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ABSTRACT 

Vibration of a journal within a fluid film bearing produces a 
dynamic load on the babbitted bearing surfaces. A rational vibra­
tion criterion can be based on a consistent magnitude of this 
dynamic load among widely different machines rather than a 
simple equality of shaft mils of vibration. 

An analysis and curves are provided for some common types 
of turbomachinery bearings which can be used to correlate mils 
of vibration with bearing dynamic load. The analysis shows that 
the percent of bearing clearance consumed by a vibrating jour­
nal, together with its steady load, are two important factors in 
establishing the dynamic load magnitude. These factors can be 
used to provide a simple estimate of allowable shaft vibration for 
a specified dynamic load criterion at acceptable, alarm or trip 
levels. 

INTRODUCTION 

It is now a common practice to measure shaft vibrations on 
important turbomachinery in industrial use throughout the 
world. There has not, however, been a widely accepted consen­
sus on the significance of measured shaft vibration levels. While 
some criteria have existed for a number of years, as described 
by Eshelman [1], or have been proposed more recently [2], the 
basis for them typically is unknown or highly subjective. 

The American Petroleum Institute (API) specifies a simple 
equation, with shaft vibration limits for acceptance varying in­
versely as the square root of shaft speed [3]. It does not, how­
ever, offer any guide for assessing vibration severity for field op­
eration when the acceptance limits are exceeded. Neither does 
it make a distinction between large and small diameter turboma­
chinery shafts with correspondingly different clearances. 
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International standards for interpreting the severity of shaft 
vibrations have been under consideration by the International 
Standards Organization (ISO) for several years [ 4]. A consensus 
among the member countries is beginning to emerge, but pub­
lished ISO shaft vibration standards are still some time away. 

ISO explicitly recognizes that kinetic (dynamic) load on the 
machine's bearings provides a useful measure of vibration sever­
ity. API implicitly recognizes this same fact by its requirement 
for shaft vibrations to be measured at, or close to, the bearing 
journals. Neither standard, however, describes how shaft vibra­
tion can be quantitatively translated into bearing load. 

The purpose herein is to show how this can be done and how 
dynamic load can be used as a rational and consistent basis for 
setting shaft vibration limits. 

DYNAMIC BEARING LOAD 

AS A VIBRATION CRITERION 

In the great majority of cases, proximity probes are used to 
measure the shaft or journal displacements relative to the bear­
ings. The journals of most turbomachines are typically sup­
ported on fluid film bearings, such as those pictured in Figures 
l, 2, 3, 4, and 5. Motion of the shaft journal relative to the bear­
ing housing displaces the oil and causes a dynamic load to be 
transmitted to the bearing housing liner. 

The magnitude of this dynamic load is a complex function of 
the bearing geometry, the size and shape of the orbit of the jour­
nal, and its frequency. The relationship between dynamic load 
and the shaft orbit may be calculated using the spring and damp­
ing coefficients of the fluid film bearings, pictured schematically 
in Figure 6. 

These coefficients are widely used by rotordynamicists to pre­
dict critical speeds, response to unbalance, etc. , for turbo­
machines. Fluid film bearing computer programs are now 
readily available which are capable of producing values for these 
coefficients in either a dimensional for dimensionless form. For 
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Figure 1. Two Axial Groove Cylindrical Bearing. 
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Figure 2. Elliptical BeQring. 
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Figure 3. Three-Lobe Bearing. 
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Figure 4. Offset CylindricQl Bearing. 

the purpose of this presentation, however, the coefficients have 
been obtained from the published data [5, 6]. 

Different rotors clearly may exhibit different responses to a 
given level of distributed disturbing force such as unbalance. 
The sensitivity of a rotor to these forces requires a rotordynamics 
analysis with a complete characterization of the rotor, stator, and 
bearings. In contrast, the present study considers only the result 
of these forces in producing dynamic bearing loads; it is con­
cerned, therefore, only with the journal orbits within the 
bearings. 
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Figure 5. Tilting-Pad journal Bearing, on Pad Loading. 
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Figure 6. Dynamic Represe11tative of a Bearing by Spring Qnd 
Damping Coefficients. 

