock’s work' is suggested for those inter-
ested in axial turbines. Radial turbines do not enjoy
as mature a development as axial turbines and no single
reference book can be identified. However, a fairly
complete account may be constructed from references 2,
and 7-18.

However, one important point remains and the bal-
ance of this paper is given to its consideration. Refer-
ring to Figure 2d, it will be necessary to determine con-
ditions at station (2) from (2'), at (3) from (2), and
at (4) from (1) in order to complete an evaluation of
turbine stage performance. These three steps establish
actual flow conditions in place of the ideal using corre-
lations of the nozzle loss, the incidence loss and the rotor
passage loss respectively.

CORRELATION OF TURBINE EFFICIENCY WITH
FLOW CONDITIONS AND STAGE CONFIGURATION

Before we consider the correlation of losses in the
individual elements of a turbine stage, we recognize a
general correlation of stage performance with flow con-
ditions and stage configuration first suggested by Balje.'"
More recently, Balje and Binsley,”" assuming that nine
independent variables would adequately describe the
turbine stage performance, used the method of dimen-
sional analysis to obtain the six dimensionless parameters
listed in Table 3. Balje' found previously that effi-
ciency was primarily a function of specific speed and
specific diameter; this is shown in Figure 3 which is
adapted from Figure 15 of reference 19. The remaining
parameters must at least be accounted for.

While dimensional analysis suggested a Mach num-
ber influence in general, experience indicates that the
crucial condition is in the relative flow at the rotor inlet.
If the relative velocity exceeds the sonic speed, then

.
Specific Speed. Ny = N(&y) Z/KH,J)J/‘

Specific Oiwameter: Dg = dz/f/[,)y‘/(ot)//’

sentropic Efficiency:  n. = (Hps = hoad/(hos = Posr)
Madhine Reynolds Nomover: Re* = uzds o4 Hy

Cotor Infet Relative Mach Nember: My, . = W3/ a0y

Ratio o 5/}6(/)4.6 Heats 7 = (/_7/(‘,.
Table 3. Dimensionless Parameters for Balje Stage Per-
formance Correlation.

shock wave patterns are created in the blade passages
resulting in rapidly increasing losses. [Figure 3 is limit.
ed, therefore to M4 ,,<<I. Since this allows some slight-
ly supersonic conditions in the absolute flow, say at the
stator exit, it is not a stringent requirement for industrial
machinery. The influence of the ratio of specific heats
is not readily evident in references 19 and 20. Where il
is mentioned at all in reference 19, y = 1.4, the value
for gases comprised of diatomic molecules. The smal
variation of y with temperature will affect the efficiency
to the extent of 2 to 1% perhaps but that is within the
precision of the correlation, Figure 3. The large varia.
tion in y comes with the atomic structure of the gas
Vavra,*! for example, points out the great performance
differences encountered when handling helium in nuclea:
power systems. For such a monatomic gas, v = 1.66
However, the effects of large y and the small molecular
weight have not been sufficiently isolated to assign the
contribution of each in modifying the diagram values o
Figure 3.

Of more common influence is the effect of the ma
chine Reynolds number, Re*. Comparing Figures 1¢
and 16 of reference 19 shows that the radial and axia
turbine correlations are quite similar for N, > 10 anc
adequately represented by our Figure 3 for Re* = 10°
The influence of Re* on design point stage efficiency i
described in Figure 1 where at Re®™ = 10", the reference
value of the isentropic efficiency is the diagram valuc
from Figure 3. If, after using the stage specific speec
and specific diameter to determine the efficiency, the
machine Reynolds number Re® =4 10%, the diagram effi
ciency should be modified as a function of N, and Re’
from Figure 1. An elaboration of the Reynolds numbe:
effect appears in reference 22, and additional specific
information is shown in Figure 3 of reference 27 (par

B).

