

43rd **Turbomachinery 30**th **Pump** SYMPOSIA

GEORGE R. BROWN CONVENTION CENTER HOUSTON, TX | SEPT. 22 - 25, 2014

COUPLED TORSIONAL-LATERAL ANALYSIS

STAFFAN LUNDHOLM – LLOYD'S REGISTER CONSULTING NIKLAS SEHLSTEDT – LLOYD'S REGISTER CONSULTING PER TELLEFSEN – LLOYD'S REGISTER CONSULTING CLAUS MYLLERUP – LLOYD'S REGISTER

Outline

- Background
- Measurements on gear casing
- Calculations
 - Static
 - Dynamic
- Comparing measurements
- Discussion

Background

- North sea platform production modification
- Two compressor trains were upgraded from 18 MW -> 21 MW
- Main modifications:

Property	Modified	Original
Power [MW]	21.30	18.25
Speed in [rpm]	3600	3600
Speed out [rpm]	10718	10894
Module	5.6	6.4
Z1	44	38
Z2	131	115
Туре	Single helical	Single helical

Background

Problems encountered:

- Two consecutive gearbox failures within few weeks after commissioning
- ~ 500-1000 operating hours before failure
- Severe gearbox casing vibrations and excessive noise levels recorded
- Turbine side on bull gear experienced fractured teeth and cracks on the load surfaces

Actions taken:

- Full RCA initiated. This concluded poor final grinding as primary cause of failures
- Contributory causes had to be investigated as part of the RCA
- Torsional/Lateral vibration analysis was initiated by LRC as part of the RCA

- Vertical accelerometer
 - Horizontal accelerometer

10200 rpm = GMF @ 7480 Hz Levels up to 1600 m/s² (~160 g) p-p

Amplification factor $Q \approx 700$

Pinion mode excitation

Pinion mode excitation

Untitled - Case no. 1

7X = 75 026 rpm 8X = 85 744 rpm 9X = 96 462 rpm 10X = 10 7180 rpm

Torsional-Lateral Calculations

Torsional-Lateral Calculations

$$\delta_1 = -r_1 \theta_1 - x_1 \cos(\alpha) - y_1 \sin(\alpha)$$

$$\delta_2 = r_2 \theta_2 - x_2 \cos(\alpha) - y_2 \sin(\alpha)$$

$$P_{i} = \begin{cases} k(\delta_{1i} - \delta_{2i} - \delta_{ci}) & \delta_{1i} - \delta_{2i} > \delta_{ci} \\ 0 & \delta_{1i} - \delta_{2i} \le \delta_{ci} \end{cases} \quad i = 1..43$$

Results – Dynamic calculations

Comparing with measurements

Conclusions

- The primary cause of failures was residual stress in tooth flanks from the manufacturing process. Contributory causes (such as torsional/lateral analysis) were investigated as part of the RCA.
- Spare gear set was sent onshore for a second "final grinding" to remove residual stress on the load flanks.
- The presented calculations were tuned with measurements from before and after modifications. The resulting loads were input to load flank fatigue calculations by the vendor.
- Fatigue calculations from before and after the machining could prove that the load flank fatigue life improved with the second grinding.
- Gear boxes are still in operation with no reported issues since commissioning March 2010 and June 2012 for the two trains, respectively.

Questions?

