Turbomachinery Symposium – Case Study

Practical root cause analysis of connecting rod bushing failures in a new reciprocating compressor and the theory behind the failure mechanism

Presenters:

Matthew E. Barker, P.E., CMRP Principal Mechanical Engineer Eastman Chemical Company Kingsport, TN USA Brian K. Bertelsen, CMRP President NEAC Compressor Service USA Katy, TX USA Dr. Klaus Hoff Head of Central Division of Technology Neuman & Esser GmbH Übach-Palenberg, Germany

Case Study Overview

- During start-up of a new reciprocating compressor, multiple connecting rod bushing failures led to a detailed root cause analysis, data gathering, and testing
- This compressor met API 618 requirements for rod load and rod reversal.
- Another compressor of the same design with similar rod load has history of reliable operation
- Applying practical root cause analysis and well known engineering principles, a simple solution was found
- To further the analysis of connecting rod bushing lubrication mechanisms, the OEM has created a new software program to model this complex lubrication application

Failed Connecting Rod Bushings

- Compressor Application Data
 - Hydrogen Make-up Compressor
 - □ 4-Throw ; 3-Stage (1st Stg Suction 220 psig ; 3rd Stg Discharge 2,114 psig)
 - □ 1,600 Horsepower
 - □ 8.4 MMSCFD
 - 441 RPM

Timeline

October 2006	1 st Failure
November 2006	2 nd Failure
December 2006	 PV Analysis to confirm operating conditions 3rd Failure occurred during testing Detailed Root Cause Analysis performed
January 2007	 Performed Strain Gage Testing / PV Analysis / Operating Deflection Shape (ODS) Analysis 4th Failure occurred during testing Implemented solutions and had successful 10 minute and 4 hour test runs
February 2007	Inspection after 1 month run. Bushings in good condition
June 2008	Inspection after 15 month run. Bushings in good condition

Connecting Rod Bushing

Root Cause Analysis

RCA identifies further testing requirements

- PV Analysis and Strain Gage Analysis to measure / confirm rod loads and check for torsional resonance
- Operating Deflection Shape (ODS) to identify any structural resonance
- Confirm actual oil flow

Strain Gage Measurements

Data Acquisition

Data Acquisition

Predicted Combined Rod Load Diagram for 3rd Stage

Rod force diagram Rod # 2; Piston, Piston rod, Crosshead; Normal; Stage: 3

Strain Gage Data – 3rd Stage Connecting Rod

Results of Data Analysis / Conclusions

- Measured combined rod load was similar to predicted – Ruled out off-design operation
- Ruled out Torsional Resonance
- Ruled out Structural Resonance
- Problem was with insufficient load capacity in bushing due to lack of oil film thickness
 - Caused by Bushing Geometry
 - Load Surface Area too small
 - Hydrodynamic Pressure created in oil film was excessive and oil film was not maintained
 - Oil Viscosity and Type
 - Need oil with better film strength

Classic hydrodynamic oil film pressure distribution

changes pressure profile

Design of Experiment / Corrective Actions

- Corrective Actions to increase the lube oil film thickness
 - Increased Bushing Load Capacity
 - Rotated Bushing 90 degrees to get more bushing surface area in the load zone i.e. change the hydrodynamic pressure profile in the bushing
 - Changed Lube Oil
 - Changed from Mineral Oil to Synthetic Oil
 - Changed from ISO 100 to ISO 150 Viscosity Grade

Test Run Results: Rotated Bushing on 3rd Stage and Higher Viscosity Oil

<u>**3rd Stage</u>:** Rotated bushing and change in oil viscosity -<u>**No damage**</u></u> <u>2nd Stage</u>: Change in oil viscosity alone – <u>Less damage</u>

Development of Modeling Software

- Classical hydrodynamic analysis methods are not applicable for crosshead pin bushings
 - For this type of bushing, oil supply grooves are often arranged in the highly loaded area to ensure supply to bushing surfaces
 - Also, since there is no real rotary movement of the journal, the oil in the bushing is not continuously replenished
 - This is especially true for load scenarios with less rod load reversal