A word qualifyving the use of the N, correlatior
is desirable. While similarity analysis for correlating
compressible fluid dynamic phenomena dates from th
1930’s, Cordier®* was perhaps the first to show that bes
performance of many turbomachines plotted on Ny — D
coordinates produced a locus of points approximating
the ridge line on the efficiency contour map of Figure 3
Shepherd” gave the method and model which Balje!” anc
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20

Balje and Binsley®" used in developing the details for the
turbomachinery application. Borel** has carefully eval-
uated the basis on which such dimensional analysis is
made and reference 25 gives an idea of the extent to
which such work can be carried. Vavra®! criticizes the
approach by citing performance of actual turbomachine
units which greatly exceeds the diagram values. This
does not discredit either the method or Figure 3 but
only emphasizes that each user must assemble his own
data from experience and maintain the diagram up-to-
date. In section G, the example of radial turbine stage
synthesis was carried out partially based on the N.D,
correlation of stage efficiency.

LOSS MECHANISMS

Information on the flow processes in the individual
elements of a turbine stage is sufficiently complete that
loss mechanisms may be described and actual flow con-
ditions correlated with respect to apparently basic param-
eters. In this section the mechanisms will be identified
and references where the correlations were formulated
will be tabulated. In the next section, a procedure as
consistent as can be devised at this time, will be present-
ed for ascertaining the actual flow conditions based on
the ideal conditions for both an axial turbine stage and
a radial turbine. When time and knowledge allow, the
element-by-element analysis of section F is to be pre-

ferred to the over-all correlation of stage performance
given in section D.

Axial Turbine Loss Mechanisms

Losses in an axial turbine stage passage are associ-
ated with the blade profile, the passage sidewall or end-
wall, secondary flow, blade tip running clearance, flow
incidence to the blade leading edge, and disk friction.
The blade profile loss is due to boundary layer growth
in the direction of flow. The loss is one of stagnation
pressure due to a loss of momentum of the viscous fluid.
The boundary layer growth, hence loss, very much de-
pends on the profile shape and the pressure gradient to
which the flow is subjected. The loss coefficient results
from averaging the loss suffered in the boundary layer
over all the flow in the passage. The endwall loss is
again due to a loss of momentum in the boundary layer
but it is clear that neither the pressure gradient nor the
flow direction to which the endwall flow is subjected is
the same as the profile flow. Despite this, the same loss
coefficient is often used for both. More suitably, the
endwall loss is combined with the secondary flow loss.
Adjacent blade profiles produce both the desired exit
flow conditions and a pressure gradient across the pas-
sage from pressure surface to suction surface. On oppo-
site sides of the same blade the different pressure distri-
butions produce the blade loading. Across the flow
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passage, the pressure gradient induces a component of
flow from the higher to the lower pressure regions which
is often identified as the secondary flow. It is synony-
mous with a three-dimensional boundary layer, is subject
to complicated separation phenomena and results in the
appearance of vorticity in the exit flow. Mechanically,
the end of the moving (rotor) blades is free of the shroud
casing. Pressure differences across the blade thickness
then induce leakage flows through the clearance space.
Pressure loss, turbulence and interference with the pri-
mary passage flow contribute to the tip clearance loss.
Shock-free flow at the leading edge of the blade occurs
when the gas angle and the blade angle coincide. When
the gas angle varies from this condition, a component of
the velocity perpendicular to the camber line is partially
or wholly dissipated as a loss in kinetic energy. Finally,
in the close clearance between rotor disk and casing
diaphragm, the entrapped fluid is dragged about by the
rotor and viscous dissipation becomes a power loss.

Influence of Reynolds Number on Turbine Stage Efficiency.

The mechanisms described above have been recog-
nized and converted into correlations of the several losses
whereby either the enthalpy or the stagnation pressure
at the actual exit conditions is related to the same prop-
erty which would be obtained at the conclusion of an
isentropic process. For the axial turbine stage, the refer-
ences where the correlations may be found are given in

Table 4.

Radial Turbine Loss Mechanisms

The passages in a radial turbine stage suffer losses
of the same nature as the axial stage. As mentioned
previously, the radial turbine does not enjoy the same
maturity as yet as the axial, hence not boundary layer
considerations but rather pipe or channel friction loss
effects are the basis for the nozzle passage and the rotor
passage loss correlations. The rotor blade incidence and
the disk friction give rise to losses identical to the axial
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configuration. The rotor discharge loss is worth a sep-
arate note. In a single stage machine, the rotor dis-
charge loss, associated with the unrecoverable kinetic
energy of the exit flow, is often isolated from the stage
performance and the isentropic efficiency is given on a
total-to-static basis. Where the discharge kinetic energy
is recoverable as in a multistage machine, the total-to-
total basis for the efficiency is used.

