No. 36 Turbomachinery Symposium Case Study 01

The Torsional Torque Fluctuations of a Compressor Train with a Vector Control PWM Inverter

Tsukasa Shimakawa Takayuki Kojo

Objective

- 1. Background
 - 1) Motor driven Compressor Train
- 2. Adjustable Speed Drive System
- 3. Accident
 - 1) Diagnostic of Accident
 - 2) Specification of Motor equipment
 - 3) Motor Speed Control Method
 - 4) Site Measurement
- 4. Study Inverter
- 5. Site Measurement after Modification
- 6. Conclusion

Abstract

- → A stable speed & torque control system is essential for large adjustable speed motor driven compressor trains.
- In order to achieve stable control, advanced control techniques are required.
- This case study shows the problems associated with & the countermeasures taken relating to the adjustable speed drive control. Investigation, simulation and a successful resolution of the problem achieved safe & stable compressor operation.

Motor driven Compressor Train

Adjustable Speed Drive System

Problem

Service	Fuel Gas Comp. Train
Train Operating Speed	4,794 – 7,192 rpm
Rated power	13.65 MW

Diagnostic of Problem

Specification of Motor equipment

ITEM	VALUE
Motor Type	Induction Motor
Line Frequency	50 Hz
Motor Voltage	3300 Vrms
Pole Number	4 Pole
Rated Power	13.65 MW
Motor Speed	1,050 – 1,575 rpm (35 - 52.5 Hz)
Gear Ratio	4.57
Train Operating Speed	4,794 – 7,192 rpm

Motor Speed Control Method

(Adjustable Voltage Adjustable Frequency with slip)

Within approx. 0.05 % of speed fluctuation rate for the difference between required & actual motor speed

Motor Speed Control Method

(Adjustable Voltage Adjustable Frequency with slip)

Site Measurement - FFT

Speed Feedback Signals (FFT)

Motor Current Feedback Signals (FFT)

Site Measurement - FFT

8 Hz was the poor adjustment of converter's gain.

Motor Current Feedback Signals (FFT)

Site Measurement - FFT

Speed Feedback Signals (FFT)

Frequency (Hz)	Speed Fluctuation Rate
14 Hz	0.043 % ^{0-P}
Overall	0.20 % P-P

Speed Fluctuation Rate

Study - Inverter (Assumption)

(Adjustable Voltage Adjustable Frequency with slip)

Our attention: closed loop circuit /Speed feedback signals

Study – Inverter (Simulation/Reappearance)

(Adjustable Voltage Adjustable Frequency with slip)

Speed feedback signals - Simulation -

Speed feedback signals (FFT) - Simulation - 15

Study – Inverter

V/F Control (without speed feedback control)

Study - Inverter (Modification)

(Adjustable Voltage without Adjustable Frequency)

Speed feedback signals (FFT) - Simulation -

Frequency (Hz)	Original	Improved
14 Hz	0.0417 % ^{0-P}	0.0005 % ^{0-P}

For 14 Hz, Electrical-Mechanical resonance Frequency Reduction Ratio: 2/100 (in simulation)

Speed feedback is a cause!

Site Measurement after Modification

Speed Feedback Signals (FFT)

For 14 Hz, Electrical – Mechanical Resonance Reduction ratio: 7 / 100 (actual data)

Frequency	Original	Improved
(Hz) 14 Hz	0.043 % ^{0-P}	0.003 % ^{0-P}
Overall	0.20 % P-P	0.10 % P-P

8

Conclusion

- 1, The sensitivity of accurate speed and torque controls with Vector control & Converter phase control in a compressor train without damping, involves risk.
- 2, This study has verified that the V/F control for the synchronized PWM inverter efficiently controls the motor used in a compressor train in which load fluctuates very slowly with small damping.
- 3, In conclusion, by recognizing the importance of torque ripple on the motor side during the designing stage, a motor driven compressor train can be successfully stabilized with V/F control, without speed feedback.