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evaluation of turbine blades. The SAFE diagram methodology 
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contribution to design methods and vibration technology for the 

evaluation of blade reliability. Dr. Singh has been involved in 

(developing and teaching) application of lifing strategy to many 

mechanical components. This includes subjects dealing with 

hcf, lcf, creep, and fracture mechanics. Probabilistic method is 
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papers and he is the co-author of the books "Steam Turbine, 

Design, Application, and Rerating", second edition and “Blade 

Design and Analysis for Steam Turbines”. He is co-authoring a 

book on “Expander for Oil & Gas” to be published by 

McGraw-Hill Company. 

 

ABSTRACT 
 

Concept of Safe diagram was introduced 30 years ago 

(Singh and Schiffer, 1982) for the analysis of the vibration 

characteristics of packeted bladed disc for steam turbines. A 

detailed description of Safe diagram for steam turbine blades 

was presented 25 years ago in the 17
th

 Turbo Symposium 

(Singh et. el, 1988). Since that time it has found application in 

the design and failure analysis of many turbo machineries e.g. 

steam turbines, centrifugal compressor, axial compressor, 

expanders etc. The theory was justified using the argument of 

natural modes of vibration containing single harmonics and 

alternating forcing represented by pure sine wave around 360 

degrees applied to bladed disk. This case is referred as tuned 

system. It was also explained that packeted bladed disc is a 

mistuned system where geometrical symmetry is broken 

deliberately by breaking the shroud in many places. This is a 

normal practice which provides blade packets design. This is 

known as deliberate geometrical mistuning. This mistuning 

gave rise to frequency of certain modes being split in two 

different modes which otherwise existed in duplicate. Natural 

modes of this type construction exhibited impurity i.e. it 

contained many harmonics in place of just one as it occurs in a 

tuned case. As a result, this phenomenon gives rise to different 

system response for each split mode. Throughout the years that 

have passed, Safe diagram has been used for any mistuned 

system- random, known or deliberate.  

 

Many co-workers and friends have asked me to write the 

history of the evolution and of the first application of this 

concept and its application in more general case. This paper 

describes application of Safe diagram for general case of tuned 

system and mistuned system. 

 

INTRODUCTION 
 

Vibration-related blade and disc failure in turbo machinery 

due to resonant excitation is a common phenomenon. The 

resulting damage to blades and disc is due to high cycle fatigue. 

At resonant excitation the dynamic stress amplitudes increases 

as the exciting frequency approaches the resonant speed and the 

response decreases after passing through the resonant speed.  

Hence, the design decision is dependent upon the identification 

and avoidance of resonant frequencies of the system. 
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As operators and manufacturers gained experience, new 

technical methods and lessons learned from field experience 

have been included in the design decision making process. In 

turn, each manufacturer has evolved its own process and 

criteria to achieve successful design.  

 

Estimation of the resonance characteristics of blades is a 

multi-discipline activity. Information is needed about unsteady 

aerodynamics over a wide variety of flow conditions that may 

exist within the operating range and structural vibration 

characteristics, i.e., frequencies and associated mode shapes 

within the operating range; damping in the system (structural as 

well as aerodynamic). Estimation or actual material properties 

(fatigue properties, yield strength, ultimate strength, modulus of 

elasticity, etc.) at the temperature in the operating range should 

be available. Manufacturing and quality assurance processes 

should be well defined and followed. Each of these issues may 

require a separate technical discipline to support an evaluation.  

 

This paper includes a brief history of the evolution of Safe 

diagram for a perfectly tuned system. Mathematical expression 

for work done by the alternating force on the vibrating system 

that forms the basis of Safe diagram is presented. It shows the 

expected response of perfectly tuned system and mistuned 

system. It also explains the application of Safe diagram for 

mistuned system (geometrical variation, forcing distortion), 

split modes/localized modes, deliberate mistuning (packeting-

odd and even number of blades), random mistuning (geometry 

and forcing) and it also includes effect of centrifugal stiffening. 

Examples are included from many published papers. 

 

HISTORY OF EVOLUTION OF SAFE DIAGRAM 

 

Vibration analysis of steam turbine blade design has 

progressed from the analysis of blade as spring mass systems to 

single cantilever beam to packet of blades to bladed disk as a 

system. Effects of turbine speed to increase blade frequency 

were found and it gave rise to the term “centrifugal stiffening”. 

Campbell (1924), while examining the failure (bursting) of 

disks, concluded that blades were broken due to axial vibration. 

The results of an investigation to understand the wheel failures, 

mostly in wheels of large diameter that could not be explained 

on the basis of high stress alone were presented. This test was 

conducted by scattering sand over the wheel surface. Frequency 

of excitation was varied until a sand pattern on the wheel 

appeared and sand accumulated mostly in radial lines or 

patterns. When the frequency changed to some higher 

magnitude a different sand pattern appeared on the wheel. 

These radial lines represented the location where velocity of 

vibration was zero. The number of radial lines was always 

observed to be of an even number. These patterns are known as 

nodal patterns and two radial lines are taken as one diameter. It 

is now understood that the opposite radial lines in each instance 

might not be 180 degrees apart. This is a sign of impure mode 

containing multiple harmonics. Frequencies at which these 

patterns are observed coincide with the natural frequency of the 

wheel in axial vibration associated with the mode shape 

represented by the sand pattern.  

 

 

There are six (6) radial lines in the pattern shown in Fig. 1. 

These modes are called three (3) nodal diameters mode. It 

should be noted that the radial lines pass through the balancing 

holes in the left picture while in the picture on right side these 

lines pass between the balancing holes. This shows that there 

are two natural modes having same nodal diameters. This is the 

case of splitting of the modes due to broken symmetry and the 

frequencies of these modes may be different. This is a case of 

deliberate mistuning which will be explained later. 

 

 

                  
 

Figure 1  Six Radial Lines, Three Nodal Diameters  

  Modes (Campbell 1924) 

 

Blade damage problems in steam turbines were 

encountered during WWII. With the help of computers that was 

capable to handle large calculations, Weaver and Prohl (1956) 

demonstrated that blades in the band behave differently than 

single blade. They showed that there were more frequencies 

and mode shapes of banded construction compared to what the 

analysis of a single blade provided. The response of blades 

under excitation due to flow from nozzle, natural frequencies of 

the banded blades and also the associated mode shapes were 

evaluated. In a companion paper Prohl (1956) described the 

numerical method and provided the equations that were used to 

estimate frequencies, mode shapes and dynamic response of the 

banded blades. The basic beam equations for blades were 

developed where blades were coupled together through a band 

at the tip of the blades. Disk was not included in the analysis. 

Stimulus was assumed to be uniformly distributed along the 

length of the blade. The phase between stimulus and blade 

motion is constant along the length of the blade. Fig. 2 

summarizes the results of the analysis for vibrations for seven 

modes. The first six tangential modes are considered to belong 

to the first bending of a single blade and the difference among 

them is the phasing among blades. The seventh mode is the 

second tangential mode in which there is a phase change along 

the length of the blade. 

 

The analytical result for the dynamic response of blades 

was found to be a function of the (a) number of harmonic 

excitation, (b) number of nozzle openings and (c) number of 

blades per 360 degrees. The shapes of these curves, which 

resemble that created by a “bouncing ball”, are functions of 

mode shapes of the blade group. Blades were analyzed as a 

group rather than a single blade that was practice before this 

publication. The dynamic response of the group is due to the 

coupling between blades through the shroud band. Frequency is 

a function of the relative stiffness of the band and the blade. 
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The resonant response is affected by the nozzle pitch, blade 

pitch and the number of blades in each packet. The review of 

Fig. 2 and Fig. 3 indicates that with a proper selection of nozzle 

and blade pitching, it may be possible to considerably reduce 

the resonant stress even though operating precisely at the speed 

required to excite the natural frequency. 

 

 

 

 
 

Figure 2  Resonant Response Factor (Weaver and  

  Prohl, 1958).  

 

 
 

Figure 3  Bouncing ball (Weaver and Prohl, 1958).  

In the discussion section of Weaver and Prohl (1956) 

paper, D.D. Rosard pointed out that resonant peak decreases as 

the number of blades in a packet is increased and the peak 

occurs at different ratio of blade pitch to nozzle pitch. It is 

evident from Figure 3 which he provided. 

 

Results of this work provided the future direction for 

analysis of banded group of blades. This was a milestone in the 

analytical development of blade vibration and decision making 

process for reliability.  

At this time, Johnson and Bishop (1956) presented 

analytical results of important system with equal frequencies 

and is shown in Fig. 4. They considered a system consisting of 

a single mass, M, to which n equal masses, m have been 

attached through springs of equal stiffness, k. Each mass has 

one degree of freedom, which is in the vertical direction. This 

system resembles a bladed disk system as used in turbines, 

which will help to understand its behavior. Mass M is that of a 

disk with infinite stiffness and grounded by spring stiffness, x0. 

Small mass m represents the mass of the blade and blade’s 

stiffness is k. The results of this analysis have shown that there 

are a number of equal natural frequencies in this type of system 

but the natural mode shapes will be different.  Many 

frequencies had same mode shapes but these differed by a 

phase difference. The total number of degrees of freedom for 

this system is equal to the number of masses and is equal to 

(n+1). Therefore, there will also be (n+1) natural frequencies.  

 

 
 

Figure 4  Systems with Equal Mass and Stiffness  

It was recognized that a bladed disk is a system and 

coupling between blades will also be through the disk. 

Consideration of the stiffness of the disk became important as 

earlier found also by Campbell (1924). In the tangential 

vibration of blades, stiffness of the disk may be considered very 

high, but the coupling between blades will be small. Johnson 

and Bishop’s analysis resembles a bladed disc in tangential 

vibration. However, in the axial vibration, disk stiffness 

becomes a large contributor.  

