40th Turbomachinery Symposium

Higher reliability of oil operated bolt tensioner for larger-sized steam turbine casings with higher inlet steam pressure

Mitsubishi Heavy Industries Compressor Corporation Kyoichi Ikeno

1

Classification of casing bolt tightening tool

Comparison of heater and oil operated types

		Coil heating type bolt heater	Oil operated types bolt tensioner		
		Non explosion proof	Explosion proof		
	Working time	(45-60 min/each)	(5-10 min/each)		
Function	Work ability	(Weight : 1-2kg)	(Weight : 30-50kg)		
	Life cycle	(Coil : Consumable)	(Semi permanently)		
	Safety	(Heating operation)	(High oil pressure operation)		
	Bolt pitch	(Narrow)	× (Wide)		

Advantages of Oil operated bolt tensioner;

1)Saving work-time

2)More safety working without heating operation

3)Reducing maintenance cost thanks to longer life-time in use

How to use oil operated bolt tensioner

Conventional type of oil operated bolt tensioner

Technical issues

Necessity of Tensioner improvement

Advanced type of oil operated bolt tensioner(1/3)

Solution to technical issues of conventional oil operated

Advanced type to be developed by Double piston & Hybrid sealing structures

Features of Advanced type:

1)To prevent oil leakage

Hybrid sealing of back-up-ring and O-ring

2)To increase bolt tightening force

2.5 times up of oil pressure surface by double piston

Advanced type of oil operated bolt tensioner(2/3)

Size comparison to conventional oil operated type

Advanced type;

Compact design to keep almost same outer diameter

Effect;

Not necessary to extend casing bolt pitch Keeping same casing seal performance

Advanced type of oil operated bolt tensioner(3/3)

Reliability check of advanced type(1/4)

Reliability check list of oil operated bolt tensioner

Purpose	Check point	Evaluation	Criteria
Prevention of brittle fracture	Impact value	Material test	Over 37.6J/cm ² (Brittle fatigue limit)
Prevention of tension failure	Average stress	3D FEM analysis	Less than material yield stress
Prevention of low cycle fatigue failure	Peak stress	Langer's equation	Over 2,000 cycles*1

*1: 2000 cycles > 30 casing bolts per turbine ×2 numbers (Disassembly/Assembly) × 30 years

Material test

Application of 17-4PH material = Higher tensile strength material

To prevent brittle fracture Impact value required to be over 37.6J/cm²

	Yield stress	Tensile stress	Elongation	Reduction area	Hardness (Brinell)	Impact (V-notch)
Specification	>1000MPa	>1070MPa	>12%	45%	>331HB	>37.6J/cm ²
Test piece No.1	1043	1081	20.4	64.0	341	110
Test piece No.2	1010	1140	18.8	46.9	375	113
Test piece No.3	1040	1086	21.6	60.5	341	128

Result; Enough satisfied with Spec. Ac

Acceptable

Reliability check of advanced type(2/4)

Stress distribution under maximum oil pressurizing at 180MPa (For advanced type, Bolt size M110)

Stress table

Reliability check of advanced type(3/4)

Evaluation of low-cycle-fatigue for bolt tensioner

Langer-equation

$$\Delta \sigma_{P} = \frac{E}{2\sqrt{N}} \ln \left(\frac{1}{1-\phi}\right) + 2\Delta \sigma_{V}$$

- $\Delta \sigma_P$: Allowable stress
- E : Modulus of elasticity(= 2.1×10^4)
- *N* : Allowable repeat cycle(=2000)
- ϕ : Reduction of area(=0.45)
- $\Delta \sigma_W$: Endurance limit(=49)

Result;

Allowable stress = 240MPa > 170MPa(Peak) Adequate safety margin for no low-cycle-fatigue failure in 2000 cycles

Summary result of reliability check

Purpose	Criteria	Result	
Prevention of tension failure	Less than material yield stress	Highest average stress to be Min. Safety 1.4 for allowance	
Prevention of low cycle fatigue failure	Over 2,000 cycles	Peak stress to be min. safety 1.4 for allowance	
Prevention of brittle fracture	Over 37.6J/cm ² (Brittle fatigue limit)	More than 100J/cm ²	

Advance type;

- 1) More safety operation of bolt tensioner
- 2) Much longer life time to use in over 2000 cycles
- 3) Tensioner material to be more toughness without brittle fracture

Application to large-sized steam turbine(1/4)

Seal analysis of large-sized steam turbine under hydro test

Analysis 3D model of turbine casing

Seal analysis of large-sized steam turbine under hydro test

Bolt arrangement and tightening force

Application to large-sized steam turbine(3/4)

Seal analysis of large-sized steam turbine under hydro test

Contact condition of horizontal casing surface in hydro casing integrity test

Application to large-sized steam turbine(4/4)

Hydro test of turbine casing

Advanced bolt tensioner

Test result of casing integrity and joint leakage; Neither leaks nor seepage through casing is observed

Successful hydro test of turbine casing by advanced bolt tensioner

Conclusions

Advanced type of oil operated bolt tensioner is successfully designed to enhance the reliability for large-sized steam turbine with higher inlet steam pressure as follows;

- a) Compared to conventional type, the following items are improved.
 a-1)Achievement of 1.5 times up of bolt tension force by double piston
 a-2)Enhancement of oil seal performance by hybrid sealing
 a-3)Applicable to same bolt pitch by compact design
- b) Bolt tightening work time can be saved with more safety compared to bolt heater type thanks to no heating time and operation.
- c) By 3D FEM analysis and material test, adequate strength against tension, fatigue, brittle fracture are verified. Also, life time can be obtained in more than 2000 cycles. Finally, the advanced type can achieve successful hydro test of turbine casing with no leakage or seepage.
- d) To get a reliability increase of turbine casing seal performance in the future, minimization of casing bolt pitch is necessary with modification structure to be studied in next technical issue.