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ABSTRACT

The calculation for unbalance response of a rotor starts by
calculating the bearing load to provide the basis for the bearing
stiffness and damping characteristics. Measurements in test
rigs at a major Texas university laboratory have shown that
honeycomb-stator/drum-rotor annular seals can produce negative
stiffness, in particular at zero to low whirl frequencies, which
tends to pull the rotor off-center. Data given in this paper, from
high-pressure factory tests of compressors using a honeycomb seal
at the balance piston, have shown the rotor can be displaced from

the usual position in the lower part of its journal bearing, degrading
the unbalance response. In this paper the authors show that the
honeycomb seal can produce a large disturbance in the equilibrium
position of the rotor for certain values of negative stiffness,
resulting in high bearing loads in unusual directions. It is also
shown that aerodynamic forces on the rotor from the volute need to
be considered.

INTRODUCTION

In the oil and gas industry, the typical centrifugal compressor for
reinjection duty has its impellers placed in the casing between two
bearings, with the shaft horizontal with respect to gravity. To
calculate the vibration response of the rotor to unbalance, or
the damped critical speeds (to evaluate rotordynamic instability)
one has to know the bearing characteristics, which depend on
the bearing loading. Most rotordynamic suites include a simple
calculation that automatically finds the rotor weight and center of
gravity. This calculation of static equilibrium then finds the load at
each bearing by solving two equations, one found by setting the
sum of forces equal to zero, and the other found by setting the sum
of moments around one bearing equal to zero. This calculation will
be shown in detail below.

This paper is motivated by experience with several compressors
on full-load test. The specific compressors involved, and the
operating conditions on test are given in Table 1.

Table 1. Specific Compressors and Operating Conditions.

These compressors use a honeycomb seal running against a
drum rotor for the balance piston. In contrast to labyrinth seals
with teeth, or in contrast to rotors with labyrinth teeth running
against honeycomb, the honeycomb/drum type seals have
significant direct stiffness (defined more completely below).
“Hole pattern” type seals running against drum rotors are similar.
Because the test experience related in this paper was with
honeycomb seals, not hole pattern type, this paper will discuss
honeycomb seals only.

Figure 1 shows a photograph of the bore of a honeycomb seal.
There are about 10,000 cells in this half of the seal. Each cell has
a hexagonal width of about 2 mm (.08 inch) and a depth of about
2.3 mm (.09 inch). This seal is formed from a monolithic billet of
aluminum, for all examples. In these examples the honeycomb seal
acts on the balance piston that is just behind the last impeller.
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Figure 1. Photo of a Honeycomb Seal.

These compressors also have a volute at the last impeller. The
volute can produce asymmetric pressure gradients around the rotor.
If the gas pressure is sufficiently high, then the asymmetric
gradient may produce a radial force on the rotor that exceeds the
rotor weight, as shown later.

EXPERIENCE ON FULL LOAD TEST

During full-load tests of compressor Example A, erratic
response to unbalance was noted. Running at constant speed, the
synchronous vibration varied from 6 to 25 microns peak-to-peak,
as pressure and flow were varied. Clearly the high pressure gas was
affecting the unbalance response of the rotor, either directly, or
by affecting the bearing load, and thus the bearing dynamic
characteristics. In an attempt to identify the cause, the pressure and
flow were varied and repeated, over an appreciable range, as shown
in Figure 2 and 3, respectively.

Figure 2. Synchronous Response (Filtered at 1 × RPM) of
Compressor Example A at the Discharge End X-Probe as a
Function of Discharge Temperature.

Figure 3. Synchronous Response (Filtered at 1 × RPM) of
Compressor Example A at the Discharge End X-Probe as a
Function of Suction Volume Flow.

From these figures it is clear that the change in unbalance
response was well demonstrated, repeatable, and significantly
affected. The three points at lower flow correspond to the three
points at higher temperature. The separation of points is not as
distinct when plotted against pressure.

From previous work by Camatti, et al. (2003), it is known that the
forces produced by a honeycomb seal in high pressure gas are
sensitive to the clearance of the leakage annulus. From finite element
analysis of the honeycomb seal in this compressor, it is known that
temperature changes the clearance and causes a taper in the clearance
as well. Therefore it is not surprising that the rotor response could
vary with discharge temperature, which sets the temperature of the
seal, distorting the taper, and thus changing the honeycomb seal
forces on the rotor. These changes apply to both the static force and
the dynamic stiffness and damping coefficients acting synchronously.

It will be shown below, by calculation for the test stand conditions
of Example C, that the volute force can exceed the rotor weight. The
force and direction of the radial load produced by the volute depends
on the ratio of volume flow to the design flow. Thus changing the flow
can produce substantial additional load on the bearings, and thus affect
their dynamic characteristics. Thus it is not surprising that the
unbalance response might vary with volute-induced bearing loads.
However, no practical method was obvious to distinguish between the
bearing loads caused by the honeycomb seal versus the volute.