 

Including geometrical variations among blades was 

considered next in the analysis of the dynamic response of 

blades. It has been shown that geometrical variations influences 

mode shapes and frequencies and in turn, the response of a 

bladed disk system. In a tuned system where each blade is 

identical, modes occur in duplicate. There are two modes that 

differ by a phase angle but these modes have identical 

x0

x1 x2 x3 xn

m m m m

M

k k k k
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frequencies. However, when symmetry is disturbed through 

variation from blade to blade or any other geometrical 

variation, some modes split in two frequencies. Also, the shape 

of these modes get distorted from the tuned case, which is a 

phenomenon called “mistuning”. Paper by Ewins (1969) 

contains an extensive discussion of this phenomenon. The 

response of the mistuned case was found to occur at slightly 

different frequency from the tuned case. Amplitude was 

attributed mainly due to a change in the mode shape and the 

shift in frequency was due to splitting of the mode. This posed 

a serious decision point for designers to account for variability 

among blades. Ewins (1975) specifically dealt with completely 

shrouded or un-shrouded bladed disk constructions. 

 

At this time there was no publication that reported the 

results of a packeted bladed disk analysis. The next stage of 

advancement occurred in the analysis of disks containing 

packets of blades. This analysis in a way merged the concept of 

Campbell (1924) and Weaver and Prohl (1956). The blades of 

steam turbines more often are banded together in a packet. 

Singh (1982, 1988 and 1989) studied the dynamic behavior of 

packeted bladed disk construction. Results of these analyses led 

to the introduction of Safe diagram. In case of axial vibration, 

Fig. 5 shows a comparison of a Safe (Singh’s Advanced 

Frequency Evaluation) diagram for different types of 

construction for the same number of blades mounted on the 

same disk. The vibration characteristic of packeted bladed disks 

is similar to the completely bladed disk but it has some special 

features of split modes. In case of bladed disc with cantilevered 

single blade and cantilevered blade packet frequencies are 

shown as horizontal lines on Safe diagram. Reason of this is 

that frequency remains constant but mode shapes also may be 

designated as nodal diameters due to phasing between blades. 

The Safe diagram for cantilevered conditions is the upper limit 

of appropriate constructions whether it is free standing bladed 

disc design or completely shrouded bladed disc design. 

 

 
 

Figure 5 Safe diagrams for Completely Shrouded, Un-

shrouded and Packeted Bladed Disk (Singh 

and Drosjack, 2008)  

For the development of Safe diagram there were two main 

considerations. First, during mid 1970 while employed at 

Turbodyne Corporation, Wellsville, a customer (Late Cliff 

Cook) requested to examine and to explain the results of the 

paper published by Provanzale and Skok (1973). My supervisor 

(Late Howard Vreeland) asked me to discuss this issue with the 

customer. The existing method of analysis at the time for 

banded blades was to consider it as a group but cantilever at the 

base where it connected to the disk. The results of this analysis 

conformed to the findings of Weaver and Prohl (1956). Second, 

to understand the full implication of Provanzale’s paper, I was 

visiting the laboratory and the test engineer (Mr. Steve Todd) 

caught hold of me to show the results of the TFA (Transfer 

Function Analysis) test that he was conducting on a complete 

packeted bladed disk. While examining the mode shapes at 

many frequencies we noticed that many frequencies were 

exhibiting basically the same natural mode shapes of any 

packet of blades, mostly for the axial modes Fig. 6. Some 

tangential modes of the same shape showed up at different 

frequencies which did not conform to the results of Weaver and 

Prohl (1956).  Phasing between blades of each packet was the 

same but the phasing between packets was observed to be 

different for different modes. It became clear that there was 

something missing in the analysis, most importantly between 

packets. This pointed towards including disk flexibility 

(stiffness) in the analysis. 

   

 

 
Figure 6  A Representative TFA Plot of a Packeted  

  Bladed Disk  

 

It was decided to analyze a complete packeted bladed disk 

with impulse blades using finite element method (FEM). 

Impulse blade was used to eliminate the coupling between axial 

and tangential modes of vibration of blades and to better 

understand both tangential and axial vibration. This resulted in 

the understanding of the vibration behavior of packeted bladed 

disk. First application of this finding was used to solve a blade 

failure in a four stage turbine. Results of this analysis for 

tangential modes of vibration were first reported by Singh in 

1980 in ASME conference and this was published by Singh and 

Schiffer (1982). To understand the physics of this behavior a 

mathematical expression of the work done by the alternating 

force applied to any mode shape at a frequency was examined. 

This revealed the importance of considering natural mode 
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shape and the shape of the applied force in estimating the 

response of the system. Brief description of the mathematical 

treatment is included in the paper that is the base of response of 

tuned as well as mistuned system. 

 

This exercise gave rise to two conditions for pure 

resonance where response of the system might be uncontrolled 

for very low damping. 

 

The following two conditions are for a true resonance to 

occur: 

 

1. The frequency of the exciting force equals the 

natural frequency of vibration, and  

2. The profile (shape) of the applied force has 

the same shape as the mode shape associated 

with that natural frequency. 

 

Above statements are true for tuned case as well as 

mistuned case. For mistuned system either it might be case of 

forced response or due to splitting of frequency there will be 

high response at a frequency where it might have been low or 

no response at all. The mathematical expression for the work 

done confirms this statement. 

 Mathematical Expression for work done by exciting 

force 
Tuned System 

Mathematical expressions for work done by alternating 

force provided support that each of the conditions for resonance 

to occur is necessary, but neither is sufficient by itself. The time 

varying periodic forces experienced by rotating blades can be 

resolved in harmonics. It is accomplished by performing 

Fourier decomposition of the periodic force shape. The 

frequencies of the harmonics are an integer multiple of the 

speed of rotation. In general, the force experienced by the 

blades of a turbine disc during a complete revolution is the 

consequence of any circumferential distortion in the flow field.  

  

The frequency of the excitation due to nozzle vanes, struts, 

or any obstruction in the flow field as a function of rotational 

speed and number of obstruction is given by: 

 

  K  (K.N)/60   (1) 

Where 

 K =frequency of the exciting force, Hz 

K = number of distortions in the flow per 360
0
, 

e.g., number of nozzles, or number of struts  

                  in the flow field, etc.  

N = turbine speed, RPM 

 

K represents the shape of the excitation and it is denoted as 

k nodal diameter. The spacing of the obstruction is assumed to 

be symmetrical. The nozzle passing excitation occurs exactly at 

the multiple of nozzle counts. The magnitude of excitation 

decreases with increasing multiple of harmonics. This is the 

case of a tuned system. This is true when there is no variation 

between nozzles otherwise there will be harmonics other than 

multiple of nozzle counts in the shapes. Therefore, Kth 

harmonic of the force applied to the blades for tuned case is 

written as the following: 

 

 Pk (, t) = Pk Sin(Kt +K)   (2) 

 

Where the frequency of the force is kand  is the angle 

on the disc from a reference point. 

 

The mode shape with m nodal diameters and the natural 

frequency (m) is expressed as the following: 

 Xm (, t) = -AmCos(mt + m)  (3) 

 

Again, it is assumed that the mode shape contains only one 

harmonic i.e. structurally it is a tuned system. The condition of 

resonance can occur when the alternating force does positive 

work on the blade.  

Work done by an applied force 

The work done by the kth harmonic of the force acting on m 

nodal diameters mode shape in one complete period, T, is 

expressed as follows: 

 

  

T

W
0

2

0



Pk (θ, t) 
dt
d Xm (θ, t) 

2
N dt dθ 

       

T

0

2

0



Pk Sin (ωKt + Kθ) ωmAmSin (ωmt  

   + mθ) 
2

N dt dθ       (4) 

 

      = Pk Am   (for m = K and m = K) 

     Or           

      =  0 (For either m   K and/or  

   m   K)  (5) 

The first expression of equation 5 is the positive work 

(Pk Am) done by the force. This is true only if the nodal 

diameter, m, of the mode shape is the same as the shape of the 

kth harmonic of the force and the natural frequency (m) of 

vibration is equal to the frequency, K, of the force. 

 

Zero work results when either the nodal diameter, m, of the 

mode shape is not the same as the shape of the kth harmonic of 

the force or the natural frequency, m, of vibration is not equal 

to the frequency, K, of the force. This is the basis of the Safe 

diagram and it further explains the need to examine the 

frequency of vibration, the mode shape and the shape of the 

force when considering resonance. The two conditions 

mentioned earlier are the statement of the above mathematical 

expression for the work done.  
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Mathematical Expression of Work done for Mistuned System 

 

The mode shape for a mistuned system gets distorted 

depending on the type and amount of mistuning whether it is 

deliberate or random. Packeted bladed disk, balance holes in 

the disk, odd numbers of blades on a disk or missing blade 

space for closing are examples of deliberate mistuning. 

Random mistuning may occur due to manufacturing tolerance 

of the blades. Blades may be within specified tolerance but 

each blade may be different, if they are not individually 

measured or assembled randomly on the disk.  In these cases 

mode shapes are distorted and certain mode might contain 

many harmonics. This mode may also split in two frequencies. 

It was found in the case of packeted bladed disk that even in 

such a situation contribution of a particular harmonics will be 

largest. For plotting Safe diagram this has been named after that 

harmonic with understanding there may be other harmonics in 

the shape.  

Expression for work done for a tuned bladed disk 

The general expression for any one of the split mode shape 

can be written as 

 

X (M) = AL sin (L + L)   (6) 

 

Where L is the half of the number of blades (N) for even 

number of blades or (N-1)/2 for odd number of blades on the 

disk 

 

In general case when forcing is also mistuned then the 

shape of the force can be expressed as follows: 

 

F (N)  = FL sin (L + L)   (7) 

 

dW = F (N).d(X (M)) 

The complete expression for dW is given in the Appendix. 

Using the complete integral relationship, the final 

expression for work done is given by the following: 

W =  (2A0F0+A1F1 cos1 cos1 +2A2 F2 cos2 cos2  

    + 3A3F3 cos3 cos3 +……..  

    + LAL FL cosL cosL)   (8) 

 

The following conclusions can be drawn: 

1. The blade will respond to the harmonics of force 

that match with the harmonic contents of the 

mode shape. 