The dynamic load produced by an orbiting journal, however, 
is often of paramount importance in establishing the maximum 
allowable shaft vibration. The reason is that an orbiting journal 
always produces a time-varying dynamic load on the bearing 
liner. This can lead to high alternating stresses in the soft and 
relatively weak babbitted surfaces used in most turbomachinery 
bearings. These stresses may lead to babbitt fatique with the po· 
tential for destrnction of the whole rotor. 

In contrast with the bearing situation, whirling of a shaft may 
produce little or no alternating bending stresses in the rotor. The 
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strength of the materials used on rotors far exceeds that of bab­
bitt; bearing babbitt fatigue failure can, therefore, be expected 
to precede a catastrophic rotor failure due to its alternating 
bending stresses. 

ANALYSIS ASSUMPTIONS AND LIMITATIONS 

The fundamental assumption is that bearing dynamic load is 
the useful measure of vibration severity. A secondary assump­
tion is that the fluid film bearing behavior can be adequately rep­
resented by a set of eight linearized spring and damping coeffi­
cients. A third, implicit assumption is that proximity probes are 
used to measure shaft vibration relative to the bearing liner, 
rather its absolute value in space. 

Possible shaft orbits can range from a simple ellipse produced 
by rotor uri balance to the very complex pattern produced when 
the shaft vibration contains both synchronous and nonsynchron­
ous components. 

The analysis first considers the most common case of a syn­
chronous, elliptical orbit. The maximum dynamic load is calcu­
lated for an arbitrary elliptical orbit shape and orientation with 
respect to an axis parallel to the static load vector. While the 
dynamic load may be calculated from the ellipse parameters arid 
the bearing coefficients, it is convenient to consider the limit 
case when the major and minor axes of the ellipse are equal. The 
ellipse then becomes a circular orbit. The number of parameters 
entering the dynamic load equation is significantly reduced. It 
becomes possible, therefore, to make a simple plot of a useful 
amplitude severity parameter for a given bearing over its entire 
operating range. 

The analysis may be extended to cover nonsynchronous or­
bits, either above or below the shaft rotational frequency. Again, 
it is necessary to make some simplifying assumptions in order 
to reduce the number of possible parameters and provide a sim­
ple estimate of the dynamic load. 

It is assumed that the nonsynchronous component also pro­
duces a circular vibration orbit at its own frequency, resulting in 
its own contiibution to the dynamic load. The total load is then 
taken as the simple sum of the maximum synchronous and non­
synchronous components. 

In principle, this method of estimating dynamic load can be 
used for various nonsynchronous frequencies. In practice, two 
particular cases of nonsynchronous vibration are more common 
and are of particular interest. These are the cases when the non­
synchronous vibration is at or close to one-half the shaft rota­
tional frequency, and when it is at twice this value. Curves are 
provided herein for different bearing geometries which can be 
used to estimate dynamic load resulting from synchronous vibra­
tions alone, or those combined with either half-per-rev or two­
per-rev frequency components. 

The curves shown herein are for the indicated bearing length 
to diameter ratio UD. As shown in previous studies [7, 8], how­
ever, there is little change in the amplitude severity parameter 
for a range of UD from 0. 5 to 1.0. The values presented in this 
paper for amplitude severity should be realistic within this 
range. 

It must be remembered, however, that dynamic bearing load 
is not the sole or even best indicator of vibration severity for all 
machines under all circumstances. Clearly, if the bearings are 
located at shaft nodes and the rotor is highly flexible, the possi­
bility of mid-rotor rubs may be a more significant concern than 
bearing damage. In such a case it is far more useful to have 
proximity probes closer to the potential rub sources than at the 
bearings. 

With some exceptions, therefore, it is believed that the use 
of bearing dynamic load as a vibration criterion can provide a 

useful and consistent measure of vibration severity for different 
types and sizes of turbomachinery. 

DYNAMIC LOAD PRODUCED 

BY SYNCHRONOUS SHAFT ORBITS 

The equations relating bearing dynamic load, the bearing 
fluid film spring and damping coefficients, and an arbitrary ellip­
tical shaft orbit are developed completely in a previous study [7] 
and will only be summarized herein. 