The rotordynamic stability of the Example A (and Example B,
discussed below) compressors were excellent as tested. The
response-to-unbalance was also within contract vibration limits.
Therefore, an extensive investigation during full-load testing was
not warranted, and an exact comparison of the rotor position on test
and the position calculated below was not made. However, the
effects on unbalance response in Example A were significant, and
could have caused a problem, if the rotor response were not so well
behaved in the base case. This gave motivation to find an analytic
solution to understand the lifted rotor position that was observed
and estimate the bearing loads that might occur.

In the case of Example B (and in other cases [Camatti, et al.,
2003]) it was found that the proximity probes at the bearing journals
showed the rotor journal was not resting in the bottom of the bearing
when running, as assumed in the bearing load calculation that was
outlined above. Instead the journal was often found in the top of the
bearing, and the journal could be seen to lift as the compressor was
started and loaded. Figure 4 shows the bearing journal position,
measured by proximity probes, when the compressor was started and
loaded. The left plot is for the balance piston end, and the right is the
thrust end. The large circles represent the bearing clearance circle
(nominal cold dimensions.) The parameter written by each point is
revolutions per minute (rpm). The suction volume flow 76 percent of
rated at full speed. From the calculated behavior of a tilt-pad bearing,
one could expect that the journal should rise toward the center of the
bearing, but not as high as the bearing center. Clearly, the journals in
Example B rise above center, and more so, on the balance piston end.

Figure 4. Bearing Centerline Position as Compressor Example B is
Started and Loaded. The Plot on Left is the Balance Piston End
and the Plot on the Right is the Thrust End.
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The tilt-pad bearings used on these compressors have
thermocouples installed to measure the Babbitt temperature of the
two bottom pads. On Example B, as a check on the validity of the
journal center positions shown in Figure 4, one pad was moved
from the bottom to the top of one bearing, with the second pad
remaining in normal position. As expected from Figure 4, the top
pad showed higher temperature than the bottom, confirming the
load on the bearing was directed upward, and confirming the
behavior shown there. The maximum temperatures measured were
as shown in Table 2.

Table 2. Maximum Babbitt Temperatures.

Thus the top pad (72-TE-29031A) of the bearing near the balance
piston is 17�C (62.6�F) hotter than the bottom pad, indicating a
substantially larger load on the top pad. Just to give a complete
picture, these temperature records are plotted versus time in Figure 5.

Figure 5. Trend Plot of the Bearing Pad Temperatures (Top Four
Traces) on Example B, Bottom Trace is Speed in RPM.

CALCULATING THE EFFECT
OF HONEYCOMB SEAL ON
STATIC EQUILIBRIUM OF THE ROTOR

Because both the potential honeycomb seal force and the
potential volute force could be responsible for the anomalous
journal position and bearing loads discussed above, the two effects
were investigated by calculations after the testing was complete.
The bearings themselves were not suspected of causing the
anomalous position, as multiple disassemblies to change dry gas
seals during some of the testing did not implicate them. On one
instance with Example B, an increase once-per-revolution vibration
prompted a bearing inspection that showed faulty assembly.
However correcting this did not eliminate the anomalous position.
The remainder of this paper will discuss the results of the calculation.

As a basis for understanding the calculations, it is necessary to
compare and contrast the general behavior of the honeycomb seal
direct stiffness and the volute force as follows:

• The balance drum/honeycomb seal was next to the volute (as
usual) in the above cases, so that it was not obvious by comparing
the behavior of the bearing on one end of the casing to the other,
whether the honeycomb seal or the volute was responsible for the
anomalous journal position in the bearing, as might be expected
from the static equilibrium calculations.

The honeycomb seal forces are effectively proportional to the
displacement of the drum within the honeycomb seal running
clearance, That is, they have the characteristic of a spring rate that
can be measured in Newtons per meter (pounds per inch).

• The volute forces change as the flow rate changes with respect
to the design (best efficiency) flow. Of course their magnitude
changes with pressure. However, the volute forces are independent
of small changes of the rotor position within its running clearance.
That is, the volute force does not have the characteristic of spring.

• The honeycomb seal spring rates are extremely sensitive
variation of the running clearance along the length of the drum. A
well-considered finite element analysis of the drum and of the
honeycomb seal is necessary to define the clearance along the
length as a function of temperature, pressure, shaft speed, and
mounting conditions. Changes in these variables during testing
may change the static equilibrium of the rotor position.

• The honeycomb seal spring rates in both the direct and
cross-coupled directions are strong functions of the whirl
frequency of the drum orbital motion. For calculation of static
equilibrium the displacement occurs at zero whirl frequency.

• Honeycomb seal spring rate, K, in the direction of drum
displacement may affect the first bending frequency of the rotor.
This reduced whirl frequency can fall into the range where the
honeycomb has negative damping. This can cause rotordynamic
instability, resulting in catastrophic vibration. Such a problem is
reported in a previous paper (Camati, et al., 2003) but is not of
concern here as the subject compressors were very stable.

