
1

40th Turbomachinery Symposium

Higher reliability of oil operated bolt tensioner for larger-sized 
steam turbine casings with higher inlet steam pressure

Mitsubishi Heavy Industries Compressor Corporation
Kyoichi Ikeno

308



2

Customer need for bolt tightening of steam turbine   

Customer need = More safety maintenance working without heating operation

Applicable tool = Oil operated bolt tensioner
Tightening method :
To extend and tighten bolts by hydraulic oil pressure
Note: a) Not necessary to heat bolt、b) Satisfied with explosion proof

Necessity of using bolt tightening tool with explosion proof type 

Oil pump Tensioner

Cross-sectionHigh-pressure oil

Bolt tension force

Casing bolt

Oil operated 
bolt tensioner
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Non explosion proof type

Classification of casing bolt tightening tool

Over M72 bolt size (Bolt diameterΦ72)

Use special tool for tightening

Explosion proof type

BOLT HEATER

Casing bolt 
without holeCasing bolt with hole

Oil operated bolt tensioner
Extend and tighten a bolt by oil pressure

Bolt heater
Extend and tighten a bolt by heat

Upper casing

Lower casing
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Comparison of heater and oil operated types

Explosion proofNon explosion proof

×(Wide)○(Narrow)Bolt pitch

○(High oil pressure operation) △(Heating operation)Safety

○(Semi permanently)△(Coil : Consumable)Life cycle

△(Weight : 30-50kg)○(Weight : 1-2kg)Work ability

○(5-10 min/each)△(45-60 min/each)Working time

Function

Oil operated types
bolt tensioner

Coil heating type
bolt heater

Advantages of Oil operated bolt tensioner；
1)Saving work-time
2)More safety working without heating operation
3)Reducing maintenance cost  thanks to longer life-time in use
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How to use oil operated bolt tensioner

NutRam chair

Cylinder

Casing bolt
Oil supplyPiston

Step1. To set ram chair and cylinder with piston Step2. To supply pressurized oil to extend bolt

Step3. To tighten nut by bar under oil supply Step4. To release oil supply, then, bolt to be 
tightened with remain extension

Extension =δ1

Nut to be up 

Shrinkage =δ2
Oil supply Oil release

Bolt tightening with 
remain extension
(δ1－δ2)

Tightening bar

Nut to be down 
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Conventional type of oil operated bolt tensioner

Technical issues

Bolt tension force

Nut

Ram chair

1) Oil leakage from tensioner tool
→ High oil supply pressure

2) Water leakage at casing hydro test
→ Low tightening force

( Insufficient bolt tension force )

Experienced problem

Cylinder

Necessity of Tensioner improvement

Casing bolt

Oil supplyPiston

Oil leakage
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Advanced type of oil operated bolt tensioner(1/3)

Solution to technical issues of conventional oil operated

Piston
Piston B Piston A

Double piston

Conventional Advanced

Cylinder

Cylinder A

Cylinder B

Features of Advanced type：
1)To prevent oil leakage

Hybrid sealing of back-up-ring and O-ring
2)To increase bolt tightening force 

2.5 times up of oil pressure surface by double piston

Advanced type to be developed by Double piston & Hybrid sealing structures

Hybrid sealing
Oil pressure surface
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Advanced type of oil operated bolt tensioner(2/3)

Outer dia.

H
ei

gh
t

265225Φ260Φ260M110

238185Φ222Φ222M90

212165Φ203Φ206M80

AdvancedConventionalAdvancedConventionalBolt size

HeightOuter dia.
Unit:mm

Size comparison to conventional oil operated type
Size comparison

Advanced type；
Compact design to keep almost same outer 
diameter
Effect;
Not necessary to extend casing bolt pitch
→ Keeping same casing seal performance

Casing bolt pitch Turbine casing
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Advanced type of oil operated bolt tensioner(3/3)

General specification

Piston B Piston A

Advanced

Cylinder A

Cylinder B

General
1) Structure = Double piston type
2) Oil seal = Back-up ring and O-ring
3) Oil supply pressure 

= About Max. 150MPa
4) Maximum bolt tension force

Up to 80% of bolt material yield force
5) Applicable bolt size

M80、M90、M100、M110
Note; M××, ××=Bolt diameter [mm]

Advantages compared to conventional type ：
1)1.5 times up of bolt tension force
2)Enhancement of oil seal performance
3)Applicable to same bolt size and pitch

Back-up-ring
(Fluorocarbon Polymers)
O-ring
(Nitrile Rubber)
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Reliability check of advanced type(1/4)

Over 37.6J/cm2

(Brittle fatigue limit)Material testImpact valuePrevention of brittle 
fracture

Peak stress

Average stress

Check point

Prevention of low 
cycle fatigue failure

Prevention of tension 
failure

Purpose

Over 2,000 cycles*1Langer’s equation

Less than material 
yield stress3D FEM analysis

CriteriaEvaluation
Reliability check list of oil operated bolt tensioner

*1: 2000 cycles > 30 casing bolts per turbine ×2 numbers (Disassembly/Assembly)×30 years

Material test
Application of 17-4PH material = Higher tensile strength material

To prevent brittle fracture → Impact value required to be over 37.6J/cm2

11337546.918.811401010Test piece No.2

60.5

64.0

45%

Reduction 
area

341

341

>331HB

Hardness
(Brinell)