The elliptical shaft orbit is pictured in Figure 7. The origin of 
the coordinate axes coincides with the center of the ellipse. 
Physically, the origin corresponds to the undisturbed position 
of the shaft center in the absence of ariy dynamic loads. The el­
lipse axes are rotated an amount a from the positive x direction, 
which corresponds to the static load vector direction. The shaft 
angular orientation is also pictured in Figure 7 for four discrete 
positions of the shaft center on the orbit traced during one shaft 
revolution. 
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Figure 7. Coordinate References Axes for Shaft Center Orbit 
(with shaft angular orientation pictured for four orbit 
positions). 

· 

The steps taken in the analysis are: 
• Express the shaft orbit in terms of the parametric equations 

for an ellipse. 
• Relate the x and y coordinate displacement measurements 

to the ellipse parameters. 
• Write equations for the time-varying forces in the x, y direc­

tions, e. g. , 

F.= Kxxx+ Bxxx+ KxyY+ Bxy)' 
Fr = 1(,-yy+ By;.y+ K,.xx+ Byxx 

• Combine the forces F x and Fr to find the time-varying radial 
force F,. 
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• Find the maximum value of the radial force F r· 
• Express the resulting force Fr in dimensionless terms. 
\Vhen these steps are taken, the resulting equation is written 

as: 

v'2\Frlmaxc 
={A2+B2+C2+ :52+[("\2+ B2)2+(C2+ D2)z 

\Va cos2a 
-2(.,\2-i32) (:f:>2-c2)+8 A i3 c Dll/2F/2 

where 

"\ = K.x(1 + b/a tan2a)+ Bxy(tan2a + b/a) 
+(B •• +Kxy) (1-b/a) tana 

B=(Kxx-Bxy) (1-b/a) tana-Bxx (l+b/a tan2a 
+Kxy (tan2a+b/a) 

C = (�y + Byx) (1-b/a)tana + Byy(tan2a + b/a) 
+ �x(1 + b/a tan2a) 

D =�y(tan2a+b/a)-By,(1 +b/a tan2a) 
+(�x-Byy) (1-b/a) tana 

(1) 

(2) 

(3) 

(4) 

(5) 

and the terms K,,, B,l" etc. are dimensionless spring and damp­
ing terms for the fluid film, i.e.: 

where 

K,, = K,x c/\V 
Bxx = OBxx ci\V 

�y=�·y ci\V 
Byy=OBYY c/\V etc. 

W = total static load on the bearing 

(6) 

c =bearing radial clearance (the difference between the 
journal radius and the radius of curvature of the bearing 
liner, sometimes referred to as the "ground" clearance.) 

It will be seen that the right-hand side of Equation (1) de­
pends solely on the dimensionless constants A, B, C, D. These 
constants are a function of three factors, i. e. : 

• The dimensionless spring and damping coefficients. These 
coefficients are a function of bearing geometry and operating 
conditions; for a given bearing at a known eccentricity ratio, the 
coefficients are fixed values. 

• The aspect ratio of the elliptical orbit formed by the journal 
center, i. e., the ratio alb of major to minor axes of the ellipse. 

• The orientation angle a of the shaft major axis with respect 
to the vertical load vector. 

The left-hand side of Equation (1) is a dimensionless quantity 
which contains the maximum bearing dynamic force, Fr. Max• the 
static force \Von the bearing, the bearing clearance c, the ellipse 
orientation angle a and the major ellipse orbit axis a. For a fixed 
value of the right-hand side of Equation (1), if the angle a and 
the static load Fr. Max is specified, the ratio (ale) is then fixed. 
That is, the maximum vibrational amplitude, a, for a bearing 
with clearance c can be specified. 

For the case of the elliptical shaft orbit, the constants X, B, 
C, iS of Equation (1) may have an infinite number of values for 
a given eccentricity ratio. Although the dimensionless spring 
and damping coefficients are fixed by the eccentricity ratio, dif­
ferent variables of ellipse attitude a and aspect ratio may be ar­
bitrarily assigned in computing these constants A, B, etc. 
Hence, a plot of Equation (1) would require selected parameters 
of alb and a. 