The honeycomb seal spring rates were calculated using the seal
code developed by Kleynhans and Childs (1997). The volute
forces were calculated using a computational fluid dynamics code.
Figure 6 shows the coordinate system used. In a free body diagram
for static equilibrium all forces are considered to be acting on the
rotor. Lhc is the distance from Bearing 1 to the center of the
honeycomb seal.

Figure 6. Rotor Coordinate System.

The simple calculation of the bearing load in the typical
rotordynamic code uses two equations. The sum of the forces, and the
sum of the moments, must be equal to zero, for static equilibrium.
For the simple calculation without the honeycomb seal, it is not
necessary to know the spring rates of the bearings as one can find the
two bearing loads with the two equations. The static equilibrium can
be written by summing the forces to zero (Equation 1) plus summing
the moments to zero (Equation 2). Only the vertical plane need be
considered, as there are no horizontal forces.
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The standard model for forces acting on the rotor is given in
Equation (3) (Kleynhans and Childs, 1997).

For static equilibrium, the velocities Xdot and Ydot are zero, which
eliminates the damping coefficients, C and c, from consideration. This
equation can be applied to the static force caused by the honeycomb
seal acting on a rotor, as expressed by Equations (4) and (5):

In Equations (4) and (5) the direct stiffness is K and the
cross-coupled stiffness is k. Note that the cross-coupled stiffness
requires that the horizontal displacement be included in the
equations for vertical forces and vice versa. The subscript y indicates
the force from the honeycomb acts in the y (vertical) direction and
the subscript x indicates action in the horizontal direction.

When the honeycomb seal is added, there are now three
unknown force vectors, the two force vectors of the bearings on the
rotor and now the force vector of the honeycomb seal on the rotor.
However, there are only two force equations (one in the horizontal
direction and one vertical) and two moment equations. Thus the
calculation becomes a “statically indeterminate” problem (Popov,
1968), because the force caused by the honeycomb seal depends on
its drum displacement.

Six equations are required to solve for the six displacements.
Two force balances are provided by Equations (6) and (7) and two
moment balances are provided by Equations (8) and (9).

To account for the cross coupling, the forces are written as
functions of both horizontal (x) and vertical (y) displacements. The
force balance equation is normalized by rotor weight, Wr, to suit
the tolerance limit of the numerical method used. The moment
equations are normalized by moment Wr × Lcl.

Figure 7 shows the displacements in the vertical direction as
defined by Equation (10).

That equation gives the displacement of the rotor drum at the
honeycomb seal, y3. The first term, y1, is the displacement of
the bearing at the coordinate origin. The second term uses the
displacement of the second bearing, y2, to find the centerline
displacement at the honeycomb seal location. The third term
represents the bending of the rotor due to gravity. The fourth term

gives the displacement due to rotor bending under force from the
honeycomb seal. The displacements in the horizontal plane, shown
in Equation 11, are similar but of course do not include bending
due to gravity.

Figure 7. Definition of the Rotor Displacements in theVertical Plane.

The spring coefficient representing the rotor bending stiffness
is easily found by using a rotor response code to calculate an
asynchronous response at very low frequency (1 Hertz) to find the
displacement at the honeycomb seal caused by an asynchronous
force at the honeycomb location

As mentioned, Equation (10) also includes the displacement of
the rotor at the honeycomb seal location, yhcstatic due to rotor
weight. It is handled separately as it remains constant while the
other displacements in Figure 6 vary. Handling it separately avoids
complication due to the weight action not being at the honeycomb
seal location. For the examples given, yhcstatic is a significant term.
The authors estimated it from the first bending frequency of the
rotor, using the concept of the resting displacement of a single
spring-mass oscillator. The yhcstatic is adjusted for the actual
bending curve of the rotor, using the concept of the Raleigh natural
frequency method, using the first bending mode shape as calculated
by a rotordynamic code.

This system can be solved for the six particular values of
displacement, using a standard numerical solution method.
Because the force equations are written as functions of displacement,
no further algebra is required when using the solver in a popular
technical calculation software. Figure 8 shows the result graphically
in the same format as used in Figure 4. Please note that the
direction of rotation as viewed in Figure 4 is clockwise, while it
is counterclockwise as viewed in Figure 8. (This reverses the
horizontal displacements between the two figures, as the view is
from opposite ends of the rotor.) The displacements are normalized
by their respective clearance circles to indicate the limit of validity
of the solutions, due to contact if a displacement exceeds the
clearances. The honeycomb seal clearance is larger than the
bearing clearance. The displacement of the seal drum is marked by
the solid triangle symbol, bearing 1 (near the honeycomb seal) by
the circle, and bearing 2 by the square.

When the honeycomb seal bore is not concentric with the
centerline between the two bearing bores, a variable called “offset”
can be introduced to represent the honeycomb bore position. To
include this in the above calculation, the offset must be included in
the right-hand side of Equations (4) and (5) by adding it to the
variable displacements.