The correlations of the radial turbine loss mecha-
nisms appear in the literature as given in Table 1. Of
all investigators, only Mizumachi® approaches the nozzle
and rotor passage losses with an account of profile, end-
wall, and secondary effects. He then combines the re-
sults into an equivalent passage loss coefficient.

LOSS CORRELATIONS

Numerous attempts have been made to assemble cor-
relations of the many loss effects into an over-all stage
performance prediction method. We will present the
Soderberg?®? correlation for the axial configuration be-
cause of its simplicity and unusual ability to predict ac-
tual results. The correlation has been applied by Sten-
ning*® and evaluated by Horlock,! Amann and Sheri-
dan,** Lenherr and Carter,* and Brown®® all of whom
give it a slight preference over that of Ainley and Mathie-
son.*” It must be said, however, that the latter correla-
tion is much more elaborate and directed at two-dimen-
sional design rather than the purposes of this paper.

The Soderberg axial turbine loss correlation is sum-
marized in Table 5. The correlation is strictly applicable

Lo3s Mechanisms for Axial Tirbmes

Seconaary Whee!

Protike Endwal/ Flow Retor Tip Disk
Author Dare  Ref Less Loss Loss Incidence  Clearonce  Frichion

Daily, Nece 1§60 28 X
Mann, Marston 196/ 29 x
Horlock 1966/ x x x x x
Balje, Binsley 1966 Zo x X x X

combined
Balse 68 26 x x X

comoined
Balye, Binsley 1968 27 x amx ’ x X

Loss Mechanisms for Radial Torbines

Whee !
Nogtle  Ketor Rotor Rotor Disk
Author late  Kef | Passage Incidence Fassage Discharge  Friction

Balye g5z 7 X X X X x
Jomesorn 1955 r X X X X
Mizamacnl 1958 2 X X X x
Daily, Nece feo 28 X
Knoerscmld 1961 " X x x
Hiett, Tonmston 1964 12 X x
Futral, Wasser bauer

1965 13 x x X
Balje, Bnsley 1966 Zc x X X x
Kodgers 1966 31 X
Benson 197¢ 3o X x X X

Table 4. Identification of Loss Mechanisms.

Corrélation includes effect of: does not include :

5/ga(e - chord ratio, s/b Mach number
Reynolds number, Key, Trailing edge thickness
Aspect ratio, H/'b Stagger angle
Thickness ratio, b, /¢

Blading geometry, € or ¥
i) Determine optimum Space - chord ratio to which correlation applies .
2(sp)(taney + fanw,) cos?a; = 0.8 for ophmom /b (37)
W Determine X' = [f(e, typax/E) From Fig. 5a
. /0; 4 ’ b
ui) Calculate ¥ = (k—‘/") (1+57(0975 + o075 77) -/ (38

where Rep = 2¢; 0y [l

Dy = (2Hs cosay)/(s cosuy + H)
iv) Modify § for rotor mcidence /oss (Fig. sb)

v) Calculate actual endpont enthalpy
by = by o+ 5(6Y2) (39)
Table 5.

Soderberg Axial Turbine Loss Correlation.

to conditions of an optimum space-chord ratio given by
eq. (37). The departure of actual blading geometry
from this condition should be checked. A loss coefficient
¢ is determined from Figure 5a as a function of the gas
deflection and the blade maximum thickness. The effects
of Reynolds number and aspect ratio are next introduced
in eq. (38). Finally ¢ is modified for an incidence loss
using Figure 5b. The resulting loss coefficient then
makes it possible to estimate the actual process endpoint
enthalpy from the isentropic value as shown in eq. (39)
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Figure 5a. Enthalpy Loss Coefficient for Use With the
Soderberg Correlation.
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and illustrated on Figure 2d. A subsequent correction
of stage efficiency due to blade tip clearance is presented
ambiguously in the literature and is not shown here.
It must be realized that the Soderberg procedure applies
to one passage. Where both stator and rotor passages
occur in a stage, the procedure must be applied twice.
Dixon'" suggests that two forms of eq. (33) be used,
one for rotors, one for stators but this is confirmed by
no other author. Finally eq. (39) involves the actual
exit velocity which usually cannot be determined until
the enthalpy is known. Clearly then solution of eq. (39)
requires iteration over the process calculations but in the
writer’s experience convergence is achieved in the sec-
ond, at most third loop.