To reduce the number of such plots and present a simple 
method for estimating allowable shaft motion, assume that the 
shaft orbit is circular. In this case, the ratio alb = 1 and a = 0. 
Hence, the constants X, B, C, iS, from Equations (2, 3, 4, and 
5), to be used in Equation (1) become: 

A1 =K,,+B,y (7) 
B1 = -B,,+K,y (8) 
C1 =Bn+�x (9) 
Dl=JS,y-Byx (10) 

where the subscript 1 indicates the particular case of a circular 
orbit and frequency 01. 

When alb = 1 and a= 0°, the left-hand side of Equation (1) 
is reduced to: 

\12(FrlmaxC _ \/'2(FrlmaxC 
\Va cos2a - \Vr1 

where r1 = radial amplitude of the circular shaft orbit. 

DYNAMIC LOAD PRODUCED BY 

NONSYNCHRONOUS SHAFT ORBITS 

(11) 

The equations for estimating the dynamic load produced by a 
combined synchronous and nonsynchronous shaft vibration are 
developed in a 1986 article [8], and again, will only be sum­
marized here. Although the article [8] is concerned specifically 
with the contribution to bearing load produced by a half-per-rev 
shaft vibration, the analysis can also be applied to shaft vibra­
tions above the running speed. 

It is assumed that the nonsynchronous component of shaft vi­
bration also produces a circular orbit, but at a radius r2 and a fre­
quency 02. The equation for estimating dynamic lead produced 
by this nonsynchronous component alone is identical in form to 
that of Equation (1). Each of the values for the terms of Equa­
tions (7, 8, 9, and 10), however, must be modified slightly to ac­
count for the nonsynchronous frequency 02. Thus, 

A2 = Kxx +OJOl (Bxy) 
B2=Kxy-02/01 Bxx 
C2 = iSx +0/01 Byy 
D2=iSy-02/01 Byx 

(12) 
(13) 
(14) 
(15) 

where the subscript 2 indicates that the quantity refers to the 
nonsynchronous value. 

For a given bearing operating at a fixed eccentricity ratio, the 
dimensionless spring and damping coefficients of Equations (7, 
8, 9, and 10) are constant. Hence, for a circular orbit of radius 
r1 and a synchronous frequency 01, the right-hand side of Equa­
tion (1) is a constant P for a given bearing at a given eccentricity. 

The dimensionless load for a circular, synchronous orbit may 
be written as: 

(16) 

where P = f(A1, BI> CI> D1) and A1, BI> etc. are given by equa­
tions (7-10). 

Similarly, for a circular orbit of radius r2 at a frequency 02, 
the right-hand side of Equation (1) is a constant Qat a given bear­
ing eccentricity ratio. 
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The dimensionless load for the circular, nonsynchronous orbit 
may be written as: 

Q (17) 

where Q = f(A2, B2, C2, D2) and A2, B2, etc. are given by equa­
tions ( 12-15). 

Combining equations (16) and (17) and rearranging, 

(18) 

The quantity (F rl + Fd represents the total force F1, result­
ing from the synchronous and nonsynchronous components of 
shaft vibration. 

The total force F1 may be written as the product of the 
dynamic unit pressure P d and the projected bearing area LD. 
Similarly, the static load W may be written as the product of the 
static unit pressure P, and the projected bearing area LD. Thus, 
Equation (18) may be inverted and written as: 

P, r1 _ v'2 
P d c - P[1 +(rzlrl) Q/P] (19) 

VIBRATION AMPLITUDE SEVERITY CURVES FOR 

SELECTED BEARINGS 

Equation (19) is the basis for the curves of amplitude severity 
vs bearing eccentricity ratio for the bearings shown in Figures 
1, 2, 3, 4, and 5. 