The honeycomb seal stiffness and damping, calculated by the seal
code developed by Kleynhans and Childs (1997) are �0.150 E9 N/m
(�0.857 E6 lbf/in) and 0.200 E9 N/m (1.142 E6 lbf/in), respectively.
These values are for a honeycomb seal with diverging clearance.
They are for the compressor of Example B, but with slightly different
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internal parts, and slightly lower pressure and speed than tested for
Figure 4. The cross-coupled stiffness causes the rotor center to be
displaced to one side, instead of remaining under the center of the
tilt-pad bearing (which has no cross-coupled stiffness).

Figure 8. Journal and Drum Positions in their Clearance Circles—
Example B. Alternate Bundle, Diverging Clearance in Honeycomb,
9965 RPM.

Figure 8 represents only one value of honeycomb seal direct and
cross-coupled stiffness. The behavior of the static equilibrium
calculation varies dramatically with direct stiffness of the
honeycomb seal, when negative direct stiffness is considered.
Figure 9 shows this vertical displacement of the honeycomb seal
drum as a function of honeycomb direct stiffness, over a range of
negative seal stiffness, with all other input values held constant. In
this figure, the drum displacement is normalized by its radial
clearance while the honeycomb seal direct stiffness is normalized
by the bending stiffness of the rotor calculated at the seal location.
The expected value of the direct stiffness is marked by the line
labeled “expected.” At the expected stiffness, the rotor is displaced
upward to the level marked by the line labeled “Root2,” thus
explaining how the bearings may run against their top pads as
shown in Figure 4.

Figure 9. Vertical Force on Bearing Journals as a Function of
Arbitrary Direct Stiffness of the Honeycomb Seal.

As the honeycomb seal stiffness becomes more negative, the
upward displacement increases at a larger rate, reaching 100
percent of its clearance. If it were not limited by rubbing, the
calculated displacement would increase without bound, to reach
the line labeled “asymptote.” Going further left to more negative

values and the displacement suddenly changes direction
downward to negative values. This system of equations indicates
very large forces on the bearings near a particular value of
honeycomb seal stiffness. Mathematically, the force is
unbounded and approaches an asymptote (defined in Thomas,
1968) located at a particular magnitude of direct stiffness of
the honeycomb.

A GRAPHICAL ILLUSTRATION
OF THE ASYMPTOTIC BEHAVIOR

The following explanation is intended to aid visualization of how
the asymptotic behavior occurs. It is based on the concept of solving
two simultaneous equations graphically. To show the concept of the
graphical solution, consider two simultaneous Equations (12) and
(13) (where a, b, c, and d are numerical constants):

Each equation can be plotted as a straight line on x-y coordinates.
If the two equations are independent and consistent equations that
apply simultaneously, then their solution (a particular value of x
and of y that satisfies the equations) is found where the two lines
cross (Ayres, 1958).

To form the first line of the graphical solution, conduct a
“thought experiment” on the rotor. Take the rotor running on its
bearings. Apply an arbitrary force in the positive vertical direction
on the rotor at the location were the honeycomb seal acts. Measure
the displacement of the rotor at that location. Plot the arbitrary
force on the Y axis and the resulting displacement on the X axis.
This is done in Figure 10, forming the red line,Y1. The slope of the
red line represents the stiffness of the rotor-bearing system. This
slope is not constant here because the static bearing stiffness acts
only in the direct axis and is not cross-coupled for the tilt-pad
bearings used. The nonlinearity is included in the analysis to
accurately portray the bearing characteristic at high eccentricity.
Figure 11 shows the values used.

Figure 10. Graphical Solution with Positive Honeycomb Seal Stiffness.
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Figure 11. Bearing Force and Bearing Static Stiffness, as a
Function of Eccentricity.

If the force at the honeycomb seal position is zero, the equilibrium
position occurs where the red line crosses the X axis (force is zero
there). In this instance, one can see in Figure 10 that equilibrium
occurs at about 25 percent of the radial clearance below the center of
the honeycomb seal. (The X axis of the plot represents the honeycomb
seal drum vertical displacement normalized by radial clearance of the
seal. The Y axis is force on drum normalized by rotor weight, Wr.)

Now do another experiment. Center the rotor drum in the
honeycomb seal and lift the rotor up. For a honeycomb seal with
positive stiffness the honeycomb seal will resist with a downward
(negative) force on the rotor. Do this for a series of points and plot as
the blue line (Y2) as done in Figure 10. The stiffness of the honeycomb
seal in this plot is minus one times the slope of the blue line.

The two lines represent two equations that are solved where the
lines cross. The static equilibrium occurs where the red and blue
line cross, which is about 15 percent of the radial clearance above
the center of the honeycomb seal, at the vertical line marked
“Root1.” This is expected, as the positive stiffness of this
honeycomb seal is helping to support the rotor, lifting it up from
the 25 percent position (below center) found without considering
the honeycomb seal support. Knowing the force and displacement
at the seal, the moment balance equation can be used to solve for
the force at bearing two, and then the force balance equation can be
used to solve for the force at bearing one.

