COAXIAL BARRIER SEAL OPERATED
AS A SEPARATION SEAL IN A PIPELINE COMPRESSOR

41st Turbomachinery Symposium

Henk Blekkenhorst
Senior Compressor Engineer
Siemens Energy Service
Hengelo, Netherlands

Christian Bonfert
Senior Expert Compressor Seals and Systems
EagleBurgmann Germany GmbH & Co. KG
Wolfratshausen, Germany

Huub de Bruijn
Head of the Compressor Service
Product Management Department
Siemens Energy Service
Hengelo, Netherlands

Ferdinand Werdecker
Head of Engineering Compressor Seals
EagleBurgmann Germany GmbH & Co. KG
Wolfratshausen, Germany
This presentation will provide details of the first application of a Coaxial Barrier Seal in a pipeline compressor.

- Purpose of modification
- Preparation / Qualification
- Installation
- Commissioning
- Evaluation
- Conclusion
Purpose of Project

Optimize compressor sealing system design for safe and reliable operation with lower emissions

- Improved separation between lube oil and process gas
- Simplified seal arrangement
- Reduced N₂ consumption
- Safe and secure gas seal monitoring system
- Increased gas seal life time → prolonged MTBF / MTBM
Qualification tests of Coaxial Barrier Seal (prototype testing)

Barrier Seal Supplier Shop Test Set Up
Qualification tests of Coaxial Barrier Seal

- Static test – gas separation
- Normal operation – leakage rates
- Low backpressure leakage
- High backpressure leakage
- Gas consumption at high vent back pressure (with PDCV)
- Simulation closed supply line
- Long term tests with permanent pressurization of vent cavity
Qualification tests of Coaxial Barrier Seal

Qualification tests (static test)

[Graph showing supply pressure, leakage flow, and vent pressure over time]
Qualification tests of Coaxial Barrier Seal

Qualification tests (normal operation)
Qualification tests of Coaxial Barrier Seal

Qualification tests (low back pressure/axial shift)
Qualification tests of Coaxial Barrier Seal

Qualification tests (high back pressure/trip)

![Graph showing various parameters over time]
Qualification tests (N$_2$ supply failure)
Qualification tests of Coaxial Barrier Seal - Results

- Visual inspection of seal faces (standard at seals suppliers) didn’t showed contact marks – like new

- Leakage rates during normal operation was within the specification

- Leakage rates at upset operating conditions even lower than expected

- Stable operation behavior of the coaxial barrier seal during all tests has been observed

RESULTED IN DELIVERY AND INSTALLATION RELEASE OF THE SEAL
Installation

Application:
Compressor Station

Location:
Nether Kellet, Lancashire, United Kingdom

End User:
National Grid Transco plc.
Installation

Compressor Set Up

* Comparison at set process conditions
Installation

Proposed modifications to P&ID include

- Low and high alarm / trip coaxial barrier seal
- Flow measurement new Coaxial Barrier Seal
- PCV N₂ supply new internals
- New orifice N₂ supply
- PALL primary vent
Evaluation – Operation after start up with new barrier seal

DCS Overview:
At normal load

N_2 leakage rate 6NI/ min
Evaluation – Operation after start up with new barrier seal

DCS
Overview:
At maximum load

N₂ leakage rate 8 Nl/min
Evaluation – End User feedback

Operating status

Start up on 2011-09-08

Status on 2012-02-20
- 1,269 operating hours
 - 65 Starts
 - 19 Running Trips
 - 11 Starting Trips
- 35 Normal Stops

End User quote

“In general, the operation of the CBS is already proving to be a success. There has been a lot of stop – start operation, including ESD trips and it has endured the harshest of tests; performance testing of the compressor during which time the actual Surge line was plotted. There has not been one issue with its operation since installation.”

End User unquote
Conclusion

UPGRADE JOB TO COAXIAL BARRIER SEAL WAS A FULL SUCCESS STORY!

Main challenges on this pilot project

- Understanding the components to be improved on the existing sealing system
- Providing a technology which is able to eliminate the existing limitations
- Implementation of new technology in an existing system
- Coordination of the work with all involved parties

RESULTED IN THE FIRST RUNNING REFERENCE OF THE NEW COAXIAL BARRIER SEAL TYPE