The left-hand side of Equation (19) is a dimensionless vibra­
tion severity parameter. It is the product of two ratios, i. e., sta­
tic to dynamic bearing pressure, and shaft vibration amplitude 
to bearing clearance. It has a value defined by the quantities P, 
Q, and the ratio of the nonsynchronous to synchronous shaft vi­
bration amplitudes rzfr1. 

For a given bearing at a given eccentricity ratio, and with a 
circular, one-pe1�rev shaft orbit, the quantity, P, is a constant. 
For a given bearing, the value of, P, will vary as the eccentricity 
ratio changes. Hence, a plot can, be made for each bearing of the 
amplitude severity parameter versus eccentricity ratio. This cor­
responds to the case when a nonsynchronous vibration is absent 
and, therefore, r2/r1 = 0. 

If a nonsynchronous vibration is present along with a once­
per-rev shaft orbit, both the ratio r/r1, and the quantity Q have 
finite values. At a particular eccentricity ratio for a given bear� 
ing, the quantity Q is dependent only on the ratio of the nonsyn­
chronous to synchronous frequency nz�nl. If a radius ratio r/rl 
is assumed, all the quantities on the right-hand side of Equation 
(19) are known for the given eccentricity ratio. 

The process can be repeated for different eccentricity ratios. 
A family of curves can therefore be generated for a given bearing 
and for a known or assumed frequency ratio 02/01. The curves 
in each plot represent a constant ratio of nonsynchronous to 
once-per-rev shaft orbit, i. e. , r/r1 equals the value indicated 
on the curve. In all cases, the top curve reflects the case when 
the amplitude ratio r/r1 = 0. 

This process has been carried out for the bearings shown in 
Figures 1, 2, 3, 4, and 5. The results are shown in Figures 8, 9, 
10, ll, and 12 for the case of a half-frequency, subsynchronous 
vibration (il/01 = 0.5), and in Figures 13, 14, 15, 16, and 17 for 
the case when the nonsvnchronous vibration is twice that of the 
shaft rotational frequel{cy (il/01 = 2). The top curve for each 

bearing, however, applies to the purely synchronous case, when 
the amplitude ratio rzfr1 = 0. 
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Figure 8. Amplitude Parameter vs Eccentricity Ratio for Two 
Axial Groove bearing, UD = 0.5, and Combined One-Per-Rev, 
and Half-Per-Rev Circular Orbits. 
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Figure 9. Amplitude Parameter vs Eccentricity Ratio for Ellipti­
cal Bearing, 50 percent Preload, UD 0. 5, and Combined One­
Per-Rev and Half-Per-Rev Circular Orbits. 
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Figure 10. Amplitude Parameter vs Eccentricity Ratio for Three 
Lobe Bearing, 50 Percent Preload, UD 0. 5, and Combined One­
Per-Ret' and Half-Per-Rev Circular Orbits. 

The use of these curves can perhaps be best illustrated by 
examples: 

Example 1: For a two axial groove bearing, Figure 1, find the 
maximum, one-per-rev shaft vibration permitted, as a fraction 
of the bearing clearance, if the dynamic load, P d• is not to exceed 
400 psi, and the following conditions exist: 
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Figure 11. Amplitude Parameter vs Eccentricity Ratio for Offset 
Cylindrical Bearing, 50 Percent Preload, and Combined One­
Per-Rer; and Half-Per-Ret: Circular Orbits. 
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Figure 12. Amplitude Parameter vs Eccentricity Ratio for Tilt­
Pad journal Bearing, 50 Percent Preload, on Pad Load, and 
Combined One-Per-Rer; and Half-Per-Rer; Circular Orbits. "'I 0.16 . 
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Figure 13. Amplitude Parameter vs Eccentricity Ratio for Ttco 
Axial Groor;e Bearing, UD 0 . .5, and Combined One-Per-Ret: 
and Two-Per-Ret: Circular Orbits. 

eccentricity ratio = 0.6 

static bearing pressure P s = 400 psi. 