2. The resulting response distribution may be 

different than the mode shape. 

3. It is quite possible that there will not be a true 

resonance, but a forced response in a mistuned 

system. 

Any natural mode of a bladed disk is represented by three 

parameters, namely, frequency, its shape and any variation of 

frequency (if any) due to speed. The forcing function as 

represented by Equation 1 contains the same three variables, 

frequency, shape and speed. It became clear that modes and 

forcing harmonics are three dimensional surfaces. A 3 

dimensional physical model was made consisting of wood and 

plexi glass panel in early 1980’s to demonstrate that the bladed 

disk vibration may be represented by this model Fig 7.  

 

 

 

Figure 7  Physical 3 D Wooden Model  

  (Courtesy: Terryl Mathews) 

 

Modes and harmonics of force were represented by 

different color threads. The mode lines and the force harmonic 

lines crossed each other. Examination of these points it was 

evident that the locus of these points is a three dimensional 

curve. It became clear that a graphical representation is also 

required to show this feature.  

To explain the findings of this model, Singh and Schiffer 

(1982) reported in detail thru graphical presentation for 

completely shrouded and for packeted bladed disk. Any natural 

mode of a bladed disk is represented by three parameters, 

namely, frequency, its shape and any variation of frequency (if 

any) due to speed. Fig. 8 is a 3D representation.  

 

 

 

 

Figure 8  3D Representation of Vibration Characteristic 

               of a Bladed Disc (completely shrouded or free 

standing) 
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The forcing function is graphically shown in Fig. 9. 

 

 

 

 

Figure 9  3D Representation of Force Excitation 

 

The probable points of resonance are found by 

superimposing Fig. 8 and Fig. 9.  

 

The points of intersection and its locus will be a 3D curve 

since these two intersecting surfaces are three dimensional. 

Three planar views (two vertical and one horizontal) of these 

points for a 40 bladed disc are shown in Figs. 10 through 12. 

These are the resonance points, which satisfy equation 5. 

Frequencies are equal at these points, as well as, the mode 

shape is identical to the shape of the force. 

 

 

 

 

 
 

Figure 10 Projection of Resonance Points on the  

  Campbell Plane (completely shrouded or free 

  standing blades) 

 

 

 

 

Figure 11 Projection of Resonance Points on the Safe  

  Plane (completely shrouded or free standing  

  blades, 40 blades) 

 

 

Figure 12 Projection of Resonance Points on the  

  Horizontal Plane (completely shrouded or  

  free standing blades) 
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Figure 13 Projection of Resonance Points on the  

  Campbell Plane (packeted bladed disc) 

 

 

Figure 14 Projection of Resonance Points on the Safe  

  Plane (packeted bladed disc, 40 blades) 

 

 

Figure 15 Projection of Resonance Points on the  

  Horizontal Plane (packeted bladed disc) 

Also the plots for resonance points for a packeted bladed 

disc assembly are shown in Figs. 13 through 15.  

The first vertical plot represents the plane of Campbell 

diagram. The second vertical plot is the Safe plane where the 

horizontal axis represents shape and the vertical axis represents 

frequency. Inspection of Figs. 10 through 15 reveals that the 

projection of intersection points on the Safe plane shows a 

remarkable symmetry and repeatability. Plot on the Safe plane 

from zero through 20 ND contains all resonance points.   It is 

easier to construct and represent these points on the Safe 

diagram as it will become clear later for any order of excitation. 

 

The Safe diagram combines natural frequencies, mode 

shapes, excitation frequencies and the shape of the force, and 

operating speeds on one graph. It has been found to be an 

excellent guide to determine the potential of exciting a 

particular mode of vibration. For a circular system, these points 

fall on radii (always an even number) or circles. A pair of radii 

(often opposite each other) is considered as a diameter. Mode 

shapes is specified by the number of nodal diameters (ND) and 

nodal circles (NC). The x-axis of the diagram represents nodal 

diameters and the frequency is plotted on the y-axis of the 

interference diagram.  

NAMING SAFE DIAGRAM 

To name this diagram, a contest was initiated by the 

President of Steam turbine Division of Dresser-Rand, 

Wellsville. Two names were on the top of the list namely 

“Singh’s Strings” and “Safe diagram”. Second name was 

finally chosen to stand for “Singh’s Advance Frequency 

Evaluation”. Fig. 16 is the photograph of the base of the model 

that was given to Late Charley Ramsey of Dow Chemical 

Company and it is now with Terryl Mathews of Shell who was 

kind enough to provide with photographs of the original model. 

 

 

 

 
 

Figure 16  Photograph of the Base of the Model 

  (Courtesy: Terryl Mathews) 

 

Description of the resonance re: coincidence of frequencies 

and shapes was so clear that Dresser-Rand decided to build 
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 small models for distribution to customers. Photographs of this 

 models are given in Figure 17. 

 

 

 

 

 

 

 
 

Figure 17 3 D Small Model Representation of Campbell and Safe diagrams 

 

 

 It was found that Safe diagram can estimate the possibility 

of unreliability in a manner that is simpler than those obtained 

after much analysis as presented by Weaver and Prohl. Weaver 

and Prohl used energy method to calculate response of a 192 

bladed disk. The disk was composed of 32 packets with 6 

blades in each packet. The number of nozzles ahead of the 

stage was 92. Also, Singh and Vargo (1989) were able to show 

that the results presented by Provanzale and Skok (1973) can be 

explained based on Safe diagram, which provides a better 

explanation of the response points. This development led to the 

explanation of the paper presented by Provanzale and Skok and 

it included the effect of coupling provided by disk and shroud 

band. 

 

Fig. 18 and Fig. 19 show the comparison of Singh’s 

analysis with that presented by Provanzale and Skok. This 

comparison convinced us that our approach is sound and easier. 

We explained the findings to the customer to his satisfaction. 

 

 

 

 

 
 

Figure 18 Resonance points on Campbell Plane 
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Figure 19 Resonance points on Safe Plane 

 

Safe diagram, which combines natural frequencies, mode 

shapes, excitation frequencies, and operating speeds on one 

graph, is found to be an excellent guide in determining the 

possibility of exciting a particular mode of vibration. In any 

vibration cycle, certain parts of a mechanical structure remain 

stationary. For a circular symmetric system, these points fall on 

radii (always an even number) or circles. A pair of radii 

(opposite each other) is considered as a diameter. Mode shapes 

can be characterized by specifying the number of nodal 

diameters (ND) and nodal circles (NC). The x-axis of the 

diagram represents nodal diameters. Frequency is plotted on the 

y-axis of the Safe diagram. A good design would yield a Safe 

diagram that indicates no coincidence of possible excitation 

force with a natural mode of a bladed disc or an impeller (tuned 

system).   

 

FIRST APPLICATION OF SAFE DIAGRAM  

 

Just at this time, one stage of a four stage turbine was 

experiencing blade damage during operation. The Campbell 

diagram of the stage is given in Fig. 20. It showed that there is 

a possibility of resonance of one of the tangential modes with 

1xNPF excitation. Primary axial modes were not in resonance 

with 1xNPF. This type of design had been used before because 

the stresses were low and experience with this design had been 

very encouraging. Finite element modal analysis was conducted 

at this time to confirm the previously obtained results. Safe 

diagram were plotted first time by hand on a graph paper. 

Figure 21 and Figure 22 show the Safe diagram for tangential 

and axial modes respectively. Safe diagram confirmed the 

findings of Campbell diagram. A mode belonging to tangential 

fixed supported mode coincided with 1xNPF excitation.  

Modification was made to the design of this stage by changing 

blade profile and number of blades. There was a mixed 

packeting of some six blades and five blades in packets. 

Campbell diagrams are shown in Figure 24 and Figure 25 

respectively. Moreover, stresses were within acceptable limits. 

Safe diagram of the modified design is shown in Figure 26 and 

Figure 27. Campbell and Safe diagrams showed that this design 

is acceptable for operation. 

 

The question was raised that Safe diagram had only 

confirmed the findings of Campbell diagram. Then what is the 

added value of Safe diagram? As it happened that another stage 

of the same turbine had very similar Campbell diagram. Safe 

diagram was plotted for this stage. While Campbell diagram 

was indicating a possibility of resonance, Safe diagram was 

clean indicating no possibility of resonance. This stage has not 

experienced any damage of the blade. Results and conclusions 

of this finding are included in the paper by Singh and Schiffer 

(1982). Most important conclusion that could be drawn is that if 

Safe diagram shows resonance then Campbell diagram will also 

show resonance. On the other hand if Safe diagram shows no 

possible resonance, Campbell diagram might show resonance.  

 

 

 

  
 

Figure 20 Campbell diagram for Original Design 
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Figure 21 safe diagrams for Original Design 

(Tangential   Modes) 

 

 

 

 

Figure 22 safe diagrams for Original Design (Axial  

  Modes) 

 

 

 

 
 

Figure 23 Campbell diagram for Modified  

  (6 Blades/Packet) 

 

 

 

 
 

Figure 24 Campbell diagram for Modified  

  (5 Blades/Packet) 

 

 

 

 

 



 
Copyright© 2013 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station 

 

 

 

Figure 25 Safe diagram for Modified Design   

  (Tangential Modes) 

 

 

 

 
 

Figure 26 Safe diagram for Modified Design (Axial 

  Modes) 

 

 

 

 

 

 
 

Figure 27 Wrapping of Resonance Points to half of  

  blade count (Safe diagram) 

 

At this time at the request of the President of Turbodyne, I 

presented the findings to employees. Question was raised about 

the excitation harmonics greater than the half of the blade count 

by Dick Parker of Human Resources who was in attendance. 

He mentioned that if the number of nozzles is greater than the 

half of the number of blades then there is no possibility of 

resonance. At this time Safe diagram did not consider reflection 

of excitation lines. There was no answer readily available but I 

knew that is not right. Looking into this matter, it became clear 

that it is question of wrapping the excitation lines also. Figure 

27 describes that practice. Singh and Lucas (2011) describe this 

in detail and provide mathematical expression to determine the 

modes of concern. 

