AVOIDING CASCADING TRIPS ON INTERDEPENDENT TURBOMACHINERY

41st Turbomachinery Symposium
September 2012

Presented by Wayne Jacobson
Compressor Controls Corporation

Contribution by Tom Cook
KBR
The two main refrigeration compressor strings at Tangguh LNG are highly dependent on each other during operation

- A cascading trip can happen within seconds

This case study focuses on how to keep either string online when the other trips

- Avoid surging the compressor
- Avoid excessive recycle that can overload the drivers
Propane circuit cools the MR circuit and Feed Gas
- 4 stage compressor with sidestreams
- Driven by Frame 7 GT with ST helper

MR circuit cools Natural Gas in MCHE to produce LNG
- 3 stage compressor with MR HP stage on PR drive train
- Driven by Frame 7 GT with ST helper
When the MR circuit trips

- Loss of MR flow to the propane chillers will lead to the PR flow (vapor production) decreasing in a relative short time and eventually resulting in no vapor production
- Sudden loss of flow through the MR HP compressor due to MR MP discharge check valve closing

When the PR circuit trips

- A trip of MR HP ASV results in sudden loss of flow through the MR LP/MP stages due to closure of MP discharge check valve
The original control system design was based on lessons learned from a similar LNG plant installation.

Feed Forward Control (FFC) by unloading the online compressor when the other compressor trips:

- Temporarily initiate the antisurge controllers’ Stop sequence to ramp open the ASVs.
- Duration based on the Stop ramp rate and desired ASV target opening position.
- Additional IGV or speed control adjustments were not necessary.
<table>
<thead>
<tr>
<th></th>
<th>Mixed Refrigerant Compressor</th>
<th>Propane Compressor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LP Stage</td>
<td>LLP Stage</td>
</tr>
<tr>
<td>Propane Unit Trip</td>
<td>Ramp 15%/s for 3sec</td>
<td>Trip, valve steps open to 100%</td>
</tr>
<tr>
<td></td>
<td>Ramp 15%/s for 3sec</td>
<td>Trip, valve steps open to 100%</td>
</tr>
<tr>
<td></td>
<td>Trip, valve steps open to 100%</td>
<td>Trip, valve steps open to 100%</td>
</tr>
<tr>
<td></td>
<td>Ramp 8%/s for 5s</td>
<td>Ramp 5%/s for 10s</td>
</tr>
<tr>
<td>Mixed Refrig Unit trip</td>
<td>Trip, valve steps open to 100%</td>
<td>Ramp 5%/s for 10s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramp 5%/s for 10s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramp 5%/s for 10s</td>
</tr>
</tbody>
</table>
MR HP ASV was recorded at 100% open after FFC

Cause: Controller’s open loop line crossed causing it to step open output to 100% and switch to Shutdown

PR string tripped on underspeed 11 seconds after FFC

Cause: PR HP ASV was manually opened at 55% at the time of FFC signal resulting in the ASV going to 100% open and GT high power limit being reached

MR string trips 7 seconds after FFC signal

Cause: MP stage surge trip
Ramp rates in the MR ASC need to be increased

ASV target positions need to be adjusted

Ramp ASV to a fixed target position and not a fixed amount

ASC needs to remain active during FFC
Standard features of ASC Stop mode

- Maximum Stop ramp rate is 16.7%/s
- When the operating point crosses the controller’s open loop line, the controller immediately steps open the ASV and goes into Shutdown state
- The antisurge controller’s Surge Counter/Trip functions are not active during Stop/Shutdown state
Propose ASC Software Modification

- Separate Unload signal
- Configurable ramp rate to 99.9%/s (LVL6)
- Configurable ramp target (LVL7)
- Configurable hold timer (LVL8)
- Allow ASC to override Unload sequence
- Output goes to 100% if open loop line crossed put remain in Run state
Run dynamic simulation
- Verify increased ramp rates and ASV target openings for MR compressor
- Simulate both design and off design conditions
- Verify GT power stays within acceptable limits

Site acceptance test
- Verify new controller software functionality
- Verify logic used to activate the Unload signal
NEW CONFIGURATION SETTINGS

<table>
<thead>
<tr>
<th></th>
<th>Mixed Refrigerant Compressor</th>
<th>Propane Compressor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LP Stage</td>
<td>LLP Stage</td>
</tr>
<tr>
<td></td>
<td>MP Stage</td>
<td>LP Stage</td>
</tr>
<tr>
<td></td>
<td>HP Stage</td>
<td>MP Stage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HP Stage</td>
</tr>
<tr>
<td>Propane Unit Trip</td>
<td>Ramp 50%/s to 50% open for 60s</td>
<td>Trip, valve steps open to 100%</td>
</tr>
<tr>
<td></td>
<td>Ramp 60%/s to 60% open for 60s</td>
<td>Trip, valve steps open to 100%</td>
</tr>
<tr>
<td></td>
<td>Trip, valve steps open to 100%</td>
<td>Trip, valve steps open to 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trip, valve steps open to 100%</td>
</tr>
<tr>
<td>Mixed Refrig Unit Trip</td>
<td>Trip, valve steps open to 100%</td>
<td>Ramp 5%/s to 50% open for 60s</td>
</tr>
<tr>
<td></td>
<td>Trip, valve steps open to 100%</td>
<td>Ramp 5%/s to 50% open for 60s</td>
</tr>
<tr>
<td></td>
<td>Ramp 50%/s to 70% open for 60s</td>
<td>Ramp 5%/s to 50% open for 60s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramp 5%/s to 40% open for 60s</td>
</tr>
</tbody>
</table>
TREND RESULTS FROM FIELD

MR LP trip

MR MP trip

MR HP FFC

70% Open
TREND RESULTS FROM FIELD

- PR LLP FFC
 - 50% Open
 - MR Trip

- PR LP FFC
 - 70% Open
 - MR Trip

- PR MP FFC
 - 50% Open
 - MR Trip

- PR HP FFC
 - 40% Open
 - MR Trip
CONCLUSION

- No reports of cascading trips since modification

- Additional benefits of software modification
 - Changes allow for a clearer understanding of the control system response after an event
 - More flexibility in configuration changes
 - Ramp rates and target levels can be changed independently
 - Settings can be easily changed on line