From Figure 8 at an eccentricity ratio of 0.6, and r;zlr1 = 0 

p r -' -1 =0.16 pd c P/Pd=1, hence, r/c=0.16 
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Figure 14. Amplitude Parameter vs Eccentricity Ratio for Ellip­
tical Bearing, 50 Percent Preload, UD 0.5, and Combined One­
Per-Rev and Two-Per-Rev Circular Orbits. 
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Figure 15. Amplitude Parameter vs Eccentricity Ratio for Three 
Lobe Bearing, .50 Percent Preload, UD 0 . .5, and Combined One­
Per-Rev and 1Wo-Per-Rev Circular Orbits. 
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Figure 16. Amplitude Parameter vs Eccentricity Ratio for Offset 
Cylindrical Bearing, .50 Percent Preload, UD 0.5, and Com­
bined One-Per-Ret: and Two-Per-Ret: Circular Orbits. 

Example 2: For an elliptical bearing, Figure 2, estimate the 
maximum dynamic load P d for the case when: 

r1 = 1 mil 0-peak, one-per-rev 
n;z�nl = 0.5 half frequency vibration 
c = 10 mils bearing radial clearance 
r2 = 1 mil o-peak, sub-synchronous vibration 
P, = 140 psi static bearing pressure 
E = 0.35 eccentricity ratio 
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Figure 17. Amplitude Parameter vs Eccentricity Ratio for Tilt­
pad Journal Bearing, 50 Percent Preload, on Pad Load, and 
Combined One-Per-Rev and Two-Per-Rev Shaft Circular 
Orbits. 

From Figure 9, at E= 0.35 and r;!r1 = 1 

p rl -' - =0.07 pd c 

Calculate P d = (P/0.07) (r/c) = 200 psi 

SIMPLIFIED VIBRATION CRITERION 

FOR ONE-PER-REV SHAFT ORBITS 

As shown in Figures 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, the 
amplitude severity parameter varies with the eccentricity ratio 
at which the journal is operating in the particular bearing. If the 
turbomachine operates at a fixed set of conditions, with a result­
ing fixed eccentricity ratio, the amplitude severity parameter 
may be determined from the applicable curve. The allowable 
vibration for a given dynamic load may then be established as 
shown by the prior examples. 

If the machine operates over a wide range of conditions, the 
amplitude severity parameter will vary. In principle, the param­
eter could be evaluated for each bearing under each new set of 
conditions. As an alternative, however, it can be convenient to 
consider a single representative value for this parameter. This 
can lead to a simplified expression for allowable shaft vibration 
as a function of the bearing's static load, allowable dynamic load, 
and bearing clearance. 

If the value selected for this parameter is representative of 
that existing among different bearing types, then a simple, sin­
gle expression can cover a variety of situations. Vibration levels 
may be set easily for different machines with different bearings, 
and operating under variable conditions. Some accuracy is sac­
rificed for the sake of simplicity, but there still exists a rational 
basis for the vibration levels. 

Summarized data are presented in Table 1 for the amplitude 
severity parameter for all the bearings of Figures 1, 2, 3, 4, and 
5, from which a representative value may be selected. 

In order to compare the values for the non-preloaded, axial 
groove bearing with that of the other bearings which have a 50 
percent preload, the values for the parameter must be placed 
on a consistent basis. This can be done by expressing the value 
of the bearing lobe clearance c in terms of the assembled radial 
clearance c' and the preload factor 8. Thus, 

c'=c(1-8) (20) 

and for a bearing \Vith a 50 percent preload factor, i.e., 8 = 0.5, 

Table 1. Comparison of Average and Maximum Amplitude Se-
verity Parameters for Five Bearing Tljpes. 

Amplitude Severity Parameter 
Bearing Description (P /P d) (r/c') = K/(1-8) 

Fig. Type of 
No. bearing UD Average Maximum 

1 2 Axial 0.5 0.143 0.172 
Groove 1.0 0.140 0.181 

2 Elliptical 0.5 0.157 0.250 
1.0 0.171 0.276 

3 3 Lobe 0.5 0.175 0.22 
1.0 0.178 0.22 

4 Offset 0.5 0.173 0.224 
Cylindrical 1.0 0.183 0.238 

5 5 Pad, Tilt Pad 0.5 0.179 0.208 
on Pad Load 

c' = c(1-0.5) = 0.5c 

In figures (8-16) the amplitude severity parameter is ex­
pressed in terms of the lobe clearance c, i.e., 