 

SAFE DIAGRAM FOR IMPELLERS 

 

The reliability of centrifugal compressors for the most part 

depends on the reliable operation of impellers. Fatigue damage 

has been observed in blades, discs and covers. The damage is 

attributed to alternating stress resulting from vibration of 

structure. Alternating force can excite natural mode(s) of 

vibration that in turn may result in high alternating stresses.  

 

Nelson (1979) stated that one possible cause of high 

alternating stresses is the resonant vibration of a principal 

mode. The vibratory mode most frequently encountered is of 

the plate type involving either the cover or the disc. Nelson 

described a fatigue failure pattern that originates at the outside 

diameter of the impeller adjacent to blades and fatigue crack 

propagates along nodal lines on the disc or the cover. Finally, a 

thumbnail shaped material tears out.  

 

The modes responsible for the fatigue cracks described by 

Nelson are those that exhibit primarily axial motion of the disc 

and the cover. Another type of failure experienced in an 

impeller is “a thumb nail” or “scallop” shape fatigue cracks in 

blades. Figure 28 shows picture of such a failure in an impeller 

having fatigue cracks in blades. Fatigue cracks of this type in 
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blades are the characteristic of modes in which blade motion is 

predominant. Typically, motion of the structure in the modes 

associated with this type of failure is primarily in the tangential 

direction. 

 

 

 

 
 

Figure 28  Photograph showing Thumb Nail or Scallop 

  Fatigue Cracks in an Impeller 

 

An impeller consisting of blades, disc and cover is one 

system. The structure vibrates as a whole. In some modes of 

vibration, the blades might be moving more than the cover or 

the disc. On the other hand, the cover might move appreciably 

more than the blades in some modes. The modes of vibration of 

a closed impeller are similar to those of a continuously banded 

(shrouded) bladed disc as used in steam and gas turbines. 

However, the interpretation of modal results can be confounded 

by the complex coupling between the cover and disc caused by 

the twisted blade of many impellers.  

Analysis of a blade by itself or for that matter disc or cover 

by themselves is easier. However, in reality, the impeller is a 

system that combines the blade, disc and covers same as bladed 

disk for steam turbine, axial compressor or gas turbine disk. 

Singh etc (2003) described the behavior of each individual 

component as well as impeller as a system.  

 

The impeller of a centrifugal compressor is a circular 

symmetric structure as a bladed disk. FE analysis was 

conducted for a simple (both open and closed) impeller. The 

impeller analyzed was a "2-D" blade design i.e. blades extend 

straight out from the disc to the cover. With the results of FE 

analysis impeller as a system was rationalized. A method to 

create Safe diagram based on the results of blade alone, of disc 

alone and finally impeller as a system was described.  

 

The same two conditions as mentioned earlier for bladed 

disc were found applicable. For a state of resonance: frequency 

of the exciting force equals the natural frequency of vibration 

and the profile (shape) of the applied force should have the 

same shape as the mode shape associated with that natural 

frequency. 

  

 

Mathematical expressions for natural modes and forcing 

function are similar to that of bladed disk as given earlier in 

equations 1 thru 3.  

 Where 

 K  = number of distortions in flow per 360
0
, e.g. 

  number of IGV or number of vanes, in  

  the diffuser, etc.       

 N = Compressor’s speed, RPM 

 

K also represents the shape of the excitation as k nodal 

diameter. Equation (5)  for work done is also applicable here.  

  

Results of Finite Element analysis  

 

A finite element analyses included single blade, the disc alone, 

an open impeller and an impeller with cover. 

Single Blade 

 

A single blade was modeled by using brick type elements. 

Two different boundary conditions were used. First, the blade 

was considered cantilevered with the disc. This analysis 

simulated single blade mode shape with the mode shape of the 

open impeller. For the second analysis, the nodes of the blade 

coincided with the nodes on the disc and the nodes on the other 

face of the blade coincided with the nodes on the cover. The 

second case simulated the blade mode shapes with the mode 

shapes of impeller with cover. 

 

Mode Shape for Single Blade  

 

The FE model is shown in Figure 29 with a fixed boundary 

condition. The nodes of the blade that coincide with the nodes 

on the disc surface were constrained in all directions. The first 

two mode shapes of vibration are shown in Figure 26. The 

information of interest is the displacement pattern of these 

modes and how it is related to the vibration pattern of blades of 

the open impeller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Finite Element Model for Single Blade 
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Figure 30 First Two Bending Mode Shapes of  

  the Cantilevered Single Blade 

 

The first two mode shapes for blades constrained at both 

ends are shown in Figure 31.  

 

 

 

 

 

 

 

 

 

 

Figure 31 First Two Bending Mode Shapes of a Single 

  Blade fixed at both ends 

 

DESCRIPTION FOR 3 D FEA MODEL OF IMPELLER  

 

The FEA model has been created using ANSYS 3D brick 

element (8 nodes).  Each node has three degrees of freedom. 

These are translations in the nodal x, y and z directions.  The 

impeller that has been analyzed has 23 blades.  

 

Mode Shape of Disc Alone 

 

The finite element model of the disc is given in Figure 32. 

Few mode shapes are also shown from Figure 33 and Figure 

34. 

 

 

 

 

 

 

 

 

 

Figure 32 Finite Element Model for Disc Alone 

 

 

 

 

 

 

 

 

Figure 33 Umbrella (0 Circle and 0 Nodal Diameter  

       Mode) for the Disc 

 

 

 

 

 

 

 

Figure 34 Representative Mode Shapes for the Disc 

 

Mode Shapes of Open Impeller 

 

An analysis was performed for an open impeller that 

contained the disc and 23 blades previously analyzed. The FE 

model is shown in Figure 35. A few mode shapes are also 

shown in Figure 36 and Figure 37. 

 

 

Figure 35 Finite Element Model of Open Impeller 

 

 
 

 

 

 

 

 

 

 

Figure 36 Umbrella (0 Circles and 0 Nodal Diameters) 

  Mode Shape of the Open Impeller,   

  Displacement in the Axial Direction and in  

  the Tangential Direction 

 

 

 

 

 

 

 

 

 

 

Figure 37 0 Circles and Few Nodal Diameters Mode      

     Shapes of the Open Impeller 

Mode Shape of Impeller with Cover 

 

An analysis was also performed for an impeller with a 

cover that has the same 23 blades described earlier. An FE 

model is shown in Figure 38. Mode shapes are also shown in 

Figure 39 and Figure 40. 
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Figure 38 Finite Element Model of Impeller with Cover 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 39 Umbrella (0 Circles and 0 Nodal Diameters) 

  Mode Shape of the Impeller with Cover 

 

 

 

 

 

 

 

 

 

Figure 40  0 Circles and 1 Nodal Diameter (Tangential 

    Displacement) and 1 Circle and 1 Nodal  

   Diameter Mode Shape (Axial Displacement) 

  of the Impeller with Cover,  

 

 

POSSIBLE FORCING FUNCTION FOR IMPELLER 

 

Singh and Lucas (2011) described some possible forcing 

for centrifugal compressors. The most obvious sources of 

excitation are 1x or higher order interactions with the number 

of diffuser vanes, inlet guide vanes (IGV), return channel vanes 

(upstream or downstream of the impeller) and impeller blades. 

For single stage units such as pipeline compressors, a volute 

tongue is a possible excitation source.  Volutes (and to a greater 

extent collectors) create non-uniform pressure fields at the 

discharge of the impeller that could act as a forcing function. 

Stall is also a potential source of excitation and can occur 

within the impeller or the diffuser (with vane or without vane).  

Stall in diffusers without vanes is characterized by one or more 

"cells" that rotate with (although slower than) the impeller.  

Stall cells have been known to cause high sub-synchronous 

vibration. The disc/cover cavity shape (the shape of the cavity 

between the disc or cover and the stationary walls surrounding 

the impeller) has also caused acoustic resonance that resulted in 

impeller failure. 

  

Safe diagram is found to be an excellent guide in 

determining the possibility of exciting a particular mode of 

vibration in an impeller. The x-axis of the diagram represents 

nodal diameters. Frequency is plotted on the y-axis of the Safe 

diagram. A good design would yield a Safe diagram that 

indicates no coincidence of possible excitation force with a 

natural mode of the impeller (tuned system).  Results of the 

modal analysis have been used to draw a Safe diagram.  

 

Displacement pattern of mode shapes around the disc and 

cover were decomposed thru Fourier analysis. It was found that 

many harmonics were present in mode shapes but there was a 

predominant harmonic. For plotting Safe diagram the largest 

component of harmonic is used to name that mode.  Plots of 

mode shapes were also used to verify the Fourier results and to 

determine the number of circles present in these modes.   

 

Results of the Fourier analyses were divided into axial and 

tangential directions. If the amplitude of displacement is in 

axial direction then it is termed as axial mode and it is termed 

tangential if displacement is in the tangential direction. Mode 

shapes in the first family consisted of each blade displaying the 

first bending mode of a single blade, see Figure 41.  

 

 

 
 

Figure 41 Modes where the Blade shows the first mode 

  of a cantilevered blade 

 

Each mode shape consists of a different number of blades 

moving in the same or opposite direction. For example, if half 

the number of blades moves in one direction, and the next half 

move in the opposite direction, there is one phase change in the 

displacement. The pattern of displacement is similar to a single 

cosine or a single sine wave. Thus, it is called one nodal 

diameter.  

 

Utilizing the concepts and methods discussed in earlier 

sections the finite element analyses results for the cases studied 

in the form of Safe diagram have been plotted in Figure 42 and 

Figure 43. 
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Figure 42 Safe diagram for Open Impeller 

 

 

        

 
 

Figure 43 Safe diagram for Closed Impeller  

 

SAFE DIAGRAM FOR MISTUNED SYSTEM 

Including geometrical variations among blades was the 

next logical advancement in the analysis of the dynamic 

response of blades. It has been shown that geometrical 

variations influences mode shapes and frequencies and in turn, 

the response of a bladed disk system. In a tuned system where 

each blade is identical, modes in general occur in duplicate. 