Correlation of the loss effects in a radial turbine
stage is much less complete and has been subject to far
less critical evaluation than that of the axial turbine.
Reports of three important experimental programs deal-
ing with radial turbines exist: the D.I.G.T. work in Eng-
land,’**" the Japanese industrial program,”' and the
NASA space power package program in the USA of
which the work of reference 13 is part. Of these three
programs, Benson®' presents a consistent loss correlation
at the level of the presentation of this paper. The pro-
cedure is summarized in Table 6.

A nozzle loss coefficient is first determined from
Figure 6a as a function of the discharge Mach number.
The actual nozzle endpoint enthalpy can be determined
iteratively by eq. (40). Figure 6b then yields the rotor
incidence loss coefficient which combined with the actual
gas angles in eq. (41) leads to the actual rotor inlet

Correlation mcludes ettect of :
Nozzle passage
Retor blade (ncidence

Rotor passage including #luid friction, learance, disk
Frickion

) Determine noggle /oss coefficient §, from Fig Ga
or vse 5, = o./

i) Calevlate actoal neizzle endpoint enthalpy

h, = b, * 5‘/\,((‘;‘}’1) (43)

2 Z

a o L
W) Determine rofor incidence fless coefficient );w from Fig &&

w) Cajewlate the entnalyy rakio 5.

oL (e ) - Yo )

sec zﬂ_,

and the actual rofor wilet enthalpy

by v sh, (42)

v Calculate fhe rofor passage loss coefficient g4 -

.
Fes = MK [r+ ¢ ”.!/’”‘4)4/ (43)
where mk = 0.468 (Bernson, /970)
mk = 0.442 (Futrol, etal. 1965)
md g o= by v e (072) (44)

Table 6. Benson Radial Turbine Loss Correlation.

enthalpy, eq. (42). The basis for the rotor passage loss
coefficient is the work of Futral and Wasserbauer;'? the
analysis of the experimental data in references 13 and 30
leads to very similar values of the parameter in eq. (43).
The final endpoint enthalpy at the rotor exit is again
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Figure 6a. Nozzle Enthalpy Loss Coefficient for the
Benson Correlation.
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Rotor Inlet Shock Loss for the Benson

determined iteratively by eq. (4%}. Note that relative
velocities, w, are used in the rotor correlation.

STAGE ANALYSIS OR SYNTHESIS

In drawing this presentation of turbine aerodynamic
performance including losses to a close, it will be helpful
to show a tabulation in which the results of synthesis of
a radial turbine stage are given in detail. Only results
are shown in Table 7 and these may prove a guide to the
conscientious worker in applying his knowledge of com-
pressible fluid dynamics together with the loss correla-
tions shown in this paper. At the left top of the table is
included the information necessary to begin the calcula-
tion. At the top right are over-all stage parameters
which come out of the procedure while the flow condi-
tions calculated for the four stations in the turbine stage
comprise the remainder of the table.

Results such as shown in Table 7 and as are yielded
by all of the correlations introduced in this paper are to
be designated on-design-point conditions for the turbine
stages considered. Some of the fluid mechanic calcula-
tions for on-design-point estimates are illustrated in ref-
erences 13, 38 and 39. It was pointed out by Benson®"
that his correlation as well as that of reference 13 was
very useful in off-design-point estimates of stage per-
formance as well but such predictions are outside the
scope of this paper.
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INPUT DATA (TYPE 2)