11020.410811043Test piece No.1

12821.610861040Test piece No.3

>37.6J/cm2>12%>1070MPa>1000MPaSpecification

Impact
(V-notch)

ElongationTensile 
stress

Yield stress

Result; Enough satisfied with Spec.  →Acceptable 
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Reliability check of advanced type(2/4)

Stress distribution under maximum oil pressurizing at 180MPa
(For advanced type, Bolt size M110)

1.649.5③

1.550.1④

2.4 42.1 ⑧

18 5.6 ⑦

3.9 26.0 ⑥

4.3 12.2 ⑤

1.4 70.9 ②

214.8 ①

MPa

Safety factor for 
material yield stress

Average 
stressCross 

section

Stress table

③、④= Casing bolt、Others = Bolt tensioner

Result; Adequate safety margin Bolt material =13Cr stainless steel

Tensioner material
=17-4PH stainless steel

①
②

⑤
⑧

⑦

⑥

③

④
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Reliability check of advanced type(3/4)

Evaluation of low-cycle-fatigue for bolt tensioner

テンショナー各断面の最大主応力分布

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

距離 [mm]

最
大
主
応
力
 [
kg
f/
m
m
2
]

断面①

断面②

断面⑤

断面⑥

断面⑦

断面⑧

WP
N

E σ
φ

σ ∆+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=∆ 2
1

1ln
2

Peak stress (Max. principal) distribution

M
ax

. p
rin

ci
pa

l s
tr

es
s 

[M
Pa

]

R-Distance [mm]R=0 (Center)

Peak stress=170MPa

Section ②

Section No.

∆σP : Allowable stress
E : Modulus of elasticity(=2.1×104)
N : Allowable repeat cycle(=2000)
φ : Reduction of area(=0.45)
∆σW : Endurance limit(=49)

Langer-equation

Result;
Allowable stress ＝240MPa ＞ 170MPa(Peak)
Adequate safety margin for no low-cycle-fatigue 
failure in 2000 cycles

Bolt tensioner

Casing bolt

②

①

⑤
⑧

⑦

⑥
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Reliability check of advanced type(4/4)

Over 37.6J/cm2

(Brittle fatigue limit)

Over 2,000 cycles

Less than material yield 
stress

Criteria

Prevention of brittle 
fracture

Prevention of low cycle 
fatigue failure

Prevention of tension 
failure

Purpose

More than 100J/cm2

Peak stress to be min. 
safety 1.4 for allowance

Highest average stress to 
be Min. Safety 1.4 for 

allowance

Result

Summary result of reliability check

Advance type;
1) More safety operation of bolt tensioner 
2) Much longer life time to use in over 2000 cycles
3) Tensioner material to be more toughness without brittle fracture
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Application to large-sized steam turbine(1/4)

Seal analysis of large-sized steam turbine under hydro test

Analysis 3D model of turbine casing

Hydro pressure = Max.2280psig(157barg) in casing integrity test

Hydro test pressure condition

Casing bolt 
arrangement

3D model

Mechanical design of HP section turbine casing
Pressure=1830psig (126barg)
Temperature=894degF(479degC)
( Turbine power =Max.86MW、Inlet flow =Max.650Ton/Hr)
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Application to large-sized steam turbine(2/4)

Seal analysis of large-sized steam turbine under hydro test
Comparison of bolt tightening force
(Conventional & Advanced bolt tensioner)

M80

M64
M110

1.8×106 N 
(440MPa)

1.3×106 N 
(310MPa)

M80

3.8×106 N 
(480MPa)

2.8×106 N 
(340MPa)

M110

AdvancedConventionalBolt tightening 
force(Stress)

(M64=Tightening by Power wrench ) 
1.4 times up of tightening force by advanced type 
Bolt size

Bolt arrangement and tightening force

Casing bolts
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Application to large-sized steam turbine(3/4)

Seal analysis of large-sized steam turbine under hydro test

Analysis result

Contact condition of horizontal casing surface in hydro casing integrity test

Conventional

Advanced

Not contact

Contact

Not sealed on bolt hole edge

Leakage

Complete seal on bolt hole edge

Sealing
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Application to large-sized steam turbine(4/4)

Hydro test of turbine casing

Test result of casing integrity and joint leakage；
Neither leaks nor seepage through casing is observed

Advanced bolt tensioner

Bolt

Nut

Successful hydro test of turbine casing by advanced bolt tensioner
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Conclusions

Advanced type of oil operated bolt tensioner is successfully designed to 
enhance the reliability for large-sized steam turbine with higher inlet 
steam pressure as follows;

a) Compared to conventional type, the following items are improved.
a-1)Achievement of 1.5 times up of bolt tension force by double piston
a-2)Enhancement of oil seal performance by hybrid sealing
a-3)Applicable to same bolt pitch by compact design

b) Bolt tightening work time can be saved with more safety compared to bolt 
heater type thanks to no heating time and operation.

c) By 3D FEM analysis and material test, adequate strength against tension, 
fatigue, brittle fracture are verified. Also, life time can be obtained in more 
than 2000 cycles. Finally, the advanced type can achieve successful 
hydro test of turbine casing with no leakage or seepage.

d) To get a reliability increase of turbine casing seal performance in the 
future, minimization of casing bolt pitch is necessary with modification 
structure to be studied in next technical issue.
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