There are two modes that differ by a phase angle but these 

modes have identical frequencies. However, when symmetry is 

disturbed through variation from blade to blade, these modes 

tend to split in two frequencies. Also, the shape of these modes 

get distorted from the tuned case, which is a phenomenon 

called “mistuning”. Ewins (1976) has extensive discussions of 

this phenomenon and the response of the mistuned case was 

found to be different from the tuned case. This was attributed 

mainly due to a change in the mode shape and may pose a 

serious decision point for designers to account for variability 

among blades. Ewins specifically dealt with completely 

shrouded or un-shrouded bladed disk constructions. 

 

Irregularity in the bladed disk system makes the response 

of the system asymmetric.  These irregularities can be caused 

by structural and/or aerodynamic means. Structural 

irregularities arise due to variations in geometrical dimensions 

from blade to blade; it can also be complicated due to variations 

in the boundary conditions and due to variations in the fixity of 

blades to the disk or cover. Frequencies may be different than 

in the tuned case and the mode shapes are non-sinusoidal. 

Irregularities in the aerodynamic forces come from variation 

between guide vanes opening. This causes force around the 

periphery of the disk to be of a non-sinusoidal form. Mode 

shapes and forces though non-sinusoidal are periodic in nature. 

Fourier decomposition of these with respect to the angular 

position around the disk will yield harmonics in addition to that 

of the tuned case, which results in a different response of the 

blade compared to the tuned case. 

For a tuned system, frequencies occur in duplicate, i.e., 

there are two identical frequencies for a given mode shape. 

These shapes are graphically the same, but differ from each 

other by a phase angle. Structural mistuning results in a 

phenomenon called “splitting of frequency”. Splitting separates 

these frequencies for each mode and the amount of separation 

of frequencies depends on the amount of mistuning. For 

example, a three nodal diameter pattern of a disk might occur at 

two frequencies. In general, these frequencies crowd the 

Campbell diagram and the Safe diagram yields a clear depiction 

of this phenomenon. 

 

The analysis of a mistuned bladed disk system becomes 

complex. Due to manufacturing variations, blades on the same 

disk will be different from each other even when they are 

within manufacturing tolerances. Their contact condition in the 

disk slot may also be different. Therefore, assembly of these 

blades on a disk will be random unless each blade is 

individually measured and its location on the disk noted. 

Sometimes the location is chosen in order to balance a disk 

containing long blades. However, even known locations pose 

difficulty in analysis. Each bladed disk produced in such a 

manner from the same lot of blades will be different and 

therefore, their vibration characteristics will also be different. 

The complexity of the analysis is compounded by the presence 

of a large number of blades on the disk. 

 

Ewins (1969) reported that for a given excitation and 

damping conditions, the response in one mode (or pair of 

modes) depends on the amount of “split” of the two natural 

frequencies. The presence of slight mistuning, small blade 

imperfections, can cause resonant stress levels in some blades 
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up to 20% higher than equivalent tuned case. This kind of 

increase depends on the specific arrangement of the blades 

around the disk. He also noted that by careful arrangement of 

the same set of non-identical blades, it is possible to eliminate 

the risk of such an increase in the peak stress level. Ewins 

(1976) reported the results of a study of a slightly mistuned 

bladed disk. The study considered a group of nominally 

identical blades. Various dimensional variations in blades 

nominally result in about   2 to 3 % variation in a 1F 

frequency. Even though there is a slight change in frequency 

the result showed that the effect on mode shapes is large. This 

phenomenon of variation in the mode shape has considerable 

effect on the response of the blade. The main interest in the 

design of a blade is its response under load; hence mode shape 

should be critically examined. Singh and Ewins (1988) and 

Singh (1992) presented probabilistic analysis results by 

considering a random arrangement of blades on the disk 

utilizing Monte Carlo simulation.   

 

The analysis reported earlier for the packeted bladed disk 

may be considered as deliberate mistuning. This was attributed 

to the breaking of a continuous shroud band into packets at 

some predetermined locations. This permits some modes to be 

split and it has been used successfully in packeted bladed disk 

design. 

 

For a mistuned bladed disk system, the vibration energy is 

unevenly distributed among all blades of the disk. The mode 

shapes may be far from a regular sinusoidal shape. The 

examination of modes in such a situation is done using Fourier 

decomposition of the displacement pattern to obtain harmonic 

contents. On a Safe diagram, the mode is named in accordance 

with the largest content of the harmonics of the Fourier 

decomposition of the mode shapes. 

Following discussion of mistuning is applicable to any 

circular symmetrical system (e.g. bladed disk, impellers etc.) in 

case of a geometrical mistuning or force mistuning or both. 

 

Safe diagram for perfectly tuned case-structural and 

forcing 

 

As explained earlier for this kind of system, each mode 

occurs in pairs with equal frequency. One exception is that 0 

ND mode is always single. Depending on the blade count the 

last mode may also be single. For discussion sake a Safe 

diagram for such a system having 48 blades is shown in Figure 

44. Each circle represents double modes except the 0ND mode 

and 24 ND modes. 

 

 

 
 

Figure 44 Safe diagram for Tuned System (courtesy:  

  Safe Technical Solutions) 

 

SPLITTING OF MODES IN TWO FREQUENCIES 

 

In the case of random mistuning it is expected that 

frequency of each mode will split in two frequencies and both 

modes become distorted i.e. these are not symmetrical as shown 

in Figure 45. The amount of separation between two resulting 

frequencies will depend on amount of mistuning. The resulting 

response curve is the summation of the response of these modes 

separately.  

 

 

 
 

Figure 45 Split Frequencies due to Mistuning 

  (Courtesy: Safe Technical Solutions) 

 

It has been practice to display these separate frequencies 

on the Safe diagram to assess the effect of this phenomenon. 

Figure 46 shows such a feature just for two modes for 

demonstration purposes. It is expected that for random 

structural mistuning nearly all modes may split. Examination of 

this figure shows that response due to excitation will occur at 

the mistuned frequencies.  
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Figure 46 Split Modes Plotted on Safe diagram  

  (Shown for just two modes for explanation)  

  (Courtesy: Safe Technical Solutions) 

 

RANDOM MISTUNING (STRUCTURAL) 

 

When the frequencies split, other effect is that the modes 

become distorted. These modes display many harmonics which 

otherwise contained only one harmonic for the tuned case. 

Figure 47 thru Figure 49 depict harmonic contents of these 

distorted modes. 

 

 

 
 

Figure 47 Harmonic Contents for Lower 8ND Mode  

  due to Mistuning (courtesy: Safe Technical  

  Solutions) 

 

 

 

 

 

 

 

 

 

 
 

Figure 48 Harmonic Contents for Upper 7ND Mode  

  due to Mistuning (courtesy: Safe Technical  

  Solutions) 

 

 

 
 

Figure 49 Harmonic Contents for Lower 7ND Mode  

  due to Mistuning (courtesy: Safe Technical  

  Solutions) 

 

SAFE DIAGRAM FOR STRUCTURAL MISTUNING 

WITH TUNED FORCE 

 

Examination of Safe diagram (Figure 46) points towards 

close attention to the distorted modes as shown in Figure 47 

thru Figure 49. Figure 50 shows the way this phenomenon has 

been considered using Safe diagram. This shows the 

consideration of 1xNPF excitation and upper 7ND mode. Even 

though the concept of pure resonance (for tuned system) 7ND 

mode is not considered, it is evident that there are 16 harmonics 

in this mode. This portion of the harmonic of the mode shape 

will be excited by 1xNPF (16 harmonic of force). 

Consideration for the split 8 ND mode is taken care of same 

way. Equation developed earlier for work done shows that there 

will be response but it will be forced response. 
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Figure 50 Representation of Split Mode and   

  Contribution of Harmonic Content for  

  Upper 7ND Mode for Structural Mistuning  

  (courtesy: Safe Technical Solutions) 

 

FORCING DISTORTION 

 

Unsteady forces due to effects from the rotating blades 

passing the stationary nozzle partitions are possibly the most 

important, and consequently the most studied, source of 

excitation for blade vibration in axial flow turbines.  These 

forces arise mainly because the nozzle vanes’ or partitions’ 

trailing edges have finite thickness, and because the gas is 

discharged toward the moving blades via discrete nozzle 

passages which are subject to a variety of small variations in 

geometry (Fig. 51).  In turn, these produce a variety of flow 

non-uniformities and disturbances at the nozzle exit, 

immediately upstream from the moving blade row.   

 

 

 
 

Figure 51  Nozzle Geometry Definitions 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 52 Multiple NPF Content for Tuned Nozzles 

 

If the nozzle assemblies were perfect, with each partition 

perfectly placed so there are no variations in nozzle exit area, 

nozzle spacing, and setback distance, the designer would have 

to consider only the fundamental nozzle passing frequency (i.e. 

1X nozzle passing) and its low multiples (2X, 3X, and so on) – 

pure tones in other words - when analyzing the frequency 

response of the rotating blades (Fig. 52).  However, since these 

nozzle characteristics always exhibit variations as a result of 

manufacturing tolerances (refer to Figure 53), variations in 

nozzle exit area, circumferential pitch or spacing, and setback 

in otherwise pure signal at 1X nozzle passing frequency, and 

superimpose other harmonic frequencies on the predominant 

1X nozzle passing frequency “signal” or forcing function (Fig. 