To demonstrate how the bearing load reaches the asymptote
when the negative stiffness of the honeycomb increases, the above
plot will be repeated with a honeycomb seal stiffness that has a
slope near the slope of the rotor characteristic (red). This represents
a honeycomb seal having negative stiffness. That is, as the drum is
displaced away from the center, the honeycomb seal tends to pull
the drum further off center. Figure 12 shows this graphical solution
for rotor equilibrium in the vertical plane with negative honeycomb
direct stiffness.

Figure 12. Graphical Solution for Rotor Static Equilibrium for
Negative Stiffness of the Honeycomb Seal.

The graphical solution is also useful to show honeycomb seal
offset from the bearing centerline. In Figures 10 and 12 the blue
line is offset from the center representing an upward displacement
of the honeycomb bore. The green line is offset by an equal and
opposite amount showing a low honeycomb bore. The possible
range of solutions for this offset falls between the blue and green
lines, representing an acute sensitivity to concentricity.

In Figure 12 the red and blue lines cross near 100 percent of the
radial clearance below the honeycomb sea, at the displacement
marked “Root 1.” This intersection is the equilibrium position.
Note that with negative stiffness small changes in the slope of the
blue line can move the crossing point with the red line to very large
positive or negative values, thus representing large forces on the
bearings. Of course, checking this graphical solution against the
algebraic solution, shown earlier, gives identical results. However,
the graphical solution gives more insight.
From this graph, the learning is to avoid negative stiffness whose

absolute value is near the stiffness of the rotor bearing system, that
is, near the asymptote. Note that the position of the asymptote
depends on the stiffness of the rotor bearing system as well as the
stiffness of the honeycomb seal. Even larger negative stiffness, to
the left of the asymptote may create a larger problem, as it is likely
to depress the whirl frequency (typically the first bending mode)
possibly causing the honeycomb to produce negative damping, and
thus causing rotordynamic instability.

Actually plotting the graph is not necessary to find the solution,
as the intersection of the rotor and honeycomb seal characteristic
lines is easily found by setting the equations for the two lines equal
and finding the displacement of the rotor in the honeycomb seal
that satisfies the two equations. However plotting the graph is
useful to visualize if the solution is near the asymptote.

For a rigid rotor solution it is possible to solve for the asymptote
in closed form based on the lengths of the components along the
rotor. Given two identical bearings of stiffness Kyy, the critical
honeycomb negative stiffness where the asymptote occurs is shown
in Equation (14).

This equation only applies for zero offset.

BEHAVIOR DISPLAYED
BY THE GRAPHICAL SOLUTION

For practical application, rotor bending, rotor sag due to gravity,
honeycomb seal offset from the bearing centerline, and bearing
nonlinearity are usually highly significant. The honeycomb seal offset
needs to be controlled by tolerances, or by adjustment on assembly.

For the compressor of Example B, all these effects were included
in the calculation of static equilibrium. Figure 12 gives the graphical
solution for this case. The red line shows the force-displacement
characteristic of the rotor-bearing system. It shows a hardening
spring rate due to the tilt-pad bearing reaching high eccentricity, as
found by a Reynolds code for laminar flow in bearings.

In Figure 12, the dashed green line shows a honeycomb seal with
negative stiffness, whose center is displaced 60 microns (2.3 mils)
below the bearing centerline, shown on the graph as a displacement
to the left on the horizontal axis, at about 40 percent of the radial
clearance of the honeycomb seal. The intersection of the red and
green lines shows the equilibrium position in honeycomb seal just
above center (Root2). The dashed blue line shows a honeycomb
seal with negative stiffness, whose center is displaced 60 microns
(2.3 mils) above the bearing centerline, shown as a displacement to
the right on the horizontal axis. The intersection of the red and blue
lines shows the calculated equilibrium position of the drum in
the honeycomb seal would heavily depress the rotor below its
centerline. The displacement normalized by the honeycomb seal’s
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radial clearance is near minus one, indicating the drum is close to
rubbing the honeycomb surface at the calculated equilibrium.

This behavior may be self-limiting, because if the rotor drum
rubs the honeycomb seal surface, then, given a rotor whirl
amplitude approaching the honeycomb seal clearance, the surface
will be worn to give an axial leakage path of constant clearance.
Based on calculations using the seal code developed by Kleynhans
and Childs (1997), such a clearance does not usually have significant
negative direct stiffness.

Note that the red line is nearly parallel with the blue and
green ones, which are offset by the concentricity tolerance on the
position of the honeycomb seal. The practical result is that the
static equilibrium cannot be accurately calculated in this case,
because the intersections within the tolerance band cover a range
from where the drum is near the bottom of the honeycomb to being
lifted above the centerline of the two bearings.

The behavior of the rotor when it is near the asymptote can be
understood by the concept of “indifferent equilibrium.” This
concept applies to the case were all spring rates in the system are
linear. Indifferent equilibrium is most easily seen by an example
where the honeycomb seal (with negative direct stiffness) is at the
center span of a symmetric rigid-rotor bearing assembly.

In that case the asymptote will occur when the honeycomb
stiffness is equal to minus the sum of the bearing stiffness (twice
the stiffness of the two identical bearings.). Thus the rotor will have
zero stiffness to parallel translation, because the negative
honeycomb seal stiffness will cancel the positive bearing stiffness,
as the three spring rates are additive because the springs act in
parallel. (The resistance to angular displacement will remain.)

