Reliable Compression of Sour and other Process Gases – Special Rolling Bearings for Oil-flooded Screw Compressors

Presented to: 41st Turbomachinery Symposium Presented by: Lars Kahlman, Global Segment Fluid Machinery, SKF September 24 to 27, 2012

Content

This case study on oil-flooded screw compressors briefly covers:

- Basic designs of oil-flooded screw compressors
- Process layouts
- □ Failure modes for conventional bearings seeing:
 - Water condensing Sour (H₂S) and Acid (CO₂) gases
 - Water condensing Hydrogen-rich process gases.
- General Sour gas rolling bearings" consisting of:
 - Super-tough stainless steel bearing rings
 - Bearing grade silicon nitride ceramic rolling elements
 - Glass fiber reinforced polymeric PEEK cages
- \Box A "service-life diagram" vs. H₂S and CO₂ mol%

Oil-flooded Machines

Twin screw compressor:

- One main rotor (male)
- One large gate rotor (female)
- 2 radial bearings (similar size) on each rotor
- 1-4 thrust bearings (similar sizes) on each rotor

Single screw compressor:

- One main rotor (female)
- Two small gate-rotors (male)
- 1 radial roller bearing on each rotor
- 2 thrust ball bearings (same sizes) on each rotor (combined thrust and radial loads)

Twin Screw Compressors – Bearing Arrangements

CRB – Cylindrical Roller Bearing (pure radial loads)
FPACBB – Four Point Angular Contact Ball Bearing (pure axial loads, two directions)
SRACBB – Single Row Angular Contact Ball Bearing (pure axial loads, one direction)

Alternative: Journal (radial) + 2 x SRACBB

□ All bearings are working under suction pressure.

October 30, 2007 © SKF Group Slide 3

Oil Systems for Process Gases

The oil systems for the compressors are designed to: **Lubricate:**

- Bearings;
- Face seals on the input shaft;
- Screw-to-screw contact; and
- Input gears, if present and incorporated into the compressor

Cool the compression process;

Seal:

- Screw-to-screw contact; and
- Screw-to-wall gaps.

⇒ The process gas is in contact with the re-circulated oil. ⇒ The oil pickup contamination from the process gas

Rolling bearings	Steel rings	Rolling elements	Cage	
Conventional	Common bearing steel *	Common bearing steel *	Steel or brass	
Sour gas	Super-tough stainless bearing steel **	Bearing grade silicon nitride ceramics ***	Glass fiber reinforced PEEK or Single piece brass	

* AISI 52100 type; ** AMS 5898 & SKF hardening specification; ***ASTM F2094M - 11 Standard Specification for Silicon Nitride Bearing Balls plus SKF specifications

Process Flow: Oil-flooded Twin Screw Compressor

Process Flow: Oil-flooded Single Screw Compressor

Gas Conditions vs. Cases

Case	#	1	2	3	4
	Unit	VRU/Off- gas	Gas well boosting	Hydrogen- rich service	Recip boosting
MW _{avg}	g mol	36	20	9	41
k _{suction}	*k (*k)	0.031 (18)	0.052 (30)	0.23 (132)	_
CO ₂	mol%	35%	5.5%	0.4%	70%
H₂S	mol%	40%	5.5%	0.01%	30%
H ₂	mol%	n/a	n/a	65%	_
P _{suction} (abs)	psi (kPa)	15 (100)	42 (288)	270 (1860)	_
p _{H2S, suct} (abs)	psi (kPa)	6 (40)	2.3 (16)	0.03 (0.2)	_
<i>In situ</i> pH _{suct}	-	4,0	4.1	4.5	_

VRU = Vapor Recovery Unit; MW_{avg} = Molecular weight of compressed gas; () = Estimation, Clarification or ISO units; $P_{suction}$ = pressures of gas at suction; $p_{H2S, suct}$ = partial pressure of H_2S at suction and discharge; *In situ* pH = estimation by using the combined partial pressure of H_2S and CO_2 according to ISO 15156-2:2009