54). Although this is primarily concerned with variations from 

design values due to manufacturing tolerances, the inevitable 

variations that originate from erosion, wear, and foreign object 

damage during turbine operation can also produce potentially 

destructive unsteady forces on the rotating blades 

 

 

 
 

Figure 53  Nozzle Manufacturing Variations 
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Figure 54 Harmonic Stimuli from Vane Spacing  

  Irregularities  

  (Courtesy: Safe Technical Solutions) 

 

SAFE DIAGRAM FOR TUNED SYSTEM WITH FORCE 

MISTUNING 

 

Many instances occur in design where system is almost 

completely tuned but the force excitation is not. Safe diagram 

for such a system for the modes of interest is drawn and it is 

shown in Figure 55. Again it shows that natural frequency 

matches with the frequency of excitation but due to mistuning 

of force only the harmonic contents of the force that match with 

the harmonic of the mode will contribute to the response of the 

system. Equation developed earlier for work done shows that 

there will be response but it will not be due to 16
th

 harmonic of 

the force but due to 7th and 8
th

 harmonics. Many times the 

forces are mistuned deliberately to take advantage of this 

phenomenon.  

 

  

 
 

Figure 55 Safe diagram Representation of Harmonic  

  Contents of 1xNPF Excitation for Mistuned  

  Forcing (courtesy: Safe Technical Solutions) 

 

 

 

 

 

 

 

SAFE DIAGRAM FOR BOTH STRUCTURAL AND 

FORCE MISTUNING 

 

Safe diagram has also been used in the general case of both 

types of mistuning: structural as well as forcing. Figure 56 is 

the Safe diagram for this situation. This is drawn again only for 

the modes of interest. It shows that there might be match of 

similar harmonics of mode shape and force and these must be 

known or estimated. Previously developed equations have been 

used to understand this phenomenon. Again this shows that it is 

not a case of pure resonance but forced response. Finally, 

response must be estimated by a forced response analysis by 

more accurate technique such as FEA and this should be used 

to determine the reliability of the design.  

 

 

   
 

Figure 56 Safe diagram Representation of Harmonic  

  Contents of 1xNPF Excitation for Mistuned  

  Forcing and Harmonic Content for Upper  

  7ND Mode (courtesy: Safe Technical  

   Solutions) 

  

INCLUSION OF CENTRIFUGAL STIFFENING IN SAFE 

DIAGRAM 

 

Most of the time modal analysis is conducted without 

regard to the speed of the machine. Natural frequencies for 

relatively long blades are affected by the speed. Most of the 

time it is larger than that estimated at zero speed. This is called 

“centrifugal stiffening”. For shorter blades this influence is 

minimal. Safe diagram for such a case is shown in figure 57 for 

a constant speed machine. It shows that a mode which might 

have been deemed benign based on estimation of natural 

frequency at zero speed might not be so due to centrifugal 

stiffening. It is prudent to conduct modal analysis including 

centrifugal stiffening for constant speed machine. However, it 

is not practical do so for a variable speed machine such as 

mechanical drive turbines. In this situation Safe diagram is first 
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drawn based on the natural frequencies at zero speed then based 

on the mode of interest after examining the Safe diagram, 

natural frequencies are estimated at the speed of concern. 

Designers based on experience have developed simple formula 

to estimate the change in frequencies without detailed analysis.   

 

 

 
 

 

Figure 57 Safe diagram Representation to Include  

  Effect of Centrifugal Stiffening (courtesy:  

  Safe Technical Solutions) 

 

EXAMPLES OF APPLICATION OF SAFE DIAGRAMS 

 

An Impeller Failure 

 

Concept of the Safe diagram has helped in the design of 

reliable impellers. Also, it has helped to understand fatigue 

failures and thus help to formulate a solution to those failures. 

An impeller of a pipeline compressor showed fatigue damage in 

many blades after a small operation time, Figure 58 and Figure 

59.  

 

 

 
 

Figure 58 Scallop Shaped Break out from Blades. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59 Photograph showing Separated Scalloped  

  Material 

 

The shape of the separated pieces was of a “scallop” type. 

Based on a finite element analysis supported by a frequency 

test, a new impeller was designed. The solution was an impeller 

with modified blade geometry and a change in the number of 

blades of the impeller. The modified design is operating 

successfully in the field. 

 

The same impeller was analyzed to create Safe diagram for 

the original design as well as the modified design to take a 

fresh look in the possible cause of damage and the remedy 

thereof. Finite element analysis has been performed on the 

damaged impeller geometry. A parallel analysis has also been 

performed on the modified impeller. Figure 60 and Figure 61 

show the Safe diagrams for the original and for the modified 

impeller geometry. Figure 60 shows resonance with the second 

harmonic of the possible excitation force generated by IGV. 

  

    

 
 

Figure 60 Interference diagram for Original Impeller  
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Figure 61 Interference diagram for Modified Impeller 

 

The mode that coincides with the second harmonic of the 

IGV excitation is shown in Figure 62. It is instructive to note 

that the displacement pattern of each blade is similar to the 

scallop shape at the inlet where the damage occurred in the 

blades.  

 

 

 
 

Figure 62 7 Nodal Diameters Mode with Scallop shaped 

      Displacement Pattern for Blades. 

 

Safe diagram also shows a possible resonant condition with 

a force having a shape of blade passing frequency. The force 

having nodal diameters equal to the number of blades can also 

excites a zero nodal diameter mode of vibration of the impeller 

if frequencies are coincident per Equation (5). There are two 

modes that are coincident with the blade passing excitation 

within the speed range, shown in Figure 63. In both modes of 

vibration the displacement pattern of each blade is also similar 

to the scallop shape at the inlet where the damage occurred in 

the blades.  

 

 

 

 

 

 

 

 
 

Figure 63 Zero Nodal Diameter Modes with Scallop  

            Shaped Displacement Pattern for Blades 

 

For a relatively dense medium and also for a high- speed 

application, there is a probability of a reflection of a force 

emanating from the rotation of blades. The impeller was 

modified with this in mind. The modified impeller has a 

different number of blades with an increased thickness.  This 

resulted in a higher frequency for modes controlled by blades. 

The modified design did not have any IGV so the excitation 

due to vanes does not exist. The Safe diagram (Figure 61) of 

this design also shows the possibility of blade passing 

frequency exciting a mode of zero nodal diameters. 

 

The original impeller failed very quickly indicating a high 

cycle. Fatigue mode of failure but the redesigned impeller has 

been in operation for a long time without any distress. It can be 

inferred from this study that second harmonics of the vane 

excitation might have been responsible for the damage of the 

original impeller. Figure 61 shows that if the reflected blade 

passing force was the cause of failure, then the modified design 

should have shown damage in operation. 

 

Safe diagram is successfully used to explain the failure and   

for modification of the impeller when there is scalloped shaped 

failures in blades. It can be similarly applied to scalloped 

shaped failures in a cover and / or disc. The failure in blades is 

attributed to tangential modes since blades vibrate primarily in 

tangential direction. The scalloped shaped cover and disc 

failures are be attributed to axial modes in which the primary 

displacement is in the direction of the axis of the machine. 

 

Radial Inflow Turbine Disc 

 

A radial inflow turbine’s impeller had a history of several 

early failures in the highly erosive, brine steam environment 

attributed to stress corrosion cracking (Singh etc, 2007). 

Several mitigation actions were taken in impeller material and 

process cleaning equipment. Impeller had a coating of a thin 

layer of tungsten carbide to protect the wheel against erosion 

due to minute solid particles in the steam. A crack was 

discovered during a routine inspection of the turbo-expander 

wheel after a successful operation for nine months. This crack 

was located at the coating surface at the base of one blade by 

using fluorescent penetrant inspection (FPI) during a 

maintenance outage. The coating was mechanically removed to 

inspect the entire wheel for cracks in the substrate. No crack 
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was detected through FPI examination anywhere in the wheel 

after removal of the coating. Wheel was laser shock peened for 

better fatigue resistance in the fillet area near the base of each 

blade. Laser shock peen was done to provide localized 

compressive stress in the fillet radii areas. This wheel was then 

put in service uncoated.  

 

After a few hours of operation wheel airfoil was reported 

to have fractured. Examination of the wheel revealed that the 

initiation site of final fracture was at the base of a blade. It was 

also established that it was the same blade at the same location 

in which the coating was found cracked earlier (Figure 64). 

 

 

 

 

 

 

 

 

 

 

Figure 64 Crack Locations in the Coating and the Final 

   Separation Site. 

It was noted that a large area of the fractured surface was 

discolored indicating oxidation of the surface. This might 

indicate a pre existing crack. This fact indicated that either the 

inspection technique to find crack was not capable of picking a 

tight crack or the coating removal process might have masked 

the existing crack.  

 

It was suspected that the erosive/corrosive nature of geo-

thermal steam was contributing to the initiation of the crack in 

the coating and then the existing stresses though small might be 

responsible of propagating it to fracture. The quality of steam 

was good since new process scrubber equipment was added and 

the steam did not have many erosive/corrosive species reported 

in sampling. The spare wheel was put in service that was 

identical to the damaged one. The main reason for this was the 

suspicion that environment was initiating crack in the coating. 

Hence, initiation of crack was not envisioned. 

 

Detailed analyses were initiated to examine the 

possibilities of failure due to resonance with excitations 

resulting from harmonics of inlet guide vanes (IGV) (up to 

fourth harmonics were considered), to examine failure due to 

other modes during start up below the operating speed and to 

explain the initial cracking in the coating,  

 

The analyses included the following:  

a) Finite element steady state stress analysis under 

centrifugal loading. 

b) Modal analysis to include or exclude the possibility of 

resonance. Concept of Safe Diagram for Impellers was 

used for resonance identification 

c) Harmonic forced response analysis was performed to 

estimate dynamic stresses. Harmonic response analysis 

had been conducted for the modes of interest as 

inferred from the Safe diagram.  

d) Classical fatigue analysis was conducted to understand 

the possibility of initiation of crack near the base of 

the blade.  

Finally, corrective action(s) are defined based on the 

knowledge gained from the analyses. 

  

Description of analysis and results 

 

Steady state stress resulting from centrifugal loading has 

been estimated using finite element method. A sector of the 

wheel containing one blade was modeled (Figure 65). It is 

efficient to use one wheel sector containing one blade and the 

boundary condition is represented by cyclic symmetry.  