Development of Modeling Software

Reynolds' Differential Equation for the Crosshead Pin Bearing

• Defining dimensionless Sommerfeld number $So(\beta, b, t) = \frac{p(\beta, b, t) \psi^2}{\eta \omega}$

$$3(1 - \varepsilon(t)\cos(\beta - \delta(t)))^{2} \left(\frac{\partial}{\partial\beta}\operatorname{So}(\beta, b, t)\right)\varepsilon(t)\sin(\beta - \delta(t)) + (1 - \varepsilon(t)\cos(\beta - \delta(t)))^{3} \left(\frac{\partial^{2}}{\partial\beta^{2}}\operatorname{So}(\beta, b, t)\right) + \left[2\frac{r}{B}\right]^{2}(1 - \varepsilon(t)\cos(\beta - \delta(t)))^{3} \left(\frac{\partial^{2}}{\partialb^{2}}\operatorname{So}(\beta, b, t)\right) = -12\frac{\varepsilon(t)\sin(\beta - \delta(t))\left(\frac{\partial}{\partial t}\delta(t)\right)}{\omega} + \frac{6\lambda\cos(\omega t)\varepsilon(t)\sin(\beta - \delta(t))}{\sqrt{1 - \lambda^{2}\sin(\omega t)^{2}}} - \frac{12\left(\frac{\partial}{\partial t}\varepsilon(t)\right)\cos(\beta - \delta(t))}{\omega}$$

Dimensionless axial coordinate b=2z/B
 Axial width of bearing B

Development of Modeling Software

Boundary Conditions

 Differential equation is written in a coordinate system fixed with the bearing shell

□ the external rod load F(t) acts only in connecting rod direction

□ equilibrium between external rod load and hvdrodvnamic pressure $\int_{0}^{2\pi} \int_{-1}^{1} \cos(\beta) \, So(\beta, b, t) \, db \, d\beta = \frac{2 F(t) \, \psi^2}{\eta \, \omega \, r \, B}$ □ perpendicular direction $\int_{0}^{2\pi} \int_{-1}^{1} \sin(\beta) \, So(\beta, b, t) \, db \, d\beta = 0$

 $\Box \text{ Constant oil groove pressure } p_{\text{const}} \text{ of oil unit} \qquad So(\beta_i, t) = \frac{p_{const} \psi^2}{n \omega}$

Design approximations

- The relation between load and eccentricity is only valid as long as the bushing is refilled with oil
- To assess the refilling, another relation is needed, $\rho = \frac{p_{const} \cdot \psi^2 \cdot J}{\eta \cdot \omega}$
- The calculated value of a given load scenario and bushing design must exceed a <u>critical limit</u> which depends on the bushing geometry
- This "Refilling Characteristic" is much more physically complex than the minimum rod load reversal criterion given in API 618
- Defining only a minimum rod load reversal angle and a corresponding peak load can either be critical or conservative
 - Both of these parameters do not fully describe the refilling mechanism
 - The refilling characteristic contains all variables influencing the refilling

Comparison of Hydrodynamic Oil Film Developed for Different Bushing Geometry and Oil Properties

Conclusions

- Compressor connecting rod bushings failed due to insufficient load capacity / loss of oil film
- This application met API 618 rod load and rod reversal requirements, and a very similar compressor has a history of reliabile operation, yet this compressor was still marginal
- A collaborative effort between End-user and OEM utilizing sound Root Cause Analysis and well known engineering principles resolved the design problem
- The lubrication mechanism of connecting rod bushings has been modeled and has identified Critical Factors:
 - 1. Maximum oil peak pressure
 - 2. Minimum oil film thickness
 - 3. Refilling characteristic of oil to the bushing surfaces

Conclusions / Recommendations

- Compressor OEM's strive to provide reliable compressors utilizing sound engineering principles and practices but are sometimes incentivized to push the envelope
- In reality, the selection of a compressor application depends on the manufacturer's empirical experience with their fleet of compressors
- The end-user, purchaser, and OEM need to confirm the compressor application is "tried and true" in every aspect (rod load, rod reversal, speed, stroke length, materials, etc.)
 - □ OEM needs to provide references
 - If no suitable references are available, then all parties should at least understand any potential risks and mitigate risks accordingly

Conclusions / Recommendations

- OEM should be able to explain how they model the connecting rod bushing / crosshead pin system with respect to:
 - 1. Oil film peak pressure
 - 2. Minimum hydrodynamic oil film thickness
 - 3. Oil "refilling characteristic" during rod load reversal