Reliability improvements on high speed reciprocating compressors through bearing and process modifications

- Case Study

Jim Cencula  
Carlo Mazzali  
Vinh Do  
Ray Gallagher  
Greg Bone  
GE O&G  
GE O&G/ FLR  
GE O&G/ Hou  
GE O&G/ Hou  
Miba Bearings
Contents

- Brief overview to recip compressor bearing/ orbital needs
- Brief Issues history on EF bearing issues
- Discussion of Failure Modes and Root Cause Analysis (RCA)
- Use of Design for Reliability (DFR) process and corrective actions
- New EF bearing design options and testing
- Summary
Bearing analysis - Background

Fluid friction needed to minimize power losses and rapid wear → *Hydrodynamic operation*

**Bearing operating principle**

- The reciprocating motion of the shaft generates a variable lubrication film thickness: the pin changes its position both circumferentially and radially
- The geometry of the bearing gives a pressure trend within its width

**Bearing performance**

- To avoid rapid bearing wear:
  - Adequate separation between moving components (↑ MOFT)
  - Low stress level (↓ POFP)

**Bearing design criteria**

- Wide bearing surface to ↓ POFP
- ↓ oil inlet T and ↑ cooling flux to ↑ oil viscosity and therefore ↑ MOFT

---

![SAE40 Viscosity vs T](chart)

**SAE40 Viscosity vs T**

- Viscosity [cst] vs Oil Temperature [deg F]

**MOFT**

**POFP**

**BEARING**

**LUBRICATION GAP**

**SHAFT**
RCA Process – Key Parameters

**Bearings**
- overloaded Babbitt
- geometry out of cylinder/ parallel
- improper clearance
- oil delivery improper (flow/ temp)
- contaminated lubricant
- anti-rotation tab deform
- surface hardness mismatch
- debris imbedded
- poor fit / contact pressure

**Crankshaft**
- overloaded journal
- geometry out of cylinder/ parallel
- oil delivery improper to bearing

**Conn Rod**
- uneven /improper bearing housing
- geometry out of tolerance/ assy fit
- oil removal uneven or improper

**Lubrication System**
- Packager– oil delivery (temp/ press variation)
Approach

The first major focus of this effort was to eliminate the early operation (infant mortality) issues by addressing the fundamental part/unit quality issues.

- An extensive effort was made to work with the crankshaft, connecting rod, and bearing manufacturers to ensure the critical to quality component features were maintained (CS pin cylindricity, CS pin surface finish, bearing as-assembled roundness, tin-flashing consistency, etc.).

- The compressor team also focused on cleanliness processes and in-house inspections for increased confidence as well.

- At the same time, the high speed recip OEM had extensive P&ID reviewers with the packagers and were able to get lube oil supply temperatures and pressures to be delivered in a much more consistent way.

Within a late 2006 to early 2009 period, the two-year operational reliability increased from ~90% to 100% (that is, no new bearing failure for over 3 years of shipments now).
Weibull analysis shows \( \beta = 0.35 \).

This indicates an Infant Mortality failure mechanism.

The units produced since Mar-2007 demonstrate 14 times improvement in Reliability.
Weibull Interpretation

<table>
<thead>
<tr>
<th></th>
<th>Beta</th>
<th>B10* Life (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before improved Cleanliness</td>
<td>.35</td>
<td>17,638</td>
</tr>
<tr>
<td>After improved cleaning</td>
<td>.38</td>
<td>26,683</td>
</tr>
<tr>
<td>After New Bearing fit/ tab</td>
<td>.27</td>
<td>141,168</td>
</tr>
<tr>
<td>After New Factory Inspection</td>
<td>.37</td>
<td>1,691,771</td>
</tr>
</tbody>
</table>

*B10 is the prediction of non-failure of this mode for 90% or more

B10 says ‘design life’ fall-out is very low; Beta supports failure occurs early in life

So what about beyond infancy?
Detail: Crow AMSAA for 2006-ship Units...
for units operating >5000 hrs,
< 0.1% chance of failure in “design life” period (w/ 90% confidence)

... what else can cause infant failures?
Bearing analysis – HSRC oil cooling effect