 

 

 

 

 

 

 

 

 

 

 

Figure 65 FE model for Steady State Analysis 

 

Contour plots of the resulting stress are shown in Figure 

66.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66 Contour of Radial Stress at 12400 rpm 

 
Modal Analysis 

 

A new FE model was created for the modal analysis. It 

contained the complete wheel with 14 blades and the disc 

(Figure 67). It was anticipated that harmonic response analysis 

will be performed and for that a complete model was required. 

The nodes at the bolt circle have been constrained for all 

degrees of freedom.  
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Figure 67 Model of the Wheel for Modal Analysis 

 

Some representative mode shapes are plotted in Figure 68. 

It should be noted that the first mode is a 1 ND and the second 

mode is a 3 ND. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68  Some Representative Mode Shapes  

 

Due to axi-symmetric geometrical shape of the wheel, 

modes occur in duplicate. These modes have identical 

frequencies. Nodal diameters of the duplicate modes occur at a 

different angular position even though these have same number 

of nodal diameters. Frequency of each mode is plotted against 

its shape on the Safe diagram. It is shown in Figure 69. The 

radial line represents the operating speed of 12400 rpm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69  Safe diagram for the Wheel at 12400 rpm 

 

 

 

 

The modes of interest have been identified on the basis of 

the possibility of exciting the wheel by the forces generated by 

IGV. Excitations up to 4
th
 harmonics of IGV have been 

considered.  

 

Harmonic Forced Response Analysis at the operating 

speed of 12400 rpm. 

 

For the first harmonics of excitation the force is applied to 

the mode shape as shown in Figure 70 with blade arbitrarily 

numbered. Figure 68 show the magnitude of load distribution 

for each blade for the first harmonics of IGV excitation.  

 

 

 

 

 

 

 

 

 

 

Figure 70  Blade Numbering 

 

 

 

 

 

 

 

 

 

 

Figure 71 Distribution of Load on Blades for 1xIGV  

 

Similarly, force distribution for the second, third and fourth 

harmonics also had been developed for harmonic forced 

response analysis. The damping ratio used in the calculation 

was 0.0008. This is almost equal to material damping and it had 

been used to estimate the worst response level. Figure 72 shows 

the amplitude of vibration as a function of exciting frequencies 

at different locations on the blade.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72 Displacement Responses vs. Frequency of  

  Excitation 
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Figure 73 has the exploded view of the area of high stress. 

It should be noted that these peak stresses do not occur at the 

location of the initiation of cracks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 73 Detailed Views 

 

Harmonic Forced Response Analysis for 3 ND mode (1694 

Hz) that may be excited by 1xIGV harmonics at 9240 rpm.   

 

The estimated stresses due to the excitation forces of 

harmonics of IGV at 12400 rpm are not considered to be large 

enough to do fatigue damage. The estimated factor of safety is 

large. Moreover, the location of peak stress is not near the crack 

initiation site. There is another three nodal diameter mode at an 

estimated frequency of 1694 Hz. However, this mode may be 

excited by 1xIGV excitation during start up of the machine at 

an estimated speed of 9240 rpm. Harmonic forced response 

analysis was performed for this mode at 9240 rpm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 74  The 3 ND Mode Shape at 1694 Hz 

 

Figure 74 shows the 3 ND mode shape that is being 

considered for further harmonic forced response analysis. 

Distribution of forces per blade and the relative magnitude of 

the force on each blade were the same as used in the earlier 

response analysis.  

 

 

 

Amplitude of vibration as function of exciting frequency is 

given in Figure 75.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 75  Vibration Amplitude as a Function of  

  Excitation Frequency 

 

Figure 76 show the picture of the failed wheel side by side 

the contour plot of stress resulting due to excitation of the mode 

(3 ND) at about 1694 Hz by 1xIGV. It is very informative to 

note about the coincidence of the location of crack initiation 

site and the peak stress.  

 

 
 

Figure 76  Picture of Failed Wheel and Stress Contour  

  Plot 

Summary 

 

a. Safe diagram indicated four modes of interest from 

resonance point of view at the running speed of 12400 

rpm. These modes were near 1xIGV, 2xIGV, 3xIGV and 

4xIGV excitation frequencies respectively. 

b. The location of maximum stress is not at the damage 

initiation location. Hence, a pure resonance up to 4
th

 

harmonic of IGV excitation is not likely for the observed 

initiation of crack in the wheel without coating. At design 

speed, interference due to multiple of expander IGV wake 

counts was ruled out as possible cause of wheel failure. 

Pattern of stress was inconsistent with the failure mode of 

the blade. 

c. Another 3 ND mode exists at about 1734 Hz after the 

calculated frequency was adjusted for the effect of 

temperature (calculated frequency is 1694 Hz). This mode 

may be excited by 1xIGV at about 9458 RPM. 

Furthermore, the location of peak stress coincides with the 

location of crack initiation site on the wheel.  

 Failed Part Ansys Results

Displacement Vs Frequency
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d. Final separation of blade of wheel was due to pre-existing 

cracks in one of the root of the blade. 

e. Initially, the crack initiated in the coating due to low 

fatigue property possibly due to frequency interference of 

synchronous frequency with a 3 nodal diameter mode 

during start up. For uncoated wheel, magnitude of stress 

was low enough to initiate a crack in the parent material. 

However, when a crack was initiated in the coating, 

magnitude of stress was sufficient to grow this crack to 

final separation. 

f. The startup procedure was modified to avoid damaging 

fatigue cycles and to reduce the effect of possible 

excitation frequencies during every start up at 9240 rpm.  

g. Based on the frequency response analysis results and 

conclusions, it is concluded to be safe to continue using the 

spare wheel under the existing clean steam condition. 

Wheel that is currently in use should be replaced with the 

available new wheel with partially removed coating.  

 

IMPURE MODE SHAPES (PACKETED BLADED DISK) 

 

The continuous shrouded bladed disk and bladed disk 

without shroud are tuned systems if each blade has the same 

form and dimension having the same fixity in the disk. Due to 

the dimensional variations from blade to blade, these identical 

frequencies for a mode split into two frequencies for the same 

mode. The shape of the mode may contain other than primary 

harmonics. This phenomenon is commonly observed in a 

packeted disk assembly. This is a case of deliberate mistuning, 

i.e., mistuning is introduced by breaking shroud at specified 

interval. This breaks the geometrical symmetry of the bladed 

disk. An example is presented to demonstrate the implication of 

irregularities in the mode shape due to packeting and 

asymmetry of the aerodynamic forces. Singh and Lucas (2011) 

described a case. Assumption is made that each blade is 

identical so that no mistuning is introduced due to a variation in 

the blades. 

 

 A finite element model of a bladed disk with 60 blades (10 

packets with 6 blades in each packet) is shown in Fig. 77.  

 

 

 
 

Figure 77 Model of a Packeted Bladed Disk  

  (60blades and 10 packets) 

 

Three different modal analyses were performed to estimate 

natural frequencies and associated mode shapes. For the first 

analysis, a disk with single continuous shroud band, i.e., one 

packet was considered. The second analysis was conducted for 

an individual bladed disk with individual shroud on the tip of 

each blade. Essentially, this is the case of 60 packets with only 

one blade in a packet. Finally, the third analysis was performed 

for 10 packets with 6 blades in a packet. 

 

Fig. 78 through Fig 80 display plots of 3ND mode shapes 

for these three cases. The mode shapes for continuous shroud 

and for free standing blades show a regular sinusoidal form 

while the mode shape for the 10 packet case looks like a 

sinusoidal form but it has some irregularities. Fourier analysis 

of this form yielded the third harmonic as a major contributor, 

but it also contained some other harmonics. It has been 

observed in such cases that low order modes do not seem to 

deviate much from the primary shape; however, for high order 

modes the deviation is considerable. High order modes appear 

to have many harmonics other than the expected primary 

harmonic. 

 

 
 

Figure 78 3ND Mode Shape for Single Continuous 

  Shroud 

 

 

Figure 79 3ND Mode Shape for Blades with Individual 

   Shroud 

 

 

 

Figure 80 3ND Mode Shape for 10 Packets, 6 Blades in 

  a Packet  

 

Mode shapes for 13ND for these three cases are shown 

(Fig. 81 thru Fig 83). As expected, the forms for the continuous 
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and individual blade cases have pure sinusoidal forms, but for 

the packeted case it is far from pure sinusoidal. For the 

packeted bladed case, it was found that 13
th

 harmonic was 

predominant but there was contribution from other harmonics. 

 

 

 
 

 

Figure 81 13ND Mode Shape for Single Packet 

 

 

 
 

 

Figure 82 13ND Mode Shape for Individually Shrouded 

  Blades  

 

 

 

 

Figure 83 13ND Mode Shape for 10 Blades Packets, 6  

  Blades in a Packet 

 

 

 

 

 

 

 
 

Figure 84 Safe diagram for Single Packet, Individual 

Blades and 10 Blades Packets, 6 Blades in a 

Packet 

 

Results of these three cases have been plotted on the Safe 

diagram as shown in Fig. 84.  

 

 

The following observations should be mentioned: 

1. The frequencies for the completely shrouded 

blades case are the largest for every mode shape. 

2. The frequencies for the individually shrouded 

blades case are the lowest for every mode shape. 

3. The frequencies for the packeted blades case fall 

in between these two limits. 

4. The 5ND, 10ND, 15ND, 20ND and 25ND modes 

for the packet case have split in two frequencies. 

5. The displacement patterns of the blades within a 

packet are quite different between these modes. 

6. For example, for the 10ND, the first mode shows 

axial-U type displacement while the second one 

displays axial-S type displacement. 

7. The response of blades in these two cases is 

expected to be different.  

 

To determine the harmonic contents of any mode shape a 

Fourier analysis utilizing the displacement values of the blade 

obtained from the modal analysis should be performed. It is a 

tedious task but an approximate method that has been 

developed using spring-mass system by observing results of 

many simple analyses can be used. This method identifies 

harmonics that will participate in a particular mode for a given 

construction. However, it does not provide the actual relative 

contribution of each harmonics. 