At this asymptote, if the rotor moves a honeycomb seal with
negative stiffness will pull it up, and the bearings will push down,
giving a zero net force resisting the displacement. Therefore this
rotor can be moved to any lateral position without applying an
external force, assuming perfectly linear stiffness. (Nonlinear
stiffness of the bearing or honeycomb seal may not cancel at all
displacements.) When the solution for static equilibrium is at the
asymptote, a rotor is indifferent to its lateral position, and can be
moved to different positions with little or no force, provided the
rotor drum does not hit the honeycomb bore. However, the forces
on the bearings can be very large.

INFLUENCE OF VOLUTE FORCES
ON ROTOR STATIC EQUILIBRIUM

In contrast to the honeycomb seal, which is characterized as a
spring rate, the volute forces can be represented as a static force on
the rotor, independent of small displacements of the rotor. They can
then be incorporated into the above static equilibrium model in the
same manner as the weight of the rotor. As a simplification, the
volute force can be applied at nearly the same location as the
honeycomb seal force. However, obtaining a good estimate of the
volute force is laborious.

In order to calculate the force generated by the volute a complete
computational fluid dynamics (CFD) model of the last impeller
plus diffuser plus discharge volute has been developed. The
analysis has been carried out using the well-known mixing plane
approach. According to this technique the complete model has
been divided in two parts: first the impeller plus the first part of
the diffuser, second the diffuser plus the discharge volute. First
analysis is done on the impeller by imposing the boundary conditions
at the inlet plus the mass flow. Once this calculation is completed
total pressure and total temperature distributions as well as yaw
angle are extracted at the interface plane and are used as boundary
conditions for the CFD analysis of the volute. This analysis also
requires imposing the mass flow (the same value applied for the
CFD analysis of the impeller).

The analysis is able to capture the static pressure gradients in the
tangential directions close to the outlet of the impeller. By knowing
the pressure distribution at the outlet of the impeller as well as the

geometry of the impellers, diaphragm-impeller cavities and seals it
is possible to calculate the resulting radial force by means of a
static equilibrium analysis. Figure 13 shows a cross section of last
wheel stage of a reinjection compressor, Example C.

Figure 13. Cross Section of Last Wheel of a Tested Compressor.

The control volume used to make the static equilibrium of the
impeller is highlighted in red color. For the analysis the authors
assumed that the pressure gradient extends down to the diameter of
inlet eye seal on the impeller cover, and down to the hub at the foot
of the impeller disk. Pressure gradients have been considered
constant along the two cavities. This assumption leads to make an
overestimation of the forces.

Figure 14 shows the result of the above analysis applied to a very
high pressure compressor, Example, C for the full density full
pressure conditions in the authors’ testing facility. In particular
circumferential pressure gradients are evident.

Figure 14. Static Pressure Distribution Around the Last Impeller.

Figure 15 is a graph showing the static pressure distribution
immediately at the discharge of the impeller and used in order to
compute the radial force created on the rotor. For this case the
pressure equilibrium of the rotor control volume leads to a horizontal
force of �9561 N (�2149 lbf) and vertical force of 9663 N (2172
lbf). The sum of these forces acts at an angle of 45 degrees from
vertical, as shown in Figure 16. The weight of the rotor is 350 kg
(771.62 lb), i.e., the vertical force from the volute is around three
times the weight. The negative value means that the force is in the
same direction of the weight.
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Figure 15. Pressure Profile around Circumference of Last Impeller.

Figure 16. Direction of Net Force Due to Pressure.

Although this particular example is not correlated to the test
data, is serves to demonstrate that the volute forces can dominate
rotor weight for compressors in this size and pressure range.

COMPARISON OF CALCULATIONS
WITH TEST DATA

The honeycomb seal stiffness values used in this paper were all
calculated with the seal code developed by Kleynhans and Childs
(1997). For Examples A and B, using a diverging clearance
(leakage area increasing going downstream) in this seal code gives
negative direct stiffness. A converging clearance gives positive
direct stiffness of the honeycomb seal.

The honeycomb seal for Example B was modified after the
measurements in Figures 4 and 5 were made. The modification was
made when an opportunity arose to limit the possibility of high
bearing loads. Swirl brakes were used on the honeycomb seal to avoid
subsynchronous instability. Using the operating (hot and spinning)
clearance of the honeycomb seal for Example B, the calculated direct
stiffness at zero frequency before and after changing the clearance is
shown in Table 3 for the respective clearances.

Table 3. Calculated Direct Stiffness at Zero Frequency Before and
After Changing the Clearance.

After the honeycomb seal was modified to have positive
stiffness the compressor was retested. The measured bearing
journal positions are shown in Figure 17. The journal in the
nondrive-end (NDE) bearing did not lift high but is pushed to the
side. The journal in the drive-end (DE) bearing (next to the
honeycomb seal) still lifted to the top pads. The volute forces were
not calculated, as the effort was not justified by the good behavior
of the compressor.