MASS FLOW RATE (LRM/SEC) 0.469
INLFT STAG TEMP (OR) 2010.0
INLFT STAG PRESS (PSTIA) 30.90
GAS CONS (FY2/SEC2-7R) 1716.47
STAGF STAG PRESS RATID 1.937
NOZZLE INLET MACH MO c.100
ROTOR IN ABS FLCW ANGLE (DEG) 15.68
MINTMUM SLLTP FACTOR 0.850
ROTOR OUT ABS FLOW ANGLE (DEG) 3C.0C

RCTOR CUT BLADE ECGF ANGLE (DEG) 90.00
ROTOR NOUT RFL CRIT MACH ND N.535
ROTOR NUT HUR DIAMETER (1IN) 2.000
SPECIFIC SPFED 63.302
SPECIFIC NDIAMETER 1.684
ROTOR SPEFD (RPM) 580CN,C

FPOTOR TIP DIAMFTER (IN) 5.640

FLCW CONDITICNS
STATION

STAG PRESSURE (PSTA)

STAG TEMPERATURE (NR)

STAG ENTHALPY (BTU/LBM)

MACH NUMRFR (STAfG)

STAG SOUND VELOCITY (FT/SEC)
STAG DENSITY (LBM/FT3)
PRFSSURF (PSTIA)

TEMPERATURE (20)

ENTHALPY (BTU/LAM)

MACH N'JMBER (STATIC)

SOUND VFLOCITY (FT/SEC)
DENSITY (LBM/FT3)

NYNAMIC VISCOSITY (LBM/FT-SEC)
CRITICAL SOUND VELNCITY (FT/SEC)
MASS FLOW RATE (LBM/SFC)
VOLUME FLOW RATE (FT3/SEC)

NOZZLE INLET CIAMETER (IN)
NNZZLE FXIT DIAMETER (IN)
IMPELLER INLET NDIAMETER ( IN)
BLADE FXIT, HUR DIAMFTEPR (IN)
BLADE EXIT, SHRNUD DIAMETER (IN)
DPASSAGE WIDTH (IN)

CROSS-SECTICN ARFA (IN2)

ABSOLUTE VELOCITY, C (FT/SEC)
PFRIPHTR AL VELCCITY, U (FT/SEC)
RELATIVE VELDCITY, W {(FT/SEC)
SHRCUD RFLATIVE VELCCITY, WS
RFLATIVE CRITICAL MACH NUMBFR

ABSCOLUTE FLCW ANGLE (DEG)
PELATIVE FLOW ANGLE, SHROUD (DEG)
RELATIVE FLNW ANGLE, HUB (DEG)

ENTROPY GAIN (STAG)

Table 7. Example:

(FT/SEC)

STAGE PARAMETFRS

SP HT{PRESS) (FT2/SEC2-0R) 6903.3
RATIO OF SPECIFIC HEATS 1.331
TURBINE MACH NO 0.719
TURBINE REYNOLDS NO 933986.
ISFNTROPIC WORK (BTU/LBM) 84.01
ACTUAL WORK OUT (BTU/LBM) 69.52
[SEN STAGE EFF (TOT TO TGT) 0.8275
NOZZLF EFFICIENCY 0.8509
ROTOR EFFICIENCY 0.8839
DEGREF NF REACTION 0.5179

NC NCZZLE BLADES 12
NOZZLE BLADE LENGTH (IN) 3.211
SLIP FACTOR 0.856
NO ROTOR BLADES 16
ROTOR TIP BLADE ANGLE (DEG) 90.80
ROTORP DIAMETFR RATIN 1. 737
NOZILF NOZZLE ROTOR POTOR
IN (1) ouT (2) IN (3) nuT (4)
30.90 29. 74 29.52 15.95
2010.0 2010.0 2010.0 1757.9
554.22 554.22 55422 484,70
0.100 0.582 0.605 0.279
2142.9 2142 .9 2142 .9 2004.0
0.0415 0.0399 0.0396 0. C245
30.70 23.58 22.97 15.14
2006.7 1897.3 1888.4 1735.3
553.31 523.16 520.71 478.48
0.100 0.599 0.624 0.280
2141.1 2082.0 2077.1 1991.1
0.0413 0.0336 0.0328 0.C236
2.97TE-05 2.86E-05 2.85E-05 2.70E-05
1984, 9 1984.9 1984.9 1856.3
0.469 0.469 0.469 0.469
11.359 13.979 14.284 19.910
10.074
5922
5.640
3.246
0.299 0.299 0.286 0.504
9.182 4.879 4.640 5.135
214.1 1247.1 1295.4 558.3
1427.3 821.5
489.7
993.3
0.247 0.53%
56.30 19.32 19.98 90,00
64.87 34.20
64 .87 34,20
65,590 12.731 131.335