Thermal conductivity: ***k** = Btu ft/(hr ft2 °F); (k*) = mW/mK

Mechanical and Process Condition vs. Cases

Case	#	1	2	3	4	
	Unit	VRU/Off- gas	Gas well boosting	Hydrogen- rich service	Recip boosting	
Туре	-	Twin	Twin	Single	Twin	
Rotor size, Ø	mm	233	193	350	355	
rpm	rpm	3600	1800	3600	_	
T _{suction}	°F (°C)	77 (25)	_	129 (54)	_	
T _{discharge}	°F (°C)	240 (115)	200 (94)	190 (88)	_	
P _{suction} (abs)	psi (kPa)	15 (100)	42 (288)	270 (1860)	_	
P _{discharge} (abs)	psi (kPa)	150 (1030)	130 (897)	435 (3000)	_	
DewP _{discharge}	°F (°C)	_ *	_	149 (65)	_ *	

* $H_2S + CO_2 > 40$ mol%, dew point difficult to define; $DewP_{discharge} = Dew point at discharge conditions$

Sour Gas – Failure Modes of Conventional Bearings

Ring spalling of conventional ball bearing rings **by stress cracking from wet sour gas** in combination with standstill periods **Typical sour gas failure** by stress cracking, causing **splitting of conventional steel balls**. Secondary failure of brittle polymeric PPS cage.

Sour Gas – The Failure Process of Splitting Steel Balls

Bearing balls from the thrust bearing of 355 mm (13.97 inches) oil-flooded twin screw compressor under sour gas conditions.

Left: Ball with initiation grove around the equatorial running line. **Middle:** A ball after being split in half under running.

Right: Ball that has seen rotation and been running in three tracks, and thus in the end failed by a "Pacman failure"

Hydrogen-rich Gas – Failure Modes of Thrust Bearings

Frosted raceways (Poor lubrication)

Flaked shoulder (Hydrogen Stress Cracking)

Conventional thrust bearing for an oil-flooded single screw (350 mm / 13.78 inches) compressor.

Case	#	1	2	3
	Unit	VRU/Off- gas ²	Gas well boosting	Hydrogen- rich service
Туре	_	Twin	Twin	Single
Conventional	Years	< 0.5	1	0.2
Sour gas	Years	~ 3	> 5	>3 (?)
p _{H2S, suction} (abs)	psi (kPa)	6 (40)	2.3 (16)	0.03 (0.2)
<i>In situ</i> pH _{suct}		4.0	4.1	4.5

Sour Gas Bearings

High resistance to:

- **Given Sulfide Stress Cracking**
- Hydrogen Stress Cracking
- Poor lubrication (low lube oil viscosity)
- General corrosion
- **D** Pitting corrosion
- Standstill corrosion

Inert to:

Electric arcing (e.g. VFDs)

Good performance against:

Particle contamination

Sulfuric Stress Cracking (SSC) Map

NACE MR0175 present SSC map with regions of severity from 0 – no attack, to 3 – severe region.

The diagram plot: X-axis – log pH2S **Y-axis** – *In situ* pH

Partial H_2S pressure i.e. pH at service given by the combined partial pressures of H_2S and CO_2 .

□ p_i (partial pressure of gas i) = y_i (mol fraction of gas i) x $P_{suction}$ (total pressure at suction)

□ kPa = psi x 6.895

 $\Box \quad In \ situ \ pH_{20C} = 4.9 - 0.5 \ log(p_{H2S} + p_{C02})$

Service-life Diagram for Sour Gas Bearings under SSC

Based on NACE/ISO SSC diagram with working points for compressor cases # 1 to 3

References

"Bearings in twin screw compressors – Application handbook", Publication 100-956, SKF USA Inc., 1998

NACE MR0175-2009, "Petroleum and natural gas industries - Materials for use in H2S-containing environments in oil and gas production - Parts 1, 2, and 3", (Identical to ISO 15156-1:2009, 15156-2:2009, and 15156-3:2009)

Kahlman, L., Bonis, B., Mosher, R., and McInnis, D.P., "Use of oil-flooded screw compressors with rolling bearings under severe sour gas conditions – The bearing technology and the reference installation", Presented at the 2007 Gas Machinery Conference in Dallas, Oct. 1-3

Cosa, J.D., Sewell, J. and Kahlman, L., *"Use of oil-flooded single screw compressors for hydrogen and other gases in a 75000 bpd refinery – Package designs, bearing technology and practical experiences",* Presented at the 2010 Gas Machinery Conference in Phoenix, 4-6 October

Mickalec, J.R., *"Bringing to light lube oil moisture in hydrogen cooled generators"*, http://www.machinerylubrication.com/Articles/Print/132_____