P, r1 --=K Pdc (21) 

and substituting for c in equation (21) from eg (20), we obtain: 

or 

P, r1 (1-B) 
·Pdc' K 

(22) 

The amplitude parameters for the indicated bearings on the 
basis of the assembled clearance c' are compared in Table 1. 
Thus, the values for the amplitude parameter of the curves of 
the bearings with 50 percent preload have been multiplied by 
2, as required by Equation (22). Values for both the average and 
maximum severity are shown in the table for each of the bear­
ings considered herein. Considering the broad geometrical dif­
ferences among the five bearing types, it will be seen that the 
values of the severity parameter are not greatly different among 
them. 

The average value among the five bearing types is 0.167 for 
the average parameter, and 0.221 for the maximum. Assuming 
a representative value of 0.2 for the severity parameter, based 
on assembled clearance c', then 

P, r1 -p ,=0.20 de 
(23) 

or the ratio of allowable vibration to bearing clearance is there­
fore given as: 

r1 Pd -, =0.20-p c 1 s 
(24) 
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where clearly the ratio of P diPs is restricted to values less than 
5. 

\Vithin this restriction, the double amplitude of vibration d = 
2r in terms of the total assembled clearance 2c' is therefore: 

p 
d' = 0.20 p 

d . (2c') s 

If the level of dynamic load, P d' is to be kept at one-half the 
static load, P., the allowable vibration would be 10 percent of 
the diametral assembled clearance. 

In order to set limits for vibration, the corresponding values 
of dynamic load must be set. As discussed in a previous publica­
tion [7] a trip level for P d is the value at which babbitt fatigue 
damage may occur. A maximum dynamic load of 500 psi is sug­
gested for the trip level, 250 psi for the alarm level, and 125 psi 
for the acceptable level. 

Shaft vibration measurements often include the effect of 
mechanical and electrical runout due, for example, to a noncir­
cular probe target surface, and measurements at other than the 
mid-plane of the bearing. To provide an allowance for this effect, 
a value of 1 mil is added to the acceptable level based on a 
dynamic load of 125 psi. 

The simplified equations for classifying shaft vibration sev­
erity are then given in mils of vibration (peak to peak) as: 

d' = 100 (2c') Ps 
trip level (26) 

d'=� (2c') Ps 
alarm level (27) 

d' = � (2c')+ 1 ps 
acceptable level (28) 

SUMMARY AND CONCLUSIONS 

The dynamic load imposed on a fluid film bearing can be re­
lated to the size and shape of the shaft orbit and the spring and 
damping coefficients of the bearing film. For the case when the 
shaft orbit is circular, the equations are simplified. A dimension­
less vibration severity parameter can be plotted for a given bear­
ing geometry against eccentricity ratio ranges. The maximum 
dynamic load can be computed easily from the severity param­
eter value, the static load on the bearing, and the bearing 
clearance. 

The analysis can be extended to include nonsynchronous jour­
nal orbits as well as one-per-rev, circular orbits. Curves are pre­
sented for five types of bearings which can be used to estimate 
dynamic loads for a journal operating with a combined synchron­
ous and half-per-rev or tvro-per-rev circular orbit. 

If geometrically similar bearings are operated at identical ec­
centricity ratios, the allowable shaft vibration (for the same limit­
ing dynamic pressure) will be proportional to bearing size. 
Larger vibrations �ill be permitted for larger machines. 

Simplified equations are proposed for estimating the allowa­
ble shaft vibrations at acceptable, alarm, and trip levels, based 
on dynamic bearing unit load. 

NOMENCLATURE 
a, b, - - - -
A, B, C, D, 

major and minor axes of ellipses (Figure 7) 
dimensionless coefficients, Equations (2-5) 
and Equations (12-15) 

- - - -
BXX' BY)' BYX' Bxy 

c 

c' 

D 

- - -
KXX' Kyy, �'X' Kxy 

K 

w 

d 

d' 
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