Singh and Lucas (2011) have explained a graphical method 

to estimate participation of harmonics for any mode for 

packeted bladed disc. They also provided mathematical 

expression to arrive at similar results.  

After numerous analyses for packeted bladed disk a 

mathematical relationship was developed for any mode for any 

construction. 
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M nodal diameter mode shape may be written as a general 

expression given below, where L is the number of harmonic 

contents. 

 

X (M) = Al sin (L + L)        (9) 

 

The mode shape for M nodal diameter in a general case for 

packeted bladed disk was found to follow the following 

expression. The harmonic content, L, can be estimated as 

follows for the packeted bladed disk: 

 

L = abs (l.n  M)         (10) 

Where l = 0,1,2,3,4,… 

 n = number of packets 

 N = number of blades 

and  

 0 L N or (N-1)/2 if N is an odd number     (11) 

 

A simple way of examining the effect of impurity in mode 

shape and the shape of the aerodynamic forces can be done by 

estimating work done by the forces during the motion of a 

particular mode shape. Figure 85 is the plot of 13 ND mode 

shape of a packeted bladed disk. Number of blades is 60 and 

number of packets is 10 with 6 blades in a packet. The largest 

harmonic content of the shape is thirteenth but there are other 

harmonics. The harmonic contents of this mode can be 

estimated by using equation 10.  

 

For this case, 

n = 10 

M = 13 

N = 60 

L = abs (l. (10)  13) 

For l = 0, L = 13 

For l = 1, L = 23 and 3 

For l = 2, L = 33 and 7 

For l = 3, L = 43 and 17 

For l = 4, L = 53 and 27 

For l = 5, L = 63 and 37 

 

The harmonic contents should be less than 30 (N/2 = 60/2 

= 30) according to equation 15, therefore, the expected 

harmonic contents for this mode are 3, 7, 13, 17 and 27. 

 

 

 

Figure 85 Estimated Harmonic Content in 13ND for 10 

  Packets 

Expression for work done for structure mistuned bladed disk 

The general expression for the mode shape and the general 

expression for mistuned forcing with development of work 

done are provided in the Appendix. The actual relative 

magnitude of the coefficients for mode shape and forcing 

should be estimated by performing a Fourier analysis. 

 

Using the complete integral relationship, the final 

expression of work done is given by the following: 


2

0

dW =    (7A7F7 cos cos   

  +13A13 F13 cos cos)  (12) 

 

Summary 

 

1. The blade will respond to the harmonics of force 

that match with the harmonic contents of the 

mode shape. 

2. The resulting response distribution will be 

different than the mode shape. 

3. It is quite possible that there will not be a true 

resonance, but a forced response in such a 

situation. 

 

CONCLUSIONS 

 

1. For pure resonance to occur, the frequency of the 

exciting force must equal the natural frequency of 

vibration, and the profile (shape) of the applied force 

must be the same shape as the mode shape associated 

with that natural frequency (true for tuned and 

mistuned system). 

2. For a tuned (structural and forcing) system above 

conditions are met and the response of the system is 

very high. Magnitude of response depends on the 

damping. 

3. In the general case of mistuned system (random or 

deliberate), the blade will respond to the harmonics of 

force that match with the harmonic contents of the 

mode shape. The resulting response distribution may 

be different than the mode shape. It is quite possible 

that there will not be a true resonance, but a forced 

response in such a situation. 

4. Safe diagram is used for both types of system.  

5. The phenomenon of split frequencies has been 

demonstrated and plotted on the Safe diagram for 

evaluation. This has been pronounced and very clear 

for packeted bladed disc construction.  
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APPENDIX 

 

EXPRESSION FOR WORK DONE FOR A TUNED 

BLADED DISK 

The general expression for the mode shape can be written 

as 

 

X (M) = AL sin (L + L)   (A1) 

 

Where L is the half of the number of blades (N) for even 

number of blades or (N-1)/2 for odd number of blades on the 

disk 

 

X (M)   = A0+A1sin () +A2sin (2) +A3sin (3) 

 +…………+ALsin (LL)    

 = A0+A1(sincos+cossin)   

 +A2(sin2cos+ cos2sin) 

 + A3(sin3cos+cos3sin) 

 +……….+AL(sinLcosL+ cosLsinL)    (A2) 

 

In general case when forcing is also mistuned then the 

shape of the force can be expressed as follows: 

 

F(N)  = F0+F1cos()+F2cos(2)+    

     F3cos(3)+……….+FLcos(LL) 

  = F0+F1(coscos- sinsin)  

     +F2(cos2cos2- sin2sin2)     

     +F3(cos3cos- sin3sin)+………. 

     +FL(cosLcosL- sinLsinL)  (A3) 

 

dW = F (N).d(X (M)) 

d(X (M))   = (A0+A1 (coscos- sinsin)   

     +2A2 (cos2cos- sin2sin) 

     + 3A3 (cos3cos- sin3sin) 

     +……….

                  +LAL (cosLcosL- sinLsinL)) d (A4) 

 

dW          = (F0+F1 (coscos- sinsin)  

     +F2 (cos2cos2- sin2sin2)     

     +F3 (cos3cos- sin3sin) +………. 

     +FL (cosLcosL- sinLsinL)) 

     x (A0+A1 (coscos- sinsin)  

    +2A2 (cos2cos- sin2sin) 

    + 3A3 (cos3cos- sin3sin) 

    +……….

                 +LAL (cosLcosL- sinLsinL)) d (A5) 

 

 

 

 

 

 

 

 

Finally, the work done, W, is given by  


2

0

dW = 
2

0

 ((F0+F1 (coscos- sinsin)  

     +F2 (cos2cos2- sin2sin2)     

     +F3 (cos3cos- sin3sin) +………. 

     +FL (cosLcosL- sinLsinL)) 

     x (A0+A1 (coscos- sinsin)  

    +2A2 (cos2cos- sin2sin) 

    + 3A3 (cos3cos- sin3sin) 

    +……….

                 +LAL (cosLcosL- sinLsinL))) d (A6) 

 

W = 
2

0

 A0F0 d 
2

0

 A1F1 cos1 cos1 cos
2
 () d

 + 
2

0

2A2 F2 cos2 cos2 cos
2
 (2) d

 + 
2

0

 3A3F3 cos3 cos3 cos
2
 (3) d

 + 

 + 
2

0

LAL FL cosL cosL cos
2
 (L) d

Using the complete integral relationship, equation 11 

reduces to the following: 

W =  (2A0F0+A1F1 cos1 cos1 +2A2 F2 cos2 cos2  

    + 3A3F3 cos3 cos3 +……..  

    + LAL FL cosL cosL)   (A7) 

 

EXPRESSION FOR WORK DONE FOR STRUCTURE 

MISTUNED BLADED DISK 

The general expression for the mode shape can be written 

as 

X(M)   = A3sin(3)+A7sin(7)+A13sin(13) 

 +A17sin(17)+A23sin(23)+A27sin(27)    

 = A3 (sin3cos+cos3sin)   

 +A7 (sin7cos+ cos7sin)  

 + A13 (sin13cos+ cos13sin) 

 +A17 (sin17cos+ cos17sin) 

 + A23 (sin23 cos+ cos23sin)  

 +A27 (sin27cos+ cos27sin)    (A8) 

 

The actual relative magnitude of the coefficients should be 

estimated by performing a Fourier analysis. 
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In general case when forcing is also mistuned then the 

shape of the force can be expressed as follows: 

F(N)  = F0+F4cos(4)+F7cos(7)+   

      F13cos(13)+F14cos(14)+   

      F24cos(24)+F28cos(28) 

  = F0+F4 (cos4cos- sin4sin)   

      +F7 (cos7cos- sin7sin)     

      +F13 (cos13cos- sin13sin) 

      +F14 (cos14cos- sin14sin)   

      +F24 (cos24cos- sin24sin)  

      +F28 (cos28cos- sin28sin)     (A9) 

 

dW = F (N).d(X (M)) 

d(X (M))   = (3A3(cos3cos- sin3sin)   

      +7A7 (cos7cos- sin7sin) 

      + 13A13 (cos13cos- sin13sin) 

      +17A17 (cos17cos- sin17sin)  

      + 23A23 (cos23 cos- sin23 sin)

                   +27A27 (cos27cos- sin27sin)) d(A10) 

 

dW         = (F0+F4 (cos4cos

 - sin4sin) +F7 (cos7cos- sin7sin)   

 +F13 (cos13cos- sin13sin)  

 +F14 (cos14cos- sin14sin)  

 +F24 (cos24cos- sin24sin) 

 +F28 (cos28cos- sin28sin)) 

  x (3A3 (cos3cos- sin3sin) 

 +7A7(cos7cos- sin7sin) 

 + 13A13 (cos13cos- sin13sin) 

 +17A17 (cos17cos- sin17sin)  

 + 23A23 (cos23 cos- sin23 sin)  

 +27A27 (cos27cos- sin27sin)) d (A11) 

 

 


2

0

dW = 
2

0

 (F0+F4 (cos4cos sin4sin)  

 +F7 (cos7cos- sin7sin)     

 +F13 (cos13cos- sin13sin)   

 +F14 (cos14cos- sin14sin)  

 +F24 (cos24cos- sin24sin)  

 +F28 (cos28cos- sin28sin))  

 x (3A3 (cos3cos- sin3sin)  

 +7A7(cos7cos- sin7sin)  

 + 13A13 (cos13cos- sin13sin)
 +17A17 (cos17cos- sin17sin) 

 + 23A23 (cos23 cos- sin23 sin) 

 +27A27 (cos27cos- sin27sin)) d (A12) 

 

 

 

 

 

Using the complete integral relationship, equation 20 

reduces to the following: 


2

0

dW = 
2

0

 7A7F7 cos cos cos
2
 (7) d

 + 
2

0

13A13 F13 cos cos cos
2
 (13) d

 =   (7A7F7 cos cos  

      +13A13 F13 cos cos)  (A13) 
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