Oil delivery system robustness is key impact to managing good bearing parameters... poor oil control impacts other factors (when MOFT is low)
Bearing fit to Journals A Key ... cylindricity/ parallelism

- **Crankshaft** geometry out of cylinder/ parallel ... key manufacturing CTQ with suppliers
  - Main CS journals ‘good’
  - Crank journals – vendor variation ‘devil is in the details’

- Also, bearing fit into Conn Rod in the final assembled condition a key to good journal
  - Conn Rod cap torque level and machining are key
  - Bearing ‘crush’ and deflection key
• The last Crank end bearing failure occurred in units produced in Nov 2007.
• No failures since 3 years of shipment.
DEF Crankshaft/ Bearing-only Weibull

- Measurable Brg/ CS Reliability step improvement from '05-'08 ... at three years (30 Khrs): improved from >10% Failure Rate to < 0.5%

- No bearing failures on units shipped since November 2007... although some customers still limit bearings to ~ 2 years
Bearing Design Calculations

Hydrodynamic (HD) calculations have been performed on a wide variety of compressor connecting rod bearings.

The following general guidelines have been established based on these calculations and actual performance:

- MOFT greater than 2.0 µm (≈ .00008”)
- MOFP less than 3000 bar (≈ 43000 PSI)
Bearing Materials

- Steel Backed Leaded Bronze Tri-metal bearings are the default material choice for compressor rod bearings. Given that MOFT range from roughly 2.0-3.0 and MOFP averages around 3000 bar on the rod bearings.

- Bi-metal Aluminum lined bearings are sometimes used. However, these are mainly for sour gas (H$_2$S) applications that will destroy the leaded bronze bearings.

- The main bearings see much less loading than the rods (only about 25-30%).
Improved oil feed - NP vs. current style

- leverages experience from other GE recip products
- Double oil feed / bearing
- Removed circumferential groove at high load
- increased pin width
- improved manufacturing local geometry at crank wall
Proposed Changes – NP Style Bearing

Comparison of Standard Bearing vs. NP Style HD Plots.

- Standard Crank Drilling will pass through these high press zones.
- Note: ~2x reduction in POFP (on axis)

Standard Crank Drilling will pass through these high press zones.
DEF Block Change Test

Scope of design change
- Widen crankpin to big-end bearing contact surface to enhance the lubrication behaviour and achieve a higher degree of reliability

Crankgear components to be modified
- Crankshaft
- Crank pin bearing
- Connecting rod

**Instrumentation**

<table>
<thead>
<tr>
<th>Skid Package</th>
<th>Throw 1</th>
<th>Throw 1 vs. 3</th>
<th>Throw 2 &amp; 4</th>
</tr>
</thead>
</table>
| • Engine Power / Torque  
• Crankshaft Angle, RPM  
• Gas Mass Flow Rate  
• Suction, Interstage & Discharge Press  
• Frame Vibrations | • ConRod Rifle Hole Oil Press, Temp, Flow Rate  
| • Crank Pin Bearing Temp, Orbit  
• Wrist Pin Oil Press, Orbit  
• Bushing Temp  
• Crosshead Vibration  
• Rod Strain  
• Cylinder Head & Crank End Press  
• VVCP Backside Press  
• VVCP Rod Load | • Crank Pin Bearing Temp, Orbit  
| • Wrist Pin Oil Press, Orbit  
• Bushing Temp  
• Crosshead Vibration  
• Rod Strain  
• Cylinder Head & Crank End Press | • Cylinder Head & Crank End Press |

* Includes Block I & II upgrades
Summary

OEM/ Field issues have been resolved for high bearing reliability (99.5+% reliable) for 2+ yrs. operation; the

- Key RC manufacturer improvements (CS, cleanliness, and bearing re-certifications; test process improved).... ‘the devil’s in the details!’
- Packager > oil viscosity/ temperature

These and other Lessons Learned have been fed back to OEM and formally incorporated into Design Specification, vendor qualifications and Mfg work instructions

For further end user variation and confidence-

- New Babbitt (Synthec) bearing option for increased margins
- New NP-style dual feed for significant margin improvement to new units