Radial Turbine Stage Synthesis.
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NOMENCLATURE

A cross-sectional area

a area

a sonic velocity based on local conditions
a

. sonic velocity based on critical conditions,
i.e., conditions where local velocity just equals
sonic velocity, thus where ¢ = ¢ = a,

b blade length (see Figure 2c)
c absolute velocity

T vector of the absolute fluid velocity (see Fig-
ure 1)

Cm component of absolute fluid velocity in me-
ridional plane

Cu component of absolute fluid velocity perpen-
dicular to meridional plane

cp specific heat at constant pressure of flowing

fluid

cy specific heat at constant volume of flowing

fluid

D, hydraulic diameter (see Table 5)
Dy specific diameter (see Table 3)

d diameter

d, shroud diameter (see Figure 2a)
d hub diameter (see Figure 2a)

E energy of system (see Table 1c)
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internal energy (thermodynamic property)
vector force

gravitational acceleration

angular momentum of system (see Table 1d)
isentropic work extraction (= hoy — hy, )
blade height

enthalpy (thermodynamic property)

unit vectors in the coordinate directions (see
Figure 1)

incidence (see Figure 2c)

blade chord (see Figure 2c)

moment

mass of system (see Table la)

relative Mach number based on critical con-
ditions

mass flow rate (see Table la)
specific speed (see Table 3)
rotative speed

polytropic exponent

outward drawn unit normal vector (see Fig-

ure 1)

linear momentum of system (see Table 1b)
pressure (thermodynamic property)

volume flow rate or capacity

heat transfer with respect to the system
radius from axis of rotation (see Figure 1)
machine Reynolds number (see Table 3)

Reynolds number based on passage hydraulic
diameter (see Table 5)

reheat factor (see Table 2b)
radius vector (see Figure 1)

degree of reaction of turbine stage (see Table

2a)

orthogonal, cylindrical coordinate system (see
Figure 1)

surface area of control volume
coordinate along streamline

entropy (thermodynamic property)
blade pitch or spacing (Figure 2c)
torque

temperature (thermodynamic property)
time

blade thickness (see Figure 2c)
blade or rotor tip velocity

components of ¢ in the three coordinate di-
rections (see Figure 1)

Wy
wy

Ys[l

mom Y OHRR ™R R

S 3 3
R

Ms
Ner

In

Subscripts
1,2,3,4

(0]

volume of control volume

volume

work transfer with respect to the system
relative fluid velocity

component of the relative fluid velocity in
meridional plane

component of the relative fluid veloecity per-
pendicular to meridional plane

shock loss coefficient (see Figure 6b)
stalor gas angle (see Figure 2c)
stator blade angle (see Figure 2c)
rotor gas angle (see Figure 2c)
rotor blade angle (see Figure 2c¢)
stagger angle (see Figure 2c)

ratio of specific heats

blade edge angle (see Figure 2a)
deviation (see Figure 2c)
energy/unit mass (see Table 1c)
deflection (see Figure 2c¢)

nozzle (stator) efficiency (see Table 2a)
rotor efficiency (see Table 2a)

turbine stage isentropic efficiency (see Table

2a)
small stage efficiency (see Table 2b)

turbine stage polytropic efficiency (see Table

2bh)
camber (see Figure 2c)
dynamic viscosity

loss coefficient based on enthalpy (see Table

5)

nozzle loss coefficient (see Figure 6a)
rotor loss coefficient (see Table 6)

density (thermodynamic property)
gravitational potential

rotor angular velocity (see I'igure 1)
vector operator (= ¢ 'ori + 1/r 0/09]
+ d,/0z k)

logarithm to base e

turbine stage station numbers (see Figure 2)

local stagnation conditions which are ob-
tained when

stator

rotor



