COUPLING FAILURE DUE TO A MOTOR FAULT
COUPLING FAILURE DUE TO A MOTOR FAULT

Clay McClinton
Rotating Equipment Reliability Analyst, Chevron

Dan Phillips
Manager Global Field Services, Kop-Flex

Joe Corcoran
Manager Global Services & Training, Kop-Flex
Incident Description

- Soft Start Synchronous Electric Motor driving a Speed Increasing Gearbox to a Centrifugal Compressor
- Running since 2003 with no significant issues; Last shutdown in 2008
- Motor / Diaphragm Coupling / Gearbox
 - 15,000 hp @ 1,200 rpm (682,800 lb-in)
- Gearbox / Disc Coupling / Compressor
 - 10,790 hp @ 6,662 rpm (102,100 lb-in)
- During start-up following 2013 turnaround, speed of motor dropped several times coming up to speed
 - Some electrical maintenance performed on motor during turnaround
- Failure and ejection of high speed coupling occurred 12 seconds after start (main part went 70 yards)
 - No injuries
Motor Speed Data from LS Speed Pick-up

Speed Abnormality
Broken Guard Due to Ejected High Speed Coupling Center Section
Failed Components Less Rigid

Comp. Side

GB Side

Coupling Spacer note 45° angle

Disc and bolt fragments

Spacer Flange, comp. side
Spool Piece from Gearbox Side
Spool Piece from Compressor Side

Note: threaded portion of bolts bent in direction of rotation

Note Anti-Flail Did Not Contain
Driving End of Spacer with “Nut Broaching”

Nut/bolt pulled through flange
Waterfall Plot from Start Up Reveals 6.9 Mils @ 11.25 Hz

Data from gearbox 6X radial probe, low speed side

Prior to shutdown, radial vibration was <0.5mils p-p
RCA

- No conclusive evidence of liquid slug
- High speed coupling flange bolts intact
 - Failure <5.8X normal torque, based on bolt strength with flange friction
- Shear Stress >84,000 psi on spacer tube
 - >6X normal torque to yield
 - Additional bending loads occurred as disc pack buckled
- Disc pack buckled, bolts bent
 - Max momentary rating of HS coupling 3.3X normal torque
- 3.3X normal torque < Failure Torque < 5.8X normal torque
Evaluation

- Location of initial failure was on compressor end of HS coupling center section

- Scenario
 - Comp. end disc pack buckles, disc pack bolts bend
 - Comp. end flange/Tube breaks due to torque + bending loads
 - Remaining portion of center section breaks through anti-flail
 - Unbalance forces (>30,000 lb) rip center section away from opposite end disc pack
 - Kinetic energy of broken center section (~4300 ft-lb) allows ejection through coupling guard
Evaluation

- Low speed coupling looked good visually
 - Replaced as precautionary measure. Further inspection revealed no defects.

- Low speed coupling had higher torque capacity ratio
 - Max Momentary Torque was 8X vs. 3.2X
 - Not typical
 - Original Selection was a MAX-C Elastomeric Coupling

- So what caused the tremendous loads?
 - Speed fluctuations investigated
 - Torsional analysis reviewed
Motor Speed Data from Solo Run

- Loose wire found on motor diode wheel
- Uncoupled solo run of motor confirmed speed abnormality
Loose Wire Repaired; Motor Speed Data from Successful Start up 3/26

- Motor wiring corrected
- Second solo run showed no speed fluctuations
Coupled and Solo Run Electrical Data – Current Fluctuations – Source of Excitation

SEL 710 Start Data - MK 8320

1- 2008 Start-up
2- Failure Event
3- Solo run, before repair
4- Solo run, after repair
5- Successful start up
Verification of Torsional Analysis

- Original torsional analysis reviewed
 - Frequency (11.25 Hz) of high radial vibrations found during start-up prior to failure appeared to be near a system torsional natural frequency

- New forced response analysis conducted
 - Wiring problem caused current fluctuations in motor, exciting torsional natural frequency
 - Need to determine effect of short duration torsional excitation at motor, resulting from diode wheel wiring
Campbell Diagram – 1st Torsional Mode at 11.9 Hz (719 CPM)
Calculated Torque on Coupling During ~4X Rated

Resultant torque coincides with predicted failure torque levels:
3.3X normal torque < Failure Torque < 5.8X normal torque

TAF response of high speed coupling with 0.5 sec excitation of first natural frequency applied at motor, .013% damping included.
Vibration Data from Successful Start-up 3/26

![Graph showing vibration data over time, with frequency and amplitude indicated.]
Lessons Learned and Recommendations

- This is a Very Rare Occurrence that Could Have Been Prevented
- Conduct Torsional Vibration Analysis- Forced Response
 - Faulty motor wiring excited torsional natural frequency during start-up
 - TVA concluded that peak torques exceed coupling rating and also
 - TVA provides critical information on location of weak point and can be used to evaluate necessary change (mass-elastic properties, overload protection, etc.)
- Wiring Checks
 - After any motor electrical maintenance, a full inspection of wiring connections is required
- Perform solo run on motor after major electrical maintenance completed
- Different couplings could have helped - Larger High Speed Coupling or Shear Section at High Speed (or Low Speed?)
- Unnecessary personnel should never be in close proximity to rotating equipment during start-up