Figure 17. Calculated Static Force by Bearings for Example B,
before Modification of the Honeycomb Bore.

Figure 18 shows the calculated static force on the rotor by bearings
for Example B before modification of the honeycomb bore. The
operating conditions for Figure 18 are estimated to correspond to
Figure 4 at maximum speed. The offset used corresponds to the green
line in Figure 12. The vertical line labeled “expected” in Figure 18
represents the Keff shown in the above table for the rated conditions.
At the expected Keff, the forces at both bearings are negative,
pushing down on the rotor, in the same direction as shown in Figures
4 and 5. Note that the bearing force is large, being nearly twice the
rotor weight on bearing number one. Because the volute forces are
not considered, the calculation is not empirically confirmed.
However, the calculated and measured journal conditions are not
contradicted either.

Figure 18. Journal Positions in the Bearings of Example B after
Revising the Honeycomb Seal.

Figure 19 shows the calculated force on the rotor by the bearings
for Example B as modified. The offset used corresponds to the blue
line in Figure 20.The vertical line labeled “expected” represents
another value of the Keff = +0.259 E9 N/m (+1.43 E6 lbf/in) for
the as-modified conditions. At the expected Keff, the force from
Bearing 1 (on the DE of the rotor) is pushing down, as shown on
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the right-hand side of Figure 19. At the expected Keff, the force
from Bearing 2 (on the NDE of the rotor) is pushing down slightly,
as shown in the right-hand side of Figure 19. Note that the Bearing
2 force is small, with its absolute value being less than half the
rotor weight. Without the honeycomb seal force or volute forces,
the bearing force would be about half the rotor weight, pushing up.
The graphical solution predicting the rotor equilibrium as modified
is shown in Figure 20.

Figure 19. Calculated Static Force by Bearings for Example B,
after Modification of the Honeycomb Bore.

Figure 20. Graphical Solution Corresponding to Figure 19.

Figures 19 and 20 are consistent between the calculation and
test, assuming a known offset (tolerance) of the honeycomb bore.
However, the actual offset is not known. Note that the offsets are
opposite between Figures 19 and 18. The actual offsets were
unknown. Alternate compressor internal parts (rotor and bundle)
were installed for the test shown in Figure 17 than were used in the
test shown in Figure 4. Therefore, the offsets may have changed
between Figure 18 and 19.

DISCUSSION

The basic assertion of this paper is that honeycomb seal and
volute forces in reinjection compressors can invalidate the bearing
load calculations typically used in rotordynamics analysis to find
the bearing characteristic. A practical solution is to use high

preload and tight clearances on tilt-pad bearings to make the bearing
less sensitive to load. The disadvantage of high preload and tight
clearances is loss of opportunity to maximize the bearing damping
and thus optimize unbalance response and rotordynamic instability.

The measured rotor position in the bearings of the examples was
often against the top pads, in opposition to the standard assumption
of gravity load. A more unexpected conclusion, from the equations
of static equilibrium, is that a honeycomb seal having a negative
static stiffness in the same range as the rotor-bearing system
stiffness (that is, at the asymptote) can produce bearing loads of
many times the rotor weight. These calculations suggest that such
a load would only be bounded by contact of the rotor against the
honeycomb (based on a linear stiffness characterization of the
honeycomb). However, the contact force will be small due to the
indifferent equilibrium effect discussed above. (The large force on
the rotor in the honeycomb is carried by the gas pressure.) In the
cases presented, the calculations predict the asymptote was not
reached. Only moderate contact was noted on disassembly.

The solution of the six equations of equilibrium (Equations 6
through 11) is straightforward and well based on the theory
of statically indeterminate problems (Popov, 1968.) However,
conceptually graphic solution gives more insight into the behavior
of the system.

The concept of static equilibrium could also be applied to
honeycomb seal test rigs used for determining the dynamic
coefficients. In the case of test rigs where the seal carrier moves
with respect to a stiffly supported rotor, the direct stiffness of the
tie-rod assembly could be used in the calculation in place of the
rotorbearing system stiffness. When testing seals with negative
direct stiffness contact with the rotor may occur. The graphical
solution presented in this paper shows such contact will occur
when the absolute value of negative stiffness of the honeycomb
approaches the positive stiffness of the mechanical parts of the
system (when approaching the asymptote). This is conceptually
different from reaching contact only at very large values of
negative stiffness.

The test results presented prove that the bearing loads are not
due to gravity alone, as it is customary to assume. The calculations
presented here confirm that negative stiffness from the honeycomb
seal, and volute loads should have a dramatic effect on the static
equilibrium of the rotor on its bearings. Due to strong influence of
the unknown magnitude and direction of offset between the
honeycomb bore and the bearing centerline, the calculations
suggest the bearing loads are not calculable, given typical offset
tolerances. Furthermore, the aerodynamic force on the rotor can
vary so that the estimated bearing loads may vary over a wide
range. “Indifferent equilibrium” further confounds the problem.

Nevertheless, the analysis presented requires that the compressor
design must take the variability of the possible bearing loads into
consideration. For oil film bearings this is easily considered in the
design stage by calculating the loads at the extremes of offset.
Magnetic bearings and bearings supported on squeeze film
dampers typically have direct stiffness that is an order of
magnitude softer than the tilt-pad journal bearings used in
Examples A and B. If magnetic bearings or damper bearings are
used with a honeycomb seal, especially one having negative
stiffness, the calculated asymptote would occur at a much smaller
negative stiffness of the honeycomb seal than with stiffer bearings.
Such behavior could disrupt the functioning of a magnetic bearing
or damper bearing even if the honeycomb negative stiffness were
relatively small in absolute value.

CONCLUSIONS

Calculation of the bearing load based on only the rotor weight (for
horizontal rotors) is not valid for high pressure centrifugal compressors
having honeycomb/drum-rotor seals, or single-volute or collector
type discharge hardware. The forces caused by these components are
shown for the above examples to exceed the rotor weight.
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Introducing the honeycomb/drum type seal into the bearing load
calculation as direct and cross-coupled spring coefficients makes
the problem statically indeterminate and thus requires consideration
of displacement of the journal in its bearing, the drum in the
honeycomb bore, and the rotor as a beam in bending. In this case
the bearing loads can be solved by the standard methods of the
mechanics of solids.

When the spring coefficient of the honeycomb seal is negative,
the indeterminate beam calculation can show asymptotic behavior.
In this case the drum displacement will only be limited by contact
with the honeycomb seal bore. At the asymptote, the rotor can be
either lifted or depressed.

This paper introduces a conceptually graphical solution to
the indeterminate beam calculation for the purpose of visualizing
the asymptotic behavior (here shown in a vertical plane.)
This solution also makes clear the importance of small deviations
of the honeycomb bore from the centerline between the
two bearings.

The asymptotic behavior does not depend merely on the
magnitude of the negative stiffness of the honeycomb seal, but
instead depends on the ratio of that stiffness to the stiffness of the
rotor bearing system. In the graphical solution this occurs when the
slope of the honeycomb seal displacement versus force line is nearly
parallel with the slope of the rotor-bearing system displacement
versus force line.

This solution predicts the rotor can be lifted in its bearings by the
negative stiffness of the honeycomb seal, at sufficiently high gas
pressures. This solution also predicts that the rotor can be lifted
in its bearings by positive stiffness of the honeycomb seal, when
the honeycomb bore is offset above the centerline between the
two bearings.

For examples given in this paper, these predictions are not
inconsistent with the observed behavior. However, the unknown
values of honeycomb bore concentricity defeat an exact calculation,
because the bearing position is acutely sensitive to the honeycomb
bore offset. The volute forces compound this problem.

NOMENCLATURE

fb1 N (lbf) = Vertical load on bearing number 1
fb2 N (lbf) = Vertical load on bearing number 2
Wr N (lbf) = Vertical force due to rotor weight
Lcg mm (inch) = Horizontal distance from bearing

1 to the rotor center of gravity
Lhc mm (inch) = Horizontal distance from bearing

1 to the rotor center of the seal
Lcl mm (inch) = Distance between horizontal centers

of the two bearings
Fbx(x1,y1) N (lbf) = Force by the bearing on the rotor

in the horizontal direction due to
displacements x1 (direct) and y1
(cross-coupled)

Fby(x1,y1) N (lbf) = Force by the bearing on the rotor
in the vertical direction due to
displacements y1 (direct) and x1
(cross-coupled)

Fhx(x3,y3) N (lbf) = Force by the honeycomb seal
on the rotor in the horizontal
direction due to displacements
x3 (direct) and y3 (cross-coupled)

Fhy(x3,y3) N (lbf) = Force by the honeycomb seal on
the rotor in the vertical direction
due to displacements y3 (direct)
and x3 (cross-coupled)

K N/m (lbf/in) = Radial spring coefficient of
linearized restoring direct force

k N/m (lbf/in) = Tangential spring coefficient of
linearized cross-coupled force

C N*s/m (lbf*s/in) = Damping coefficient—direct
c N*s/m (lbf*s/in) = Damping coefficient cross-coupled
x1, x2 microns (mil) = Horizontal displacement of rotor

in bearing 1 and 2, respectively
y1, y2 microns (mil) = Vertical displacement of rotor in

bearing 1 and 2, respectively
Xdot mm/sec (in/s) = Horizontal velocity of whirl orbit
Ydot mm/sec (in/s) = Vertical velocity of whirl orbit
Kyy = K N/m (lbf/in) = Bearing direct stiffness in the

vertical direction
Lb mm (inch) = Lcl
Kcrit N/m (lbf/in) = Honeycomb seal stiffness at

asymptote for the rigid rotor,
linear bearing case

Keff N/m (lbf/in) = Direct stiffness of the honeycomb
seal at zero frequency

Subscripts

1 = Bearing 1
2 = Bearing 2
3 = Drum of honeycomb seal
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